C GEORG-AUGUST-UNIVERSITAT ISSN 1612-6793
/&'{ GOTTINGEN
(7731

Master’s Thesis

submitted in partial fulfilment of the
requirements for the course “Applied Computer Science”

Fusion of Lidar and Stereo Point Clouds using
Bayesian Networks

Felix Schimpf
Institute of Computer Science

Bachelor’s and Master’s Theses
of the Center for Computational Sciences
at the Georg-August-Universitiat Gottingen

15. August 2018

Georg-August-Universitdt Gottingen
Institute of Computer Science

Goldschmidtstrafle 7

37077 Gottingen

Germany

& +49 (551) 39-172000

m +49 (551) 39-14403

= office@informatik.uni-goettingen.de

www.informatik.uni-goettingen.de

First Supervisor: Jun.-Prof. Dr.-Ing. Marcus Baum
Second Supervisor: Dr.-Ing. Andreas Leich

mailto:office@informatik.uni-goettingen.de
www.informatik.uni-goettingen.de

I hereby declare that I have written this thesis independently without any help from others and
without the use of documents or aids other than those stated. I have mentioned all used sources
and cited them correctly according to established academic citation rules.

Gottingen, 15. August 2018

Abstract

Recent developments in the field of Advanced Driver Assistance Systems (ADAS) have constantly brought
technology closer to fully autonomous driving. Nevertheless, several reports of fatal crashes caused by
autonomous systems have demonstrated that there are still deficiencies in perception and processing of the
environment. A way to enhance these systems is to improve the collaboration of different available sensor
systems, an active field of research called sensor or data fusion.

In this work, a novel approach for low level fusion of point clouds is presented. The proposed framework
is tailored to two very popular ranging sensors, stereo cameras and Light Detection and Ranging systems
(Lidar). A special focus is laid on intelligently handling sensor disagreement by exploting the complementary
characteristics of the sensors. A Bayesian network is employed to reason about possible sensor failure based
on visual evidence of the scene in question. The framework is then tested and evaluated on real world data
from the KITTI dataset.

Contents

1 Introduction

1.1
1.2
1.3
14

Motivation
Fusion Methodology and Related Work
ThesisGoal
Thesis Structure

2 Background

21 Sensors,
2.1.1 Stereo Vision
212 Lidar
22 SensorFusion
221 Basics.
222 BayesianFusion..........
3 Design
3.1 Problem Definition and Requirements .
3.2 Preprocessing
321 Binning...............
3.22 Segmentation
3.3 Measurement Fusion
331 Assumptions
332 Fusion
34 Confidence Evaluation
341 Concept

4 Implementation

4.1

4.2

ROS Framework
4.1.1 Overview
4.1.2 Used modules
Framework Architecture

W W N =

(o BN N e LS I G) B |

11
11
12
12
13
15
15
16
17
17

v

421
422
423
424

General Aspects.
Synchronization.
Transformation
Architecture

5 Experiments

5.1 The KITTI dataset

5.1.1
512
513

5.2 Results

521
522
523
524

6 Conclusion
6.1 Limitations
6.2 Outlook

Bibliography

A Appendix

A1 Test Configuration
A.2 SGBM Parameters

Setup
DataImport
Configuration

Stereo vision impaired by overexposure

Black car missed by Lidar
Pedestrian missed by stereo camera
Computational performance

CONTENTS

List of Figures

3.1 Visualizationof Binning L 13
3.2 Multiple object recorded ina singlebin 0 0 oL 13
3.3 Segmentationexample L L L L 14
3.4 Perspective Difference L 15
3.5 Grouping and Fusion Example 16
3.6 Bayesian Network for Confidence Evaluation 18
41 Processing Pipeline 21
5.1 Sensor trust under differentconditions L L 27
52 Example: Cameralmage L 27
53 Example: DisparityMap 27
54 Example: PointCloudsinrviz 27
55 Example: Fused PointCloud 28
56 ScenelCameraData 28
5.7 ScenelPointClouds e 28
58 ScenelFusionResult. 29
59 Scene2CameraData 29
510 Scene2PointClouds e 30
511 Scene2 FusionResult 30
512 Scene3CameraData 31
513 Scene3PointClouds e 31
514 Scene3FusionResult e 31

List of Abbreviations

ADAS
AGIS
API
DAG
ICP
IMU
Lidar
MPI
OpenCV
PCL
ROS
SGBM

Advanced Driver Assistance Systems. ... 1
Active Gated Imaging Systems..................oo i 33
Application Programming Interface

Directed Acyclic Graph 8
Iterative Closest Point.......... ... 2

Inertial Measurement Unit

Light Detectionand Ranging ... 6
Message Passing Interface................... o i 19
Open Source Computer Vision Library ...t 20
Point Cloud Library....... ..o 20
Robot Operating System 19
Semi-Global Blockmatching..................ooo oo 26

VI

Chapter 1

Introduction

1.1 Motivation

In the minds of most, the dream of autonomous driving is still placed in the world of science
fiction. In the recent years, the development of Advanced Driver Assistance Systems (ADAS) has
started to move this vision from fiction to science. With increasing availability of cheap and reliable
sensor systems as well as efficient processing hardware, more and more tasks can be automated to
support the driver. As the main cause of accidents remains human error [2], this isn’t merely a
convenient feature, but has the potential to greatly improve street safety.

Currently, ADAS can reliably fulfill several tasks, including adaptive cruise control, automatic
parking, emergency brakes, lane departure warning systems, and lane keeping systems. While
they still require frequent human intervention, existing systems already provide a solid basis to
further automatize control of street vehicles.

Several commercial projects have emerged with the goal of developing fully autonomous vehicles
for both personal transport and logistics. Some notable companies testing nearly autonomous cars
on public streets include Waymo, Tesla and Uber, and the tests already show promising results.
The systems are able to perform autonomously most of the time, but all of the vehicles still require
operators who can intervene at any time. Curiously, most accidents involving autonomous cars
are not caused by system failure, but by mistakes of other drivers [3]. Some accidents that were
caused by malfunction of the system however, resulted in fatal crashes and received great media
coverage: In 2015, a Tesla Model S crashed into an 18 wheel tractor trailer killing the driver [4]. In
2018, a woman was run over by a self-driving car from Uber, making it the first incident where a
pedestrian was killed by an autonomous car [5], leading to the suspension of further research at
Uber [6]. In both cases the systems were not able to identify the obstacles as reason to stop.

To ensure a high level of safety of autonomous systems, it is necessary to have reliable information

1

2 CHAPTER 1. INTRODUCTION

about its surroundings. In the past, many different sensor systems have been developed for the
use in the automotive sector. Most approaches like lidar or ultrasonic are purely based on ranging,
while radar sensor can provide additional information about an objects relative speed. The concept
of vision, either using a single camera or a stereo setup, can be coupled with image based object

recognition to supply additional semantic data for better scene understanding.

With the use of multiple sensors generating largely redundant information, the question arises
how to process the vast amount of data and make good use of the complementary capabilities of
each sensor. The field of sensor fusion (also called information fusion or data fusion), has evolved
into a broad discipline with the goal to develop mathematically sound concepts for the integration

of heterogeneous data and is applicable in a wide field of applications.

1.2 Fusion Methodology and Related Work

Data fusion can be grouped into three coarse levels: low, intermediate and high level fusion [7].
Intermediate and high level fusion approaches work on various layers of abstraction and generally
have no access to single raw measurements. Instead, the data has already been processed and
concentrated into a more semantic format. Common examples are the extraction of objects from

the raw data of each sensor before fusion, or even tracking said object over several time steps.

The low level operates directly on the sensor data. As the data can come from very different
sources, preprocessing may be necessary to achieve a common basis that makes fusion possible.
Preprocessing may include synchronization, alignment and correlation of input data [8]. The
approach taken in this thesis operates on point cloud data generated by lidar sensors and a stereo

camera and falls in the this category.

A very similar sensor setup and is discussed by Moghadam et al. [9]. The introduced framework
however was designed for use with an indoor robot and is not suited for use in the automotive
sector. The limitation arises mainly from the use of occupancy grids, which are difficult to maintain
in scenes with many dynamic (moving) objects. Additionally, the ranges covered by automotive
sensors are usually limited to about 100 m, which is often traversed in a short time and further

restrain the convergence required for occupancy grids.

Yang et al. [10] proposed a framework for complete three-dimensional reconstruction of streets,
largely based on the Iterative Closest Point (ICP) method. The main disadvantage is the negligence
of sensor characteristics. In particular, no measures are taken to resolve conflicting detections and
filter false positive measurements, which can have grave consequences when used as input for
automotive control. Furthermore, no information about computational performance is given and
thus no conclusions about real time suitability can be drawn. Similarly, the related technique of
point set registration [11] is designed for finding an appropriate transformation between point

clouds and is not adequate for the desired fusion.

1.3. THESIS GOAL 3

The method proposed by Baltzakis et al. [12] uses stereo images to refine range measurements
generated by lidar. This imposes a clear master-slave hierarchy and conflicts the goal of easy

extensibility and hinders the use of more than two sensor systems.

1.3 Thesis Goal

To overcome the mentioned limitations of previous research, a new approach for the fusion of
stereo and lidar data needs to be developed.

Many applications in the field of autonomous driving feature a basic pipeline that performs object
detection, recognition and tracking. At some point in this pipeline, measurements from different
sensor have to be combined to provide a unified representation of the environment. In many
approaches, fusion is performed after objects have been extracted from the sensor data, or even
later after track-lets or tracks have been determined for the objects. While easy to manage, this
process has several drawbacks. Firstly, even after object extraction a lot of information is already
lost due to filtering of measurements and abstractions in the object representation. The second
problem is that the fusion frameworks used on upper layers are often quite specialized on the type
and number of sensors.

The goal of this thesis is to design and implement a software module that provides a low level
fusion interface that can be used transparently before objects are extracted from the sensor data. It
takes point clouds from an arbitrary number of ranging sensors and emits a refined point with
increased accuracy. At this point in the pipeline, the algorithm has access to the full bandwidth
of information provided by a sensor and can make use of a rather detailed sensor description.
Changes of the sensor configuration, like adding or removing sensors, are completely independent
of the down-stream processing pipeline and may even be applied during runtime.

As much research regarding measurement fusion has been done with the goal of improved accuracy,
this work will mostly focus on the problem of sensor disagreement. To solve this problem arising
from contradictory information supplied by the individual sensors, it is only sensible to exploit the
different characteristics of the sensor systems. Visual information can be used to make assumptions
on the environmental conditions which might lead to sensor failure. A Bayesian network is then
employed to decide the trustworthiness of each sensor under these conditions.

1.4 Thesis Structure

In the following chapter 2, a short introduction of the the sensor systems used in this thesis is
given and the relevant fusion concepts are explained. Chapter 3 will then state the formal problem
definition and develop the concepts used to solve it. In chapter 4, the tools used to implement these

4 CHAPTER 1. INTRODUCTION

concepts are introduced and the basic structure of the software is outlined. The performance of the
framework is then evaluated on real-world data in chapter 5, where the algorithm is tested with
several difficult scenarios. The last chapter will then draw a conclusion and present an outlook on

further improvements.

Chapter 2

Background

2.1 Sensors

2.1.1 Stereo Vision

Concept

Stereoscopic vision is a concept that has been researched for several decades now and remains
an active field. It is largely inspired by nature — binocular vision can be found in large parts
of the animal kingdom. Binocular vision provides a number of advantages over monocular
vision: Among an overall improvement of perception, it is especially useful for enhanced depth
perception. The general idea is to combine two two-dimensional images from different viewpoints
to reconstruct three-dimensional features and support scene understanding [13]. While in nature
several visual cues contribute to perception of depth and distance [14], most computer vision

algorithms focus solely on binocular disparity.

Many different algorithms have been published over the years [15], the general idea however
remains the same. A certain object recorded by two (horizontally) displaced cameras, will be
depicted in two different areas in the respective images. The task of a stereo correspondence
algorithm is to identify distinct feature in both images and compute the offset between them, the
disparity. A low disparity value expresses little offset between the images and therefore indicates
that the object is far away. When the parameters of the camera projection are known, disparity
maps can be converted directly into a set of three-dimensional points.

5

6 CHAPTER 2. BACKGROUND
Characteristics

Classic computer stereo vision approaches are purely passive, no additional light emitting compo-
nent is used. Because a setup of two common cameras is sufficient and no specialized hardware is
needed, stereo systems are relatively cheap compared to other ranging sensor like lidar or radar.
However, stereo algorithms are computationally expensive and differ mostly in the heuristics used
to solve the underlying NP-complete minimization problem [16].

As stereo correspondence algorithms purely rely on visual features to determine the disparity,
the main problem for the matching process arise from badly textured surfaces. While largely
homogeneous areas do not present any features at all, repetitive patterns introduce several possible
matchings. Another weakness is the dependency on lighting. Insufficient illumination can pose as
much of a problem as excessive overexposure, as in both cases the extraction of features is rather
difficult. In general any influences compromising image quality can prove difficult. In the context
of autonomous driving, the main sources of irritation arise from harsh weather conditions like rain

or fog.

Once appropriate features are selected, the distanced calculation is essentially a triangulation
problem. Given the fixed angular resolution of the images, the accuracy decreases for long
distances. The uncertainty of a distance measurement can be modeled by a Gaussian with a
distance dependent standard deviation [17].

2.1.2 Light Detection And Ranging

Concept

In contrast to stereo vision, Light Detection and Ranging (Lidar) is an active technique, requiring a
transmitter and a receiver. While several realizations can be used [18], all of them are based on
the time-of flight principle: A light pulse is sent out into the scene by a laser and the reflection is
recorded by a photo sensor. The distance can then be computed from the time difference between
the sending the signal and the receiving the reflection. A wide field of view is achieved by a rapid
sequence of measurements while changing the direction of the light ray, either with a swiveling
mirror or prism, or by rotating the whole device, making even a 360° view possible. A three
dimensional scan of the environment on multiple layers can be achieve by combining several

measurement units.

Characteristics

As the setup of lidar is rather complex, the hardware is usually more expensive than the two
cameras needed for a stereo setup. In return, no complex post processing of the data is necessary

2.2. SENSOR FUSION 7

to retrieve the distance measurements.

Most of the problems presented for stereo vision do not apply to the lidar sensor. As it does not
rely on the presence of distinct visual features, plain or repetitive textures do not pose a problem.
Additionally, the use of laser light makes lidar mostly independent of external lighting conditions

and can be operated in absolute darkness.

Since lidar is still an optical system, weather conditions like rain and fog can still compromise the
reliability [19]. In addition, the reliance on the reflection of light imposes it’s own problems. Lidar
may encounter problems when facing dark or glossy surfaces, or when the angle of incidence
is too steep. In those cases the signal gets scattered or absorbed and the light reflected back to
the photo receptor may be insufficient to be distinguished from noise and fail to be classified as
a measurement. Compared to stereo vision, it is generally more reliable. Although it may not

recognize some objects, false positives occur considerably less frequent.

The accuracy of the distance measurements largely depends on the time resolution determining
the time-of-flight. As this is independent from the absolute time passed, lidar can generally be
considered to have a constant accuracy. Measurement noise can thus be modeled by a Gaussian
with fixed standard deviation.

2.2 Sensor Fusion

2.2.1 Basics

Like stereo vision, the concept of sensor fusion is inspired by nature. Nearly all animals are
equipped with several different senses and are inherently good at assembling the different kinds
of information. The use of multiple different sensory systems has several advantages. For one, a
certain redundancy is introduced, making perception more reliable and the loss of one sense can
be compensated. A greater benefit is offered by the use of heterogeneous sensors: Complementary
characteristics allow for compensation of individual weaknesses.

While nature has perfected this procedure over millions of years, its application in robotics and
automation is still challenging. Over the years, many different techniques for various scenarios
have been developed. Approaches range from low level concepts operating directly on the sensor
data, for example linear least squares, to methods working on processed data, like objects and
tracks. Especially the latter often employ more sophisticated procedures, for example the famous
Kalman filter [20] or neural networks [21].

This thesis focuses on a low level approach, it operates directly on point clouds generated by
each sensor. The algorithm works on single snapshots only, no additional tracking over time is
performed. The fusion of individual points is performed using a weighted mean, the specific

8 CHAPTER 2. BACKGROUND

mathematics will be presented in section 3.3. To handle the case of sensor disagreement, the more
advanced notation of Bayesian networks is required, which will be introduced in the following.

2.2.2 Bayesian Fusion

Bayesian Inference

Formally, the fusion task usually boils down to the estimation of a state variable or vector X. The
true state is never directly observable and must be estimated on the basis of a set of measurements
Y. Due to the inherent uncertainty, the state is represented by the distribution P(X | Y'), called the
posterior. Since generally the sensor models only provide the likelihood P(Y | X), the famous Law

of Bayes
P | X) - P(X)

P(X|Y)=)

is used to infer the state. Note that probabilities in the Bayesian sense are interpreted in a wider
sense as degree of belief, rather than representing statistical frequencies in the empirical sense. As
this involves integration over the marginal likelihood P(Y'), many algorithms have been developed
that implement the computation as efficiently as possible [22].

Bayesian Networks

Bayesian Networks provide a formal representation that allows the organization of conditional
dependencies in a clean and descriptive way. A Bayesian Network is represented as a Directed
Acyclic Graph (DAG), where nodes represent either observable quantities, latent variables or
hypotheses. Each edge gives the conditional dependency between two variables. Newly attained
information can be integrated at any node an will be propagated through the network to infer
the state of other nodes. The network as a whole represents the joint distribution of all variables,

which can incorporate arbitrarily many and complex conditional relationships [23].

In many cases it is sufficient to store discrete distributions in the nodes. The value of each category
the represents the belief that this is the true state. The conditional probabilities are stored as tables,
mapping each possible combination of parent states to a distribution in the child node. While
the tables can be filled by hand, possibly using expert knowledge, techniques for automatically
learning appropriate connection weights exist [24].

In general, Bayesian networks provide a complete model for all variables and their relationships.
Observation of further evidence will be propagated to all other nodes. Additionally it is possible
to make arbitrary queries given some evidence. The Bayesian network used in this thesis however
requires only the determination of the value of a single node, which can be attained using a pure

2.2. SENSOR FUSION 9

feed forward model. By this simplification, a number of complex update rules can be omitted and
thus their explanation will be skipped.

10

CHAPTER 2. BACKGROUND

Chapter 3

Design

In this chapter the design principles of the fusion framework are described. At first, the problem
and requirements are stated and formalized, afterwards the basic principles of preprocessing are
explained. The last part will discuss the fusion process, which will be explained in two parts, the

measurement fusion and the confidence evaluation.

3.1 Problem Definition and Requirements

The goal is to develop an algorithm which takes two or more point clouds and a camera image
as input. An input point cloud 7 := (Pl(I), ce P](VI)) is a list of N points P® = (z,y, 2), each
consisting of three coordinates z, y and z. The coordinate system is setup such that +z points
forward, +y points left, and +z points upwards.

The output of the algorithm is a single point cloud O := (Pl(o), ey PJE/?). In addition to the z,

y and z coordinate, each output point is augmented with a confidence value ¢, indicating the

reliability of a measurement concerning false detections.

The fusion process has two objectives: The fusion of related points from the input point clouds
into representative points, and the classification into noise and true measurements. The algorithm
emulates a virtual sensor, which is placed at the point of origin and casts virtual sensor rays into
the scene. The aim of the fusion is to deliver improved accuracy of the measurements, thus the

respective measurement models should be incorporated in the calculation.

The purpose of the confidence evaluation is to supply hints whether a measurement originates
from a detected object or sensor failure, especially in cases of sensor disagreement (detection vs.
no detection). The camera image is used to assess the environment and evaluate the reliability of

the input measurements.

11

12 CHAPTER 3. DESIGN

The algorithm assumes that the inaccuracy of each measurement is gaussian, where the standard
deviation depends on the sensor model and the measured distance. Furthermore, during this
chapter it will be presumed that the input data is readily prepared (synchronized in time and
aligned in a common coordinate system), and the sensor model ¢ : R* — R is supplied, which
maps the coordinates of a point to its standard deviation. A detailed description of this data

acquisition and preparation can be found in the following chapter.

3.2 Preprocessing

Before the prepared point clouds can be fused together, several preprocessing steps are necessary
to concentrate the input data. These steps are performed on each input point cloud independently

and result in an efficient representation of the measurements.

The goal of the preprocessing is to overcome difficulties introduced by different angular resolutions
of the sensors: Higher resolution results in denser point clouds. As high angular resolution can
not be equated with a higher accuracy of the measured distance, the fusion algorithm would then
have to explicitly account for the difference in resolution to avoid over-representation of the denser
point cloud, when calculating the weighted mean. This would require very precise and difficult

tuning of parameters.

Instead, the problem is overcome with a more robust approach, the binning and segmentation,

resulting in a uniform representation of measurements.

3.2.1 Binning

In the binning step, each input point cloud is partitioned into equally sized bins. Each bin covers a
small fraction of the sensors field of view, mimicking the measurement beams cast by a ranging

sensor from the origin of the coordinate system (Figure 3.1).

The sensors horizontal field of view, denoted by the interval [®,,in, Pinaz), is thus divided into
a series of [equally sized, adjacent bins By, ..., B;. Each bin then represents a small section of
B; := [®Pmin + 10, Prinn + (¢ + 1) - §), where § := (WM. A point P s assigned to the i-th
bin, iff its angle ¢(P*)) := atan2(y, =) falls in to this interval. Any points that lie outside this field
of view are not assigned to any bin and are discarded.

While the concept of bins resembles the measurement beams of a sensor, the bins usually do not
correspond to the actual measurement beams of the sensor. Especially for the sensors with a higher
angular resolution, the bins combine multiple measurements to artificially lower the resolution
for further processing. Even on the lower resolution sensors the bins might contain multiple

measurements to reduce the total amount of data.

3.2. PREPROCESSING 13

Figure 3.1: Visualization of a point cloud partitioned into 3 bins. The blue points are outside of the
configured field of view and thus discarded.

3.2.2 Segmentation

The segmentation step is applied to each bin individually. By grouping several nearby measure-
ments into representatives, the overall amount of data is reduced while preserving most of the
information. The notion of a bin representing a measurement beam suggests, that each bin is
reduced to a single measurement. However, this would potentially result in loss of important
information, as multiple objects may be recorded in a single bin: The first scenario arises from
data preparation, when the input point cloud is translated during alignment, causing an offset
between the sensors coordinate system and the coordinate system used for processing. This leads
to a situation where two objects which are seen side by side one sensor, now appear behind each
other and are assigned to the same bin (Figure 3.2a). The second scenario is caused by the binning
concept itself: If the range of a bin covers multiple measurements, multiple objects can be recorded
in the bin (Figure 3.2b).

(a) Different objects detected by the original sensor
(1) might appear behind each other when viewed
from the virtual sensor (2).

(b) If the bin is much wider than the angular resolu-
tion of the sensor, multiple object may be recorded.

Figure 3.2: Multiple objects might be recorded in a single bin

14 CHAPTER 3. DESIGN

In both cases using only one representative measurement for a bin would lose one of the objects.
Instead, a series of representatives is extracted from each bin to preserve most of the geometric
information. The points in one bin are thus grouped together based on the distance to each
other. Each group is then merged into a single representative. Instead of employing a complex
clustering algorithm, the measurement beam notion is exploited and each bin is interpreted to
be one dimensional. Each point can therefore be evaluated based only on its distance and the
standard deviation supplied by the measurement model. This way, a much simpler segmentation

algorithm can be used, which only requires tuning on one parameter.

The output of this step is a list of segments. A segment is an augmentation of the input point, de-
noted as four-tuple S := (z,y, z,7). The z, y and z coordinate are inherited from the representative
point, while the range value r denotes the expansion of the segment. In the following

d(P) := /2% 4+ y% + 22

denote the (euclidean) distance of a point P. As the segment inherits the coordinates, the notion

d(S) is the equivalent for segments.

To simplify the segmentation, the points are sorted in ascending order according to their distance.
The segments are then chosen as sequence of consecutive points, such that the condition
I z I z
AP +a-o(PP) <d(PF) —a-o(PP)
holds true for every pair of adjacent points Pi(I) and P]-(I). That is, two points are merged when
their respective standard deviations, stretched by a constant factor a, overlap. The first point of the

sequence is chosen as the representative and the range value r is set to the distance difference of
the first and the last point. An example segmentation is show in Figure 3.3.

Figure 3.3: Example segmentation of a bin: blue whiskers indicate standard deviation, green areas
show extracted segments.

3.3. MEASUREMENT FUSION 15
3.3 Measurement Fusion

The fusion process is split into two parts: measurement fusion and confidence evaluation. While
in practice these steps are performed simultaneously to avoid redundant calculations, the two
concepts are portrayed as separate steps for better understanding. This section will deal exclusively
with the fusion of measurements, i.e. generating the output point cloud O from a series of input
clouds 7y, . . ., 7, while section 3.4 will focus on the computation of the confidence value ¢ for each

output point.

3.3.1 Assumptions

Several assumptions are made about the sensors and the overall setup. As indicated in the previous
sections, inaccuracies of the measurements are assumed to be zero-mean gaussian white noise. All
participating sensors should be as close together as possible. This way, perspective differences
causing a slightly rotated interpretation of the standard deviation can be neglected (Figure 3.4). As
the incoming point clouds have automatically been transformed into a common coordinate system
during data preparation, a bad setup will likely not affect the overall result but drastically decrease
the accuracy. Further it is assumed that all measurements are statistically independent regarding
time, proximity and sensor. The algorithm is agnostic of time and only processes single snapshots
of the scene, no additional data from previous time steps is processed.

(b) Detection as seen from the virtual sensor. The
red bar visualizes the rotated interpretation of the
standard deviation.

(a) Detection as seen from the original sensor. The
blue bar visualizes standard deviation.

Figure 3.4: Perspective difference changes interpretation of the measurements accuracy

16 CHAPTER 3. DESIGN

3.3.2 Fusion

The fusion process emulates a virtual sensor, casting rays into the scene from the point of origin.
The rays are distributed evenly over the field of view of the virtual sensor and each ray is processed

independently.

First, the angle of the ray is determined. For each input point cloud, the bin representing that
angle is selected. The segments contained in all the selected bins are then sorted and collected into
disjunct groups, similar to segmentation step: Groups are formed by overlapping segments, each
segment that does not overlap with any other is put into a separate group containing only itself.
Two segments S; and S; are considered to overlap when the condition

d(Sir) +riy +b-0(Si) <d(Sj) —b-a(Sy)
is fulfilled for either ¢’ =4, j' = j or ¢’ = j, ' = i. An example is shown in Figure 3.5.

Sensor 1|Sensor 2| Sensor 3| Output

Figure 3.5: Grouping and fusion. Green areas are the extracted segments, blue whiskers indicate
standard deviations inherited from the first point, red areas show the grouping. The red dots
represent the points included in the fusion.

In the next step, the segments belonging to a group are fused into a single point. While it is possible
that multiple segments from the same bin are grouped together, in this case only the segment

which is closest is considered for the fusion and all other segments in the same group from that

3.4. CONFIDENCE EVALUATION 17

bin are ignored. The representatives are fused using the the weighted arithmetic mean, where the
weights are determined by the respective standard deviation:

P(Iz) -2, P(Il) 1
pe) =y ol 2 =3

=1 =1

where o* is used for normalization. The resulting point P(©) is then added to the output cloud O.
Note that the fusion calculates the mean over all three dimensions, as the exact location is later
required by the confidence evaluation. This procedure is repeated until all groups are processed
and the algorithm proceeds with the next ray.

3.4 Confidence Evaluation

After computing an output point, it is tagged with a confidence value. This value expresses the
belief, whether a point represents an object or is the result of sensor noise (false positive). The
confidence value is relevant if a point only receives support from a fraction of the sensors, i.e. the
sensors disagree whether there is an obstacle or not. Note that this is quite different from the
accuracy of a measurement, as now the subject of interest is not where the object is, but whether it

actually exists.

This can be accomplished by exploiting the complementary features of the deployed sensors: While
both stereo camera and lidar are optical sensors, they are based on entirely different concepts
and in turn have different strengths and weaknesses. The main difference in performance can be
observed in excessive brightness or low illumination. The visual information from the camera
image can be used to define the local brightness. Assumptions on the environment can be drawn
from the brightness value and possible reasons for sensor failure can be inferred. Low values often
indicate surfaces with low reflectivity, potentially posing a problem for the lidar sensor. High
values can be caused by overexposure, compromising the reliability of the stereo system.

3.4.1 Concept

Let O € {0, 1} be the event, that an object is in the path of the measurement beam and should in
turn generate a detection. Its true value is unknown and must therefore be estimated given the
detection D; € {0,1} and local lighting conditions L; € {dark, normal, bright} from sensor i. In
favor of a clean notation, an auxiliary variable, the sensor trust T; is introduced.

The sensor trust expresses the trustworthiness of the sensors assessment whether an object is

18 CHAPTER 3. DESIGN

present or not. In mathematical terms

T; = p(O = D;) ZZP(OZML;‘:Z,Di:d)'p(Li =1)-p(D; = d)
1d

where p(L; = 1) and p(D; = d) only take binary values according to the measurement of the
respective sensor, thus the formula decays to

T,=p(O=d|L;=1,D; =d)

The result can then be translated directly into the quantity of interest, namely

T ifD; =1
1—-T, ifD; =0

pi(0) =

The resulting set of equations can be represented as the bayesian network depicted in Figure 3.6.
The network is purely feed forward, and only requires tuning of the Trust node, where sensor
specific weights are required.

The brightness is determined by projecting the point coordinates onto the image plane. For
each sensor that provides a detection, the confidence is evaluated for the respective point, while
sensors reporting free space use the fused point instead. The total confidence is then retrieved by
calculating the product of odds from each sensor

B pi(0)
=10

Brightness

Figure 3.6: Bayesian Network representing computation of the confidence value

Chapter 4

Implementation

This chapter will illustrate how the concepts presented previously can be implemented. At first
a short introduction of the ROS framework will be given and a number of relevant tools will be
presented. Afterwards, the preparation of input data will be explained, followed by an outline of

the configuration which gives an impression of the general program structure.

41 ROS Framework

4.1.1 Overview

The Robot Operating System (ROS)! is an open source framework designed for application in
the wide field of robotics. While the name suggests a complete operating system, it is rather a
collection of useful tools with the goal to provide a robust and generic framework that makes the
design and operation of robots easier and encourages collaboration of research teams. A variety of
modules for data acquisition (sensor drivers), processing, visualization, and actuator control is

already included.

The framework is mainly written in C++ and Python but also features language bindings for Lisp,
Java and JavaScript. The software modules are organized in packages, which may have further
dependencies on other packages, and can be built and managed with the included CMake-based?
build tool. Each package may contain several programs, called nodes, which run independently
and are able to communicate with each other via ROS messages, an extension of the Message
Passing Interface (MPI). The communication is organized in topics, to or from which individual
nodes can publish or receive messages. A central master node organizes the communication and

maintains an overview over active nodes and topics on different machines in the network.

Thttp://www.ros.org
2https://cmake.org

19

http://www.ros.org
https://cmake.org

20 CHAPTER 4. IMPLEMENTATION
4.1.2 Used modules

Point Cloud Library

The Point Cloud Library (PCL)? [25] project is a collection of different tools and algorithms useful
for the processing 2D or 3D point clouds. While the original project is stand-alone, an integration
into the ROS framework exists, which supplies the necessary encapsulation to send and receive

point clouds between nodes.

Point clouds are implemented as lists of individual points and contain a header with a time
stamp and a frame ID. Each point consists of the mandatory z, y and z coordinates, but may hold
additional information, for example color, brightness, or orientation of a point, depending on the
application. The point cloud library implicitly handles conversion between different point types

and provides easy means to transform point clouds between different frames (coordinate systems).

tf2

The transform library 2 [26] is part of ROS and provides spatial transformations between local
coordinate systems, called frames of reference, or frames in short. The transformations are organized
in a tree structure representing the setup of different components, for example sensors. Among
the rotation and translation, each dataset includes a time stamp which allows rewinding of time
dependent transformations, either relative to each other or relative to fixed reference point.

OpenCV

The Open Source Computer Vision Library (OpenCV)* is an image processing framework sup-
plying a wide variety of image analysis and manipulation algorithms. While written in C++ to
optimize performance, APIs for Python and Java exist as well. Like the point cloud library, it is
integrated into ROS providing the standard representation of images. The cv_bridge package

provides the necessary conversions between OpenCV images and ROS messages.

Visualization

ROS includes several useful tools for visualization of the processed data. For one, rgt provides
a Qt> based user interface that can be used to display images, various graphs, and introspect
messages and topics. The second tool, rviz, is based on the Ogre3D° engine and allows data

Shttp://www.pointclouds.org
4https://opencv.org
Shttps://www.qgt.io
®https://www.ogre3d.org

http://www.pointclouds.org
https://opencv.org
https://www.qt.io
https://www.ogre3d.org

4.2. FRAMEWORK ARCHITECTURE 21

visualization and introspection in three dimensional space. Both tools include plug-ins that support
most of the standard ROS messages, including OpenCV images (rqgt) and PCL point clouds (rviz)
out of the box.

Storage

The ROS framework uses a special file format to store recordings of messages, the rosbag. A rosbag
can either be created by live recording messages between nodes or directly by storing the data via
the rosbag APL The bag can then be replayed in real-time, for example to reconstruct an experiment
or change parameters without having to repeat the entire test run.

4.2 Framework Architecture

I Sensor 1 I I I I Sensor k I

Preparation

Preprocessing

Figure 4.1: Processing pipeline for k different sensors. Synchronization is performed across all data
streams.

22 CHAPTER 4. IMPLEMENTATION

4.2.1 General Aspects

The entire processing pipeline (Figure 4.1) is implemented in a single ROS node. It is implemented
in C++ for maximum performance to allow processing of large point clouds even on limited
hardware.

The program is designed to be modular and allows easy reconfiguration without altering the source
code. The sensor setup and fusion parameters are read from an XML configuration file and can
be changed during runtime. Most core concepts like sensor models and the fusion algorithm are
supplied by interfaces. By using factories, the system is easily extensible and hardly any changes
are necessary to implement and test different approaches.

As the preprocessing stage is tightly coupled with the fusion, the concepts were already discussed
in the previous theoretical chapter and will not be covered further. The focus will now be laid on

the data preparation, which is more specific to the implementation.

4.2.2 Synchronization

When using a setup of heterogeneous sensors, the first problem is that data usually arrives not
only asynchronously, but often even at different rates and therefore at entirely different points in
time. Point clouds from different time points represent different versions of reality, potentially
corrupting proper fusion. The fusion process should therefore be triggered only whenever the
available data is as homogeneous as possible. Further processing is only done for most recent
data received from a sensor, thus potentially omitting data if a sensor produces point clouds at a
higher rate than the fusion process. This process of choosing appropriate point clouds is called
synchronization.

The implementation of the fusion framework features different possibilities for synchronization:
The fusion process can either be triggered every time one of the sensors receives new data, or only
when all of the sensors provide updates. For already synchronized data streams, synchronization
can instead be based on a sequence number. In this case the fusion is triggered when the counters
of all sensors match. Additionally, master/slave configurations (one sensor is responsible for

triggering) or periodic updates at a constant rate are possible.

Unless the sensors are synchronized to begin with, small time differences will remain even after
synchronization. If the vehicle has means to detect its own movement, for example by odom-
etry, IMU or GPS, the drift resulting from motion can be automatically corrected as part of the

transformation step.

4.2. FRAMEWORK ARCHITECTURE 23
4.2.3 Transformation

After synchronization, the data must be transformed into a common coordinate system, called
the target frame. Usually the point clouds generated from a sensor are in the sensors own local
coordinate system, the source frame. The need for transformation arises from two factors: Firstly,
axes may have a different meaning depending on the sensor, secondly the different sensors are
usually placed at different locations.

The most common notation uses x as the forward direction, with y left and z up, which is also used
for the target frame. In the field of graphics processing however, the z axis is used as “distance
into the image” (thus forward), while the y axis points down and the x axis right.

The appropriate transformations between sensor coordinate systems should be determined by
careful calibration of the sensors against each other. The transformations are then announced in
proper ROS messages so that they can be automatically managed by the tf library. Since the point
clouds include a header containing the frame ID, the correct transformations can be determined
automatically and no further manual configuration is necessary. As mentioned above, the tf library
can be used to automatically account for movement of the vehicle between different points in time,
If a fixed coordinate frame (for example a global frame supplied by GPS) is provided

It is assumed that all sensors use the same units of measurement and no additional scaling is
necessary. This reduces the transformation to a rotation and a translation. Since transformation of
the input point clouds potentially changes the distance of each point to the origin, the (distance
dependent) sensor model is applied to each point before the transformation. The resulting standard
deviation is stored separately and made available for later processing steps. However, the transfor-
mation may introduce a certain inaccuracy in the sensor models assessment, as the interpretation

of the standard deviation is changed by the perspective difference, as depicted before in Figure 3.4.

4.2.4 Architecture

The configuration file contains a complete description of the sensors and the setup used and
therefore represents the architecture of the software. The file uses XML and is parsed using the
TinyXML library, which is bundled with the ROS framework. The file is split into three sections,
the sensor, the stream, and the fusion configuration.

The sensor section contains a list of sensors, which may or may not be used in the setup. Each
configured sensor must feature a unique name which serves as an identifier, a description of
the specific measurement model and a binning configuration. The parameters required for the

measurement model depend on the function used. Additionally, two more XML nodes can

7ht‘rp: / /www.grinninglizard.com/tinyxml/

24 CHAPTER 4. IMPLEMENTATION

describe the parameters of the bayesian network evaluating sensor trust. For better readability, this

configuration is split into separate nodes specifying values for detection and no detection each.

The stream section configures the individual streams. A stream provides the link between the
data received from the sensor and the sensor properties described previously. This way, several
sensors of the same type can be used without the need to configure every single one of them. The
configuration is rather simple, only the name of the sensor and the topic to which the point clouds
are published, are required. While the stream is also responsible for pose transformations, the
frame IDs are embedded in the point cloud messages and no manual configuration is needed.
Optionally, each stream can be given a name. This is purely cosmetic to produce more readable
logging and output.

The last section holds general information necessary for preprocessing and the parameters for
the fusion algorithm. This includes the trigger for synchronization, topic names for output and
video stream and the frame ID of the virtual sensor. The fusion algorithm is provided as a module
and can therefore be exchanged, however, only the bayesian network algorithm described in this
thesis is implemented. It requires the camera parameters (focal length and image center), binning
specification analogous to the sensor description and brightness thresholds. These thresholds
determine which values are considered as dark, bright and normal.

Chapter 5

Experiments

This chapter will evaluate the framework described in the previous chapter using real life data.
At first the data set will be introduced along with its preparation for use with the fusion frame-
work. Afterwards, three scenes containing everyday scenarios featuring sensor disagreement are
presented, which highlight how this conflict can be resolved by the algorithm. In the end a short

analysis of the computational performance is given.

5.1 The KITTI dataset

5.1.1 Setup

The data set used for evaluation of the algorithm is taken from the KITTI project [27]. It was
originally intended as a platform to develop and benchmark stereo and tracking algorithms and is
available free of charge for non-commercial projects. While several data sets with tagged objects
and track-lets are included, only the raw data [28] will be used. The test data consists of a series of
short recordings (typically less than a minute) of the test vehicle driving through different scenes

in the city of Karlsruhe (Germany) and surroundings.

The test setup includes both a color and gray scale stereo system, a rotating 360° laser scanner,
and a GPS module. The sensors are calibrated against each other and the resulting coordinate
transformations are supplied in a separate file. The raw data sets used for testing feature synchro-
nized snapshots at a constant rate of 10 Hz. The camera images have been rectified and can be
fed directly into stereo algorithms. The lidar sensor provides a 360° view with 64 layers and was
originally intended to supply ground truth measurements as a reference for the stereo algorithms.
It has a range of up to 120 m with an constant accuracy of 1.5 cm [29].

25

26 CHAPTER 5. EXPERIMENTS
5.1.2 Data Import

As the KITTI dataset was intended for testing stereo algorithms, it contains no point clouds from the
stereo system. Therefore the point clouds required for the fusion framework have to be computed
beforehand. To allow an easier replay of the data sets, the data is additionally imported into a
rosbag, the native data format of ROS. The import is performed using a modified version of the
kitti2bag tool!, a python script that stores the images, point clouds and transformations as

time-stamped messages into a single file.

While the original tool maps the data set directly to the rosbag, some additional processing steps are
added to reduce file size and machine load on replay. As the fusion framework expects point clouds,
the images from the left and right camera are processed into a disparity map using the Semi-Global
Blockmatching (SGBM) algorithm [30] supplied by OpenCV. The SGBM parameters used can be
found in the Appendix. The disparity map is computed for the left and right image as dominant
view and then smoothed using a weighted linear least squares filter [31]. The resulting disparity
map is then converted into a point cloud using OpenCVs reproject ImageTo3D function.

To reduce file size and required band width, both the point cloud from the lidar and the one
generated from the stereo images are filtered. As the fusion algorithm only operates on a plane, a
horizontal slice, from 0.9 m to 1.7 m above ground is cut out, discarding all points above or below.
Especially the numerous points below 0.9 m would lead to inconclusive fusion results, as many
small objects such as curbstones would be included. Additionally, all points behind the vehicle

(with a negative x coordinate) are removed from the lidar point cloud.

The file then contains the two filtered point clouds and the camera image required for the fusion
algorithm, along with the respective frame IDs and coordinate transformations. For debugging
purposes, the disparity map is exported as well, yielding a total bandwidth of about 25 MiB/s.

5.1.3 Configuration

The fusion framework has been configured for the use with the KITTI dataset. Only the most
important parts of the configuration are covered here, the complete XML file can be found in the
Appendix.

The field of view for all sensors, including the virtual sensor emulated by the fusion algorithm,
ranges from -40° to 40. It is divided into 500 bins, resulting in an angular resolution of 0.16°, which
spans two rays of the lidar sensor and about three pixels of the disparity map.

The trust tables parameterizing the Bayesian network performing confidence evaluation are
displayed in Figure 5.1. The values are chosen by means of educated guess, based on general

Thttps:/ / github.com/tomas789/kitti2bag

5.2. RESULTS 27

characteristics of the sensors. For any applications in real life situations, the parameters must be
revised and determined by appropriate calibration.

Tstereo ‘ Dark Normal Bright Tridar ‘ Dark Normal Bright
Detection 0.85 0.95 0.8 Detection 0.99 0.99 0.95
No Detection | 0.85 09 0.75 No Detection | 0.7 0.9 0.9
(a) Trust table for Stereo (b) Trust table for Lidar

Figure 5.1: Sensor trust under different conditions

5.2 Results

To present results for the testing, four representative scenes have been selected, three of them
depicting common scenarios where sensor disagreement occurs, i.e. one of the sensors yields a
detection while the other reports free space.

Figures 5.2 to 5.5 show an example scene without conflict and provide comprehensive descrip-
tions of the different visualization methods. For better understing of the different images, some
landmarks will be tagged, like the car D or the house corner () in this first example.

Figure 5.2: Camera image of the scene.

Figure 5.3: Disparity map of the scene computed
by the stereo algorithm. Bright parts represent
high disparity and thus low depth.

Figure 5.4: Bird’s eye view of the scene as per-
ceived by the Lidar (left, blue) and Stereo (right,
white) sensors. Each dot represents a single mea-
surement. The parked cars and house corner (2)
can be identified easily.

28 CHAPTER 5. EXPERIMENTS

Figure 5.5: Fused point cloud as output by the al-
gorithm. The confidence of each point is color
coded. The color ranges from red (low confi-
dence) to green (high confidence).

5.2.1 Stereo vision impaired by overexposure

(a) Overexposure of the scene. (b) The bright spot is recognized as an object.

Figure 5.6: Reflection of the sun blinding the camera

(a) Lidar reports free space in the questionable are. (b) Stereo detects an object.

Figure 5.7: Point clouds generated by lidar and stereo camera

5.2. RESULTS 29

Figure 5.8: The artifact is classified as noise by the algorithm

In this scene?, the sun creates a bright reflection on the street ahead (Figure 5.6a). The stereo
algorithm interprets the bright spot as an object (Figure 5.6b), which appears to be standing on the
road next to a cyclist (D), approximately 15m to 25 m in front of the car. The false positive persists
for about 5 seconds, moving slightly back and forward, while the car slowly drives in its direction.
As would be expected, the area is correctly classified as free space by the lidar sensor (Figure 5.7a).

The fused point cloud includes the false positive tagged with a confidence value of roughly 31%,
therefore recognizing that the detection most probably results from noise (Figure 5.8). This is due
to the fact that through the image brightness the area is interpreted as a highly reflective surface,
which should thus be detected by the lidar sensor. Additionally, the excessive brightness decreases

the trustworthiness of detections from the stereo camera.

Without this classification as noises, an autonomous system would most likely treat the artifact as
an actual object and would abruptly apply the brakes or try to avoid the obstacle by steering to the
side. This erratic behavior would potentially endanger the passengers or other road users.

5.2.2 Black car missed by Lidar

Figure 5.9: Crossroads featuring a black car

2Dataset: 2011_09 26, Drive 0005, Snapshot time 11.373 s

30 CHAPTER 5. EXPERIMENTS

(a) Lidar hardly produces any measurements (b) Stereo detects the car without problems

Figure 5.10: Point clouds generated by lidar and stereo camera.

Figure 5.11: The car is identified with high confidence.

The second example ? features a black car waiting at a traffic light (1), which is almost entirely
missed by the Lidar system (Figures 5.9 and 5.10). The stereo camera however has no trouble
detecting the car.

Despite the generally high reliability of the lidar sensor, fused points representing the car receive a
relatively high confidence of almost 71% (Figure 5.11). This indicates that the algorithm correctly
recognized the failure of the lidar sensor caused by the dark surface.

3Dataset: 2011_09 26, Drive 0057, Snapshot time 7.88 s

5.2. RESULTS 31

5.2.3 Pedestrian missed by stereo camera

(a) Lidar reliably detects the pedestrian. (b) Stereo produces no measurements.

Figure 5.13: Point clouds generated by lidar and stereo camera.

Figure 5.14: The car is identified with high confidence.

32 CHAPTER 5. EXPERIMENTS

In the last example 4, a pedestrian can be seen possibly waiting to cross the road (Figure 5.12).
The person is detected reliably by the lidar from the beginning of the recording, when still about
40 m away. The stereo system on the contrary does not recognize the pedestrian at this distance
(Figure 5.13).

The area of the image where the person is standing is perceived as rather dark due to the shadow.
Even though these conditions impact reliability of the lidar sensor, they only cause false negatives.
As the sensor provides detections despite darkness, these are marked as trustworthy. Additionally,
the low illumination reduces the trustworthiness of the stereo system, resulting in an overall
confidence value of 95% (Figure 5.14).

5.24 Computational performance

The main source of the computational complexity arises from point sorting in the preprocessing
phase, with an average runtime of O(nlogn), all other steps are linear in both the number of

sensors and points.

A practical test conducted on a system with a 2.7 GHz dual core processor, resulted in an average
processor load of about 43%, consuming 35.8 s CPU time during the 82.8 s test run®. On average,
the algorithm processed over 400,000 points per second (about 100,000 lidar and 300,000 stereo
points per second), while generating an output of around 12,000 points per second. This denotes a
significant reduction by more than 97%, without sacrificing important information. The average
time required for preprocessing and fusion amounts to 35ms, which is mostly caused by the

transformation of incoming point clouds.

Even on weaker systems, the framework can already provide real time performance. The tested
implementation only runs in a single thread, optimization for multiple processors could improve
the performance further, especially the costly transformation step can be easily parallelized.

4Dataset: 2011_09_26, Drive 0091, Snapshot time 2.29 s
5Dataset: 2011_09 26, Drive 0022

Chapter 6

Conclusion

The goal of this thesis was to design and implement a framework that can be used to fuse multiple
point clouds from different sensors into a single point cloud. A large focus was put on developing
a strategy that can handle sensor disagreement intelligently. A software module was developed,
which is based on the popular ROS ecosystem and uses standardized interfaces to allow easy

integration with existing software.

The software was tested with real life data from the KITTI dataset. Several situations were found,
where one of the sensors failed, either by false positives or false negatives. In all of these situations
the conflict could be resolved with the use of confidence values computed by a Bayesian network.
The algorithm provides high throughput and significant data reduction, making it viable for real

time applications.

6.1 Limitations

The proposed framework relies largely on visual hints from a camera. In particular, it is assumed
that the image brightness provides a good representation of a materials (diffusive) reflectivity.
While in many cases this assumption is sufficiently accurate, it may fail for various reasons: Glossy
surfaces like chrome are usually perceived as bright, but the lack of diffusive reflectance may still
lead to failure of lidar sensors. Especially on sunny days the presence of dark shadows along with
well lit areas can cause wrong estimates, as objects in the shadow will always be perceived as dark

and thus unreflective.

A related drawback is that the concept does not work well at night, because all areas are dark
and no conclusions about the surface properties can be drawn. Additionally, the stereo system
is rendered useless in this case, and there would be no benefit of fusion at all. This problem can
be avoided by the use of Active Gated Imaging Systems (AGIS) [32], where the surroundings are

33

34 CHAPTER 6. CONCLUSION

illuminated by short infrared light pulses and allow the use of vision based methods even at night.

6.2 Outlook

In the experiments conducted in the previous chapter, the parametrization used for confidence
evaluation was chosen “at will”. While the possibility to incorporate expert knowledge is certainly
a strength of Bayesian networks, the parameters for real world applications should be determined
either by appropriate experiments or by directly training the network.

The trustworthiness of a sensor is solely based on brightness of the image area. While this already
provides sound evidence for estimating the sensors reliability, other factors could be incorporated.
Most notably the distance, as it greatly influences the reliability of all sensors. Not only does the
probability of detection deteriorate with increasing distance, but a measurement from one sensor
could be entirely out of range for the other. Especially in the latter case, a missing detection should
have no, or only very little, negative influence on the total confidence.

Further improvements could be achieved by replacing simple image brightness with more sophisti-
cated image analysis. This could supply a far better estimation of the difficulties a stereo algorithm
faces in certain parts of the scene.

Another option would be the incorporation of entirely different ranging sensors. In theory, any
ranging sensor can be integrated into the framework. To achieve sensible confidence ratings
for sensors not based on optics, the relevant factors influencing these sensors would have to be
included. Due to the use of the Bayesian network, these changes and additions can easily be
incorporated into the existing algorithm.

Lastly, the framework performs fusion on a horizontal plane, which is sufficient for many appli-
cations using two dimensional lidar sensors. Since most of the concepts described in the Design
chapter are independent of the dimensionality, the extension to a third dimension can be achieved

easily.

All of these suggested improvements do not only serve as slight enhancements, though. When
applied to autonomous driving vehicles on public streets, further development of the algorithm will
prove necessary to achieve justifiable street safety. Nevertheless this thesis sets solid groundwork
for further research and on point cloud fusion using Bayesian networks, bringing the dream of self

driving cars one step further on it’s journey from fiction to science.

Bibliography

[1] S.Thrun, W. Burgard, and D. Fox, Probabilistic robotics, ser. Intelligent robotics and autonomous
agents. Cambridge, Mass: MIT Press, 2005.

[2] S. Singh, “Critical reasons for crashes investigated in the national motor vehicle crash causa-
tion survey,” Publication DOT HS 812 115, 2015.

[3] E. M. Favaro, N. Nader, S. O. Eurich, M. Tripp, and N. Varadaraju, “Examining accident
reports involving autonomous vehicles in california,” PLoS ONE, vol. 12, no. 9, 2017. [Online].
Available: https:/ /www.ncbi.nlm.nih.gov/pmc/articles/PMC5607180/

[4] G. Corfield, “Tesla death smash probe: Neither driver nor autopilot saw the truck.” [Online].
Available: https:/ /www.theregister.co.uk/2017/06/20/tesla_death_crash_accident_report_
ntsb/

[5] S. Maki and A. Sage, “Self-driving Uber car kills Arizona woman crossing street,” Reuters,
Mar. 2018. [Online]. Available: https:/ /www.reuters.com/article/us-autos-selfdriving-uber/
woman-dies-in-arizona-after-being-hit-by-uber-self-driving-car-idUSKBN1GV296

[6] M. Bergen and E. Newcomer, “Uber halts autonomous car tests after fatal crash in arizona,”
Bloomberg.com, 2018. [Online]. Available: https://www.bloomberg.com/news/articles/
2018-03-19/uber-autonomous-car-involved-in-fatal-crash-in-arizona

[7] W. Elmenreich, “An introduction to sensor fusion,” Vienna University of Technology, Austria,
vol. 502, p. 29, 2002.

[8] D.L.Hall, “An introduction to multisensor data fusion,” Proceedings of the IEEE, vol. 85, no. 1,
pp- 6-23,1997.

[9] P. Moghadam, W. S. Wijesoma, and D.]. Feng, “Improving path planning and mapping
based on stereo vision and lidar.” IEEE, 2008, pp. 384-389. [Online]. Available:
http:/ /ieeexplore.ieee.org/document/4795550/

[10] Y. Yang, Z. Koppanyi, and C. K. Toth, “Stereo image point cloud and lidar point cloud fusion
for the 3d street mapping,” 2017.

35

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607180/
https://www.theregister.co.uk/2017/06/20/tesla_death_crash_accident_report_ntsb/
https://www.theregister.co.uk/2017/06/20/tesla_death_crash_accident_report_ntsb/
https://www.reuters.com/article/us-autos-selfdriving-uber/woman-dies-in-arizona-after-being-hit-by-uber-self-driving-car-idUSKBN1GV296
https://www.reuters.com/article/us-autos-selfdriving-uber/woman-dies-in-arizona-after-being-hit-by-uber-self-driving-car-idUSKBN1GV296
https://www.bloomberg.com/news/articles/2018-03-19/uber-autonomous-car-involved-in-fatal-crash-in-arizona
https://www.bloomberg.com/news/articles/2018-03-19/uber-autonomous-car-involved-in-fatal-crash-in-arizona
http://ieeexplore.ieee.org/document/4795550/

36 BIBLIOGRAPHY

[11] A. Myronenko and X. Song, “Point-set registration: Coherent point drift,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32, no. 12, pp. 2262-2275, 2010. [Online].
Available: http://arxiv.org/abs/0905.2635

[12] H. Baltzakis, A. Argyros, and P. Trahanias, “Fusion of laser and visual data for robot motion
planning and collision avoidance,” Machine Vision and Applications, vol. 15, no. 2, pp. 92-100,
2003.

[13] S.T. Barnard and M. A. Fischler, “Computational stereo,” ACM Computing Surveys, vol. 14,
no. 4, pp. 553-572, 1982. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
356893.356896

[14] H. E. Burton, “The optics of euclid,” Journal of the Optical Society of America, vol. 35, no. 5, p. 357,
1945. [Online]. Available: https:/ /www.osapublishing.org/abstract.cfm?URI=josa-35-5-357

[15] D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms.” IEEE Comput. Soc, 2001, pp. 131-140. [Online].
Available: http:/ /ieeexplore.ieee.org/document/988771/

[16] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222-1239,
2001.

[17] L. Matthies, “Toward stochastic modeling of obstacle detectability in passive stereo
range imagery.” IEEE Comput. Soc. Press, 1992, pp. 765-768. [Online]. Available:
http:/ /ieeexplore.ieee.org/document/223178/

[18] M. Hebert and E. Krotkov, “3d measurements from imaging laser radars: how good are they?”
Image and vision computing, vol. 10, no. 3, p. 9, 1992.

[19] R. H. Rasshofer and K. Gresser, “Automotive radar and lidar systems for next generation
driver assistance functions,” Advances in Radio Science, vol. 3, pp. 205-209, 2005. [Online].
Available: http:/ /www.adv-radio-sci.net/3/205/2005/

[20] R. G. Brown, P. Y. Hwang et al., Introduction to random signals and applied Kalman filtering.
Wiley New York, 1992, vol. 3.

[21] H. Nam and B. Han, “Learning multi-domain convolutional neural networks for
visual tracking,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Las Vegas, NV, USA: IEEE, 2016, pp. 4293-4302. [Online]. Available:
http:/ /ieeexplore.ieee.org/document/7780834 /

[22] J. Sander and J. Beyerer, “Bayesian fusion: Modeling and application.” 1EEE, 2013, pp. 1-6.
[Online]. Available: http:/ /ieeexplore.ieee.org/document/6698254 /

http://arxiv.org/abs/0905.2635
http://portal.acm.org/citation.cfm?doid=356893.356896
http://portal.acm.org/citation.cfm?doid=356893.356896
https://www.osapublishing.org/abstract.cfm?URI=josa-35-5-357
http://ieeexplore.ieee.org/document/988771/
http://ieeexplore.ieee.org/document/223178/
http://www.adv-radio-sci.net/3/205/2005/
http://ieeexplore.ieee.org/document/7780834/
http://ieeexplore.ieee.org/document/6698254/

BIBLIOGRAPHY 37

[23] R. E. Neapolitan, Learning Bayesian Networks. Pearson Prentice Hall Upper Saddle River, NJ,
2004, vol. 38.

[24] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Machine learning,
vol. 29, no. 2-3, pp. 131-163, 1997.

[25] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl).” IEEE, 2011, pp. 1-4.
[Online]. Available: http://ieeexplore.ieee.org/document/5980567 /

[26] T. Foote, “tf: The transform library,” in Technologies for Practical Robot Applications (TePRA),
2013 IEEE International Conference on, ser. Open-Source Software workshop, 2013, pp. 1-6.

[27] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
the kitti vision benchmark suite.” IEEE, 2012, pp. 3354-3361. [Online]. Available:
http:/ /ieeexplore.ieee.org/document/ 6248074/

[28] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The
International Journal of Robotics Research, vol. 32, no. 11, pp. 1231-1237, 2013.

[29] C. Glennie and D. D. Lichti, “Static calibration and analysis of the velodyne hdl-64e s2 for
high accuracy mobile scanning,” Remote Sensing, vol. 2, no. 12, pp. 1610-1624, 2010. [Online].
Available: http:/ /www.mdpi.com/2072-4292/2/6/1610

[30] H. Hirschmuller, “Stereo processing by semiglobal matching and mutual information,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328-341, 2008.
[Online]. Available: http://ieeexplore.ieee.org/document/4359315/

[31] D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do, “Fast global image smoothing
based on weighted least squares,” IEEE Transactions on Image Processing, vol. 23, no. 12, pp.
5638-5653, 2014. [Online]. Available: http:/ /ieeexplore.ieee.org/document/6942220/

[32] Y. Grauer and E. Sonn, “Active gated imaging for automotive safety applications,” 2015, p.
94070F. [Online]. Available: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=
10.1117/12.2078169

http://ieeexplore.ieee.org/document/5980567/
http://ieeexplore.ieee.org/document/6248074/
http://www.mdpi.com/2072-4292/2/6/1610
http://ieeexplore.ieee.org/document/4359315/
http://ieeexplore.ieee.org/document/6942220/
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2078169
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2078169

38

BIBLIOGRAPHY

Appendix A

Appendix

A.1 Test Configuration

Below, the configuration file used for experiments in chapter 5 is shown.

<?xml version="1.0" ?>
<config>
<sensors>
<sensor name="Velodyne HDL-64E">
<model function="gaussian">
<param std=0.02/>
</model>
<binning min=-40 max=40 count=500/>
<trust-detect dark=0.99 normal=0.99 bright=0.95/>
<trust-clear dark=0.7 normal=0.9 bright=0.9 />

</sensor>

<sensor name="KITTI Stereo'">

<model function="sqgd-gauss'">

<param coeff=0.002/>

</model>

<binning min=-40 max=40 count=500/>

<trust-detect dark=0.85 normal=0.95 bright=0.8/>

<trust-clear dark=0.85 normal=0.9 bright=0.75/>
</sensor>

</sensors>

39

40 APPENDIX A. APPENDIX

<streams>
<stream name="Stereo" sensor="KITTI Stereo" topic="/kitti/stereo/pointcloud">
<selector type="closest"/>

</stream>

<stream name="Lidar" sensor="Velodyne HDL-64E" topic="/kitti/velo/pointcloud">
<selector type="closest"/>
</stream>

</streams>

<fusion>
<trigger type="seq"/>
<output topic="fusion_test"/>
<frame id="velo link"/>
<camera topic="/kitti/stereo/image rect"/>
<combiner type="bnet">
<camera f=721.5377 cx=609.5593 cy=172.854/>
<binning min=-40 max=40 count=500/>
<brightness low=0.2 high=0.95/>
</combiner>
</fusion>

</config>

A.2 SGBM Parameters

The preprocessing of the KITTI dataset includes stereo reconstruction using the SGBM algorithm.
The parameters chosen are listed below, using the parameter names from the OpenCV Python APIL:

minDisparity 0
numDisparities 64
preFilterCap 10
P1 972
P2 7776
blockSize 4

mode StereoSGBM_MODE_SGBM_3WAY

	Abstract
	Contents
	Introduction
	Motivation
	Fusion Methodology and Related Work
	Thesis Goal
	Thesis Structure

	Background
	Sensors
	Stereo Vision
	Lidar

	Sensor Fusion
	Basics
	Bayesian Fusion

	Design
	Problem Definition and Requirements
	Preprocessing
	Binning
	Segmentation

	Measurement Fusion
	Assumptions
	Fusion

	Confidence Evaluation
	Concept

	Implementation
	ROS Framework
	Overview
	Used modules

	Framework Architecture
	General Aspects
	Synchronization
	Transformation
	Architecture

	Experiments
	The KITTI dataset
	Setup
	Data Import
	Configuration

	Results
	Stereo vision impaired by overexposure
	Black car missed by Lidar
	Pedestrian missed by stereo camera
	Computational performance

	Conclusion
	Limitations
	Outlook

	Bibliography
	Appendix
	Test Configuration
	SGBM Parameters

