WAW – Machine Learning 6

Tutorial: NLP with Python

Sivasurya Santhanam

Intelligent software systems

Institute for Software Technology (SC-IVS)

27.10.2020
Agenda

• 9:30 - 10:30 : Part I (Pre-processing of text)

• 10:30 - 10:45: Break

• 10:45 - 11:45: Part II (Sentiment analysis)

• 11:45 - 12:00: Break

• 12:00 - 12:30: Part III + Q & A
Why is NLP hard?

- Representation of semantic meanings and contexts
- Syntax, Semantics, pragmatics
- Humans also apply sarcasm now and then
- Accents and dialects (Speech recognition)
Part - I

Pre-processing
Words & representations – Bag of words

Example:
1. I read a book about book reading

 a about book I read reading

Sentence-1 1 1 2 1 1 1
Words & representations – Term-Document matrix

Example:
1. This sample is a sample of the bigger sample
2. This is not a good sample

<table>
<thead>
<tr>
<th>Documents</th>
<th>a</th>
<th>bigger</th>
<th>good</th>
<th>is</th>
<th>not</th>
<th>of</th>
<th>sample</th>
<th>the</th>
<th>this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence-1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sentence-2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Words & representations – Bag of words (Impl.)

- Extract vocabularies
- Compute the occurrences of every word in vocabulary in each sentence
- Generate Term-document matrix

[impl.]: from Sklearn.feature_extraction.text import CountVectorizer
Tokenization

• Word tokenization

foo = “Oh God! I haven’t saved any of it’s responses!”
[Oh, God, !, I, have, n’t, saved, any, of, it, ’s, responses, !]

• Sentence tokenization

bar = “Sent tokenize knows that time period from 10 a.m. to 1 p.m. are not sentence boundaries. neither are the names G.H.Hardy and J.J.Thompson. you can even start the sentence without Caps”
[“Sent tokenize knows that time period from 10 a.m. to 1 p.m. are not sentence boundaries”, “neither are the names G.H.Hardy and J.J.Thompson” “you can even start the sentence without Caps”]

[impl.]: from nltk import word_tokenize
• Stemming tries to extract the stem word.
• Defined by a set of algorithms like Porter stemmer, Snowball stemmer
• Stem words do not necessarily make sense

foo = „cyclists in all of cities use cycles to cycle the city“
Stems = [cylist, in, all, of, citi, use, cycl, to, cycl, the, citi]

[impl.]: from nltk import PorterStemmer, SnowballStemmer
Lemmatization

• Stemming tries to extract the root word.
• Defined by vocabulary of the language
• Lemmas have meanings in contrast to Stem words
• Lemmatization is slower than stemming
• Based on part-of-speech

foo = „it has been used in multiple places“
Lemmas= [it, have, be, use, in, multiple, place]

[impl.]: from nltk.stem import WordNetLemmatizer
Part - II

Sentiment Analysis
"I love this movie. I've seen it many times and it's still awesome."

"This movie is bad. I don't like it at all. It's terrible."
Sentiment classification

Steps to be followed:

1. Load the dataset
2. Encode the reviews and sentiments
3. Compute Term-document frequency matrix
4. Model training
5. Model prediction
Neural network architecture

128 \text{Relu} \rightarrow 64 \text{Relu} \rightarrow 32 \text{Relu} \rightarrow 1 \text{Sigmoid}

Dropout (0.3) \rightarrow Dropout (0.2)
Part - III

Machine translation
Machine translation

Steps to be followed:

1. Load the dataset (Prepare input and target texts)
2. Encode the characters/tokens as one-hot representation
3. Design the encoder-decoder network
4. Train both the encoder as well as decoder network simultaneously
5. Infer the model using encoder-states and decoder network
Encoder – Decoder structure

Encoder input data: I went home - - - - -
Decoder input data: \t Ich ging nach Hause \n -
Decoder target data: Ich ging nach Hause \n - -

Encoder input data shape: (#Sentences, Max length of input sequence, # English vocabulary)
Decoder input data shape: (#Sentences, Max length of target sequence, #German vocabulary)
Decoder target data shape: (#Sentences, Max length of target sequence, #German vocabulary)
Thank you!