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Abstract 
Due to the complex interplay between composition, synthesis parameters and the performance of 

thermoelectric materials, the optimization of thermoelectric materials needs to be complemented by 

modelling. A relatively simple and thus popular approach is the so called single parabolic band 

model, which allows for an efficient optimization of the material properties and a benchmarking of 

different materials based on relatively few, well available experimental results. As complex band 

structures are common for high performance materials, single parabolic band modelling is also 

employed with apparent success for material systems the underlying assumptions are not well 

fulfilled. In order to assess the validity of a single parabolic band analysis for such systems, the 

thermoelectric properties for two model systems are calculated: one with a single band that is 

twofold degenerate and one with a light and a heavy band. Even if the density of states masses and 

are kept identical, the transport properties and in particular the Hall coefficients differ significantly, 

which leads to an incorrectly determined carrier concentration. As the carrier concentration is the 

base for the single parabolic band analysis, all the quantities obtained from it (optimum carrier 

concentration, effective mass, deformation potential) are determined incorrectly as well.   

 

1. Introduction 
 

Thermoelectric materials are very attractive as they can directly convert waste heat into electricity. 

Thermoelectric systems have advantages such as small system size, no moving parts, heating and 

cooling options employed in a single system, environmental compatibility and high reliability. The 

development of thermoelectric generators (TEG) is promising for a range of diverse applications, 

ranging from self-powering sensors to waste heat recovery in the automotive sector and the steel 

industry. Further applications include the powering of space probes or extraterrestrial vehicles [1-3]. 

The efficiency of thermoelectric generators depends on the figure of merit 𝑧𝑇 of the employed 

materials, which is defined by 𝑧𝑇 =  
𝑆2𝜎

𝜅
 T, where 𝑆 is the Seebeck coefficient, 𝜎 the electrical 

conductivity, 𝜅 the thermal conductivity, and 𝑇 the temperature. All thermoelectric transport 

properties depend on the carrier concentration 𝑛 of the material [2]. As materials with good 

thermoelectric properties can be obtained from a large number of elements, the compositional 

parameter space is basically unlimited. This means that efficient material optimization cannot be 

done experimentally only, but needs to be complemented by modelling efforts; be it to optimize a 

given material with respect to carrier concentration or to compare different material systems. Ab 

initio calculations are becoming ever more powerful in predicting thermoelectric performance, e.g. 

by employing DFT to calculate electronic band structures and using the Boltzmann Transport 

Equation (BTE) to calculate electronic and phononic transport [4-7]. Recently, machine learning and 
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high-throughput approaches are also used to identify promising TE materials [8-10]. However, these 

and similar approaches first still require experimental verification and secondly, are not always best 

for understanding the rationale behind the calculated properties. For experimental material 

developers on the other hand, simplified models based on the BTE are very popular[11-15]. Probably 

the simplest approach is the so-called single parabolic band (SPB) model which describes the 

electronic transport properties based on a single parabolic band with a single effective mass [16-21]. 

The power and the beauty of this model lies in the fact that a complete description of the model 

system can be obtained from relatively few and accessible experimental quantities: 𝜎, 𝑆, 𝜅 and the 

Hall carrier concentration 𝑛𝐻. As the SPB naturally disregards the influence of minority carriers it is 

well known to have significant shortcomings, especially at higher temperatures [22-24]. Also, if the 

contribution of several bands varies with temperature due to a temperature dependent band 

structure, the necessity to use more than one band for a description of the material has been 

recognized [23, 25]. Still, within the SPB model a straightforward prediction of the optimum carrier 

concentration can be obtained relatively easily which shows decent agreement with experimental 

data, see e.g. [26, 27]. Furthermore, more fundamental material parameters can be derived from the 

SPB modelling allowing for a systematic comparison of different material classes and hence a rational 

selection of the better material or identification of the best composition in a range of solid solutions 

[28, 29]. As the use and the evaluation of the SPB model is so simple it has also been applied with 

apparent success to material systems where the fundamental assumption of one dominant parabolic 

band is not well fulfilled. A noteworthy example is n-Mg2Si1-xSnx with 𝑥 ≈ 0.65 where the two lowest 

lying conduction bands with different curvatures have the same energetic minimum, see [30-33]. Liu 

et al. with their work, “Advanced thermoelectrics governed by a single parabolic band: Mg2Si0.3Sn0.7, a 

canonical example”, in particular, emphasize that the transport of that material can be described 

very well using  a SPB model  [34]. Other material systems are p-Mg2X [26, 35, 36], where, in fact, 2 

or three valence bands are relevant [37], PbTe [38-40] Si [41-43], Mg3Sb2 based compounds [44, 45], 

and half-Heuslers [46]. 

In reality, energetically degenerate bands as well as bands with dissimilar masses are features that 

favor good thermoelectric properties [39, 47, 48]. Therefore band structures more complex than a 

single parabolic band are rather the norm than the exception in good thermoelectric materials. While 

the SPB model is often applied for these material systems, the inaccuracies that arise due to not 

having a single parabolic band in practice are unknown and often usually neglected. In this work we 

will compare the transport properties of a model system that strictly follows the SPB model with one 

that has two bands with distinct properties and discuss the arising differences. We will also analyze 

the errors that arise if the two band system is treated in a SPB approach. Depending on the 

difference in band mass between the two bands the errors can be significant and can lead to largely 

incorrectly estimated material properties. 

 

 

2. Calculation 
 

Let us first consider the basic equations for a single parabolic band system[16, 49]. We’ll assume that 

scattering of acoustic phonons is the dominant scattering mechanism (scattering parameter 𝜆 = 0) 

as this is typically observed for thermoelectric materials at room temperature or above.  



The carrier concentration 𝑛 is related to the density of states effective mass 𝑚𝐷
∗  and the reduced 

chemical potential 𝜂 =
𝐸F

𝑘𝐵𝑇
, (𝐸F is the Fermi energy, 𝑘𝐵 Boltzmann’s constant) by 

𝑛 = 4𝜋 (
2𝑚𝐷

∗ 𝑘𝑏𝑇

ℎ2 )

1.5

 𝐹1
2

 
(𝜂) 

(1)  

where 𝐹𝑖 (𝜂) is the Fermi integral of order 𝑖 𝐹𝑖 = ∫
∈𝑖𝑑∈

1+𝐸𝑥𝑝[∈−𝜂]

∞

0
. The reduced chemical potential can 

be extracted directly from the measured Seebeck coefficient value using 

𝑆 = ±
𝑘𝐵

𝑒
(

2𝐹1(𝜂)

𝐹0(𝜂)
− 𝜂) 

(2)  

 

while 𝑚𝐷
∗  is obtained from Eq (1) and the experimentally determined Hall coefficient 𝑅𝐻  

𝑅𝐻 = ±
1

𝑒𝑛𝐻
= ±

𝑟𝐻

𝑒𝑛
, 

(3)  

𝑛𝐻 is denoted as Hall carrier concentration and the Hall scattering factor is only a function of 𝜂: 𝑟H =
3𝐹0.5(𝜂)𝐹−0.5(𝜂)

4𝐹0
2(𝜂)

. Note that both 𝑆 and 𝑅𝐻 have a negative value if electrons are the relevant charge 

carrier and a positive value for holes. 

The electrical conductivity is related to the carrier mobility 𝜇 by  

𝜎 = 𝑒𝑛𝜇 (4)  

which is related to the inertia or transport effective mass 𝑚𝐼
∗ by 𝜇 = 𝑒𝜏/𝑚𝐼

∗. For acoustic phonon 

scattering the experimentally determined Hall mobility 𝜇𝐻 = 𝜇 ∗ 𝑟𝐻 is given by 

𝜇H,AP =
𝐹−0.5

2𝐹0

𝑒𝜋ℏ4

√2(𝑘𝑇)1.5

𝐶𝑙

𝐸def
2 (𝑚𝐼)(𝑚𝑏

∗ )1.5 
  

 

(5)  

 

where 𝐸𝑑𝑒𝑓 is the deformation potential, i.e. the scattering constant for AP scattering. 𝐶𝑙 = 𝜌𝑣𝑙
2 is 

the longitudinal elastic constant, related to the mass density 𝜌 and the longitudinal speed of sound 

𝑣𝑙. For the evaluation of Eq (5) it is assumed that the single valley effective mass 𝑚𝑏
∗  is identical to 

the transport effective mass 𝑚𝐼
∗, which is strictly true only for materials with a spherical Fermi 

surface. In a system with degenerate bands, the (total) density of states effective mass 𝑚𝐷
∗  is related 

to the single valley mass by 𝑚𝐷
∗ = 𝑁𝑣

2/3
𝑚𝑏

∗  where 𝑁𝑣 is the valley degeneracy. If the elastic constant 

is known from literature, 𝐸𝑑𝑒𝑓 can be obtained from the measured Hall mobility. 

The measured total thermal conductivity is related to the lattice constant by  

𝜅 = 𝜅𝑙𝑎𝑡 + 𝜅𝑒 = 𝜅𝑙𝑎𝑡 + 𝜎𝑇𝐿(𝜂) (6)  

𝐿 =
𝑘𝐵

2

𝑒2 (
3𝐹0𝐹2 − 4𝐹1

2

𝐹0
2 ) 

(7)  

 

The system is thus fully described by 𝜅𝑙𝑎𝑡(𝑇), 𝐸𝑑𝑒𝑓, 𝑚𝐷
∗  ( and possibly 𝑁𝑣) and all thermoelectric 

transport properties can be calculated as function of 𝜂(or 𝑛) and 𝑇. 



For a system with two parabolic bands (2PB), the transport quantities are given by [50, 51] 

𝑆 =
𝜎1𝑆1 + 𝜎2𝑆2

𝜎1 + 𝜎2
 

(8)  

𝜎 = 𝜎1 + 𝜎2 (9)  

𝑛 = 𝑛1 + 𝑛2 (10)  

𝑅𝐻 =
𝑅𝐻1𝜎1

2 + 𝑅𝐻2𝜎2
2

(𝜎1 + 𝜎2) 2
=

𝑛𝐻,1𝜇𝐻,1
2 + 𝑛𝐻,2𝜇𝐻,2

2

𝑒(𝑛𝐻,1𝜇𝐻,1 + 𝑛𝐻,2𝜇𝐻,2) 2
 

(11)  

𝜅 = 𝜅𝑙𝑎𝑡 + 𝜅𝑒1 + 𝜅𝑒2 + 𝜅𝑒12 
 

(12)  

 

where the quantities 𝜎𝑖 , 𝑆𝑖, 𝑅𝐻,𝑖 , 𝑛𝑖, 𝜇𝐻,𝑖 are given by Eqs. (1)-(5). The (single carrier type) electronic 

thermal conductivities are given by Eqs. (6) and (7) while the bipolar contribution 𝜅𝑒12 is given by 

𝜅𝑒12 =
(𝑆1−𝑆2)2𝜎1∗𝜎2

𝜎1+𝜎2
𝑇. Note that the single band equations are valid with respect to the chemical 

potential of that carrier type, i.e. 𝑆1 = 𝑆(𝜂1) and 𝑆2 = 𝑆(𝜂2), which are related to each other by the 

relative position of the bands with respect to each other. For the later considered case of two 

valence bands with the same maximum 𝜂1 = 𝜂2 = 𝜂, this also implies 𝜅𝑒12 = 0. 

A SPB model is also often applied to material systems with a more complex band structure, e.g. with 

two or more valence or conduction bands with the extrema at the same energy level; relevant 

examples for this are Mg2Si1-xSnx with 𝑥 ≈ 0.65 where the two lowest lying conduction band maxima 

converge [30-34, 52]  or p-Mg2X (X=Si, Ge, Sn) where the two or three highest valence bands all have 

their maximum at the same energy [26, 36, 37, 53-55]. In this case the bands are being treated as if 

they were truly identical/degenerate, i.e. the individual bands with 𝑚𝑏,𝑖
∗  are substituted by an 

average SPB mass, given by 𝑚𝐷
∗ = 𝑁𝑣

2/3
𝑚𝑏,𝑆𝑃𝐵

∗  [34, 54]. 

 

3. Results 
 

In the following we’ll compare the thermoelectric transport properties of a model system with two 

identical bands (SPB) and one with two bands with distinct effective masses (2PB). This allows 

evaluating the accuracy of assuming SPB-like behavior for a two band system. An variation of the 

bands with respect to each other in energy is not considered as this is easily recognized 

experimentally and it is clear the a single band model cannot be applied then [25]. 

To be able to calculate all the properties we’ll use the physical parameters of p-Mg2Sn, where some 

constants are reported and which is supposed to have two relevant VB according to [37]; 

nevertheless the numbers are not essential for the relevance of the following. 

For a fair comparison, the 𝑚𝐷
∗  of both systems considered needs to be the same; this is essentially 

the same as saying that for a given carrier concentration the reduced chemical potential is identical 

in both systems. We take 𝑚𝐷
∗ = 1.1 𝑚0 [54] for p-Mg2Sn; 𝑚0 is the free electron mass. The heavy 

hole and light hole valence bands clearly have different curvatures and we use the estimate of the 

effective mass ratio of 
𝑚𝐻𝐻

∗

𝑚𝐿𝐻
∗ ≔ 𝐴 ≈ 4  from the DFT calculation results in [37], similar to a recent 

result in [56]. As the total density of states effective mass is the weighted sum of the individual band 



masses 𝑚𝐷
∗ = (∑𝑚𝑖

1.5)
2/3

 it follows for our model system 𝑚𝐻𝐻
∗ = 1.02 𝑚0, 𝑚𝐿𝐻

∗ = 0.254 𝑚0. For 

the SPB system it follows from 𝑚𝐷
∗ = 𝑁𝑣

2/3
𝑚𝑏

∗  with 𝑁𝑣 = 2 𝑚𝑏,𝑆𝑃𝐵
∗ = 0.69 𝑚0. The band structure is 

visualized in Figure 1a.  Note that the effects of interband and intervalley scattering are not 

considered in the calculations. These could be different between the two considered systems [57], 

but intervalley scattering can usually be neglected if scattering by acoustic phonons is dominant [58], 

which tends to be true in thermoelectric materials above room temperature. 

The thermoelectric properties for both SPB and 2PB system according to the equations given above 

are summarized in Figure 1b)-g). For these we have assumed the same deformation potential of 

𝐸𝐷𝑒𝑓 = 9 eV for both bands in the 2PB system and the SPB system, the elastic constant as  𝐶𝑙 =

8.3 × 1010 Pa [54, 59] and 𝜅𝑙𝑎𝑡(300 𝐾) = 5.3 W/mK [54].  



 

 

Figure 1: a) electronic band structure of a system with single, two-fold degenerate band (SPB) and 
one comprising a light and a heavy parabolic band that are degenerate only at the maxima (2PB). 
The band masses are designed such that the total density of states effective mass is the same in 
both cases. b)-g) Thermoelectric properties for the SPB and the 2PB system employing material 

constants for p-Mg2Sn and 𝒏 = 𝟏𝟎𝟐𝟔 𝐦−𝟑. 



All properties are calculated for 𝑛 = 1026 m−3. As can be seen from Figure 1b) the chemical 

potential is identical for both systems. This is due to having 𝑚𝐷
∗  identical for the two considered 

cases. As the Seebeck coefficient of the individual bands depends only on the chemical potential, it is 

also the same for all bands and hence for the 2PB and the SPB system. Figure 1d) shows the 

distribution of the carriers of the 2PB system. These are distributed according to 
𝑛𝐻𝐻

𝑛𝐿𝐻
= (

𝑚𝐻𝐻
∗

𝑚𝐿𝐻
∗ )

1.5

= 8  

(Eq. (1)), i.e 89% are in the heavy valence band. For the SPB system the carriers are distributed 

equally (not shown) and the sum is of course the same in both systems. As we don’t consider thermal 

excitation into the conduction band the carrier concentration is independent of temperature. As is 

clear from Figure 1e) the electrical conductivity of the 2PB system is significantly higher than that of 

the SPB system (≈70% in this case), even though 𝑛 and 𝑚𝐷
∗  are identical. In fact, only the 

conductivity contribution from the LH band alone is larger than that of the SPB system with a two-

fold degenerate band. The fundamental reason for that is the strong dependence of 𝜇𝐻 and hence 𝜎 

on the band effective mass (Eq. (5)) which overcompensates the lower carrier concentration in the 

LH band; it is also due to keeping the scattering constant 𝐸𝐷𝑒𝑓 the same for all bands. As 𝑆 is identical 

for both systems, this results in a significantly higher power factor for the 2PB system and is an 

example of the well-known fact, that a combination of dissimilar bands is favorable for optimizing 

thermoelectric properties [25, 48].  

Perhaps the most important finding is that the Hall coefficient 𝑅𝐻 is distinctly different; in this case 
𝑅𝐻,2𝑃𝐵

𝑅𝐻,𝑆𝑃𝐵
≈ 6 (Figure 1g). This is not necessarily surprising as Eq (3) and (11) are clearly different. While 

Eq (3) can be employed to calculate the carrier concentration from a (measured) Hall coefficient for a 

SPB system directly, Eq (10) would need to be involved for a 2PB system. Due to the interdependence 

of the 2-band properties the measured 𝑅𝐻 cannot be directly translated into a carrier concentration 

[15].  If Eq (3) is employed on the 2PB system anyway this will lead to incorrect results. In the here 

considered case, the Hall coefficient of the 2PB system that would be measured is 𝑅𝐻,2𝑃𝐵 =

3.9 × 10−7 𝑚3

𝐶
. If Eq (3) is employed to calculate the carrier concentration, it will result in a Hall 

carrier concentration of 𝑛𝐻 = 1.6 × 1025 𝑚−3  and a carrier concentration of 𝑛 = 1.7 × 1025 𝑚−3, 

while the actual (input) carrier concentration is 𝑛 = 1 × 1026 𝑚−3. The difference between the 

“measured” and the true, input carrier concentration is not due to an error in the model or the 

calculation itself, but due to applying a model for a case where it cannot be applied. Essentially, if a 

single parabolic band analysis is applied for a 2PB system with the above properties, the carrier 

concentration is determined roughly a factor of 6 too small. Note that the Hall coefficient has a very 

weak temperature dependence as it is related to 𝑛𝐻 which is linked to the temperature independent 

𝑛 by the Hall scattering factor 𝑟𝐻(𝑇). 

As the carrier concentration is one of the basic properties on which an SPB analysis is usually based, 

this finding has severe implication for the SPB analysis as will be discussed later on. First however, 

we’ll discuss how large the difference between the quantities in the SPB and the 2PB system is.  

As derived in the appendix, ratios of SPB and 2PB quantities are relatively simple functions of the 

mass ratio 
𝑚𝑏,1

∗

𝑚𝑏,2
∗ = 𝐴 (and partially 𝑁𝑣) only, i.e. independent of carrier concentration and other 

material specific constants. For the ratio of the electrical conductivities holds 
𝜎2𝑃𝐵

𝜎𝑆𝑃𝐵
=

(1+𝐴)

1

(1+𝐴−1.5)
2
3

𝑁𝑣
5/3   



, i.e. the electrical conductivity of the 2PB system is always larger than that of the SPB system. For the 

Hall coefficient it can be shown that  
𝑅𝐻,2𝑃𝐵

𝑅𝐻,𝑆𝑃𝐵
=

(1+𝐴−1.5)(1+𝐴3.5)

(1+𝐴)2 ; the Hall coefficient of the 2PB system 

is thus also always larger and the relative difference is even larger than for the electrical conductivity. 

We have visualized the contributions of the individual bands as well as the total electrical 

conductivity and Hall coefficient for the 2PB system normalized to the value of the SPB system in 

Figure 2a) and b). For 
𝑚𝑏,1

∗

𝑚𝑏,2
∗ = 1 the band structures of the SPB and the 2PB are identical and the ratio 

is thus unity. With increasing mass ratio the total conductivities and Hall coefficients deviate, 

reaching a factor of 1.7 for the electrical conductivity and of 6 for the Hall coefficient for 
𝑚𝑏,1

∗

𝑚𝑏,2
∗ = 4. 

 

Figure 2: Electrical conductivity (a) and Hall coefficient (b) of a 2PB system normalized to the value 
of a SPB system with two identical bands as a function of the band effective mass ratio; all other 
physical constants are identical. c) Distribution of the charge carriers according to the mass ratio. 

d) Ratio of the carrier concentration calculated from 
𝒓𝑯

𝑹𝑯𝒆
 (assumption of SPB) and the true carrier 

concentration 𝒏. The band mass ratios estimated from literature for several materials are indicated 
as vertical lines. 

Note that the difference of the power factor for the 2PB system is the same as for 𝜎, since 𝑆 is 

identical in both systems. With increasing mass ratio this overcompensates the decreasing fraction of 

light carriers which is plotted in Figure 2c and given by 𝑛2 = 𝑛 (
𝐴−1.5

1+𝐴−1.5). As the Hall coefficients of 

2PB and SPB are quite different, using 𝑛𝐻 =
1

𝑅𝐻𝑒
 (i.e. assuming SPB is valid), where 𝑅𝐻 is the 



experimentally measured value of the Hall coefficient, leads to an incorrect value of the carrier 

concentration 𝑛̃𝑆𝑃𝐵. Here the tilde indicates in the following quantities that are obtained if the 

validity of the SPB model is assumed and the corresponding equations are employed. As derived in 

Eq (A.2) the ratio of incorrectly determined carrier concentration and true carrier concentration is 

given by 
𝑛̃𝑆𝑃𝐵

𝑛
=

𝑅𝐻,𝑆𝑃𝐵

𝑅𝐻,2𝑃𝐵
=

(1+𝐴)2

(1+𝐴−1.5)(1+𝐴3.5)
 . As can be seen from Figure 2d), even if the two band 

masses differ by only a factor of two, the carrier concentration is calculated a factor of two too small. 

We have also indicated the implications for different prominent thermoelectric material systems: for 

n-type Mg2Si1-xSnx with 𝑥 ≈ 0.6 we have used 𝐴 = 1.45 from Bahk et al. [11], somewhere in the 

middle of the values from other reports (𝐴 = 1.35  [30], 𝐴 = 1.13 [60], 𝐴 = 2.4 [61], 𝐴 = 1.6 [50]). 

The large spread is due to different methods to extract the band masses from the available 

experimental or calculated data. Si also has a quite large mass ratio of 𝐴 = 3.1 between the heavy 

and the light valence band [62], similar to p-Mg2Sn. For PbTe we have indicated 𝐴 =
0.6

0.13
= 4.5, 

although the heavy band mass is also estimated to be even higher in some of the reports [40]. Note 

that for PbTe the bands move with respect to each other with temperature and the calculation 

captures only the situation when the band maxima are aligned. The temperature at which this 

happens is disputed, but above room temperature [38-40, 47, 63].  

4. Discussion 
 

As shown in Figure 2d the experimentally obtained carrier concentration 𝑛̃𝑆𝑃𝐵 (assuming validity of 

the SPB model) is always smaller than the real one. This implies that under the taken assumptions 

the dopant efficiency (ratio of measured carrier concentration to carrier concentration expected 

from composition) is always obtained too small if the system studied has two bands which are not 

identical . Furthermore, comparison between different materials might be misleading if the band 

mass ratio differs between these. In the case of p-Mg2(Si,Sn) a decreasing dopant efficiency has been 

observed when going from Mg2Sn to Mg2Si and a difference between Mg2Si1-xSnx and Mg2Ge1-xSnx for 

the same 𝑥 [26, 36]. This was deduced from the measured carrier concentration using 𝑛𝐻 =
1

𝑅𝐻𝑒
. As 

indicated in Figure 1 the relevant bands are not identical and the material is therefore not truly SPB-

like. It is therefore possible that the extent of the observed change in dopant efficiency is due to a 

change in 
𝑚𝑏,1

∗

𝑚𝑏,2
∗  when changing composition. Furthermore Figure 2d) also implies that carrier 

concentrations from Hall measurements can show only limited comparability when compared to 

results from other methods, as those results might be  affected differently by the existence of 

distinct bands [64, 65]. 

As the carrier concentration is one of the most important inputs for the SPB analysis, the incorrectly 

obtained carrier concentration for a non-SPB system has implications for the analysis and the validity 

of the conclusions that can be drawn from it. Often the Pisarenko-plot 𝑆(𝑛) is used to check the 

validity of the assumed SPB model, to look for deviations and obtain an average value of 𝑚𝐷
∗ . Figure 

3a) shows the Seebeck coefficient vs. the true carrier concentration 𝑛 and vs. 𝑛̃𝑆𝑃𝐵. The physical 

constants are those of p-Mg2Sn, i.e. the same as employed in Figure 1 and 
𝑚𝑏,1

∗

𝑚𝑏,2
∗ = 4. 



 

Figure 3: a) Seebeck coefficient at 300 K for a 2PB system with 
𝒎𝒃,𝟏

∗

𝒎𝒃,𝟐
∗ = 𝟒 (p-Mg2Sn) over carrier 

concentration and “experimentally” determined carrier concentration 𝒏̃𝑺𝑷𝑩 if a single parabolic 
band model is assumed. b) Figure of merit at 300 K for the same 2PB system and the corresponding 
SPB system with 𝑵𝒗 = 𝟐. For the 2PB system the upper axis corresponds again to 𝒏̃𝑺𝑷𝑩. 

As the error in carrier concentration is a constant factor, the incorrectly “experimentally” determined 

Pisarenko-plot is just shifted with respect to the correct one. If the density of states effective mass is 

determined using 𝑛̃𝑆𝑃𝐵, it is determined too small with 
𝑚̃𝐷,𝑆𝑃𝐵

∗

𝑚𝐷
∗ = (

𝑛̃𝑆𝑃𝐵

𝑛
)

2/3
≈ 0.3, see Eq (1). This 

ratio is again independent of carrier concentration and experimentally the calculated 𝑚𝐷,𝑆𝑃𝐵
∗  will 

therefore not show any systematic deviations in the Pisarenko-plot. It is therefore not possible to 

identify a material system with two distinct, but degenerate bands from the Pisarenko-plot and the 

calculation of a too small density of states effective mass will happen unnoticed.  

The deformation potential is calculated from the mobility and the effective mass. The effective mass 

is obtained incorrectly if SPB validity is assumed. This also holds for the mobility as it is obtained 

using the conductivity and the incorrect carrier concentration. As derived in Eq. A.7  

𝐸̃𝐷𝑒𝑓,𝑆𝑃𝐵

𝐸𝐷𝑒𝑓
= (

𝜎1𝑛̃𝑆𝑃𝐵(𝑚𝑏,1
∗ )

2.5

𝜎𝑛1(𝑚̃𝑏,𝑆𝑃𝐵
∗ )

2.5 )

1/2

=  
(1+𝐴3.5)

2/6
𝑁𝑣

5/6

(1+𝐴)7/6 , here 𝑚̃𝑏,𝑆𝑃𝐵
∗ = 𝑚̃∗

𝐷,𝑆𝑃𝐵/𝑁𝑣
2/3

 is the (incorrect) band 

mass. For 𝐴 = 4 =>  
𝐸̃𝐷𝑒𝑓,𝑆𝑃𝐵

𝐸𝐷𝑒𝑓
= 1.38, i.e. the scattering potential is obtained 38% too large. This also 

implies that the value of 𝐸𝐷𝑒𝑓 = 9 𝑒𝑉 which was taken from our previous work [54] is an effective, 

rather than the physically correct value for p-Mg2X, as we had obtained it assuming an SPB model. 

However, the choice of the value does not affect the validity of the conclusions from comparing a 

SPB with a 2PB system. As for dopant activation and effective mass, comparability of the deformation 

potential between different materials and to the results of first principle calculations [66] is severely 

affected, even if the error is comparatively small. 

A further fundamental parameter in the SPB description is 𝜅𝑙𝑎𝑡. For the SPB system holds 𝜅𝑙𝑎𝑡 = 𝜅 −

𝜎𝑆𝑃𝐵𝐿𝑇  while for the considered 2PB system Eq. (12) can be rewritten as 𝜅𝑙𝑎𝑡,2𝑃𝐵 = 𝜅 − 𝐿𝑇(𝜎1 +

𝜎2) with 𝐿 = 𝐿1 = 𝐿2. If 𝜅𝑙𝑎𝑡 is obtained by calculation using Eq. (4), (5) and Eq (9) the calculated 

lattice thermal conductivity will be different for the systems as the calculated electrical conductivities 

are different. However, the (total) electrical conductivity is typically measured and for both systems 



holds 𝜅𝑙𝑎𝑡 = 𝜅 − 𝜎𝑡𝑜𝑡𝐿𝑇. Thus, if the measured electrical conductivity is employed the result for the 

lattice thermal conductivity is the same for both systems and employing SPB does not result in 

incorrect values.” 

Material parameters that are derived from 𝑚𝐷
∗  and 𝐸𝐷𝑒𝑓, like 𝛽 =  

(
𝑚𝐷

∗

𝑚0
)

1.5

𝜇0  𝑇
2.5

𝜅𝑙𝑎𝑡
, the weighted 

mobility 𝑢 = (
𝑚𝐷

∗

𝑚0
)

1.5

𝜇0  and the B-factor 𝐵 =
2𝑘𝐵

2 ℏ

3𝜋

𝑁𝑣𝐶𝑙𝑇

𝑚𝑖
∗𝐸𝐷𝑒𝑓

2 𝜅𝑙𝑎𝑡
 (for acoustic phonon scattering) and 

that are used to compare materials with each other [31, 47, 52, 67-69] are consequently also 

calculated incorrectly if the considered bands in a material are not identical. 

Figure 3b) compares 𝑧𝑇 for the SPB and 2PB system, the result for the 2PB system is also shown as 

function of 𝑛̃𝑆𝑃𝐵. First it can be seen that the 2PB system has a higher figure of merit, this is due to 

the enhancement of the electrical conductivity due to the light band, partially compensated by an 

increase in 𝜅 due to the higher electronic contribution. Second, 𝑧𝑇 vs. the upper x-axis would be the 

experimentally obtained result if the carrier concentration is obtained assuming a SPB system. This 

highlights again that the experimentally predicted optimum carrier concentration is far off the real 

optimum. However, as the error depends on the band mass ratio but is independent of 𝑛, the plot 

can still be used to predict 𝑧𝑇 for different 𝑛̃𝑆𝑃𝐵 and thus estimate the maximum figure of merit of a 

material system, even if the absolute values for the carrier concentration are incorrect. Third, the 

shape of the SPB and the 2PB curve are basically the same, it is therefore not possible to distinguish a 

2PB from a SPB system from either the experimental 𝑆(𝑛) or 𝑧𝑇(𝑛) plots. From the used set of 

parameters it also appears that the optimum carrier concentration are practically identical for the 

SPB and the 2PB system. 

Note that the main point of the comparison between the SPB and the 2PB system is to visualize 

potential shortcomings of the usage of the SPB model. Employing a 2PB model does not necessarily 

give a fully correct description as the results obtained were derived under the assumption that the 

deformation potential is the same for all bands considered. This is often assumed in literature and 

used to derive the well known 
𝜇𝐻,1

𝜇𝐻,2
= (

𝑚𝑏,1
∗

𝑚𝑏,2
∗ )

−2.5

 relation [16, 47, 70], but it is not clear that this is 

always fulfilled for real material systems. Especially for material systems where the band 

convergence of two distinct bands is achieved by a variation of temperature or composition [25, 61], 

the assumption that these two bands will have the same deformation potential is not well justfified. 

In that case the extend of the discussed inaccuracies due to assuming SPB for a more complex band 

structure will depend on the ratio of the deformation potentials for the respective bands.  

5. Conclusion 
 

We have calculated the thermoelectric properties for a system with two identical bands and a system 

with two bands that are degenerate at the band maximum but have different effective masses; the 

total density of states effective mass is identical. The former is effectively a single parabolic band 

system while the latter is not. Calculation of the thermoelectric properties for the same carrier 

concentration, same interaction parameters and adjusted band masses shows that electrical 

conductivity, power factor and Hall coefficient are not the same. This originates from the strong 

dependence of the mobility on the band masses ( and due to keeping the scattering potentials 



constant). We show that in particular the Hall coefficient is sensitive to the band masses and differs 

significantly between a SPB and 2PB system. 

Experimental transport data is often analyzed assuming a SPB model to be valid and used for 

material optimization and the calculation of fundamental material properties. We have therefore 

analyzed the outcome of such an SPB analysis on a 2PB system. It is shown that the carrier 

concentration is obtained too low; for a material system with a band mass ratio of 4 (comparable to 

p-PbTe, p-Mg2Sn and p-Si) by a factor of 6. Therefore, also the density of states effective mass is 

determined too small (factor of 3) and the acoustic phonon scattering constant too large (factor of 

1.4). We have furthermore shown that the errors can be expressed as analytical functions of the 

band mass ratio.  This implies that the optimum carrier concentration, the dopant efficiencies, the 

effective mass and the scattering constant are obtained incorrectly and cannot be compared directly 

with results from other methods, e.g. DFT. Furthermore, this limits the comparability of the SPB 

analysis for different material classes as the band mass ratios are usually material specific. As the 

error is independent of carrier concentration it is not possible to tell from the usual transport data 

only, e.g. Pisarenko-plot or 𝑧𝑇(𝑛), if a system is truly SPB or not. On the other hand the prediction of 

the optimum figure of merit from a few experimental values is still approximately correct as is the 

determined lattice conductivity. 

The conclusion drawn were obtained by comparing a SPB system with two identical bands and a true 

2PB system, where the bands have different masses, assuming scattering by acoustic phonons to be 

dominant. However, the general conclusion that performing an SPB analysis can lead to significant 

errors in carrier concentration and material constants is not restricted to a 2PB system, but will hold 

also for more complex band structures and other scattering mechanisms or combinations of those. 

Essentially, usage of an SPB description for a more complex system can lead to a self-consistent 

description of the material and the SPB model can therefore be used for an optimization with respect 

to carrier concentration. However, the obtained material constants will not be correct, which heavily 

limits comparability between different material systems. This shows that the results of an SPB 

analysis have to be taken with care, and while its use is undisputed, it is also clearly limited. 
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Appendix 
For all the following calculations relations between the SPB, the total and the individual band 

quantities are required. These can be expressed naturally as functions of 𝐴 ≔
𝑚1,𝑏

∗

𝑚2,𝑏
∗ . For the band 

masses hold: 



(𝑚𝑏,1
∗ )

1.5
= (𝑚𝐷

∗ )1.5 − (𝑚𝑏,2
∗ )1.5 ⇒ 𝑚𝑏,1

∗ =
𝑚𝐷

∗

(1 + 𝐴−1.5)2/3
 

A.1  

For the carrier concentrations hold 

𝑛1

𝑛2
=

𝑛𝐻,1

𝑛𝐻,2
= (

𝑚𝑏,1
∗

𝑚𝑏,2
∗ )

1.5

= 𝐴1.5 and 𝑛 = 𝑛1(1 + 𝐴−1.5) 
A.2  

as the Fermi integrals in Eq. (1) cancel due to the same 𝜂 for all bands.  

Under the assumption that 𝐶𝑙 and 𝐸𝐷𝑒𝑓 are identical follows from Eq. (5) 

𝜇𝐻,1

𝜇𝐻,2
=

𝜇1

𝜇2
= (

𝑚𝑏,1
∗

𝑚𝑏,2
∗ )

−2.5

≔ 𝐴−2.5 and 
𝜇1

𝜇𝑆𝑃𝐵
=

(1+𝐴−1.5)
5
3

𝑁𝑣
5/3  

A.3  

From this the relation between the conductivities can be derived: 

𝜎2𝑃𝐵

𝜎𝑆𝑃𝐵
=

𝜎1 + 𝜎2

𝜎𝑆𝑃𝐵
=

𝑛1𝜇1 + 𝑛2𝜇2

𝑛𝜇𝑆𝑃𝐵
=

𝑛1𝜇1 + 𝑛1𝐴−1.5𝜇1𝐴2.5

𝑛1(1 + 𝐴−1.5)𝜇𝑆𝑃𝐵

=
𝜇1(1 + 𝐴)

(1 + 𝐴−1.5)𝜇𝑆𝑃𝐵
=

(1 + 𝐴)

1

(1 + 𝐴−1.5)
2
3

𝑁𝑣
5/3

 

 

A.4  

Which gives ≈ 1.7 for 𝐴 = 4 as can be seen in Figure 1. Similarly 
𝜎1

𝜎2𝑃𝐵
=

1

1+𝐴
. For the Hall coefficient 

holds 

𝑅𝐻,𝑆𝑃𝐵

𝑅𝐻,2𝑃𝐵
=

1
𝑒𝑛𝐻

+𝑛𝐻,1𝜇𝐻,1
2 + 𝑛𝐻,2𝜇𝐻,2

2

𝑒(𝑛𝐻,1𝜇𝐻,1 + 𝑛𝐻,2𝜇𝐻,2) 2

=
(1 + 𝐴)2

(1 + 𝐴−1.5)(1 + 𝐴3.5)
 

 

A.5  

 

If the SPB analysis is used for a system with two bands with different masses the SPB parameters are 

obtained incorrectly. For the carrier concentration holds 𝑛̃𝑆𝑃𝐵 =
1

𝑅𝐻,2𝑃𝐵
 where 𝑛̃𝑆𝑃𝐵 is the (incorrect) 

carrier concentration obtained assuming SPB. On the other hand, if a system follows SPB strictly, 

then  𝑛 = 𝑛𝑆𝑃𝐵 =
1

𝑅𝐻,𝑆𝑃𝐵
, i.e. 

𝑛̃𝑆𝑃𝐵

𝑛
=

𝑅𝐻,𝑆𝑃𝐵

𝑅𝐻,2𝑃𝐵
 (see Eq. A.5) which means that the carrier concentration is 

determined too small. 

The effective mass is effectively determined from Eq (1) using 𝑛 ∝ (𝑚𝐷
∗ )1.5. If 𝑛̃𝑆𝑃𝐵 is employed it 

follows  

𝑚̃∗
𝐷,𝑆𝑃𝐵

𝑚𝐷
∗ = (

𝑛̃𝑆𝑃𝐵

𝑛
)

2/3

= (
(1 + 𝐴)2

(1 + 𝐴−1.5)(1 + 𝐴3.5)
)

2/3

 

 

A.6  

For a 2PB holds 𝐸𝐷𝑒𝑓 ∝ (
1

𝜇1(𝑚𝑏,1
∗ )

2.5)

1/2

∝ (
1

𝜇2(𝑚𝑏,2
∗ )

2.5)

1/2

. If SPB is assumed the deformation 

potential will be obtained (incorrectly) from 𝐸̃𝐷𝑒𝑓,𝑆𝑃𝐵 = (
𝐶

𝜇̃𝑆𝑃𝐵(𝑚̃𝑏,𝑆𝑃𝐵
∗ )

2.5)

1/2

 where the 𝜇̃𝑆𝑃𝐵 is 

calculated from electrical conductivity and (incorrect) carrier concentration, i.e.  𝜇̃𝑆𝑃𝐵 =
𝜎

𝑒𝑛̃𝑆𝑃𝐵
. As the 

density of states mass is determined incorrectly (see Eq. A.6) the band mass is as well, with 𝑚̃𝑏,𝑆𝑃𝐵
∗ =



𝑚̃∗
𝐷,𝑆𝑃𝐵/𝑁𝑣

2/3
. For the deformation potential ratio therefore holds  

𝐸̃𝐷𝑒𝑓,𝑆𝑃𝐵

𝐸𝐷𝑒𝑓
= (

𝜇1(𝑚𝑏,1
∗ )

2.5

𝜇̃𝑆𝑃𝐵(𝑚̃𝑏,𝑆𝑃𝐵
∗ )

2.5)

1/2

= (
𝜎1𝑛̃𝑆𝑃𝐵(𝑚𝑏,1

∗ )
2.5

𝜎𝑛1(𝑚̃𝑏,𝑆𝑃𝐵
∗ )

2.5 )

1/2

. 

With 
𝜎1

𝜎
=

1

1+𝐴
, 

𝑛̃𝑆𝑃𝐵

𝑛1
=

(1+𝐴)2

(1+𝐴3.5)
 (from Eq. A.5 and 𝑛1 =

𝑛

1+𝐴−1.5) and  

 
𝑛̃𝑆𝑃𝐵

𝑛
=

(1+𝐴)2

(1+𝐴−1.5)(1+𝐴3.5)
 and 𝑛1 =

𝑛

1+𝐴−1.5 =>
𝑛̃𝑆𝑃𝐵

𝑛1
=

(1+𝐴)2

(1+𝐴3.5)
  and 

𝑚𝑏,1
∗

𝑚̃𝑏,𝑆𝑃𝐵
∗ =

𝑚𝐷
∗

(1+𝐴−1.5)2/3

𝑁𝑣
2/3

𝑚̃∗
𝐷,𝑆𝑃𝐵

=

(1+𝐴3.5)
2/3

1

𝑁𝑣
2/3

(1+𝐴)4/3 follows  

𝐸̃𝐷𝑒𝑓,𝑆𝑃𝐵

𝐸𝐷𝑒𝑓
=

(1 + 𝐴3.5)2/6𝑁𝑣
5/6

(1 + 𝐴)7/6
 

A.7  
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