
Development of an Automatic TET10
Meshing program for rotating components

Author:
Chhavi KUSUM

Immatrikulation Number:
10017164

Supervisor:
Nicolai FORSTHOFER

Deutsche Zentrum für
Luft-und Raumfahrt

Examiner:
Prof. Dr.-Ing. Udo

Nackenhorst,
Prof. Dr.-Ing. Dominik

Schillinger

A thesis submitted in fulfillment of the requirements
for the degree of

Master of Science

in

Computational Methods in Engineering

May 22, 2020

https://www.fbg.uni-hannover.de/en/studies/courses-at-the-faculty/computational-methods-in-engineering/

i

Declaration of Authorship

I, Chhavi KUSUM, declare that this thesis titled, “Development of an Automatic
TET10 Meshing program for rotating components” and the work presented in it are
my own. I confirm that:

• This work was done wholly or mainly by me without any foreign help.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date: 22.05.2020

ii

Abstract

This thesis addresses mesh generation with the focus on automation. It targets the
meshing of a complex turbine blade and disk assembly. Firstly, it evaluates ele-
ment types, studying them mathematically and practically. Subsequently, the algo-
rithms and methods used to generate such element types are discussed. Existing
all-purpose mesh generation programs are also deliberated. They are tested to de-
termine SALOME can be developed further to accomplish the task at hand. Based
on this a strategy is evolved to develop the tool with SALOME. Finally, the tool is
developed which generates the mesh alongside nodal groups/sets. This meshing
tool is part of a bigger automated design tool, which aims to automate the whole
process of designing a new component.. . .

Keywords: automatic mesh generation, FEM, shape functions, higher order ele-
ments, tetrahedron generation algorithm, SALOME

Die vorliegende Arbeit befasst sich mit der Netzgenerierung, die Automatisiert ist.
Es zielt auf die Vernetzung einer komplexen Turbinenschaufel- und Scheibenbau-
gruppe ab. Zunächst werden Elementtypen bewertet, die mathematisch und prak-
tisch untersucht werden. Anschließend werden die Algorithmen und Methoden
zur Erzeugung solcher Elementtypen besprochen. Bestehende Allzweckprogramme
zur Netzgenerierung werden ebenfalls in Betracht gezogen. Sie werden getestet und
festgestellt, dass SALOME weiterentwickelt werden kann, um die jeweilige Aufgabe
zu erfüllen. Basierend darauf wird eine Strategie entwickelt, um das Tool mit SA-
LOME zu entwickeln. Schließlich wird das Werkzeug entwickelt, das das Netz mit
Knotengruppenn erzeugt. Dieses Vernetzungswerkzeug ist Teil eines größeren au-
tomatisierten Entwurfswerkzeugs, mit dem der gesamte Prozess des Entwurfs einer
neuen Komponente automatisiert werden soll.. . .

Stichwörter: automatisierte Netzgenerienrung, FEM, Ansatzfunktion, lineare Ansatz-
funktionen, quadratische Ansatzfunktionen, Tetrahedron generieren algorithm, SA-
LOME

iii

Acknowledgements

I would first like to thank my thesis advisor, Prof. Dr.-Ing. Udo Nackenhorst of the
Institut für Baumechanik und Numerische Mechanik at Leibniz Universität Han-
nover. He was always available whenever I ran into a trouble spot or had a question
about my research or writing.

I would also like to thank my supervisor, Mr. Nicolai Forsthofer, who was al-
ways patient, enthusiastic and supportive. The door to Mr. Forsthofer was always
open to discuss or solve a problem. He was specially very patient with my limited
German language skills.

I would also like to acknowledge Prof. Dr.-Ing. Dominik Schillinger of the In-
stitut für Baumechanik und Numerische Mechanik at Leibniz Universität Hannover
as the second examiner of this thesis, and I am gratefully indebted to his for his very
valuable comments on this thesis.

Finally, I must express my very profound gratitude to my family for providing
me with unfailing support and continuous encouragement throughout my years of
study and through the process of researching and writing this thesis. This accom-
plishment would not have been possible without them. Thank you.. . .

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Organization of the report . 3

2 Theory of Finite Element Method 4

2.1 FEM for Continuum Mechanics . 4

2.1.1 Weak form formulation . 7

2.1.2 Finite Element Formulation . 7

2.1.3 2D Linear Triangle Elements . 8

Assembling the element terms 11

2.1.4 Discretization shapes: Triangular vs. quadrilateral 11

2.2 Higher Order Elements . 15

3 Finite Element Types 20

3.1 Classification of element types . 21

3.1.1 Geometry and selection of element type 25

3.2 Finite Element Method Solution Tool . 25

3.3 Beam . 26

v

3.3.1 Bending Analysis . 26

First-order Hexahedrons . 27

First-order tetrahedrons . 28

Second-order Tetrahedrons . 29

3.3.2 Modal Analysis . 30

3.4 Stress Concentration . 32

3.4.1 Tension . 32

3.4.2 Bending Moment . 35

3.5 Conclusion . 37

4 Mesh Generation Methods 39

4.1 Delaunay Triangulation Criterion . 40

4.2 Algorithms . 41

4.3 Constrained Delaunay Triangulations 42

5 Automation of Mesh generators 44

5.1 Test and Evaluation . 45

5.1.1 Geometry for secondary assessment 49

5.1.2 Assessment procedure . 50

5.1.3 Secondary assessment: Open-source Mesh generation 51

Gmsh . 51

SALOME . 52

5.1.4 Secondary assessment: Proprietary Mesh generation 53

FEMAP . 54

ENNOVA . 55

5.1.5 Assessment matrix . 56

5.2 Development of SALOME Interface . 58

vi

5.2.1 Introduction to SALOME . 58

5.2.2 Meshing Algorithms and Hypotheses 59

5.2.3 Target Geometry . 62

5.2.4 Automation Process . 65

5.2.5 Interfaces . 70

5.3 Conclusion . 71

6 Conclusion 72

Bibliography 73

A Program for Automatic Meshing 76

B Format conversion of mesh export file 83

C List of Mesh generation softwares 87

vii

List of Figures

2.1 A continuum domain, Ω0 in reference position and Ωt in deformed
position[14] . 5

2.2 A domain discretized using triangles . 8

2.3 Triangle element[14] . 9

2.4 Shape functions at the nodes of a triangle[14] 9

2.5 Discretization of a domain using Triangles and Quadrilaterals[14] . . . 12

2.6 Isoparametric mapping concept[14] . 12

2.7 Isoparametric mapping and shape functions for triangles, tetrahedrons
and hexahedrons[14] . 14

2.8 Locked triangular elements[13] . 15

2.9 Un-compatible elements (a) Discretization and load (b) Deformed Shape[28] 16

2.10 (a) Deformation of cantilever beams (b) Rigid body displacement of
grey element[28] . 16

2.11 The 6-noded quadratic triangle element (a) straight edges and mid-
side nodes at midpoints. (b) the isoparametric triangle quadratic ele-
ment[29] . 17

2.12 The 6-noded quadratic triangle element coordinates[28] 17

2.13 Shape functions N1 and N4 for the quadratic triangle. The shape func-
tion is 1 at node 1 and 4 respectively, and 0 everywhere else.[28] 18

2.14 A tetrahedron with quadratic shape functions[28] 18

3.1 Structured and Unstructured meshes[12] 21

3.2 Conformal and Non-conformal meshes[12] 22

viii

3.3 Triangle and Quadrilateral elements[12] 22

3.4 Three-dimensional element shapes[12] 22

3.5 Linear and Quadratic elements . 23

3.6 A Quadrilateral element with 9 nodes 24

3.7 FEM Analysis results comparison using linear and quadratic elements 24

3.8 A High Pressure turbine blade from a GE jet engine[31] 25

3.9 Simply supported Cantilever Beam with point load 26

3.10 Boundary conditions for simply supported beam in numerical model . 27

3.11 Cantilever beam meshed with first-order hexahedrons: 10 elements in
depth . 27

3.12 Beam tip deflection with first-order hexahedrons 28

3.13 Cantilever beam meshed with first-order tetrahedrons: 10 nodes in
depth . 28

3.14 Beam tip deflection with first-order tetrahedrons 29

3.15 Beam tip deflection with quadratic tetrahedrons 29

3.16 Beam tip deflection: Analytical and Numerical results 30

3.17 Beam for frequency analysis . 30

3.18 Effect of element type in a free-free modal analysis: Mode 1 31

3.19 Effect of element type in a free-free modal analysis: Mode 2 31

3.20 Flow of stress is denser near the hole . 32

3.21 A finite plate with a hole . 33

3.22 Closed-form Stress Concentration [9] . 33

3.23 Boundary conditions for a plate with a hole to study stress concentra-
tions under tensile loads . 34

3.24 Tension loading: Stress concentration plots 34

3.25 A plate with hole subjected to out-of-plane bending moment 35

3.26 Closed form Stress concentration - Plate with a hole 36

ix

3.27 Boundary conditions for a plate with a hole to study stress concentra-
tions under bending moment . 36

3.28 Bending load: Stress concentrations . 37

4.1 Advancing Front Method for mesh generation [16] 39

4.2 A graphical representation of the Quadtree Algorithm 40

4.3 Delaunay triangulation in two-dimensions maintained in (a), not main-
tained in (b) . 41

4.4 (a) creates all the delaunay simplices between the specified points,
(b)chooses only the triangles and (c) excludes all the crossing Delau-
nay edges [26] . 41

5.1 Automation of the structural mechanical design process for a blade
assembly[4] . 46

5.2 Test Geometry used to assess the mesh generators[18] 49

5.3 Small details of the turbine blade[18] . 50

5.4 Steps followed to perform the secondary assessment for mesh gener-
ators . 51

5.5 Test Geometry mesh using Gmsh, poor aspect ratio and poor repre-
sentation of features . 52

5.6 Test Geometry mesh using SALOME, stable program with a mesh
that captures the details accurately . 53

5.7 Test Geometry mesh using Siemens FEMAP, similar details as SA-
LOME but lower node count . 54

5.8 Test Geometry mesh using ENNOVA, captures the details properly . . 55

5.9 NETGEN 2D Hypothesis . 61

5.10 NETGEN 3D Hypothesis . 62

5.11 A turbine blade with a complex cooling circuit[8] 62

5.12 A typical blade and disk assembly[3] . 63

5.13 Mesh requirement on fillets . 64

x

5.14 Mesh requirement on very small curves 64

5.15 Mesh requirement on cooling air holes 64

5.16 Flowchart of a typical mesh creation job using an imported geometry
file . 65

5.17 Distribution of HPT blade faces’ area . 67

5.18 Flowchart of the processes in the geometry module on the HPT blade
and disk assembly . 67

5.19 Flowchart of the processes in the meshing module on the HPT blade
and disk assembly . 68

5.20 Blade Mesh . 69

5.21 Blade Mesh of the internal cooling pipes 69

5.22 Aspect ratio errors in the blade mesh . 70

5.23 Flowchart to convert a UNV to a DAT file 71

xi

List of Tables

2.1 A comparison between triangle and quadrilateral elements 14

2.2 A comparison between linear and quadratic triangle/tetrahedron el-
ements . 19

3.1 Free Modal analysis: Summary of analytical and FE model results . . . 31

3.2 Stress concentration on a Plate with a hole subjected to tensile loading:
Summary of closed-form and FE model results 35

3.3 Stress concentration on a Plate with a hole subjected to bending mo-
ment: Summary of closed-form and FE model results 37

5.1 Assessment Matrix of Open-source and Proprietary meshing Programs(1-
best score & 4-worst score) . 57

xii

List of Abbreviations

FEM Finite Element Method
FEA Finite Element Analysis
PDE Partial Differential Equation
CDT Constrained Delaunay Triangulation
CAD Computer Aided Definition
DOF Degree Of Freedom
API Application Programming Interface
HPT High Pressure Turbine

1

Chapter 1

Introduction

One of the most used tools for scientific computing is the tool, Finite Element Method
(FEM). FEM is a numerical method to solve any physical problem. Most of the phys-
ical problems can be represented using Partial Differential Equations (PDEs). FEM
uses numerical computation to solve the PDEs.

But, before the PDEs can be solved, the continuous CAD geometry has to be
broken into small and simple pieces or elements. An element, for e.g. a Triangle, is
easier to compute as it is well known how to perform calculations on such geome-
tries. Each element has a number of nodes associated to it, based on the type of the
element. For the most basic triangle element, it is 3 nodes. This discretization is
termed as mesh generation and is a necessary tool in the FEM world. Construction
of a mesh is considered frequently as a bottleneck in the whole process. It is possible
that it takes longer to create a mesh than to actually solve the PDEs.

The automatic mesh generation problem is to divide complex geometries in
physical domains into finite parts without any user intervention. Generating a mesh
can be challenging to create as it is hard to satisfy all the requirements at the same
time, which are contradictory in nature. The mesh must represent the geometry ac-
curately enough. It must also ensure that the governing PDEs are approximated
accurately. This is ensured via a set of polynomial functions defined over each ele-
ment. As the elements become smaller, the numerical solution will converge to the
true solution.

This must be ensured while maintaining the element size along with the shape
of the element. The FEM simulation converges to the solution of the actual bound-
ary value problem as the element size becomes smaller and smaller. In complex
geometries, multitude of elements would be needed to achieve these requirements.
Contradictory to this, the number of elements has to be confined to a reasonable
number to ensure a certain size of the simulation model. The number of elements
directly affects the simulation model size. The simulation model size influences the

Chapter 1. Introduction 2

speed and the time required to compute the solution to the PDEs or the computa-
tional cost. Thus, it is an important factor in generating a mesh.

Once the model requirements are set, next step is to determine the type of the
element to be used. Elements can be categorized in many ways. For e.g. according to
its shape or its dimension. Higher quality or right shaped elements generally have
better numerical properties. A right shaped element’s definition changes with the
problem and its governing equations. An example of a right shaped element could
be a triangle that is equilateral and equiangular.

Based on basic shapes, the most common surface or two-dimensional elements
are Triangles and Quadrilaterals. Poor elements in this category can be defined by
sharp angles or short edges. Tetrahedrons and Hexahedrons among other three-
dimensional elements are the most popular elements in usage. These elements are
made with all Triangles or all Quadrilaterals or simply a combination of both. Meshes
can also be classified as structured or unstructured. A structured mesh is so defined
that basic arithmetic can be used to determine which elements surround a vertex. On
the other hand, unstructured meshes entail storing information about each vertices’
elements and neighbouring vertices.

In the last few decades, the usage of meshes has also grown outside of the finite
element world. The animation industry uses polygon meshes extensively. Econom-
ically, the computer animation industry supersedes the finite-element industry in
their use of meshes. There are other industries that use meshes actively, such as im-
age processing, population sampling, aerial land surveying etc. Mesh generation is
multi-disciplinary now.[26]

Generating meshes can be a cumbersome and time-consuming process, based
on the geometry on hand. It affects the results directly but is not a value adding
step to the whole FEM process. Thus, depending on the design process involved,
it can be quite efficient to setup an automated meshing process to allow the user to
proceed directly from the CAD step to the finite element solution.

The mesh generation industry is rife with mesh generation solutions/programs.
They can be of two kinds. A program which is fully automatic i.e. no user interaction
is required to generate the mesh. The mesh generation process acts as a black box.
Only the geometry has to be input and the mesh will be generated. Automatic mesh
generation is already being established for specific problems. But, for arbitrary ge-
ometries, completely automatic mesh generation, which meets all the requirements,
is still an elusive goal.

The other kind of mesh generation programs are those that generate the mesh
based on the boundary conditions set by the user. The user has to have some basic
understanding of the program to generate a mesh that satisfies all the requirements.

Chapter 1. Introduction 3

Such solutions are aplenty and work well with any arbitrary geometry.

The thesis on hand describes the development of a completely automated mesh-
ing program, which is restricted to a specific problem. It starts with setting the
groundwork to determine the preferred element type. This is achieved using FE
analyses of simple and known problems. After the determination, the methods and
algorithms present to generate this element type are studied. Each of the methods
are evaluated for their advantages and disadvantages. Based of these, existing mesh
generation programs are studied and evaluated based on a CAD model of turbine
blades. They are assessed based on several criteria. One of them is chosen and the
automated meshing tool is developed based on it. This tool is a part of a bigger au-
tomated analysis package. It is developed with the ability to mesh surfaces based on
their sizes without user intervention. It takes the CAD geometry and meshes it au-
tomatically. Further, the tool allows to proceed directly to the finite element solution
step by making it ready to be analyzed.

1.1 Organization of the report

This thesis report is divided into four chapters. First, in chapter 2 the finite element
method is described. A general boundary value problem is introduced, followed by
its weak formulation. Afterwards, the actual FE method is explained with focus on
the shape functions of elements. Triangles (tetrahedrons in 3D) and Quadrilateral
(Hexahedrons in 3D) are compared and their formulations are studied.
To help the reader familiarize oneself with the various element types, chapter 3 cat-
egorizes the element types. Then, it describes a study done to compare different
element types, namely first-order hexahedrons, first-order and second-order tetra-
hedrons. The elements’ behaviours are investigated for cases whose analytical solu-
tions or closed form solutions are already present. The chapter concludes on second-
order tetrahedrons being the best choice.
Chapter 4 follows with the techniques and algorithms used to generate tetrahedral
elements. It begins with the Delaunay Triangulation Criterion, one of the most popu-
lar triangle and tetrahedron meshing techniques. Afterwards, the current algorithms
used to apply the Delaunay Triangulation criterion are discussed. Finally, it touches
upon Constrained Delaunay Triangulation, a relaxed Delaunay Triangulation crite-
rion.
Chapter 5 presents the program developed in the course of this work. It starts with
the assessment of existing meshing programs. The determination of criterion defin-
ing mesh quality generated by these programs follow next. Finally, the automatic
meshing program is developed using Python and an open-source platform for nu-
merical simulation, SALOME.

4

Chapter 2

Theory of Finite Element Method

Laws of Physics can express problems as partial differential equations. Majority of
these problems can’t be solved analytically. Hence, an approximation of the equa-
tions are established. The PDEs are approximated, using discretization, into alge-
braic equations which can be solved using numerical methods. The solution to these
equations is an approximation of the real solution of the PDEs. The finite element
method (FEM) is used to compute this approximation. Typical steps involved in ob-
taining a solution through FEM involve [15]:

• Creating a mechanical model

• Creating a mathematical model

• Discretization of the domain: subdivision into finite elements

• Building a finite element formulation

• Solving the associated algebraic system

• Post-processing the result

2.1 FEM for Continuum Mechanics

The continuum mechanics approach ignores the discrete nature of matter, considers
uniform material which is uniformly distributed in space. Hence, material proper-
ties are defined as continuous functions of position. For this approach, the under-
lying fundamental equations are introduced and the weak formulation is obtained.
Consider the domain Ω0 in Figure 2.1. The deformed domain of this domain is Ωt.

Chapter 2. Theory of Finite Element Method 5

FIGURE 2.1: A continuum domain, Ω0 in reference position and Ωt
in deformed position[14]

Kinematics
The displacement can be symbolically denoted as:

u = x− X (2.1)

Its components are:
ui = xi − Xi (2.2)

Similarly, strain can be written symbolically and in its components as:

ε =
1
2

(
grad(u) + gradT(u)

)
(2.3)

ε ij =
1
2
(ui,j + uj,i) (2.4)

(2.5)

The components for strain can be written in three-dimensions as:

ε(u) =



ε11

ε22

ε33

2ε12

2ε23

2ε31


=



u1,1

u2,2

u3,3

u1,2 + u2,1

u2,3 + u3,2

u3,1 + u1,3


(2.6)

Equilibrium
The balance of momentum in 3D can be written as:∫

Ωt

ρb dv +
∫

∂Ωt

t da = 0 (2.7)

b - Volume/acceleration body force vector
t - surface traction vector

Chapter 2. Theory of Finite Element Method 6

Using the Cauchy theorem,
t = σ · n (2.8)

σ - Cauchy stress tensor
n - normal vector
Equation 2.7 can be rewritten as:∫

Ωt

ρb dv +
∫

∂Ωt

σ · n da = 0 (2.9)

Using the Gauss theorem and since Ωt can be chosen arbitrarily:∫
Ωt

[ρb + div(σ)] dv = 0

⇒ div(σ) + ρb = 0
(2.10)

Equation 2.10 can be written in components for three-dimensions in voigt notation
as:

σij,j + ρbi = 0i (2.11)

σ(u) =



σ11

σ22

σ33

σ12

σ23

σ31


(2.12)

Constitutive relation
Hooke’s law

σ(u) = 2µε + Λtr(ε)1 (2.13)

Λ =
Eν

(1 + ν)(1− 2ν)
(2.14)

µ =
E

2(1 + ν)
(2.15)

This stress-strain can be written in matrix notation in three-dimensions in voigt no-
tation: 

σ11

σ22

σ33

σ12

σ23

σ31


=



2µ + Λ Λ Λ 0 0 0
Λ 2µ + Λ Λ 0 0 0
Λ Λ 2µ + Λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

︸ ︷︷ ︸
C3D

·



ε11

ε22

ε33

2ε12

2ε23

2ε31


(2.16)

Chapter 2. Theory of Finite Element Method 7

Now, the field equations for a 3D continuum are established, the weak form of
the equilibrium would be derived.

2.1.1 Weak form formulation

Weak form of equilibrium is also referred as the principle of virtual work and can
be derived from the equilibrium conditions. The Differential equation depicting the
continuum is multiplied with a test function, η. The test function can be chosen arbi-
trarily. It is then integrated over the domain and then finally, half of the derivatives
are transferred to the test function, reducing the order of the differential equation.

Equation 2.10 when multiplied with the test function,∫
Ωt

(div(σ) + ρb) · η dv = 0 (2.17)

As div(ηTσ) = div(σ) · η+ σ : grad(η)∫
Ωt

(div(ηT · σ)− σ : grad(η) + ρb · η dv = 0∫
Ωt

σ : grad(η) dv−
∫

Ωt

ρb · η) dv−
∫

∂Ωt

t · η da = 0
(2.18)

Since the stress tensor is symmetric, σ = σT.
And, ε(η) = 1

2 (grad(η) + gradT(η)).
Hence, σ : grad(η) = σ : gradT(η) = σ : ε(η)∫

Ωt

σ : ε(η) dv−
∫

Ωt

ρb · η) dv−
∫

∂Ωt

t · η da = 0 (2.19)

Equation 2.19 is the weak form of equilibrium.

2.1.2 Finite Element Formulation

The continuum domain in figure 2.1 is discretized into finite elements. The elements
have nodes at their vertices. The primary variable is now approximated at the nodes.
To transfer the primary variable to the elements, shape functions are used. The con-
tinuum domain, Ω is divided into ne elements. Hence, a discretization error occurs
here and Ωh is the approximation of Ω.

Ωh =
ne⋃

e=1

Ωe 6= Ω (2.20)

Chapter 2. Theory of Finite Element Method 8

Discretization can be carried out using triangles/tetrahedrons or quadrilaterals/hexahedrons
for 2D/3D domains. An example of discretization using triangles can be seen in fig-
ure 2.2.

FIGURE 2.2: A domain discretized using triangles

The element quantities, like the area, integrals, derivatives are computed once
and then assembled in the global system.

2.1.3 2D Linear Triangle Elements

The primary variable is approximated in the domain and then represented in one
plane using three constants, figure 2.3 and equation 2.21.

ux(x, y) = c1 + c2x + c3y (2.21)

= (1 x y)

c1

c2

c3

 (2.22)

ux(x1, y1) = ux1 (2.23)

ux(x2, y2) = ux2 (2.24)

ux(x3, y3) = ux3 (2.25)

⇒

ux1

ux2

ux3

 =

1 x1 y1

1 x2 y2

1 x3 y3


c1

c2

c3

 (2.26)

⇒ ux = H c (2.27)

ux(x, y) = (1 x y)c (2.28)

=

Shape functions︷ ︸︸ ︷
(1 x y)H−1 ux (2.29)

Chapter 2. Theory of Finite Element Method 9

FIGURE 2.3: Triangle element[14]

At this point, shape functions are introduced. The shape functions are so de-
fined that they are 1 at a given node and 0 elsewhere.

FIGURE 2.4: Shape functions at the nodes of a triangle[14]

ux(x, y) =
(

N1(x, y) N2(x, y) N3(x, y)
)

ux (2.30)

The shape functions can be written in general terms as:

Ni(x, y) =
1

2Ωe
(fi + gix + hiy) (2.31)

with:

f1 = x2y3 − x3y2 g1 = y2 − y3 h1 = x3 − x2

f2 = x3y1 − x1y3 g2 = y3 − y1 h2 = x1 − x3

f3 = x1y2 − x2y1 g3 = y1 − y2 h3 = x2 − x1

(2.32)

The area of the element, Ωe in figure 2.3 can be given by the expression,

Ωe =
x1g1 + x2g2 + x3g3

2
(2.33)

Chapter 2. Theory of Finite Element Method 10

The primary variable can now be written as an approximation in terms of the
shape functions. The same approximation function is chosen for the test function.

uh(x, y) =

{
uhx(x, y)
uhy(x, y)

}
=

{
∑3

i=1 Ni(x, y)uxi

∑3
i=1 Ni(x, y)uyi

}
(2.34)

η(x, y) =

{
ηx(x, y)
ηy(x, y)

}
=

{
∑3

k=1 Ni(x, y)ηxk

∑3
k=1 Ni(x, y)ηyk

}
(2.35)

In the weak form of equilibrium in figure 2.19, the first derivatives of the displace-
ment field (ε(η)) or the primary variable are obtained. Hence, the derivatives of the
shape functions will be calculated and are:

∂Ni

∂x
=

1
2Ωe

gi

∂Ni

∂y
=

1
2Ωe

hi

(2.36)

Inserting the approximation for η(x, y) into ε(η):

ε(η) =


∂ηx(x,y)

∂x
∂ηy(x,y)

∂y
∂ηx(x,y)

∂y +
∂ηy(x,y)

∂x


=


∑3

k=1
∂Ni
∂x ηxk

∑3
k=1

∂Ni
∂y ηyk

∑3
k=1

∂Ni
∂y ηxk + ∑3

k=1
∂Ni
∂x ηyk


=


∑3

k=1
1

2Ωe
gkηxk

∑3
k=1

1
2Ωe

hkηyk

∑3
k=1

1
2Ωe

(hkηxk + gkηyk)


⇒ ε(η) =

3

∑
k=1

1
2Ωe


gk 0
0 hk

hk gk

︸ ︷︷ ︸
Bk

·
{

ηxk

ηyk

}
︸ ︷︷ ︸

ηk

(2.37)

Similarly, the term ε(u) can be written,

ε(u) =
3

∑
i=1

1
2Ωe


gi 0
0 hi

hi gi

︸ ︷︷ ︸
Bi

·
{

uxi

uyi

}
︸ ︷︷ ︸

ui

(2.38)

Chapter 2. Theory of Finite Element Method 11

Inserting these discrete ansatz in the weak form of equilibrium and using equation
2.34:

∫
Ωt

ε(η) : σ(uh) dv =
∫

Ωt

3

∑
k=1

3

∑
i=1

1
4Ω2

e
ηT

k · B
T
k · C2D · Bi · ui dv (2.39)

∫
Ωt

η.ρb dv +
∫

∂Ωt

η · t da =
∫

Ωt

3

∑
k=1

ηT
k Nk · ρb dv +

∫
∂Ωt

3

∑
k=1

ηT
k Nk · t da (2.40)

Assembling the element terms

As the test function can be arbitrarily chosen, ηk can also be arbitrarily chosen. Thus,

Ke︷ ︸︸ ︷
3

∑
k=1

3

∑
i=1

∫
Ωt

1
4Ω2

e
· BT

k · C2D · Bi dv︸ ︷︷ ︸
ke

ki

·ui =
∫

Ωt

3

∑
k=1

Nk · ρb dv +
∫

∂Ωt

3

∑
k=1

Nk · t da (2.41)

For each element ’e’, it can be written in general terms in equation 2.42. For the
element depicted in figure 2.3, the equation can be written in its components.

Keue = fe (2.42)


[
ke

11

] [
ke

12

] [
ke

13

][
ke

21

] [
ke

22

] [
ke

23

][
ke

31

] [
ke

32

] [
ke

33

]
 ·



ux1

uy1

ux2

uy2

ux3

uy3


=



fx1

fy1

fx2

fy2

fx3

fy3


(2.43)

The local stiffness matrix for an element can be now used to assemble the global
stiffness matrix. Then, it will be used to build the global system of equations.

K = Anel
e=1Ke (2.44)

2.1.4 Discretization shapes: Triangular vs. quadrilateral

Along with triangular elements, discretization can also be created using quadrilat-
eral elements. A comparison of discretization using triangles and quadrilaterals of
the same domain can be seen in figure 2.5.

Chapter 2. Theory of Finite Element Method 12

FIGURE 2.5: Discretization of a domain using Triangles and Quadri-
laterals[14]

The number of nodes are same in both the meshes but the number of elements
is much higher for triangular elements as compared to quadrilateral elements.

u = K−1︸︷︷︸
63x63 matrix

f (2.45)

K = Anel
e=1Ke (2.46)

Hence, the element stiffness matrix are bigger for triangular elements than quadri-
lateral elements. At the first glance, this can mean that triangles are computationally
costlier than quadrilaterals. The disadvantage of quadrilaterals is that they are not
flexible enough to easily generate meshes for arbitrary geometries.

The shape functions of a quadratic element are defined with the idea of isopara-
metric mapping, figure 2.6.

1. Definition of a parent element. This is a reference square element and the
shape functions are defined on it.

2. The parent element and the real quadrilateral element are mapped.

FIGURE 2.6: Isoparametric mapping concept[14]

Chapter 2. Theory of Finite Element Method 13

The shape functions on a parent element can be defined:

ux(ξ, η) =
4

∑
i=1

Ni(ξ, η)uxi

where, Kronecker− δ property

Ni(ξi, ηi) = 1,

Ni(ξk, ηk) = 0, if i 6= k.

and, partition of unity
4

∑
i=1

Ni(ξ, η) = 1∀(ξ, η) ∈ [−1,−1]× [1, 1]

(2.47)

From the weak form,

ε(η) =
4

∑
i=1

Ni,x 0
0 Ni,y

Ni,y Ni,x

(ηxi

ηyi

)
(2.48)

Ni,x and Ni,y are calculated using the chain rule and result in a Jacobian matrix, which
is inverted.[

Ni,x

Ni,y

]∗
= J−1

e ·
[

Ni,ξ

Ni,η

]∗
︸ ︷︷ ︸

Bi

∗Unknown/∗Known

where, J−1
e =

[
x,ξ y,ξ

x,η y,η

]
is the transpose of the Jacobian matrix.

(2.49)

ε(η) =
4

∑
i=1

Bi · ηi = Be (2.50)

σ(u) = C2D · Be · ue (2.51)

Thus,
∫

Ωt

ε(η) : σ(uh)dv = ηT
e

∫
Ωt

BT
e · C2D · Be dv ue = ηT

e ·Ke · ue (2.52)

The next steps are similar to the formulation of the triangle element.
The isoparametric concept can also be extended to triangle/tetrahedral and Hexa-
hedral elements, figure 2.7.

Chapter 2. Theory of Finite Element Method 14

FIGURE 2.7: Isoparametric mapping and shape functions for trian-
gles, tetrahedrons and hexahedrons[14]

In conclusion, table 2.1 compares triangle and quadrilateral elements. The shape
functions are compared along with their effect on the elements’ performance.

TABLE 2.1: A comparison between triangle and quadrilateral ele-
ments

Triangle element Quadrilateral element

N1,ξ = −1 N1,η = −1
N2,ξ = 1 N2,η = 0
N3,ξ = 0 N3,η = 1
Je, Be = constant.
⇒ ε(η) = constant & Ke =

∫
Ω const

N1,ξ = 1
4 (η − 1) N1,η = 1

4 (ξ − 1)
N2,ξ = 1

4 (1− η) N2,η = − 1
4 (1 + ξ)

N3,ξ = 1
4 (1 + η) N3,η = 1

4 (1 + ξ)

N4,ξ = − 1
4 (1 + η) N4,η = 1

4 (1− ξ)

Je, Be 6= constant
[-]Strain field is constant in the ele-
ment. This may be a poor representa-
tion of strains in some physical prob-
lems.
[+]The stiffness matrix is found by in-
tegrating a constant. The computation
is simple.
[-]Larger number of elements when
discretizing with triangles.
[+] Arbitrary domains can be dis-
cretized easily.

[+]Strain field is not constant in the el-
ement. This will represent strains with
more accuracy.
[-]Because the stiffness matrix is to
be calculated by integrating a non-
constant variable, the computation is
more complex.
[+]Smaller number of elements.
[-]Not flexible enough to easily gener-
ate meshes for arbitrary geometries.

Chapter 2. Theory of Finite Element Method 15

2.2 Higher Order Elements

Quadrilaterals and hexahedrons aren’t the simplest shapes to work with when creat-
ing finite meshes. They require significant effort from the user to fill up spaces. This
is especially true, if the geometry is complex and complicated. Triangles and tetra-
hedrons offer an alternative to overcome this disadvantage of quadrilaterals and
hexahedrons. Creating meshes is a simpler task with triangles and tetrahedrons.
They are also called simplices because of their simplicity.

But, a substantial problem with using triangles and tetrahedrons is that the
strain field is constant. Hence, no variation of strain across the element can be cal-
culated. Results using triangular elements can be erroneous under combinations of
loads, geometry and meshing.

The linear shape functions on elements can undergo a phenomenon called shear
locking. This behaviour is very prominent in cases, where bending is present. The
linear elements can’t model the actual curvature, under bending loads. Hence, a
spurious shear stress is introduced and the material shears instead of bending. This
causes the element to reach equilibrium at a smaller displacement. Thus, the model
appear to be stiffer than it actually is. This deterioration can be more pronounced on
the triangles’ spatial counterpart, the 4-node tetrahedron elements. This is because
shear effects are more prominent in three-dimensions.
When the material is incompressible, pressure locking can occur. The behaviour is
similar to shear locking i.e. the element acts stiffer than it actually is. For Tetrahe-
drons, this phenomena is termed as volumetric locking.

FIGURE 2.8: Locked triangular elements[13]

Shear locking can be avoided to an extent in certain cases by using a sufficiently
fine mesh. However, with a fine mesh, there is always the trade-off with the compu-
tational cost. It may be lucrative to have a lower computational cost FE model.

Shear locking can also be avoided by using more sophisticated shape functions
on the elements. An element, whose edges are able to curve can successfully evade
shear locking. Before introducing such shape functions, it would benefit to study
the requirements from shape functions. The requirements are motivated by mesh
convergence.

Chapter 2. Theory of Finite Element Method 16

• Compatibility: The interpolation has to be such that the field of the unknown
quantity(e.g displacement) is:

– continual and derivable inside the element

– continuous across the element boundary

FIGURE 2.9: Un-compatible elements (a) Discretization and load (b)
Deformed Shape[28]

• Completeness: The interpolation must be able to represent:

– the rigid body displacements

– constant strain state

FIGURE 2.10: (a) Deformation of cantilever beams (b) Rigid body dis-
placement of grey element[28]

The triangle and tetrahedron element with linear shape functions can be ob-
served in figure 2.7. Triangular and tetrahedron elements with quadratic, cubic or
higher-order shape functions are higher-order elements.

A quadratically interpolated triangle is defined by 6 nodes, 3 at the vertices and
3 at the middle of each edge. The edges may be defined by a straight or quadratic
line. Figure 2.11 indicates a 6-node quadratic triangle element.

Chapter 2. Theory of Finite Element Method 17

FIGURE 2.11: The 6-noded quadratic triangle element (a) straight
edges and midside nodes at midpoints. (b) the isoparametric trian-

gle quadratic element[29]

Shape functions for quadratic triangles can be expressed as products of linear
functions:

Ni = ciL1L2...Ln

where, Lj = 0, j = 1, ..., n

are the homogeneous equation of lines on which Nivanishes and

ci is a normalisation coefficient.

(2.53)

FIGURE 2.12: The 6-noded quadratic triangle element coordinates[28]

The shape functions can thus be written as:

N1 = (1− ξ − η)(1− 2ξ − 2η)

N2 = ξ(2ξ − 1)

N3 = η(2η − 1)

N4 = 4ξ(1− ξ − η)

N5 = ξη

N6 = 4η(1− ξ − η)

(2.54)

Chapter 2. Theory of Finite Element Method 18

FIGURE 2.13: Shape functions N1 and N4 for the quadratic triangle.
The shape function is 1 at node 1 and 4 respectively, and 0 everywhere

else.[28]

Similarly, a tetrahedron with quadratic shape functions can also be defined.

FIGURE 2.14: A tetrahedron with quadratic shape functions[28]

ξ1, ξ2 and ξ3 are the coordinates of the tetrahedral element, Thus, the shape
functions are:
For the corner nodes 1 to 4:

N1 = 1− ξ1 − ξ2 − ξ3

N2 = ξ1

N3 = ξ2

N4 = ξ3

(2.55)

Shape functions of nodes 5 and 10 on the edges:

N5 = 4ξ1(1− ξ1 − ξ2 − ξ3)

N6 = 4ξ1ξ2

N7 = 4ξ2(1− ξ1 − ξ2 − ξ3)

N8 = 4ξ3(1− ξ1 − ξ2 − ξ3)

N9 = 4ξ1ξ3

N10 = 4ξ2ξ3

(2.56)

Chapter 2. Theory of Finite Element Method 19

The shape functions at the corner must be corrected to ensure that the shape func-
tions are 1 at the corresponding node and 0 elsewhere.

N1 ← N1 − 0.5(N5 + N7 + N8)

N2 ← N2 − 0.5(N5 + N6 + N9)

N3 ← N3 − 0.5(N6 + N7 + N10)

N4 ← N4 − 0.5(N8 + N9 + N10)

(2.57)

So, now the shape functions are quadratic and when they are differentiated as
in equation 2.37, the result is not a constant. Because of its variation, this can rep-
resent strain measures in a more accurate way as compared to the linear triangle or
tetrahedron element.

In Conclusion, a comparison between the linear and quadratic triangle/tetrahedron
elements can be made.

TABLE 2.2: A comparison between linear and quadratic trian-
gle/tetrahedron elements

Linear shape functions Quadratic shape function

[+]Fewer Gauss nodes
[+]Smaller stiffness matrix
[+]These two lead to less computa-
tional time.

[-]Several Gauss nodes
[-]Larger stiffness matrix
[-]Higher computational time is re-
quired.

[-]The strain gradients are approxi-
mated by constants.
[-]Hence, the accuracy is low.

[+]The strain gradients are approxi-
mated by non-constants.
[+]Hence, the accuracy is higher.

Hence, it is generally recommended that the polynomial order of the shape
functions be higher in regions of large gradients to capture them accurately. Also,
triangles/tetrahedrons elements are easier to work with, specially in complex ge-
ometries. Thus, the recommendation is to use second-order triangles/tetrahedrons.

20

Chapter 3

Finite Element Types

After the Finite element method has been introduced briefly in the last chapter, Chap-
ter 2, the next step is to understand the factors affecting the accuracy of the sim-
ulation results. With the present day finite element tools’ capability, it is easy to
compute results as colour plots. But, the most important aspect of a finite element
simulation is the precision of the solution. There are many aspects at play here.
Does the element size capture the geometry to a satisfactory level? Are there any
distorted, thin, bad elements? How are the boundary conditions setup? It is also
important to provide correct material properties to ensure a precise solution. The
element types also play a major role in the accuracy. This is evident in this Chapter
when different element types are used to evaluate well-known textbook problems
with analytical/closed-form solutions. Different results are arrived at for each ele-
ment type.

A little bit of history is important at this point to understand the motivation be-
hind using the different element types. The Finite-Element-Method was developed
well before the first electronic Computers. Some of the first Computers used to solve
the first finite element problems in the area of structural mechanics were with very
less memory. Thus, first-order elements were the preferred choice to save memory
and clock cycles. First-order Bricks or 8-noded Hexahedrons give better results than
first-order Tetrahedrons. Due to this legacy, brick elements were preferred by some
engineers [6].

Brick/Hexahedral or its 2D counterpart, Quadrilateral elements ensure a model
that is computationally inexpensive. They are more accurate because of how they are
computed. Although, it can require significant user effort to generate the mesh. A
Tetrahedral mesh can be generated easily without any user interaction but can be
computationally expensive, based on the geometry.

This chapter is subdivided into two parts, where in the first part classifications
of element types are described. Classification is done based on several criteria. Then,
classical problems with known analytical solutions are compared with the solutions

Chapter 3. Finite Element Types 21

from numerical models of the same. Models using first a beam and then a finite plate
are studied and evaluated.

3.1 Classification of element types

Element types can be categorized based on several criterion [12]. These can be based
on:

1. Number of adjacent elements to each inner node

FIGURE 3.1: Structured and Unstructured meshes[12]

Structured mesh

• Constant number of elements ad-
jacent to any inner node

• Basic arithmetic is sufficient to
determine which elements sur-
round a vertex

• More suited to domains which
satisfy some pre-defined con-
straints

Unstructured mesh

• Can have different number of el-
ements around any inner node

• Information about elements
around a vertex must be stored

• Can be easily used for arbitrary
domains

2. Intersection between neighbouring elements

Conformal mesh

• There are no hanging nodes

• They are more common in the in-
dustry

• Restrictive in dealing with non-
uniform element size

Non-conformal mesh

• There are hanging nodes

• They are less usual in the indus-
try

• Flexible in dealing with non-
uniform element size

Chapter 3. Finite Element Types 22

FIGURE 3.2: Conformal and Non-conformal meshes[12]

3. Two-dimensional elements’ shape

FIGURE 3.3: Triangle and Quadrilateral elements[12]

Triangle element

• Can be easily used for any do-
main

• Requires lesser user interaction
to generate

• Less accurate due to the way
shape functions(linear) are built
for linear elements

Quadrilateral element

• Can be used easily for specific
domains only

• Requires more user interaction to
generate

• More accurate due to the way
shape functions(bilinear) are
built for linear elements

4. Three-dimensional elements’ shape

FIGURE 3.4: Three-dimensional element shapes[12]

Chapter 3. Finite Element Types 23

5. Element order
Element order refers to the polynomial order of the element’s shape functions.
Since in FEM, the results are only calculated on the nodes, a mechanism is
needed to carry the results from the nodes to the elements. The shape func-
tions accomplish exactly this and can be defined as a mathematical function
that define the shape of the element results. The accuracy of the FEM analy-
sis is dependent on how close the element shape functions agree with the real
solution. An element can be linear or quadratic. Naturally, higher orders exist
but these two are the most common elements.

FIGURE 3.5: Linear and Quadratic elements

• Linear elements can support
only linear variation in the
unknown quantity, e.g. dis-
placement. The gradient of
the unknown quantity, so
strain and thus stress are con-
stant(specifically for triangles) in
a single element.

• They are more suited to analyses
where the intent is to only output
the nominal stress results.

• A large number of elements are
generally required to output an

acceptable level of resolution of
stress gradient.

• Highly sensitive to distortion.

• Quadratic elements can support
quadratic variation in the dis-
placement and hence a linear
variation in the strain and stress
in a single element.

• Analyses with quadratic ele-
ments can output highly accurate
stresses.

Chapter 3. Finite Element Types 24

• In many cases, they can out-
put better results than linear el-
ements with fewer DOFs.

• Curved edges and surfaces are
represented more accurately.
They aren’t as sensitive to ele-
ment distortion.

There is a further class of such elements, which have an inner mid node. For
e.g: a 9-noded quadratic element in figure 3.6. They aren’t commonly used in
the industry.

FIGURE 3.6: A Quadrilateral element with 9 nodes

A further comparison between the results obtaining these two elements, linear
and quadratic can be seen in figure 3.7. The worst results are obtained using
the linear elements. Multiple linear elements ensure a better result, but still
there is an error from the actual quadratic distribution of the DOFs. The closest
results are obtained using quadratic elements.

FIGURE 3.7: FEM Analysis results comparison using linear and
quadratic elements

Chapter 3. Finite Element Types 25

3.1.1 Geometry and selection of element type

The group of geometry of interest in this thesis are turbine blades. A typical turbine
blade by GE can be seen in figure 3.8. Such a blade has a complex solid geome-
try made of several cooling holes and complex air flow paths. Thus, only three-
dimensional elements are of interest, mainly Tetrahedrons and Hexahedrons.

FIGURE 3.8: A High Pressure turbine blade from a GE jet engine[31]

So, in the next sections, a study between element types is done. Simple mod-
els are meshed using Tetrahedrons and Hexahedrons. Then, boundary conditions
are applied. Afterwards, the numerical simulation is performed. Finally, the re-
sults from the simulation is compared to that of the analytical/closed-form solution.
Based on the comparison, eventually, a conclusion is drawn at the end of study as to
which is the preferred element type closest to the analytical solution.

3.2 Finite Element Method Solution Tool

The tool used to complete the analyses in the next sections is BasicFEA. It is a com-
mercial tool available with Hyperworks package. The objective for BasicFEA is to define
a user profile that will allow users from the novice to expert level to run a broad range of sim-
ple analyses. BasicFEA aims to bring the power of the solver to a wider user base using a
streamlined process based approach. The interface was designed for those who might not use
FEA everyday, but still want a simple way to set up a basic analysis[10].

Chapter 3. Finite Element Types 26

3.3 Beam

To evaluate the performance of the element types in bending dominated problems,
a simply supported cantilever beam under bending load is analyzed. The behaviour
of the element types in the frequency domain is also studied. This is established
through a frequency/Modal analysis. Three beam models for the 2 cases are created
using these element types:

• First-order/8-noded/Linear Hexahedrons

• First-order/4-noded/linear Tetrahedrons

• Second-order/10-noded/Quadratic Tetrahedrons

Then, each of model is analysed and finally, the finite element solutions are com-
pared with the known analytical solutions of a beam.

3.3.1 Bending Analysis

A simply supported 3-dimensional beam, figure 3.9 under pure bending is consid-
ered. It is loaded with a point load at one end. The analytical solution to this problem
can be easily calculated using beam theory.

FIGURE 3.9: Simply supported Cantilever Beam with point load

The dimensions and properties of the beam are,

Length, L = 100 mm

Width, a = 10 mm

Cross section area, A = a2 = 100 mm2

Moment o f inertia, I =
1
12

a4 = 833.33 mm4

Young′s Modulus, E = 210 GPa

Poisson′s Ratio, υ = 0.3

Point load, F = 1000 N

Beam Tip De f lection, δ =
FL3

3EI
= 1.9048 mm

(3.1)

Chapter 3. Finite Element Types 27

Thus, the defined beam under pure bending deflects by 1.905 mm. The next step
is to create the numerical model with the same dimensions and materials as in the
analytical model. Three models are created: First-order Hexahedrons, First-order
Tetrahedrons and Second-order Tetrahedrons. Each of the model is fixed on the left
end and loaded with a point load, F = 1000 N at the right end.

The boundary conditions can be studied in figure 3.10. The boundary condi-
tions are always applied to a surface, which is associated with elements and nodes.
Hence, the boundary conditions are transferred to the nodes from the surface. The
model is linear and no non-linearity are assumed. The load doesn’t follow the beam
deflection.

FIGURE 3.10: Boundary conditions for simply supported beam in nu-
merical model

First-order Hexahedrons

First, the FE model meshed with first-order hexahedrons is studied. The beam is
meshed with 10 elements in the beam’s depth, figure 3.11. The boundary conditions
are applied and the simulation is completed.

FIGURE 3.11: Cantilever beam meshed with first-order hexahedrons:
10 elements in depth

Chapter 3. Finite Element Types 28

FIGURE 3.12: Beam tip deflection with first-order hexahedrons

Max beam tip deflection of FE model with first-order hexahedrons = 1.798 mm

The tip deflection in this model is farthest from the analytical solution, figure 3.12.
The stiff linear shape functions can be attributed to this behaviour.

First-order tetrahedrons

Here, first-order tetrahedrons beam model is evaluated. 20 nodes are created in the
beam’s depth, figure 3.13. Similar to the first-order hexahedrons, the beam is fixed
on the one side in all DOFs and a point load, F = 1000 N is applied on the other end.

FIGURE 3.13: Cantilever beam meshed with first-order tetrahedrons:
10 nodes in depth

First-order tetrahedrons tend to be too stiff in bending and thus, the beam tip
deflection differs from the analytical solution, figure 3.14. The linear shape functions
of linear tetrahedrons account for the element being too stiff.

Chapter 3. Finite Element Types 29

FIGURE 3.14: Beam tip deflection with first-order tetrahedrons

Max beam tip deflection of FE model with first-order tetrahedrons = 1.833 mm.

Second-order Tetrahedrons

Finally, the cantilever beam model is created using second-order tetrahedrons. These
tetrahedrons use quadratic shape functions (section 2.2). The previous model with
first-order Tetrahedrons is used and mid-nodes are added to each element to make
it second-order. 40 nodes are created in the beam’s depth. Each element has a sec-
ond order shape function. The tetrahedrons with quadratic shape functions show
deflection results closest to the exact analytical solution for pure bending dominated
problem as seen in figure 3.15.

FIGURE 3.15: Beam tip deflection with quadratic tetrahedrons

Max beam tip deflection of FE model with second-order tetrahedrons = 1.912
mm.

Figure 3.16 summarizes the beam bending problem solved analytically and nu-
merically with the different element types. It is clear that the linear hexahedrons and
first-order tetrahedrons aren’t suited to bending dominated problems. The cause to

Chapter 3. Finite Element Types 30

this behaviour can be attributed to shear locking (Section 2.2). Second-order tetrahe-
drons are the best choice for bending problems due to its results matching closest
with the analytical one. The quadratic shape functions in second-order tetrahedrons
ensure that the element edges curves and hence, depicts accurate stiffness.

FIGURE 3.16: Beam tip deflection: Analytical and Numerical results

3.3.2 Modal Analysis

To study the effect on structural stiffness due to the use of different element types, a
free-free modal analysis of a beam is performed. To begin with, the first two eigen-
frequencies are calculated analytically with the beam described in figure 3.17.

FIGURE 3.17: Beam for frequency analysis

Dimensions of the beam:

L = 100 mm b = 10 mm h = 1 mm

Young′s Modulus, E = 119.5 GPa

Poisson′sRatio, υ = 0.29

Density, ρ = 8.05e−9 tonne/mm3

Moment o f inertia, I = 0.833 mm4

Uniform load per unit length(including weight), w = 7.9e−6 N/mm

(3.2)

Chapter 3. Finite Element Types 31

Natural f requency, fn =
Kn

2π

√
EIg
wL4

Kn is a constant which refers to each mode.

K1 = 3.52, K2 = 22.0

Therefore, f1 = 82.643 Hz, f2 = 516.517 Hz

(3.3)

Then, three FE models are created using first-order hexahedrons, first-order
tetrahedrons and second-order tetrahedrons. For each model, the first two natural
Eigen-frequencies and the mode shapes are computed. Figure 3.18 and 3.19 compare
the three FE models’ first and second mode shapes and eigen-frequencies respec-
tively.

FIGURE 3.18: Effect of element type in a free-free modal analysis:
Mode 1

FIGURE 3.19: Effect of element type in a free-free modal analysis:
Mode 2

TABLE 3.1: Free Modal analysis: Summary of analytical and FE
model results

Model 1rst Mode
Freq. (Hz)

2nd Mode
Freq. (Hz)

Error: first
mode

Error: sec-
ond mode

Analytical 82.6 516.5 0.00% 0.00%

FE with HEX8 103.7 646.3 25.48% 25.13%

FE with TET4 126.6 799.6 53.19% 54.81%

FE with TET10 80.2 502.5 2.95% 2.71%

Chapter 3. Finite Element Types 32

The linear tetrahedron perform the worst when compared to the analytical so-
lution, showing an error of almost 55%. The mode shape is also different for the
second mode for the first-order tetrahedrons. On the other hand, Hexahedrons per-
form slightly better than linear Tetrahedrons with an error of about 25%. The model
with the quadratic Tetrahedrons are quite close to the analytical solution and thus,
are also a good choice for modal analyses.

3.4 Stress Concentration

Stress concentrations occur when there are irregularities in a component that cause
an interruption to the flow of stress, figure 3.20.

FIGURE 3.20: Flow of stress is denser near the hole

As it is impossible to have components without irregularities, stress concentra-
tions are important. Thus, the effect of element types on stress concentrations are
studied in this section. A simple finite plate with a notch is used for this study. The
notch is a circular hole at the centre of the plate. There are two types of loading
applied on the plate and its effect studied:

• Tension

• Bending Moment

Similar to the last section, the study starts with known closed-form solutions. Charts
from Peterson’s Stress Concentration Handbook[9] are used to determine the Stress
concentration factor. Then, three numerical models are created with first-order hex-
ahedrons, first-order and second-order tetrahedrons. Appropriate boundary con-
ditions are applied and the results are calculated. The numerical results are then
compared to the closed-form solutions.

3.4.1 Tension

The plate with a circular hole is loaded with tensile loading on both ends, figure
3.21. Introducing a hole in the plate disturbs the uniform stress distribution near the

Chapter 3. Finite Element Types 33

hole, resulting in a significantly higher than average stress. The stress concentration
factor is a function of the hole diameter to the plate width.

FIGURE 3.21: A finite plate with a hole

Dimensions of the Plate are:

D = 50 mm d = 20 mm h = 10 mm
d
D

= 0.4

Tensile load, P = 1000 N

Nominal Stress in the plate, σ0 =
P

(D− d)h
= 3.33 MPa

(3.4)

Peterson’s Stress Concentration Handbook [9] is used to read the closed-form
Stress concentration of the plate with hole under tension. It can be referred in figure
3.22 and is 2.23.

FIGURE 3.22: Closed-form Stress Concentration [9]

The same plate is now used to create numerical models. Three Finite Element
models are created using the 3 element types. A tensile loading of 1000 N is applied
at both ends of the FE models. The boundary conditions application can be studied
in figure 3.23. The tension load is applied to the surface of the plate. The load is

Chapter 3. Finite Element Types 34

transferred to all nodes. Mid side nodes are included in the load application, for the
model with second-order tetrahedrons.

FIGURE 3.23: Boundary conditions for a plate with a hole to study
stress concentrations under tensile loads

The results from the models is compared to each other and against the closed-
form solution in figure 3.24 and table 3.2 respectively.

FIGURE 3.24: Tension loading: Stress concentration plots

Chapter 3. Finite Element Types 35

TABLE 3.2: Stress concentration on a Plate with a hole subjected to
tensile loading: Summary of closed-form and FE model results

Model Stress Con-
centration

% Error in comparison to
closed-form solution

Closed-form 2.23 0.00%

FE with HEX8 1.93 13.45%

FE with TET4 2.14 4.04%

FE with TET10 2.26 1.35%

Again, results using second-order tetrahedrons are closest to the closed-form
solution than the one using hexahedrons or first-order tetrahedrons. Hence, second-
order tetrahedrons are suited to problems with stress concentrations under tensile
loads.

3.4.2 Bending Moment

The stress concentration factor for a plate with rectangular cross-section with a cen-
tral circular hole is analysed for out-of-plane bending. The plate, figure 3.25, has an
out-of-plane moment applied.

FIGURE 3.25: A plate with hole subjected to out-of-plane bending
moment

The dimensions of the plate are:

L = 50 mm d = 10 mm D = 50 mm h = 10 mm
d
D

= 0.2

Bending moment, M = 1 kNmm

Nominal Stress in the plate, σo =
6M

t2(D− d)
= 1.5 MPa

(3.5)

The closed-form solution is also present for this case. From the Peterson’s Stress
Concentration Handbook[9], figure 3.26 is used to get the analytical stress concen-
tration and is 1.85.

Chapter 3. Finite Element Types 36

FIGURE 3.26: Closed form Stress concentration - Plate with a hole

Thereafter, the numerical models are built and the appropriate boundary con-
ditions, similar to the analytical model are applied. They are depicted in figure
3.27. Bending moment is applied through rigid body couplings. All the nodes(mid
side nodes also for quadratic tetrahedrons) on the surface are coupled to one mas-
ter node. The moment is applied on the master node, then distributed to the slave
nodes.

FIGURE 3.27: Boundary conditions for a plate with a hole to study
stress concentrations under bending moment

A comparison between the models built using different element types can be
seen in figure 3.28 and in table 3.3.

Chapter 3. Finite Element Types 37

FIGURE 3.28: Bending load: Stress concentrations

TABLE 3.3: Stress concentration on a Plate with a hole subjected to
bending moment: Summary of closed-form and FE model results

Model Stress Con-
centration

% Error

Closed-form 1.85 0.00%

FE with HEX8 1.66 10.27%

FE with TET4 1.42 23.24%

FE with TET10 1.72 7.03%

The quadratic Tetrahedrons results are closer to the closed-form solution when
compared to the Hexahedrons or linear Tetrahedrons.

3.5 Conclusion

At the end, based on the tests performed in the last few sections, it can be con-
cluded that quadratic/second-order/10-noded Tetrahedrons are a better choice all
the cases evaluated here. These elements aid in a more accurate result. The way the
shape functions are defined can be attributed for this behaviour. Linear elements be-
have stiffer than they actually are, the shear lock affect. It is the behaviour when the
elements don’t model the actual curvature accurately due to their linear shape func-
tions. Linear hexahedrons are better than linear tetrahedrons because the strains in
linear tetrahedrons are constant. This is due to the way the element shape functions
are defined. Second-order tetrahedrons can follow the actual curvature because of
the quadratic shape functions defined on them. The strains are linear and thus can

Chapter 3. Finite Element Types 38

represent problems better than linear tetrahedrons. This can be studied in more de-
tail and mathematically in chapter 2.

Another advantage of tetrahedrons over hexahedrons is that they are generally
easier to generate. Complex, arbitrary models can be generated easily using tetrahe-
drons. Tetrahedrons also lend themselves well to be automated when compared to
hexahedrons. The methods and algorithms used to generate tetrahedrons are stud-
ied in chapter 4.

A disadvantage of tetrahedrons can be attributed to the increased number of
elements, leading to bigger element stiffness matrices. This could mean potentially
that tetrahedrons are computationally costlier than hexahedrons.

39

Chapter 4

Mesh Generation Methods

Mesh generation is a necessary tool in the computational simulation world of phys-
ical phenomena. Mathematics forms the base of the mesh generation processes. The
generation process in itself is not unique and there are no inherent laws to gener-
ate a mesh. There are however optimization criteria that can help establish a mesh
generation process. The world of mesh generation has reached a point that sev-
eral, commercial and open-source programs are available. These programs use sev-
eral well-known and established methods/algorithms to conceive the elements and,
consecutively the mesh.

In Chapter 3, it was established that second-order tetrahedrons are the preferred
element type for most analyses. Subsequently, this Chapter talks about the meth-
ods/algorithms used for generating tetrahedrons only.

Based on the present-day methods available , mesh generation algorithms for
tetrahedrons can be described in three classes:

• Advancing front method, wherein elements are generated one by one, starting
from the boundary of the domain to its center. Where the elements meet the
unmeshed domain is called the front. Thus, the elements are generated till the
front disappears.

FIGURE 4.1: Advancing Front Method for mesh generation [16]

Chapter 4. Mesh Generation Methods 40

This method generates high-quality elements at the boundary. The method
fails when the front collides with itself and ensuring element quality is diffi-
cult. These methods have been more successful in the fluid mechanics field
where good elements are more necessary on the boundaries.

• Quadtree/Octree algorithms, which subdivide the domain by laying a structured
background grid. Usually by warping the grid, element quality is ensured so
no short edges are present. Quadtree algorithms, Figure 4.2, are suitable for
2D domains. Octree algorithms work on the same principle, but divide 3D
domains.

FIGURE 4.2: A graphical representation of the Quadtree Algorithm

Element quality at the interior is good but not on the boundaries. One disad-
vantage is the tendency of mesh edges to be aligned in a few preferred direc-
tions. Their speed, ease of parallelism and their robustness of meshing unclean
CAD geometry are some of the advantages.

• Delaunay refinement algorithms, which construct meshes based on delaunay tri-
angulation criterion. These are the most popular algorithms when it comes to
unstructured mesh.

4.1 Delaunay Triangulation Criterion

The Delaunay triangulation criterion implies that no vertex of a triangulation lies in
the interior of the any triangle’s circumcircle, the unique circle that passes through
each of a triangle’s vertices. Correspondingly, in three-dimensions, no vertex is en-
closed by any tetrahedron’s circumsphere.

Definition. Let S be a set of points in the plane. A triangulation T can be said to
follow the Delaunay criterion of S if for each edge e of T, there exists a circle C such
that:

- the endpoints of e are on the circumference of C, and

- no other vertex of S is in the interior of C.

The Delaunay triangulation would be unique if no four points are co-cyclic. If co-
cyclic points exist, all the triangulations would be Delaunay.[1]

Chapter 4. Mesh Generation Methods 41

Delaunay refinement algorithms start by constructing a triangulation that is delau-
nay. It is then refined by adding new vertices which eliminates very thin or large ele-
ments, always while maintaining the delaunay criterion. The delaunay triangulation
influences the placement of new vertices so that no sliver elements or short edges are
formed. In contrast to the front advancing algorithms, delaunay algorithms create
high quality elements in the interior and worst elements on the domain boundary.
Delaunay methods also assure a mathematical guarantee, they will always produce
a valid mesh and in most cases, no sliver elements. [26]
Figure 4.3 shows an example of delaunay and not-delaunay triangulation.[17]

FIGURE 4.3: Delaunay triangulation in two-dimensions maintained
in (a), not maintained in (b)

FIGURE 4.4: (a) creates all the delaunay simplices between the speci-
fied points, (b)chooses only the triangles and (c) excludes all the cross-

ing Delaunay edges [26]

4.2 Algorithms

The first published algorithm implementing the Delaunay triangulation was in 1967
by Bernal and Finney. They developed the method and the program, which can
also be termed as the brute force algorithm. It will test every possible tetrahedron
to check which one satisfies the delaunay criterion. Thus, it takes O(n5) time. In
multi-dimensions, the time is O(nd+2), where d is the number of dimensions.[30]

Chapter 4. Mesh Generation Methods 42

Besides this algorithm, the delaunay algorithms can be classically divided in three
types:

• Gift Wrapping or incremental search, pivoting and graph traversal algorithms
generate one Delaunay triangle at a time, all the while using the previous el-
ement as a seed for the next element. These algorithms are easily extended to
higher dimensions but the bottleneck is identifying new triangles. Thus, the
different algorithms are differentiated by the methods used for constructing
triangles or the vertex search strategies.

• Divide-and-Conquer[25] algorithm is the first Delaunay triangulation algorithm
to run in optimal time, O(n log n). It divides the set of points in two, divided by
a line, and then both the halves are simultaneously triangulated finally merg-
ing them in one. This algorithm is fast but not enough in the three-dimensional
world.

• Incremental insertion algorithms doesn’t use a already present set of points to
create the triangulation. Rather, it places vertices one by one, always main-
taining the delaunay triangulation before a new vertex is inserted. The fastest
3-dimensional meshes are generated using this class of algorithms.

All the three algorithms can be extended on Constrained Delaunay triangulation,
introduced in the next section. Gift wrapping and Divide-and-Conquer algorithms
are complicated and thus difficult to implement. Thus, they are rarely used. The
most commonly used algorithm is the Incremental insertion algorithm.

4.3 Constrained Delaunay Triangulations

A problem with Delaunay triangulation is the possibility of the triangulation not
respecting the domain’s boundary. An alternative to this problem is to use the Con-
strained Delaunay triangulation or CDT. A CDT is defined by the vertices and seg-
ments that mark the domain boundary. Every segment of the domain should be a
segment of the CDT. It is not mandatory for the triangles defined to be delaunay.
Instead they must satisfy the Constrained Delaunay criterion, which somewhat re-
laxes the empty circumsphere condition.

Definition.Let G be a planar graph which is a straight line. A Triangulation T would
be a constrained Delaunay Triangulations of G if each edge of G is an edge of T. For
each of remaining edges, e of T, there exists a circle C with the following properties:

- The endpoints of the edge e is on the boundary of G, and

Chapter 4. Mesh Generation Methods 43

- if any vertex v of G is inside C, then it should be invisible to at least one of the
endpoints of e i.e. if a line is drawn from v to all the endpoints of e, then at
least one line segment crosses an edge of G.

It can be concluded that if G has no edges, then a constrained Delaunay triangulation
is the same as unconstrained Delaunay triangulation. Intuitively, both the triangula-
tions are similar except that, the CDT ignores the portion of the circles where edges
cut the circumcircle.[1]
CDT doesn’t need extra vertices to be added to maintain the arbitrary segments.
Another big advantage of CDT is that it inherits all the Delaunay triangulation ad-
vantages: it maximizes the minimum angle, minimizes the largest circumcircle, and
minimizes the min-containment angle.

44

Chapter 5

Automation of Mesh generators

Designing components typically can take longer than the production and delivery
of the component put together. The evolution of a new component is an iterative
process. It involves several steps and calculations on the component to design it.
Because it is a new product, several changes in the input or the design process steps
can be expected. The loading conditions can change or the geometry is modified.
With each small or big change, many changes follow in the whole design process.

Finite Element modeling is a standard approach used in the industry to evaluate
new designs. It is a cheaper alternative to costly physical testing. A big advantage of
finite element modeling is that the overall lead time in product and process design
is reduced significantly. An important step is in this modeling is discretizing the
domain. Building the FEM models by discretizing the domains for analysis still
requires a significant amount of the design engineer’s time. Also, with each change,
however big or small, a new FEM model has to be generated. This is considerable
effort.

At the Department for component design and manufacturing technologies, Institute
for the structures and design, Deutsche Zentrum für Luft- und Raumfahrt e.V.(DLR), an
automated process is being developed. This process automates the structural de-
velopment of a new component, here a turbine blade assembly. Figure 5.1 indicates
the flowchart for this process. The flowchart is an iterative procedure, which starts
with an input CAD/parametric geometry and loads. Then, a structured mesh for
the parametric geometry is created. The CAD geometry is the input to generate
unstructured mesh. Afterwards, the model is built with the materials, boundary
conditions, analysis options and pressure/temperature mapping. Next, the model
is made ready for the solver(s) and the analysis performed. The results generated
are used in two ways. They are used, naturally for the result visualisation. They are
also instrumental in providing feedback to manipulate the geometry based on criti-
cal locations in the results. Every step is automated i.e. no user interaction is present.
The user has to only input the original geometry and the loads. He/she will get the
components’ optimum behaviour out, like the eigen frequencies, stresses without

Chapter 5. Automation of Mesh generators 45

any intervention in between.

This thesis’s aim is to establish the automation of the steps which are coloured
blue in figure 5.1. This chapter establishes the creation of unstructured meshes from
the CAD model. The mesh would be converted to a standard format too.

As concluded in Chapter 3, Quadratic Tetrahedrons are the best choice to cap-
ture the physical behaviour of the component. The algorithms discussed in Chapter
4 for generating Tetrahedrons would be used in this chapter to create the unstruc-
tured mesh. In the first part, section 5.1, the test and evaluation of the existing au-
tomated meshing softwares for tetrahedrons is described. The second part, section
5.2, develops on an existing software to create an automated program suited to the
geometry on hand, a turbine blade assembly.

5.1 Test and Evaluation

An automatic mesh generator can be defined as a unit that uses some boundary data
as an input, then creates the interior and external nodes and elements automatically
based on the input. Since the mesh generator assumes little or no information on
the structure of the domain, almost any structure can be modelled with these class
of mesh generators[11]. The field of automatic mesh generation is a relatively new
field. Tremendous advances have been made since its inception. Generation of tetra-
hedrons is easier to automate than generation of hexahedrons.

The first step is to explore the existing automatic mesh generators. There are
several mesh generators already present to be examined. They can be open source or
closed/proprietary generators. A open-source mesh generator is a software, which
is generally free of cost, in which the copyright owner lets the user study, change and
distribute the software to anyone. In contrast, to use a closed/proprietary mesh gen-
erator, a user must buy a license to use the software and cannot freely distribute the
software. The intellectual and copyright rights lie with the software’s publisher[24].

Other advantages of using a open-source mesh generator is that it is easily avail-
able and the source code is accessible. It is believed to be better-designed since it
typically has many independent programmers testing and fixing the software. They
can be efficiently used to develop interfaces. Disadvantages of such a software can
be that the development process might not be well defined or the documentation is
ignored.

On the other hand, proprietary softwares come with full documentation, sup-
port, training and guidance. A well defined development and upgradation plan for

Chapter 5. Automation of Mesh generators 46

FIGURE 5.1: Automation of the structural mechanical design process
for a blade assembly[4]

Chapter 5. Automation of Mesh generators 47

the software is available. Aside from the fact that a license is needed, another disad-
vantage of a proprietary mesh generator could be to not have the ability to tailor the
source code to the user’s requirement.

To explore the mesh generation software market, several mesh generators are
assessed. The assessment is done in two steps:

• A preliminary assessment, where each of the mesh generators are gauged for
their ease of installation, documentation availability etc. For the commercial
softwares, an extra criteria is if a test/demo version is accessible.

• A secondary assessment where two open-source and proprietary mesh gen-
erators each are studied in more detail. They are selected based on the initial
assessment of all the softwares.

In the initial assessment, some of the mesh generation softwares[22] surveyed
are:

1. Open-Source Mesh generators

• Gmsh: A Delaunay algorithm based mesh generator, generates adapted
meshes. The software is easy to download and compile. There are several
options to create meshes.

• DeIPSC: It can produce a weighted Delaunay algorithm based mesh. It
guarantees all triangles and tetrahedrons have bounded radius-edge ra-
tio. The software isn’t easy to build.

• SALOME: It is a free software providing a pre- and post-processing solu-
tions. It has several meshing algorithms to mesh the available lines/surfaces/solids.
The mesh generator is easy to download and use.

• Tetgen: It generates exact Delaunay tetrahedrons. This mesh generator
requires a two-dimensional mesh to be created beforehand.

• LBIE-Mesher: Level Set Boundary Interior and Exterior mesher. It is an
unstable software, crashing easily.

• MeshGenC++: A software package for generating unstructured mesh. It
is easy to download but cumbersome to install and build.

• DistMesh: A MATLAB code to generate unstructured mesh. It is easy to
compile but works well only for simple geometries.

• FELICITY: Generation of unstructured mesh with angle bounds is guar-
anteed. It is easier to use as MATLAB is already available. But, a specific
version of MATLAB is required and many other plug-ins, making it diffi-
cult to compile.

Chapter 5. Automation of Mesh generators 48

• CGAL mesh generation: Various packages for triangle and tetrahedron
generation are available. It is easy to download but difficult to compile.

2. Closed/Proprietary Mesh generators

• BOXERmesh: A mesh generation software to generate tetrahedrons. It is
better suited to CFD applications. The test version for this software is not
available.

• GID: Structured and unstructured mesh can be generated using this gen-
erator. This mesher works well when a bigger element size is used. But,
switching to a finer element size presents a lot of problems while mesh-
ing.

• CM2MeshTools: A Delaunay mesher for triangles, quadrangle and tetra-
hedrons. A trial version is available. The compilation is tricky for this
software.

• Castnet: An automated hybrid mesher for all kinds of three-dimensional
elements. A test version is not easily available.

• NISA-Display IV: An automatic and mapped mesh generation for struc-
tured and unstructured meshes. Trial version is easily installed. But, the
mesh is not easy to generate.

• ENNOVA: A structured and unstructured surface and volume meshing
along with hybrid and boundary layer meshing using prism. A trial ver-
sion is obtained and tested. This mesh generator has a lot of potential.

• FEMAP: A finite element preprocessor for generating 2D and 3D meshes.
A trial version is easily available. There are many options available to
create a good mesh and is stable.

• CADfix: A volume and surface mesh generator. It is more suited to med-
ical object technology. No access to a test version is available.

• DIANA(FEMGV): A general pre-and post-processing software suitable
for use with FEA, CFD and Finite difference method. Accessing a test
version is not possible.

At the end of this initial assessment, the mesh generation softwares that exhibit the
most potential are chosen. The generators which are easy to download along with
their ease to install and compile are preferred. Stable programs are desirable. A
mesh generation program that has several options for creation of meshes is also a
better choice.

An additional desirable feature in a mesh generation software is that it lends
itself well to being programmed i.e. API. An application programming interface
(API) is a computing interface to a software, that defines how other interfaces can

Chapter 5. Automation of Mesh generators 49

access or use it. Because in the whole automated process (in figure 5.1), the auto-
mated meshing module is called by its upstream and downstream interfaces, an API
is an important feature in the mesh generator. Hence, the thesis at hand requires cus-
tomization of the mesh generator to suit the geometries of interest. It is important
that the mesh generator has an API that is easy to access and program.

A secondary and final assessment is done on these mesh generators. The se-
lected mesh generators are evaluated in detail to assess with these features like their
ease to download and compile along with being stable. A test geometry is used to
complete this assessment.

5.1.1 Geometry for secondary assessment

The selected mesh generators are subjected to closer scrutiny using a test geometry.
This geometry depicts the actual geometry to some degree. It is a rotating com-
ponent of an aircraft engine. Specifically, the blade of a turbine. The geometry of
a blade is complicated as it has an airfoil shape with lots of small and long holes,
which are meant for cooling of the blade evident in figure 5.2.

FIGURE 5.2: Test Geometry used to assess the mesh generators[18]

Chapter 5. Automation of Mesh generators 50

Figure 5.3 depicts the small areas that could prove to be difficult to mesh due to
their complexity. The cooling holes are small in diameter and long in length. They
are illustrated by hiding the top aerodynamic surfaces of the blade.

Another test geometry is used which is also a model of a turbine blade with
similar complex details. But, the CAD model is not created cleanly. An example of
unclean geometry can be geometries with mating surfaces having gaps between the
surfaces. Or, the mating surfaces are overlapping.

So, this geometry tests the mesh generator’s ability to deal with bad input ge-
ometry. It is an added advantage if the generator has options to deal with unclean
geometry before it meshes the geometry. This geometry cannot be depicted in this
report due to it being protected information.

FIGURE 5.3: Small details of the turbine blade[18]

5.1.2 Assessment procedure

The secondary assessment is done for the selected mesh generators using the steps
illustrated in figure 5.4. The typical steps of generating a mesh are followed: installa-
tion/compilation of the mesh generator, import the geometry, selection of meshing
options/algorithms and finally, meshing. The mesh generator is evaluated meticu-
lously for each of the steps.

Chapter 5. Automation of Mesh generators 51

FIGURE 5.4: Steps followed to perform the secondary assessment for
mesh generators

5.1.3 Secondary assessment: Open-source Mesh generation

In the preliminary assessment of the open-source generators, the most important
factors emerged as ease of installation, stability and the available meshing options.
The ease of using the API is also evaluated. Two mesh generators, Gmsh and Salome
fared well on these criteria in the initial assessment and thus, are selected to evaluate
further.

Gmsh

Gmsh is an open-source three-dimensional finite element grid generator with a build-in CAD
engine and post-processor. Its design goal is to provide a fast, light and user-friendly meshing
tool with parametric input and advanced visualization capabilities.[7]

Installation of Gmsh is simple and straightforward. Compilation is uncompli-
cated as the download package had an ’exe’ file incorporated which can be simply
called to launch the application. The GUI of Gmsh is simple but the options available
to generate meshes are limited.

The test geometry in figure 5.2 is imported to Gmsh to mesh. The delaunay
criterion algorithm is used to create the mesh for the test geometry. The element size
suggested automatically by Gmsh is used. The mesh is created in an bottom-to-top
fashion i.e. first the edges are discretized, then the faces are meshed and finally the
3D elements are created. With this algorithm, the produced mesh captures the small

Chapter 5. Automation of Mesh generators 52

details of the test geometry to a satisfactory level. But, many tetrahedron elements
fail on the aspect ratio (equal to 10) quality check. The mesh of the test geometry can
be referred in figure 5.5.

A particular important disadvantage is that program is unstable and crashes
easily. For e.g. if a finer element size if chosen, Gmsh crashes. Gmsh API program-
ming is not simple to use. This is a clear disadvantage as API is a crucial feature to
automate the meshing process.

Additionally, Gmsh is also used to mesh the second test geometry with the
unclean surfaces. Gmsh isn’t able to work with the bad geometry and crashed
promptly.

FIGURE 5.5: Test Geometry mesh using Gmsh, poor aspect ratio and
poor representation of features

SALOME

SALOME is an open-source software that provides a generic Pre- and Post-Processing plat-
form for numerical simulation. It is based on an open and flexible architecture made of
reusable components.[19]

The download package for SALOME is easily downloaded and could be used
straightaway without any need of installation or compilation. A ’bat’ file is already
present in the package which directly launches the SALOME application.

SALOME has a very comprehensive GUI. There are lots of modules on offer.
The geometry module has the ability to create and modify geometries. The mesh
module has several options to create a mesh based on different algorithms. Apart
from the pre-processor modules, there are various modules for post-processing too.

The geometry module of SALOME is used to import the test geometry. Then,
there are various options to make groups in the geometry. At this point, no groups

Chapter 5. Automation of Mesh generators 53

are created for the test geometry. This is because only the meshing capability is eval-
uated. Next, the mesh module is activated. The NETGEN algorithm is selected to
create the mesh for the test geometry. This algorithm incorporates all the algorithms
for discretizing edges, faces and solids together. Using this algorithm requires very
little interaction from the user in the mesh generation process. The element size sug-
gested by the program is used. The generated mesh captures all the features of the
blade adequately. The mesh, figure 5.6 also fares well on the aspect ratio quality
check.

SALOME is quite stable and has a superior performance as compared to Gmsh.
The API of SALOME is through python. Python is a high-level, general-purpose
programming language. It is simple to use to automate the meshing module. This is
an immense advantage.

SALOME is also tested for the poorly generated test geometry. It can handle
geometries which aren’t very unclean. But, a geometry with several problematic
surfaces doesn’t fare well with SALOME. Thus, it might need an additional step to
cleanup the geometry beforehand for poor geometries.

FIGURE 5.6: Test Geometry mesh using SALOME, stable program
with a mesh that captures the details accurately

5.1.4 Secondary assessment: Proprietary Mesh generation

In contrast to Open-source mesh generation softwares, proprietary mesh genera-
tors are easier to download and install/compile. Documentation and support for
the proprietary generators are abundant and easily available. Here too, two mesh
generation programs are chosen: FEMAP and ENNOVA. They fared well on the
preliminary assessment.

Chapter 5. Automation of Mesh generators 54

FEMAP

FEMAP is an advanced engineering simulation application for creating, editing and import-
ing, re-using mesh-centric finite element analysis models of complex products or systems.
It can be used to model components, assemblies or systems and to determine the behavioral
response for a given operating environment[27]. FEMAP is a pre- and post-processing
software by Siemens.

FIGURE 5.7: Test Geometry mesh using Siemens FEMAP, similar de-
tails as SALOME but lower node count

A test version of FEMAP is easily available and downloadable. It comes with
easy to follow instructions to install. As FEMAP is a software from SIEMENS, it can
be advantageous to create interfaces with CAD geometry creation from SIEMENS
(NX) or with SIEMENS’ FE solvers.

The GUI of FEMAP is very user friendly. There are several options to cre-
ate/modify geometries. The creation of meshes is a smooth process with numerous
meshing options. FEMAP can also be used to post-process analysis results.

The geometry is imported in FEMAP. Here too, there are several options to cre-
ate groups of surfaces or edges to have better control on the meshing process. No
groups are created to generate the test mesh. Basic settings, suggested by FEMAP are
used for the mesh generation. The quality of the mesh generated through FEMAP
is similar to that through SALOME. But, the size of the model i.e. number of nodes,

Chapter 5. Automation of Mesh generators 55

generated is smaller in FEMAP. The number of elements which have an aspect ratio
less than 10 is also similar in both FEMAP and SALOME. FEMAP has a built in API.
It can be easily used to call FEMAP from within FEMAP or other external programs.

FEMAP is a stable software and fares well with the test geometry. Some stability
issues are observed when the unclean test geometry is used to generate meshes.
It has limited capability to deal with bad geometries and crashes easily. Another
drawback with FEMAP is that as it is a paid commercial software and hence, the
license has to be bought.

ENNOVA

ENNOVA meshing software provides a scalable client / server architecture solution for CFD
and FEA meshing. Using a novel Hands Free approach. ENNOVA can generate a wide
range of meshes from fully structured to unstructured, with tetra, prism, and polygonal cell
types. Hybrid meshes with regions of structured and unstructured blocks can be constructed
with minimal user input, which is ideally suited for rapid design cycles and optimization [5].

The mesh generator ENNOVA’S test version is straightforward to download
and install. An academic license is shared by ENNOVA. It’s documentation is lim-
ited and hence poses some challenges.

FIGURE 5.8: Test Geometry mesh using ENNOVA, captures the de-
tails properly

The test geometry is imported in ENNOVA. Unlike SALOME and FEMAP, there
aren’t numerous options to create meshes. ENNOVA can suggest mesh size settings
based on the geometry and they are used to create the mesh for the test geometry.
Topology based meshing is used, which captures all the essentials of the geometry.
A satisfactory test mesh is created with very less effort, figure 5.8. The creation of

Chapter 5. Automation of Mesh generators 56

the mesh is quite fast with ENNOVA. ENNOVA has a built-in API but due to limited
documentation it is unclear how to call it from an external program.

On the stability front, ENNOVA is right at the lead. It is also tested with the
unclean test geometry. ENNOVA has a powerful geometry cleanup option which
can deal with bad geometries. It can then easily create the mesh.

5.1.5 Assessment matrix

The secondary and final assessment preceded by the preliminary assessment led to
four different mesh generation softwares. There are two open-source and propri-
etary mesh generators each which are of the most interest because of the advantages
they offer. The chosen four programs are used to generate the mesh for the test ge-
ometry, as explained in the last section. Apart from the factors already explained like
the downloading/installation ease, program stability, API there are a few other crite-
ria to be studied. For e.g. meshing speed, automatic creation of groups etc. The four
mesh generators only are judged on these criteria. The criteria of most importance
are:

• Geometry handling: The ability of the mesh generation program to handle
unclean geometries. It is expected that small problems in the geometry be
dealt successfully by the program.

• Program Stability: It is important that the program is stable i.e. doesn’t crash
or becomes unresponsive when something demanding is expected. E.g. when
a too fine mesh size is used to generate the mesh.

• Mesh Control: Several meshing algorithms options availability in a mesh gen-
eration software is a useful advantage. Different algorithms ensure better con-
trol on the creation of mesh. A location on the geometry could be meshed with
a finer setting with a different algorithm, another could use different settings
to generate the mesh.

• Meshing speed: It is imperative that the mesh generation process is finished
in a reasonable amount of time. For the same quality, if one mesh generator is
faster than the other, it would benefit to choose the first one.

• FE-Model size: The size of the FE-model (i.e. the total number of elements
and nodes generated) created with the same element quality directly affects
the time required to compute the unknown quantity by solving the FEM equa-
tions.

• Bad elements: The shape and quality of an element has a large effect on the
accuracy of the analysis results. Hence, certain quality checks are required to

Chapter 5. Automation of Mesh generators 57

check the shape and quality. E.g. the aspect ratio of element or the skewness
or the jacobian ratio.

• Group creation: Creation of groups or sets, whether from elements or nodes
aids in boundary condition applications. The creation of groups also helps in
making a part of the geometry finer than the global mesh.

• API: How effortless is the API of the mesh generation program is another im-
portant aspect to measure.

• Cost: The cost of buying a software and licenses also weighs in. The inclination
is towards open-source but only if they satisfy the required criteria.

Table 5.1 discusses these criteria and how the mesh generators perform against
them.

TABLE 5.1: Assessment Matrix of Open-source and Proprietary mesh-
ing Programs(1-best score & 4-worst score)

Criteria Gmsh SALOME FEMAP ENNOVA

Geometry Handling 4 2 2 1

Program Stability 4 2 2 1

Mesh Control 4 1 1 3

Meshing Speed 3 2 1 1

FE Model size 4 3 1 1

Bad elements 4 2 3 1

Automatic group creation 4 1 2 2

API 4 1 1 4

Cost 1 1 4 4

Gmsh doesn’t meet most of the evaluation criteria and isn’t a good fit to be
used further. On the other hand, FEMAP is a good fit from the perspective of mesh
control, meshing speed, FE model size and API use. ENNOVA performs well on
many criteria, the handling of unclean geometry, program stability, meshing speed,
FE model size and least bad elements. The biggest drawback of ENNOVA is its
API. No documentation or support is found to call the API from external programs.
SALOME fares the best in the options for mesh control, automatic group creation,
API. As it is an open-source program, it is also a positive on the cost aspect. It is also
never the worst in any of the criteria.

Based on these takeaways, SALOME is the logical choice for further develop-
ment on the meshing automation process. In the next section, development on a
SALOME interface to build the automated meshing module of figure 5.1 is estab-
lished.

Chapter 5. Automation of Mesh generators 58

5.2 Development of SALOME Interface

5.2.1 Introduction to SALOME

SALOME has two modes to work in: GUI mode and Batch mode. The GUI mode
accesses the functionalities of SALOME via SALOME session server. It has a desk-
top window, menus, dialogs and Viewers & object browser. The Batch mode ac-
cesses the SALOME functionalities from the command terminal without GUI. The
batch mode has a python console for directing accessing SALOME. Python scripts
can be run through this mode. SALOME can be used on windows and Linux both.
Though, the program was originally aimed at Linux systems and later, a windows
version was released. The source code is available to any programmer who wants
to use/develop it. SALOME is distributed under a GNU General public license. It
means that everyone is permitted to copy and distribute copies of the software, but
changing it is not allowed.

SALOME has several built-in modules which can be used for various pre/post
analysis processes. One of them is the mesh module. The mesh module can[19]:

- create meshes in different ways: meshing a geometry, mesh editing or building
3D mesh from a 2D mesh

- import/export meshes

- build node/elements groups automatically based on criterion

- offer different algorithms and hypotheses for meshing

- generate meshes using Python(API) scripting

Along with the mesh module, SALOME also contains a computer-aided design (CAD)
module that can read several geometry input files, for e.g. step format. An instru-
mental tool in the CAD module is the creation of groups based on filtering. Filtering
can be used to group Sub-shapes together automatically. The sub-shapes’ property
is instrumental in this automatic selection. The sub-shapes’ property which is calcu-
lated according to the topology can be extracted for each sub-shape:

- length for edges/wires

- area for faces/shells

- volume for solids

The property can be used to define the range of edges/faces or solids to be grouped
together in a geometry set. This geometry set can be later used to create finer mesh
areas or to create boundary conditions.

Chapter 5. Automation of Mesh generators 59

5.2.2 Meshing Algorithms and Hypotheses

Mesh generation is performed in a bottoms-up fashion, nodes on vertices are created
first, then edges are discretized using the vertices’ nodes, these nodes on the edges
are used to segment the faces and finally the faces’ nodes create the solid mesh. This
approach ensures the mesh is conforming.
SALOME has several algorithms available to generate meshes based on element
types, different techniques or dimensions. As established in Chapter 3, quadratic
tetrahedrons are the preferred element type. Hence, to build the tetrahedrons, first a
two-dimensional mesh is created which is made of triangles. Before that, the edges
and vertices have to be discretized. Thus, algorithms and hypotheses for each of
them must be selected.
Hence, in this section, algorithms in SALOME relevant to triangles and tetrahedrons
generation are addressed. The generic definitions of triangle and tetrahedron gener-
ation algorithms can be found in chapter 4. A mesh generation algorithm is a process
or set of rules to follow to generate a mesh. Hypotheses in SALOME are the bound-
ary conditions for the meshing algorithms. They manage the level of detail on the
mesh by specifying the mesh parameters.

1. Meshing 1D entities(edges)

(a) One-dimensional Mesh Generation Algorithms[20]

• Wire Discretization: This algorithm splits an edge into a number of
mesh segments based on a 1D hypothesis.

• Composite Side Discretization: A whole face of the geometry can be
discretized together even if it is made of several edges provided the
edges form a C1 curve.

(b) One-dimensional Mesh Generation Hypotheses[20]

• Number of Segments hypothesis estimates edges by a defined number
of mesh segments. Different node distributions can be defined like
an equidistant (all the segments will have the same length) or a ana-
lytical function (a formula that will rule the change of length).

• Local Length hypothesis sets the length of segments to discretize a
edge. It also requires a precision parameter, which rounds up the
number of segments. The number of segments is calculated by divid-
ing the edge length by the defined length of segment. The precision
parameter determines if the number of segments goes to the lower or
upper integer.

• Arithmetic & Geometric Progression hypotheses divide an edge into
segments using Arithmetic or Geometric progressions.

Chapter 5. Automation of Mesh generators 60

• Start & end length hypothesis makes segments on an edge which has
the first and last segment of the specified length. The segments in be-
tween change based on an automatically chosen geometric progres-
sion.

• Adaptive splits an edge into segments based on the curvature of the
edges and faces. The maximum, minimum size and the deflection of
a segment from the curvature as user-input limit the hypothesis.

• The Deflection hypothesis divides curvilinear edges based only on
chord error or the deflection from the curve. The more curved the
surface is the shorter the elements will be. Hence, creating a finer
mesh at curved locations.

2. Meshing 2D entities(faces)[20]

(a) Two-dimensional Triangle generation algorithms

• Triangle:Mefisto splits faces into triangular elements. It is only a 2D
algorithm and needs a 1D algorithm additionally.

• NETGEN 1D-2D combines the generation algorithms of 1D and 2D
elements in one algorithm. The surface mesh generation algorithm is
based on the advancing front method algorithm class. Mesh creation
based on the delaunay criterion can also be selected instead of the
advancing front method.[23]

• NETGEN 2D defines only the 2D discretization into triangles and is
similar to the NETGEN 1D-2D in the surface mesh creation. it re-
quires a 1D algorithm additionally to work.

(b) Two-dimensional Triangle generation Hypotheses

• Max Element Area hypothesis limits the maximum area of each 2D
element.

• Length from Edges hypothesis defines the maximum linear size of mesh
faces. An average length of the mesh faces approximates the meshed
face boundary.

• NETGEN 2D Parameters hypothesis defines the maximum and min-
imum element size allowed. It also controls many features, like the
fineness of the mesh, or which algorithm to use: Delaunay criterion
or Advancing Front method. The input to control mesh size based on
the curvature of the geometry can also be chosen here. [21]

Chapter 5. Automation of Mesh generators 61

FIGURE 5.9: NETGEN 2D Hypothesis

3. Meshing 3D entities(solids)

(a) Three-dimensional Tetrahedron generation Algorithms

• NETGEN 1D-2D-3D algorithm doesn’t require any lower level algo-
rithms and hypotheses to be defined. Based on the hypothesis cho-
sen, the mesh can be generated using Delaunay criterion or the ad-
vancing front method.

• NETGEN 3D algorithm is similar to the NETGEN 1D-2D-3D algo-
rithm but here there is a flexibility to use different 2D and 1D mesh
generation algorithms and hypotheses.

(b) Three-dimensional Tetrahedron generation Hypotheses

• Max Element Volume hypothesis limits the maximum volume a 3D
mesh element can have.

• NETGEN 3D Parameters hypothesis presents several controls on creat-
ing a mesh. Figure 5.10 depicts these controls. The max and min size
of the elements can be defined along with the fineness of the mesh.
The fineness can be system defined or user defined, giving even more
control. It can be chosen if the delaunay algorithm or the advancing
front algorithm will be used to generate the mesh.

Chapter 5. Automation of Mesh generators 62

FIGURE 5.10: NETGEN 3D Hypothesis

5.2.3 Target Geometry

The aim of the automated mesh generation process is to automate the meshing of
a high pressure turbine (HPT) blade and disk with a complex cooling circuit. The
actual assembly is a protected geometry and its images can’t be shared.

FIGURE 5.11: A turbine blade with a complex cooling circuit[8]

Instead, figure 5.11 depicts a similar turbine blade which is free to share. The

Chapter 5. Automation of Mesh generators 63

complex geometry for the cooling circuit can be noted. Figure 5.12 illustrates a typi-
cal turbine blade and disk assembly.

FIGURE 5.12: A typical blade and disk assembly[3]

The mesh produced through this task will be used in a quasi static structural
mechanical analysis. The dimensions of the actual blade and disk assembly are:

• Length x = 305 mm

• Length y = 39 mm

• Length z = 123 mm

• Mass = 1.1 Kg

Some best practices in creating the mesh are already laid out by the HPT com-
ponent team. These are shown using the test geometry (from figure 5.2):

• Maximum element size = 1 mm.

• Thin walls must have 2 elements in thickness.

• Fillets, such as in figure 5.13 must have 8 or more elements

Chapter 5. Automation of Mesh generators 64

FIGURE 5.13: Mesh requirement on fillets

• Very small curves such as in figure 5.14 should have 1 or more elements in the
direction of the biggest curvature.

FIGURE 5.14: Mesh requirement on very small curves

• Cooling air holes such as in figure 5.15 should have 8 or more elements on the
circumference.

FIGURE 5.15: Mesh requirement on cooling air holes

Apart from these requirements on the blade, there are some requirements on
the turbine disk too. The element size on the disk should be smaller than 2 mm. The

Chapter 5. Automation of Mesh generators 65

surfaces coming in contact with the blade should have 6 or more elements in the
short edge direction.

5.2.4 Automation Process

The algorithms and hypotheses offered by SALOME are now identified. The geome-
try in figure 5.2 is used extensively to gain an understanding of SALOME. A typical
meshing job in SALOME is shown in the flowchart in figure 5.16. The first step is to
activate the geometry module of SALOME. Here, either a geometry can be built or
one imported.

FIGURE 5.16: Flowchart of a typical mesh creation job using an im-
ported geometry file

Several options are at disposal to create a geometry. As the geometry of interest
is already present, the import geometry option is more of interest. A few file formats
can be read, STEP (Standard for the Exchange of Product Data) is a common file.
A step file is a 3D model file formatted in STEP, an ISO standard exchange format.
Also available are BREP, STL, VTK or IGES.

Once, the geometry is input, it is checked for any issues. SALOME can aid in
correcting small problems in the geometry. It can for e.g. sew small gaps in mating
surfaces. Or, it can help in defeaturing the geometry by using suppress options.

Next, groups are built on the geometry. Groups can be built using vertices, lines,
faces or volumes. The IDs of these entities can be used to create groups manually. In
the GUI, it is also possible to select manually the entities using the mouse. A very
useful way to create groups is by using the parameters of the entities. SALOME can

Chapter 5. Automation of Mesh generators 66

be programmed to automatically select only the entities within a parameter range.
This feature is very convenient in creating varying element sizes based on the entity
size.

In the meshing module, a global mesh must be created if a 3D mesh for the
whole component is desired. Algorithm(s) must be selected defining the 1D, 2D and
3D mesh generation. Supporting hypotheses should be built too. If at some location,
local refinement is required, a submesh can be defined. A submesh can be defined
by manually selecting an entity or on a group. Here too, supporting Algorithms and
Hypotheses are required.

After the definition of the global mesh and submesh(es), the mesh is computed
i.e. the mesh is generated. If the mesh is computed, it can be exported in a few
different formats like the UNV format. Other mesh export formats are MED, STL or
CGNS. But, if the mesh computation is unsuccessful, an error message is generated.
That should be corrected by reassigning algorithms and hypotheses. The mesh has
to be recomputed and checked again for success.

This flowchart is now applied to the HPT blade and disk assembly explained in
section 5.2.3 taking care to meet the mesh requirements set by the component team.
All the steps explained in figure 5.16 can be achieved using the GUI or TUI mode
of SALOME. TUI is also known as the python interface of SALOME. The python
interface module of SALOME has several library commands defined which can be
used to write python scripts. So, the next step is to understand the TUI commands
available in SALOME. Along with that, how to work in python with SALOME is
also important to study. The programming can be divided into two modules:

- GEOM: This module deals with operations related to the CAD modeling. The
HPT blade and disk is available as a STEP file and is imported in the geom
module using the ’geompy.ImportSTEP’ command. Geompy is a new instance
of the GEOM module and ImportSTEP imports the step file. Then, the ge-
ometry is divided into two solids, the blade and the disk. The blade is more
complex than the disk and hence, they should be treated in dissimilar fashion.

The blade is then divided into face groups and 1 edge group. The edge group
is for small edges, smaller than 1e-4. It is evident from figure 5.17 depicting
the distribution of the faces’ area, that the most of the faces have very small
areas. Hence, the faces are divided using a geometric progression, arn. ’a’ is
the first term in the progression and is equal to the minimum face area in the
blade. The number of terms required is ’n’. It is chosen in a way that each and
every face is accounted for in a group.

The group of the solid disk is kept as is and no more surface/edge groups are
created. This is so because the disk is not a complicated geometry and thus,
it is easier to generate its mesh. The mesh requirements on the disk are not

Chapter 5. Automation of Mesh generators 67

as stringent as the ones on the blade. Figure 5.18 depicts this workflow in the
geometry, GEOM module program.

FIGURE 5.17: Distribution of HPT blade faces’ area

FIGURE 5.18: Flowchart of the processes in the geometry module on
the HPT blade and disk assembly

- SMESH: All the processes related to meshes are included in this module. To
define global meshes, smesh.Mesh is the command. The Blade and Disk global
meshes are created with this command. The blade global mesh is assigned
the NETGEN-1D-2D-3D algorithm. NETGEN 3D Parameters is used as the
hypothesis with following values:

– Maximum element size = 0.001

– Minimum element size = 0

– Optimize the mesh

– Create a moderate mesh (Growth rate = 0.3, Segments per Edge = 1, seg-
ments per radius = 2)

– Limit the element size by the curvature

Chapter 5. Automation of Mesh generators 68

The disk global mesh is also assigned a similar algorithm and hypothesis i.e.
NETGEN-1D-2D-3D and NETGEN 3D Parameters respectively. The hypothe-
sis has the following inputs:

– Maximum element size = 0.002

– Minimum element size = 0

– Optimize the mesh

– Create a coarse mesh (Growth rate = 0.5, Segments per Edge = 0.5, seg-
ments per radius = 1.5)

– Limit the element size by the curvature

The blade is divided into several face groups in the GEOM module. These
groups are used to create sub meshes. The sub meshes ensure finer mesh at
small faces and coarser mesh at large faces. The sub mesh with the smallest
faces is called submesh0 and so on till submeshn. The first few groups with
very small faces are meshed using the MEFISTO algorithm with local length
hypothesis. These faces have very thin, almost sliver like features. MEFISTO
creates a mesh whereas NETGEN fails to generate a mesh. The MEFISTO algo-
rithm can deal with sliver faces better than NETGEN. The next few groups are
meshed using the NETGEN 2D algorithm with Local length hypothesis. The
groups with the larger faces are meshed with the NETGEN-1D-2D algorithm
with the NETGEN 2D hypothesis.

The submeshes create only 2D mesh for the blade geometry. Then the global
mesh is invoked and a 3D mesh is generated for the blade. Finally, the 3D
mesh for disk is generated. Figure 5.19 depicts the workflow in the meshing,
SMESH module program.

FIGURE 5.19: Flowchart of the processes in the meshing module on
the HPT blade and disk assembly

Chapter 5. Automation of Mesh generators 69

As the generated global mesh for the original target geometry of the HPT blade
and disk cannot be shown due to it being protected, the same program is applied on
the test geometry in figure 5.2.

FIGURE 5.20: Blade Mesh

FIGURE 5.21: Blade Mesh of the internal cooling pipes

Chapter 5. Automation of Mesh generators 70

Hence, the mesh generated for the test blade is shown in figure 5.20. The inter-
nal elements are depicted in figure 5.21 with cut-sections. The mesh meets all the
criteria specified in section 5.2.3. The quality criteria are also optimum for the mesh.
A plot for the aspect ratio can be studied in figure 5.22. The aspect ratio of 10 was
used to create this plot in Hypermesh.

FIGURE 5.22: Aspect ratio errors in the blade mesh

The python program created in this section for the automated mesh generation
of the HPT turbine and disk assembly is depicted in Appendix A.

5.2.5 Interfaces

The output from the mesh generation process outputs the mesh as a ’UNV’ file for-
mat. UNV or universal files are ASCII data files that store information from a model
file, to interface with programs or to transfer information between different types of
computer [2].

A UNV file is built up with blocks of information called datasets. Each block
is identified with a -1, in column 5 & 6. The remainder of the line is blank. This
is a dataset delimiter. The next line is the dataset number. It is followed by data
dependent on the dataset number. The relevant dataset numbers are:

• 2411: Nodes - Double Precision

• 2412: Elements

• 2467: Permanent Groups

Chapter 5. Automation of Mesh generators 71

The mesh generated through this process will be used to perform the structural-
mechanical analysis of the HPT blade. Hence, the desired output from the automatic
meshing tool should be readable in PERMAS. PERMAS is the Finite Element solver
that would be used to perform the pseudo structural analysis of the component in
section 5.2.3. Hence, a ’DAT’ file is desired at this point. Hence, the UNV file gen-
erated before is to be converted to a DAT. The dataset delimiter and the dataset
numbers are used to write a script to do the conversion. Figure 5.23 portrays the
flowchart of the conversion. The script can be studied in Appendix B.

FIGURE 5.23: Flowchart to convert a UNV to a DAT file

The output is a DAT file with the node information, information about Tetrahe-
drons with quadratic shape functions and the nodal groups.

5.3 Conclusion

A rigorous evaluation of existing open-source and proprietary mesh generation pro-
grams is accomplished. SALOME is selected as the preferred mesh generation pro-
gram based on several important criteria. The meshing capability of SALOME is
extended and customized to automatically mesh the target geometry (HPT blade
and disk assembly), meeting the mesh requirements by the HPT component team.
Further, a file format conversion tool is established to ensure that the mesh generated
is readable in the desired format.

72

Chapter 6

Conclusion

The aim of the work "Development of an Automatic TET10 Meshing program for
rotating components" was an automation of the mesh generation process for a High
Pressure Turbine blade and disk assembly. Three important goals were pursued
during the completion of the individual tasks.

First, the establishment of the appropriate element type was done. This was
achieved through a element study with hexahedrons and tetrahedrons. Tetrahe-
drons with quadratic shape function were the preferred element. The algorithms
suited to the generation of tetrahedrons were then studied. Algorithms using De-
launay triangulation are the most common. These kind of algorithms were also used
extensively in this work to generate meshes. Another popular algorithm, Advanced
Front Method was also used.

Second, the investigation of mesh generation programs already present and
suited to the task at hand (generation of a mesh on a turbine blade) was established.
Many open-source and proprietary programs were assessed. SALOME was deter-
mined to be the best fit by satisfying most of the important evaluation criteria.

As a final point, the automation of the task of creating a mesh for a turbine blade
was executed. A tool was created which has the geometry as input, which generated
groups based on the size of entities, automatically selected appropriate algorithms
and element sizes. Further, this tool outputs the mesh of the blade and disk with
relevant nodal groups. The output of this tool is then converted to a desired format
using a small program written in python.

73

Bibliography

[1] L. Paul Chew. “Constrained Delaunay Triangulations”. In: Algorithmica 4.1
(1989), pp. 97–108.

[2] University of Cincinnati. “Universal File Datasets Summary”. In: (). URL: http:
//sdrl.uc.edu/sdrl/referenceinfo/universalfileformats/file-format-

storehouse/universal-file-datasets-summary.

[3] Canadian Neutron Beam Centre (CNBC). “Developing Technology For Re-
pairing Advanced Jet Engines”. In: (). URL: https : / / cins . ca / 2017 / 02 /
01/aero-4/.

[4] Institute for the structures DLR, department for component design design, and
manufacturing technologies. “Automation of the structural mechanical design
process”. In: ().

[5] ENNOVA. “Meshing Solutions”. In: (). URL: http://ennova-cfd.com/services.
html.

[6] Walter Frei. “Meshing Your Geometry: When to Use the Various Element Types”.
In: (Nov. 2013). URL: https : / / www . comsol . com / blogs / meshing - your -
geometry-various-element-types/.

[7] Christophe Geuzaine and Jean-François Remacle. “Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing facilities”. In: Interna-
tional Journal for Numerical Methods in Engineering 79.11 (2009), pp. 1309–1331.
DOI: 10.1002/nme.2579. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/nme.2579.

[8] Mohammad Hamdan and M. Al-Nimr. “Thermal Augmentation in Internal
Cooling Passage by Converting Impingement Jet to Induced Swirl Flow”. In:
Jan. 2009.

[9] “Holes”. In: Peterson’s Stress Concentration Factors. John Wiley & Sons, Ltd,
2008. Chap. 4, pp. 176–400. ISBN: 9780470211106. DOI: 10.1002/9780470211106.
ch4. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470211106.
ch4. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470211106.
ch4.

[10] Altair Hyperworks. “BasicFEA Introduction”. In: (). URL: https://connect.
altair.com/CP/kb-view.html?kb=156263.

http://sdrl.uc.edu/sdrl/referenceinfo/universalfileformats/file-format-storehouse/universal-file-datasets-summary
http://sdrl.uc.edu/sdrl/referenceinfo/universalfileformats/file-format-storehouse/universal-file-datasets-summary
http://sdrl.uc.edu/sdrl/referenceinfo/universalfileformats/file-format-storehouse/universal-file-datasets-summary
https://cins.ca/2017/02/01/aero-4/
https://cins.ca/2017/02/01/aero-4/
http://ennova-cfd.com/services.html
http://ennova-cfd.com/services.html
https://www.comsol.com/blogs/meshing-your-geometry-various-element-types/
https://www.comsol.com/blogs/meshing-your-geometry-various-element-types/
https://doi.org/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579
https://doi.org/10.1002/9780470211106.ch4
https://doi.org/10.1002/9780470211106.ch4
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470211106.ch4
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470211106.ch4
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470211106.ch4
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470211106.ch4
https://connect.altair.com/CP/kb-view.html?kb=156263
https://connect.altair.com/CP/kb-view.html?kb=156263

Bibliography 74

[11] Nishant Kumar Jha and Sharad Agarwal; IIT Kanpur. “AUTOMATIC MESH
GENERATION (2-D)”. In: (). URL: http://home.iitk.ac.in/~amit/courses/
751/97/Mesh_Generation_2D/proj.html.

[12] Universitat Politècnica de Catalunya Josep sarrate. A brief introduction to mesh
generation.

[13] LS-Dyna. “Element Locking”. In: (). URL: https://www.dynasupport.com/
tutorial/element-locking/.

[14] Michele Marino. Finite Elements 1. Oct. 2017.

[15] Michele Marino. Finite Elements 2. Apr. 2018.

[16] MIT OpenCourseWare. Numerical Fluid Mechanics - Lecture 22. Apr. 2015.

[17] Steven J. Owen. “A Survey of Unstructured Mesh Generation Technology”. In:
7th International Meshing Rountable 3 (May 2000).

[18] FACTOR NGV DLR Institut of Propulsion Technology Department Turbine.
“High Pressure Turbine blade”. In: ().

[19] Andre Ribes and Christian Caremoli. “Salome platform component model for
numerical simulation”. In: vol. 2. Aug. 2007, pp. 553 –564. ISBN: 0-7695-2870-8.
DOI: 10.1109/COMPSAC.2007.185.

[20] SALOME. “Introduction to MESH”. In: (). URL: https://docs.salome-platform.
org/7/gui/SMESH/index.html.

[21] SALOME. “Introduction to NETGENPLUGIN”. In: (). URL: https://docs.
salome-platform.org/latest/gui/NETGENPLUGIN/index.html.

[22] Robert Schneider. “List of public domain and commercial mesh generators”.
In: (). URL: http://www.robertschneiders.de/meshgeneration/software.
html.

[23] Joachim Schoeberl. “NETGEN An advancing front 2D/3D-mesh generator based
on abstract rules”. In: Computing and Visualization in Science 1 (July 1997), pp. 41–
52. DOI: 10.1007/s007910050004.

[24] Gargi Shah. “Open source software Vs. Commercial software”. In: (). URL:
https://www.infostretch.com/blog/open-source-software-vs-commercial-

software/.

[25] Michael Ian Shamos and Dan Hoey. “Closest-Point Problems”. In: 16th Annual
Symposium on Foundations of Computer Science (Berkeley, California) (Oct. 1975),
pp. 151–162.

[26] Jonathan Richard Shewchuk. “Lecture Notes on Delaunay Mesh Generation”.
In: (Feb. 2012).

[27] Siemens. “Minimize costly prototyping & bring your products to market faster”.
In: (). URL: https : / / www . plm . automation . siemens . com / global / en /
products/simcenter/femap.html.

http://home.iitk.ac.in/~amit/courses/751/97/Mesh_Generation_2D/proj.html
http://home.iitk.ac.in/~amit/courses/751/97/Mesh_Generation_2D/proj.html
https://www.dynasupport.com/tutorial/element-locking/
https://www.dynasupport.com/tutorial/element-locking/
https://doi.org/10.1109/COMPSAC.2007.185
https://docs.salome-platform.org/7/gui/SMESH/index.html
https://docs.salome-platform.org/7/gui/SMESH/index.html
https://docs.salome-platform.org/latest/gui/NETGENPLUGIN/index.html
https://docs.salome-platform.org/latest/gui/NETGENPLUGIN/index.html
http://www.robertschneiders.de/meshgeneration/software.html
http://www.robertschneiders.de/meshgeneration/software.html
https://doi.org/10.1007/s007910050004
https://www.infostretch.com/blog/open-source-software-vs-commercial-software/
https://www.infostretch.com/blog/open-source-software-vs-commercial-software/
https://www.plm.automation.siemens.com/global/en/products/simcenter/femap.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/femap.html

Bibliography 75

[28] Ruhr-Universität Bochum Institute for Structural Mechanics. “Shape Function
Generation and Requirements”. In: (). URL: http : / / www . sd . ruhr - uni -
bochum.de/downloads/Generation_Requirements_shape_funct.pdf.

[29] Politechnika Swietokrzyska. “The Isoparametric Representation”. In: (). URL:
http://kis.tu.kielce.pl//mo/COLORADO_FEM/colorado/IFEM.Ch16.pdf.

[30] Joe F. Thompson, Bharat K. Soni, and Nigel P. Weatherill. Handbook of Grid
Generation. USA: CRC Press LLC., 1999.

[31] Tomas Kellner. Bringing Back the Bling: New Process Recovers Precious Platinum
from “Smut”. [Online; accessed 17-April-2020]. 2015. URL: https : / / www .
ge.com/reports/post/115132114280/bringing- back- the- bling- new-

process-recovers/2.

http://www.sd.ruhr-uni-bochum.de/downloads/Generation_Requirements_shape_funct.pdf
http://www.sd.ruhr-uni-bochum.de/downloads/Generation_Requirements_shape_funct.pdf
http://kis.tu.kielce.pl//mo/COLORADO_FEM/colorado/IFEM.Ch16.pdf
https://www.ge.com/reports/post/115132114280/bringing-back-the-bling-new-process-recovers/2
https://www.ge.com/reports/post/115132114280/bringing-back-the-bling-new-process-recovers/2
https://www.ge.com/reports/post/115132114280/bringing-back-the-bling-new-process-recovers/2

76

Appendix A

Program for Automatic Meshing

-*- coding: utf-8 -*-

"""

Created on Thu Mar 5 10:50:20 2020

@author: kusu_ch

"""

import salome

salome.salome_init()

from salome.geom import geomBuilder

geompy = geomBuilder.New()

import SMESH

from salome.smesh import smeshBuilder

smesh = smeshBuilder.New()

import math

##Geometry

HPT = geompy.ImportSTEP("HPT_Rotorsegment_NUR_DLR_INTERN.stp", False, False)

#Selection of Solids

selectedSolids = []

Vol = 0.000100

for solid in geompy.ExtractShapes(HPT, geompy.ShapeType["SOLID"], True):

Volume = geompy.BasicProperties(solid)[2]

#print(solid)

if Volume < Vol:

Blade = geompy.CreateGroup(HPT, geompy.ShapeType["SOLID"])

Appendix A. Program for Automatic Meshing 77

geompy.UnionList(Blade, [solid])

else:

Root = geompy.CreateGroup(HPT, geompy.ShapeType["SOLID"])

geompy.UnionList(Root, [solid])

geompy.addToStudy(HPT, ’HPT’)

geompy.addToStudyInFather(HPT, Root, ’Root’)

geompy.addToStudyInFather(HPT, Blade, ’Blade’)

#identifying small edges

small_edges=geompy.CreateGroup(Blade, geompy.ShapeType["EDGE"])

for edges in geompy.ExtractShapes(Blade, geompy.ShapeType["EDGE"], False):

if geompy.BasicProperties(edges)[0] < 1e-4:

geompy.UnionList(small_edges, [edges])

geompy.addToStudyInFather(Blade,small_edges,"small_edges")

small_edges.SetName("small_edges")

#grouping faces by size

faceArea = []

for face in geompy.ExtractShapes(Blade, geompy.ShapeType["FACE"], False):

faceArea.append(geompy.BasicProperties(face)[1])

maxArea = max(faceArea)

minArea = min(faceArea)

n = 10

r = math.pow((maxArea/minArea),(1/n))

i=0

bins=[]

while i < n+1:

bins.append(minArea*(math.pow(r,i)))

i+=1

bins[-1]=maxArea

i=0

grp=[[] for a in range(len(bins))]

biggest=[]

while i < len(bins)-1:

for face in geompy.ExtractShapes(Blade, geompy.ShapeType["FACE"], False):

area = geompy.BasicProperties(face)[1]

if area > bins[i] and area < bins[i+1]:

grp[i].append(face)

if area == bins[-1]:

Appendix A. Program for Automatic Meshing 78

biggest.append(face)

i+=1

geompy.addToStudyInFather(Blade, biggest, ’biggest’)

name_grp=[]

j = 0

for counter in grp:

i = 0

if len(counter) != 0:

name_grp.append(geompy.CreateGroup(Blade, geompy.ShapeType["FACE"]))

while i < len(counter):

geompy.UnionList(name_grp[j], [counter[i]])

i+=1

name = ’grp_%02d’ % j

geompy.addToStudyInFather(Blade, name_grp[j], name)

j+=1

big_faces = geompy.CreateGroup(Blade, geompy.ShapeType["FACE"])

for face in biggest:

geompy.UnionList(big_faces,[face])

geompy.addToStudyInFather(Blade, big_faces, ’big_faces’)

tot_grps = j

##Meshing module

import functions

blade_mesh = smesh.Mesh(Blade, "blade_mesh")

NETGEN_1D_2D = blade_mesh.Triangle(algo=smeshBuilder.NETGEN_1D2D)

NETGEN_2D_Parameters = NETGEN_1D_2D.Parameters()

NETGEN_2D_Parameters.SetMaxSize(0.001)

NETGEN_2D_Parameters.SetMinSize(0)

NETGEN_2D_Parameters.SetSecondOrder(0)

NETGEN_2D_Parameters.SetOptimize(1)

NETGEN_2D_Parameters.SetFineness(3)

NETGEN_2D_Parameters.SetChordalError(-1)

NETGEN_2D_Parameters.SetChordalErrorEnabled(0)

NETGEN_2D_Parameters.SetUseSurfaceCurvature(1)

NETGEN_2D_Parameters.SetFuseEdges(1)

NETGEN_2D_Parameters.SetUseDelauney(1)

NETGEN_2D_Parameters.SetQuadAllowed(0)

Appendix A. Program for Automatic Meshing 79

NETGEN_2D_Parameters.SetWorstElemMeasure(0)

NETGEN_2D_Parameters.SetCheckChartBoundary(168)

NETGEN_3D = blade_mesh.Tetrahedron()

NETGEN_3D_Parameters = NETGEN_3D.Parameters()

NETGEN_3D_Parameters.SetMaxSize(0.001)

NETGEN_3D_Parameters.SetMinSize(0)

NETGEN_3D_Parameters.SetOptimize(1)

NETGEN_3D_Parameters.SetFineness(2)

NETGEN_3D_Parameters.SetCheckOverlapping(0)

NETGEN_3D_Parameters.SetElemSizeWeight(1.23594e-311)

NETGEN_3D_Parameters.SetCheckChartBoundary(168)

root_mesh = smesh.Mesh(Root, "root_mesh")

NETGEN_3D_root = root_mesh.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D)

a3D_param = NETGEN_3D_root.Parameters()

a3D_param.SetMaxSize(0.002)

a3D_param.SetMinSize(0)

a3D_param.SetSecondOrder(0)

a3D_param.SetOptimize(1)

a3D_param.SetFineness(2)

a3D_param.SetChordalError(0)

a3D_param.SetChordalErrorEnabled(0)

a3D_param.SetUseSurfaceCurvature(1)

a3D_param.SetFuseEdges(1)

a3D_param.SetQuadAllowed(0)

a3D_param.SetCheckChartBoundary(152)

i=0

name_sm=[]

size = 0.001

#name_sm.append(functions.Composite_1D_algo(blade_mesh, small_edges,size).GetSubMesh())

while i < tot_grps:

if i == 0:

size = 0.001

functions.Composite_1D_algo(blade_mesh, name_grp[i],size)

name_sm.append(functions.MEFISTO_2D_algo(blade_mesh, name_grp[i]))

elif i>0 and i<4:

size = 2e-4

functions.Composite_1D_algo(blade_mesh, name_grp[i],size)

name_sm.append(functions.MEFISTO_2D_algo(blade_mesh, name_grp[i]))

Appendix A. Program for Automatic Meshing 80

elif i>3 and i<7:

size = 2e-4

functions.Composite_1D_algo(blade_mesh, name_grp[i],size)

name_sm.append(functions.NETGEN_2D_only(blade_mesh, name_grp[i]))

elif i>6 and i<9:

size = 5e-4

functions.Composite_1D_algo(blade_mesh, name_grp[i],size)

name_sm.append(functions.NETGEN_2D_only(blade_mesh, name_grp[i]))

else:

size = 8e-4

name_sm.append(functions.NETGEN_1D2D_algo(blade_mesh, name_grp[i],size))

i+=1

name_sm.append(functions.NETGEN_1D2D_algo(blade_mesh, big_faces,size))

order = blade_mesh.SetMeshOrder([name_sm])

isDone_global = blade_mesh.Compute()

isDone_root = root_mesh.Compute()

i=0

while i < len(name_sm):

name_sb = ’submesh_%02d’ %i

smesh.SetName(name_sm[i], name_sb)

i+=1

smesh.SetName(blade_mesh, ’blade_mesh’)

smesh.SetName(root_mesh, ’root_mesh’)

blade_mesh.ConvertToQuadratic()

blade_mesh.ExportUNV(r’blade_mesh.unv’)

root_mesh.ConvertToQuadratic()

root_mesh.ExportUNV(r’root_mesh.unv’)

HPT_mesh = smesh.Concatenate([blade_mesh.GetMesh(), root_mesh.GetMesh()], 1,0,1e-5, True)

[Grblade_mesh_Nodes, Grblade_mesh_Edges, Grblade_mesh_Faces, Grblade_mesh_Volumes, Grroot_mesh_Nodes, Grroot_mesh_Edges, Grroot_mesh_Faces, Grroot_mesh_Volumes] = HPT_mesh.GetGroups()

HPT_mesh.ExportUNV(r’HPT_mesh.unv’)

Program Functions.py

-*- coding: utf-8 -*-

"""

Created on Thu Mar 5 13:43:04 2020

Appendix A. Program for Automatic Meshing 81

@author: kusu_ch

"""

import SMESH

from salome.smesh import smeshBuilder

smesh = smeshBuilder.New()

def StartCancelClock(theMesh, theMeshingTimeLimit):

"""

Start a timer to cancel meshing in some time

"""

def cancelMeshing(theMesh):

print(’in cancel now’)

smesh = theMesh.GetEngine()

mesh = theMesh.GetMesh()

smesh.CancelCompute(mesh, None)

return

from threading import Timer

timer = Timer(theMeshingTimeLimit, cancelMeshing, args=(theMesh,))

timer.start()

return timer

def Composite_1D_algo(blade_mesh, name, size):

Composite1d = blade_mesh.Segment(algo=smeshBuilder.COMPOSITE,geom=name)

Composite1d.LocalLength(size)

return Composite1d

def Deflection_1D_algo(blade_mesh, name,defl):

Composite1d = blade_mesh.Segment(algo=smeshBuilder.COMPOSITE,geom=name)

Deflection_1 = Composite1d.Deflection1D(defl)

submesh = Composite1d.GetSubMesh()

return submesh

def NETGEN_2D_only(blade_mesh, name):

NETGEN_2D = blade_mesh.Triangle(algo=smeshBuilder.NETGEN_2D,geom=name)

NETGEN_2D.LengthFromEdges()

submesh = NETGEN_2D.GetSubMesh()

return submesh

def MEFISTO_2D_algo(blade_mesh, name):

MEFISTO_2D = blade_mesh.Triangle(algo=smeshBuilder.MEFISTO, geom=name)

Appendix A. Program for Automatic Meshing 82

submesh = MEFISTO_2D.GetSubMesh()

return submesh

def NETGEN_1D2D_algo(blade_mesh, name,size):

NETGEN_1D2D = blade_mesh.Triangle(algo=smeshBuilder.NETGEN_1D2D, geom = name)

NG_param = NETGEN_1D2D.Parameters()

NG_param.SetMaxSize(size)

NG_param.SetMinSize(0)

NG_param.SetOptimize(1)

NG_param.SetFineness(2)

NG_param.SetUseSurfaceCurvature(1)

NG_param.SetQuadAllowed(0)

NG_param.SetUseDelauney(1)

submesh = NETGEN_1D2D.GetSubMesh()

return submesh

83

Appendix B

Format conversion of mesh export
file

-*- coding: utf-8 -*-

"""

Created on Thu Dec 12 15:04:22 2019

@author: kusu_ch

"""

delimiter =’ -1\n’

firstnode = 18

x=[]

y=[]

z=[]

num=[]

enum=[]

nodes=[]

nodes1=[]

grp_no=[]

grp_name=[]

no_entity=[]

counter=[]

grp_type=[]

flag = 0

k = 0

with open("HPT_mesh.unv", ’rt’) as fp:

#read node info

for i, line in enumerate(fp):

if i > firstnode:

Appendix B. Format conversion of mesh export file 84

if line != delimiter:

if i % 2 == 0:

#print(i,line)

x.append(line.split()[0])

y.append(line.split()[1])

z.append(line.split()[2])

else:

num.append(line.split()[0])

else:

print(line)

firstelem = i+2; break

node_info = {1:num, 2:x, 3:y, 4:z}

#read element info

fp.seek(0)

for i, line in enumerate(fp):

if i > firstelem:

if line != delimiter:

if line.split()[-1] == str(10) and len(line.split()) == 6:

flag = 1

first3d = i

break

else:

continue

else:

firstgrp = i+2

break

if flag == 1:

fp.seek(0)

for i, line in enumerate(fp):

if i > first3d:

if line != delimiter:

if len(line.split()) == 6:

enum.append(line.split()[0])

else:

if len(line.split()) == 8:

nodes.append(line.split())

else:

nodes1.append(line.split())

else:

firstgrp = i+2

Appendix B. Format conversion of mesh export file 85

break

elem_info = {1:enum, 2:nodes, 3:nodes1}

#extraction of groups

fp.seek(0)

for i, line in enumerate(fp):

if i > firstgrp:

if line != delimiter:

if line.split()[-1] != str(0) and (len(line.split())) != 1:

grp_no.append(line.split()[0])

no_entity.append(line.split()[-1])

counter.append(i)

elif line.split()[-1] != str(0) and (len(line.split())) == 1:

grp_name.append(line.split()[0])

else:

continue

nset=[[] for a in range(len(counter))]

eset=[[] for a in range(len(counter))]

while k < len(counter):

fp.seek(0)

for i, line in enumerate(fp):

if i > counter[k] + 1 and i < (counter[k] + int(no_entity[k])/2)+2 :

if line.split()[0] == str(7):

nset[k].append(line.split()[1])

nset[k].append(line.split()[5])

if line.split()[0] == str(8):

eset[k].append(line.split()[1])

eset[k].append(line.split()[5])

k+=1

#writing information to DAT file

with open("HPT_mesh.dat", "w") as dat:

dat.write(’\n $STRUCTURE\n’)

dat.write(’\n $COOR\n’)

#write nodes

i=0

while i < len(num):

dat.write(’\n ’)

dat.write(str(num[i])+’\t’+str(x[i])+’\t’+str(y[i])+’\t’+str(z[i]))

i+=1

#print(i)2044148

Appendix B. Format conversion of mesh export file 86

#write elements

dat.write(’\n\n\n $ELEMENT TYPE = TET10 ESET = auto1’)

i=0

while i < len(enum):

dat.write(’\n ’+str(enum[i])+’\t’+str(nodes[i][0])+’\t’+str(nodes[i][1])+’\t’+str(nodes[i][2])+’\t’+str(nodes[i][3])+’\t’+str(nodes[i][4])+’\n’)

dat.write(’ & ’+str(nodes[i][5])+’\t’+str(nodes[i][6])+’\t’+str(nodes[i][7])+’\t’+str(nodes1[i][0])+’\t’+str(nodes1[i][1]))

i+=1

#write groups

i=0

while i < len(grp_name):

print(i)

if eset[i] == []:

print(grp_name[i])

dat.write(’\n$NSET NAME = ’+ grp_name[i])

j=0

try:

while j <= int(no_entity[i]):

dat.write(’\n’)

k=0

while k < 8:

dat.write(’\t’ + nset[i][j+k])

k+=1

j+=8

except IndexError:

pass

if nset[i] == []:

print(grp_name[i])

dat.write(’\n$ESET NAME = ’+ grp_name[i])

j=0

try:

while j <= int(no_entity[i]):

dat.write(’\n’)

k=0

while k < 8:

dat.write(’\t’ + eset[i][j+k])

k+=1

j+=8

except IndexError:

pass

i+=1

87

Appendix C

List of Mesh generation softwares

1. Open-Source Mesh generators

• Gmsh - https://gmsh.info/

• DeIPSC

• SALOME - https://www.salome-platform.org/

• Tetgen - http://wias-berlin.de/software/tetgen/

• LBIE-Mesher - https://www.cs.utexas.edu/ bajaj/cvc/software/LBIE.shtml

• MeshGenC++ - http://www.dogpack-code.org/MeshGenC++/

• DistMesh - http://persson.berkeley.edu/distmesh/

• FELICITY -

https://www.math.lsu.edu/~walker/pdfs/Walker2018_FELICITY_Matlab_CPP_Toolbox.pdf

• CGAL mesh generation -

https://doc.cgal.org/latest/Mesh_3/index.html

2. Closed/Proprietary Mesh generators

• BOXERmesh - https://www.cfd-online.com/Wiki/BOXERMesh

• GID - https://www.gidhome.com/

• CM2MeshTools - https://www.computing-objects.com/cm2-meshtools-
suite/

• Castnet - http://www.dhcae-tools.com/CastNet.html

• NISA-Display IV - https://www.nisasoftware.com/software/nisa-mechanical/display-
iv

• ENNOVA - http://ennova-cfd.com/

• FEMAP - https://www.plm.automation.siemens.com/global/en/products/simcenter/femap.html

• CADfix - https://www.cadinterop.com/en/your-needs/cad-data-reuse-
for-cae/cadfix-tartan-meshing.html

• DIANA(FEMGV) - https://dianafea.com/femgv

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Organization of the report

	Theory of Finite Element Method
	FEM for Continuum Mechanics
	Weak form formulation
	Finite Element Formulation
	2D Linear Triangle Elements
	Assembling the element terms

	Discretization shapes: Triangular vs. quadrilateral

	Higher Order Elements

	Finite Element Types
	Classification of element types
	Geometry and selection of element type

	Finite Element Method Solution Tool
	Beam
	Bending Analysis
	First-order Hexahedrons
	First-order tetrahedrons
	Second-order Tetrahedrons

	Modal Analysis

	Stress Concentration
	Tension
	Bending Moment

	Conclusion

	Mesh Generation Methods
	Delaunay Triangulation Criterion
	Algorithms
	Constrained Delaunay Triangulations

	Automation of Mesh generators
	Test and Evaluation
	Geometry for secondary assessment
	Assessment procedure
	Secondary assessment: Open-source Mesh generation
	Gmsh
	SALOME

	Secondary assessment: Proprietary Mesh generation
	FEMAP
	ENNOVA

	Assessment matrix

	Development of SALOME Interface
	Introduction to SALOME
	Meshing Algorithms and Hypotheses
	Target Geometry
	Automation Process
	Interfaces

	Conclusion

	Conclusion
	Bibliography
	Program for Automatic Meshing
	Format conversion of mesh export file
	List of Mesh generation softwares

