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Numerical simulations of microscopic transport processes in porous electrodes of 
lithium-ion batteries demonstrated presence of spatially localized fluctuations of physical 
quantities on the microstructure scale that can potentially influence the macroscopic battery 
characteristics (for example, the degradation rates). These fluctuations can not be captured in a 
straightforward manner by the widely used cell models based on the porous electrode theory by 
Newman and coworkers (DFN models). The latter treat the porous electrodes as macroscopically 
homogeneous composite materials and dramatically reduce the computational costs of battery 
numerical simulation. In this paper, we propose a modification of DFN model that incorporates the 
local fluctuations but preserves the computational efficiency. A numerical simulation example is 
presented that is specifically designed to test the accuracy of the reproduction of the local 
fluctuations. The main new feature lies in the mathematical representation of the slow transport 
processes in the active material and their influence on the macroscopic reaction rates. The 
assumptions used to justify the model originate in the rigorous mathematical analysis of the 
transition from a microscopic, microstructure-resolving transport and reaction description to a 
macroscopic, volume averaging-based one. The model construction methodology is open for 
further modifications for the applications in which some of the assumptions should be dropped or 
description of new processes, reactions, phases, etc. should be incorporated. 

 
1 Introduction 

 
The lithium-ion battery (LIB) is an important electrochemical energy storage technology. 

Various theoretical models have been developed to characterize them, from the atomistic level to 
the electrotechnical one, aiming at the prediction of a wide range of properties, from the 
elementary reaction potentials to the aging rates over many cycles. Naturally, these models build 
up a hierarchy of length and time scales, each level dealing only with the scale-relevant 
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information [1, 2]. 
Porous medium is an important component of the battery electrodes and of the other 

chemical systems. Its presence introduces an additional scale separation between the processes 
inside the pores and the dynamics of the electrodes as a whole. The models suitable for the former 
are based on the continuous medium dynamics representation of the transport phenomena and of 
the reactions; mathematically, it is a set of partial differential equations (PDEs) with boundary 
conditions. We will use the term “microscopic” for these models. On the level of the electrode as a 
whole, it can be treated as a homogeneous composite material; here, the theoretical models are 
needed that describe the transport and the reactions there on average, neglecting the fine details of 
the porous microstructure. We call these models and the scale “macroscopic”. Due to the omission 
of the microscopic details, they are computationally more efficient than the microscopic models. A 
class of models that have been widely used in electrochemical engineering is originated by Doyle, 
Fuller and Newman (DFN model) [3, 4, 5, 6]. Its basic ideas are rooted in the porous electrode 
theory by Newman and coworkers [7]. Over the years, the initial model was supplemented by the 
features describing multiple battery phenomena as e.g. heat generation, mechanical deformation, 
degradation reactions and phase transitions [8, 9, 10, 11, 12, 13, 14, 15]. 

An accurate theoretical description of LIBs based on scale-hierarchical models requires a 
rigorous definition of the rules according to which the upscaled parameters are obtained from the 
low-level solutions. In the derivation of DFN-type models, one usually utilizes a formal 
mathematical volume averaging procedure, whose examples for different electrochemistry 
modeling-relevant PDEs can be found in [16, 17, 18, 2, 19]. The proper convergence of the 
quantities of interest to the ones in the resulting volume-averaged PDEs is, however, not always 
self-evident. To bridge this gap, homogenization theory has been applied to the transition from the 
microscopic LIB models to the macroscopic ones, explaining how the solutions of the former’s 
equations converge in some sense to the solution of the volume-averaged equations [20, 21, 22]. It 
has been indicated, by the means of numerical analysis, that homogenization can not be fully 
applied to LIBs. Physically, it is due to the fact that the mass transport in the solid phase active 
material is usually very slow. To properly account for the effects arising from the active material 
transport, DFN models substitute the complex microstructure-induced diffusion patterns with the 
ones in primitive geometrical domains, like a sphere. It serves the goals of maintaining 
computational efficiency and intuitive understanding well, but, to the best of our knowledge, no 
rigorous mathematical explanation of the spherical particle approximation has been given. This 
ambiguity can potentially affect the internal consistency of the hierarchical modeling approach to 
LIBs. 

Indication of possible inconsistencies have been detected by using numerical simulation 
tools and the microstructure models either obtained with tomographic imaging techniques or 
generated artificially. It has been demonstrated that some local physical quantities inside the 
electrodes may exhibit a complex spatial variability [2, 23, 24]. In [2], one of the objectives was 
precisely the comparison of a non-equilibrium thermodynamics-based microscopic LIB model 
with its macroscopic DFN counterpart. The authors demonstrated that, in the microscopic 
model-based numerical simulations, spatially localized fluctuations of the overpotential in the 
electrodes are clearly present and, consistent with the volume averaging idea, DFN predictions 
hold on average. One might note that the fluctuations of this kind can not be derived in a 
straightforward manner in DFN framework; here, physical quantities are either volume-averaged 
or ascribed to the positions inside the effective spherical active material particle. For the quantities 
in the latter, spherical symmetry holds; overpotential is a surface-related variable and, therefore, is 
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constant because of this symmetry. To incorporate the spatially localized ovepotential fluctuations 
into the macroscopic description, one has to add new conceptual features outside of DFN. From 
the application point of view, the correct prediction of the range of overpotential or surface 
concentrations of Lithium distributed over the surface of the particle will be crucial for capturing 
the probability of degradation phenomena. DFN calculates one single value for the overpotential at 
the point of the spherical representative particle on macroscopic scale. If this value is above or 
below a certain electrochemical potential, where side reactions are initiated, they will not be 
predicted by DFN but can be captured by the microscopic transport theory which predicts a range 
of overpotentials being distributed across the surface of a non spherical representative particle. 
Also the degree of mechanical stress will depend on the predicted distribution of concentrations 
across the surface of the particle, which is not captured by the single concentration value of DFN. 
Therefore, the accurate microscopic model is able to capture the finite probability of side reactions 
as e.g. (plating, electrolyte degradation) or mechanical deformations, where DFN may completely 
miss them. If strongly localized phenomena as side reactions can not be accurately described on 
the macroscopic scale, non-negligible deviations between the microscopic and the macroscopic 
cell models predictions arise as a consequence of the inconsistencies in internal upscaling rules. 

In this paper, we present a modification of DFN that captures precisely the local 
fluctuations in sense of [2]. In the light of the fact that the fluctuations are seen in the 
microstructure-resolving calculations, there may be a connection between the origins of this local 
variability and the general problem of the accurate transition between the microscopic and the 
volume averaging-based macroscopic models. Building on this insight, we use the results of our 
mathematical analysis of this transition, whose technical details will be published separately. We 
stress the mathematical rigorousness of our approach, and all the necessary approximations are 
mentioned explicitly, making it possible to later modify the model for the applications in which the 
approximations do not hold. One of the cornerstones of the derivation is the use of Galerkin 
method to obtain a reduced-order representation of the lithium diffusion equation. One may say 
that this representation substitutes the spherical particle-primitives of the porous electrode theory 
as a way to compress the model-relevant microstructure information. The particular robustness of 
this compression is due to the prior knowledge of the solution properties that can be extracted 
using our mathematical framework. The resulting model’s computational efficiency is on par with 
that of DFN. Special attention is given to the reproducibility of the local fluctuation characteristics. 

The structure of the paper is as follows. In section 2, we start with reviewing the 
microscopic cell model and the corresponding DFN version relevant for the reaming paper’s text. 
Some methodological comments about wider families of models and the use of our approach 
beyond this paper’s narrow topic are presented. Then we provide a summary covering the the topic 
of the electrode localized fluctuations, their origin and possible role, in section 3. An argument in 
support of the association between them and the particle anisotropy (first of all, the shape 
anisotropy) is given. In the following section 4, we review the mathematical analysis of the 
transition between the microscopic cell models and the volume averaging-based models, which 
imposes limitations on the possible models that accurately capture the homogenization 
limit-solutions. Finally, in section 5, we sum up the derivation of the new reduced-order model 
using Galerkin method and compare it with DFN model. The details of the new model’s numerical 
implementation for realistic active material particles are outlined, and the accuracy is tested. 
 
2 The microscopic and DFN models of LIBs 
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In this subsection, we will review, for the feature references, two main LIB models related 
to the subject of this paper: the microscopic model by Latz and Zausch [2] and a basic DFN model. 
A class of models is generally referred to as the porous electrode theory, DFN or P2D models, 
which may include description of various cell phenomena besides the main cell reaction. To be 
more specific, we outline here the porous electrode theory-based model used in [2] as a 
macroscopic counterpart to the microscopic model from this paper. From the electrochemistry 
perspective, this pair of models cover only the intercalation of lithium in electrodes. A few remarks 
will be made at the end of this section regarding the applicability of this paper’s methodology to 
the LIB models that include side reactions, etc. 

In the basic microscopic model, two types of phases are present: electrolyte and electrode 
active material (in the cathode and in the anode), that are represented by the corresponding 
geometric domains. Four fields define the cell state: lithium ion concentration ec  and 
electrochemical potential ee  in electrolyte, lithium ion concentration sc  and electrical potential 

ss  in the electrode active material. The fields are defined in the respective domains and obey 
partial differential equations. Concentrations of other components relevant for the 
electrochemistry (like anions, neutral solvent molecules, electrons) are calculated algebraically 
through the constraints imposed on the cell: mechanical equilibrium on the relevant time and space 
scales (constant pressure for the liquid electrolyte), charge neutrality on the relevant time and 
space scales (the double layers are assumed to be infinitesimally small). The four equations for the 
four variables are:  

 = ,e
e

c N
t

= ,e= ,e= ,= ,N= ,= ,e= ,N= ,e= ,= ,= ,= ,N= ,= ,= ,N= ,N= ,= ,= ,= ,N= ,= ,= ,= ,N= ,= ,N= ,N= ,  (1) 

  

 = ,s
s

c N
t

= ,s= ,s= ,= ,N= ,= ,s= ,N= ,s= ,= ,= ,= ,N= ,= ,= ,N= ,N= ,= ,= ,= ,N= ,= ,= ,= ,N= ,= ,N= ,N= ,  (2) 

  
 0 = ,ej0 = ,e0 = ,e0 = ,j0 = ,j0 = ,0 = ,0 = ,j0 = ,0 = ,0 = ,j0 = ,0 = ,0 = ,j0 = ,  (3) 

  
 0 = .sj0 = .s0 = .s0 = .j0 = .j0 = .sjs0 = .s0 = .j0 = .s0 = .0 = .0 = .j0 = .0 = .0 = .j0 = .0 = .0 = .j0 = .  (4) 

 ,e sNN  are the lithium ion fluxes and ,e sjj  are the electric current densities. The first two equations 
are the ion mass transport equations, the remaining ones are the dynamic forms of the charge 
neutrality conditions. The model stipulates the following dependence of the currents and of the 
fluxes on the system state fields:  

 1
= ,e

e e e e e
e

t
j c

F cF ce e e e e= ,j c= ,= ,j c= ,e e e e ej ce e e e e= ,e e e e e= ,j c= ,e e e e e= ,
F ce e e e eF ce e e e ee e e e ej ce e e e eF ce e e e ej ce e e e e= ,e e e e e= ,j c= ,e e e e e= ,
F c

= ,e e e e e= ,j c= ,e e e e e= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,
eF cF c

= ,e e e e e= ,e e e e e= ,= ,j c= ,e e e e ej ce e e e e= ,e e e e e= ,j c= ,e e e e e= ,
F ce e e e eF ce e e e ee e e e ej ce e e e eF ce e e e ej ce e e e e= ,e e e e e= ,j c= ,e e e e e= ,
F c

= ,e e e e e= ,j c= ,e e e e e= ,= ,= ,j c= ,= ,j c= ,= ,e e e e e= ,j c= ,e e e e e= ,
F ce e e e eF ce e e e ee e e e ej ce e e e eF ce e e e ej ce e e e e= ,e e e e e= ,j c= ,e e e e e= ,
F c

= ,e e e e e= ,j c= ,e e e e e= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,
1 t1

j c= ,j c= ,
t

j c= ,j c= ,
t

j c= ,j c= ,= ,j c= ,j c= ,j c= ,j c= ,j c= ,j c= ,ej c= ,j c= ,ej ce= ,e= ,j c= ,e= ,j c= ,j c= ,= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,j c= ,= ,e= ,j c= ,e= ,= ,j c= ,j c= ,j c= ,j c= ,j c= ,  (5) 

  
 = ,s s sj = ,s s s= ,s s s= ,= ,s s s= ,s s s= ,= ,= ,j = ,= ,= ,  (6) 

  

 = ,e e e e
t

N D c j
F

= ,e e e e= ,e e e e= ,= ,N D c j= ,= ,N D c j= ,e e e eN D c je e e e= ,e e e e= ,N D c j= ,e e e e= ,
Fe e e eFe e e ee e e eN D c je e e eFe e e eN D c je e e e= ,e e e e= ,N D c j= ,e e e e= ,
F

= ,e e e e= ,N D c j= ,e e e e= ,= ,= ,N D c j= ,= ,N D c j= ,
tt

N D c j= ,N D c j= ,
t

N D c j= ,N D c j= ,N D c j= ,N D c j= ,N D c j= ,N D c j= ,N D c j= ,N D c j= ,= ,N D c j= ,N D c j= ,N D c j= ,N D c j= ,  (7) 

  
 = ,s s sN D c= ,s s s= ,s s s= ,= ,N D c= ,= ,s s s= ,N D c= ,s s s= ,= ,N D c= ,N D c= ,N D c= ,N D c= ,N D c= ,N D c= ,N D c= ,N D c= ,  (8) 
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 where ee  is the electrical conductivity of the electrolyte, ss  is the electrical conductivity the 
active material, ,e sD  denotes the litium ion diffusion coefficient in the respective phase, tt  is the 
lithium ion electrolyte transference number and ee  is the lithium ion chemical potential in the 
electrolyte. 

Since the fields and the corresponding equations are defined in different domains, four 
boundary conditions should be added on the boundaries between the domains to make the PDE 
problem closed. These conditions are:  

 0= ,s sej n i0= ,0= ,0j n i0j n i0= ,j n i= ,0= ,0j n i0= ,0= ,j n i= ,j n i= ,= ,j n i= ,j n i= ,  (9) 
  

 0= ,e sej n i0= ,0= ,0j n i= ,j n i= ,= ,j n i= ,j n i= ,= ,j n i= ,j n i= ,  (10) 
  

 0= ,s se
iN n
F

= ,s se F
= ,

F
= ,0= ,= ,0= ,0i0= ,0= ,0i0i0  (11) 

  

 0= ,e se
iN n
F

= ,e se F
= ,

F
= ,0= ,= ,0= ,0i0= ,0= ,0i0i0  (12) 

 where senn  is the normal unit vector on the boundary, and 0i  is the local density of the faradaic 
current corresponding to the lithium oxidation/reduction in (de-)intercalation. 0i  is defined by the 
reaction kinetics and depends on the local ec , ee , sc  and ss . We generally assume the 
Butler-Volmer kinetics of the type used in [2]:  

 0 00= 2 ( ) sinh ,
2

max
e s s s

Fi i c c c c
RT
F= 2 ( ) sinh ,e s s s= 2 ( ) sinh ,e s s s= 2 ( ) sinh ,= 2 ( ) sinh ,i i c c c c= 2 ( ) sinh ,= 2 ( ) sinh ,e s s s= 2 ( ) sinh ,i i c c c c= 2 ( ) sinh ,e s s s= 2 ( ) sinh ,= 2 ( ) sinh ,F= 2 ( ) sinh ,F= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,F= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,

2RT2RT
= 2 ( ) sinh ,

2
= 2 ( ) sinh ,

2
= 2 ( ) sinh ,

RT
= 2 ( ) sinh ,

RT
= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,= 2 ( ) sinh ,  (13) 

 but the applicability of the paper’s results is not restricted only to this functional form, except for 
the cases where we explicitly mention it. The reaction overpotential  can be calculated through 
the potentials on the interface and the open circuit potential (OCV) 0U  according to the formula  

 0= ( )s s eU c= ( )s s e0s s e0= ( )s s e= ( )0= ( )0s s e0= ( )0= ( )U c= ( )0= ( )0U c0= ( )0= ( )s s e= ( )U c= ( )s s e= ( )0= ( )0s s e0= ( )0U c0= ( )0s s e0= ( )0  (14) 
 when one measures the chemical potential of lithium ions in the electrolyte relative to the metallic 
lithium. 

For the mathematical completeness of the problem, additional boundary conditions are 
needed to specify the cell interaction with its environment, for example, the ones between the 
domains and the current collector. They can include the conditions specifying the charging 
protocols of the cells, like CC, CV or more complex ones. These conditions are not important for 
the understanding of the paper material, and we do not write them down here. The main features of 
the model important for the paper’s topic are graphically summarized in figure 1, section (A).  

Let us turn our attention to the DFN model. Here, the electrode is treated as a 
microscopically homogeneous composite material, and its phases are not distinguishable. 
Mathematically, it means it is represented by a single domain. The cell state is described by the 
volume-averaged fields ( )av

ec , ( )av
e
( )( )av( )
e  and ( )av

s
( )( )av( )
s  defined on this domain on which PDEs are solved. 

The active material is represented by an effective spherical particle whose radius R  is chosen to 
fit the specific surface area and the porosity of the electrode. Because of this, ion concentration in 
the active material ( , )sc r x( , )( , )c r x( , )  is a function of distance to the sphere center r  and of the location in 
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macroscopic electrode domain xx . 
The microscopic model equations (1), (3), (4) correspond to DFN equations  
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 with constitutive relations (5), (6), (7) transforming into the ones for the spatially averaged fluxes 
and current densities  
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e  are the effective composite material parameters and 

reflect the interaction between the transport phenomena and the microstructure morphology, a  is 
the specific interface area. Equations (2) and (8) preserve their form but for spherically 
symmetrical solutions, with the corresponding boundary condition:  
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 The boundary condition on the sphere interface is the DFN equivalent of (11):  
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 Due to the DFN treatment of the electrode as a single homogenized domain, the other inter-phase 
boundary conditions from the microscopic theory are not needed. The matter and the charge 
exchange between the electrolyte and the active material is described instead by the source terms 
in equations (18), (19), (20). The faradaic current density 0i  is assumed to depend on ( )av

ec , ( )av
e
( )( )av( )
e

, ( )av
s
( )( )av( )
s  and sc  the same way it depends ec , ee , ss  and sc  in the microscopic model. As with 

the microscopic counterpart, additional boundary conditions are needed to make the model 
mathematically closed, which represent the interaction of the electrodes with the current collectors 
and with their environment in general. They are not important for the paper’s topic and are omitted 
here. The graphical summary of the DFN model si given in figure 1, section (B). 

As was mentioned at the beginning of the section, the basic microscopic model is quite 
simple in terms of the number of reactions and processes included, and one can in principle 
consider more sophisticated models by including side reactions, new phases, etc. They can be 
upscaled to corresponding the DFN-type models. In general, an algorithm for such upscaling can 
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be summarized in the following steps: (a) the transport in the electrolyte on the microstructure 
scale is considered to be fast enough to justify its homogenized description, (b) the same is done to 
the electrical conduction in all the phases, (c) the reaction rates are homogenized as well, (d) the 
ion mass transport in the solid active material microstructure is substituted by the mass transport in 
the representative spherical particle. Point (d) is critical since the ion diffusion in the electrodes is 
usually one of the slowest processes and a rate-limiting one. Its homogenization would introduce 
big errors that would keep the models from giving right predictions. We stress in this paper that 
this step is critical for the mathematical consistency of the hierarchical modeling of LIBs. Below, 
in this paper’s new macroscopic model, we will propose to substitute step (d) with a different 
approach. The assumptions behind steps (a), (b) and (c) will still be assumed to hold. 

Keeping this in mind, we can state that the model we will propose can be an alternative not 
only to the particular form of DFN and of the microstructure-resolving model we wrote down here 
but for a class of cell models that include a description of the side reactions, chemistry-mechanics 
coupling, reactions with additional chemical species, etc. One has to ensure, however, that the 
steps (a), (b) are valid. In step (c), the correctness of the reaction description with only the 
volume-averaged rate should be ensured only for the main lithium intercalation reaction. As for the 
side reactions, the possibility of the strong dependence of the rates on the local conditions 
prohibiting the use of simple averaged expressions in homogenized models is, in fact, the area 
where a new model extending DFN can be very instrumental for the battery research, as we 
emphasized in Introduction. 

 
3 Local fluctuations in porous electrodes 

 
In this section, we summarize the important facts about the local fluctuations in the porous 

electrodes that motivated the DFN modification proposed in this paper. 
In [2], Latz and Zausch investigated the cell thermal behavior predictions calculated with 

their microscopic cell model and with the corresponding volume-averaging model. The 
comparison of these models and the details that can not be properly captured by the 
volume-averaging procedure were in the focus, like, for example, the local hot spots. The 
microscopic model is a slightly modified version of the one from section 2, with additional terms 
that represent the non-equilibrium thermodynamics-based coupling of the transport phenomena 
with temperature gradients. However, the inclusion of these gradients influenced the numerical 
predictions presented in [2] very weakly due to the negligible temperature variation on the cell 
scale, and the results relevant for this paper are thus true for the basic isothermal model of 
equations (1)-(8) as well. 

In that study, considerable spatial fluctuations of the overpotential up to the order of 50 mV 
were observed in the microscopic model-based simulations. At the same time, the running average 
agrees remarkably well with the overpotential profile from the counterpart DFN-based simulation 
(figure 7 in [2]). The presence of such fluctuations (and, potentially, of similar fluctuations of other 
physical quantities in the cell) may have important consequences in the battery modeling. 
Whenever there is a process whose dynamics is strongly influenced by the local conditions on the 
microstructure scale, making an accurate theory-based based prediction about the rate of this 
process on the macroscopic scale becomes a nontrivial task requiring knowledge about the local 
fluctuation distribution, especially when the dependence on the local conditions is strongly sharp 
and non-linear. Examples of such processes may include side reactions (like SEI growth or lithium 
plating), mechanical deformations of the particles, etc. They may contribute to the battery aging 
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and thus their accurate analysis is important for the field. 
At the same time, note that the standard DFN model based on equations (15)-(22) can not 

reproduce the desired local overpotential fluctuations. Indeed, the overpotential is an 
interface-related quantity; any solution of the problem (21)-(22) is spherically symmetric by 
construction; consequently, the overpotential is the same on the whole representative particle 
surface. The only spatial dependence appears on the volume-averaged scale. The spatial variation 
in [2], contrary to this, happens on the microstructure scale. To capture it as computationally 
efficiently as calculation with DFN would do, a modification of the model is therefore needed. 

Before we proceed to describe a candidate for such modification, we provide a qualitative 
explanation of the local overpotential fluctuations on an active material particle interface that will 
make the understanding of the mathematical arguments below easier. Let us consider the charging 
of one particle inserted into a homogeneous electrolyte with constant electrical potential. The 
electrolyte homogeneity may be due to high ion diffusivity and electrical conductivity, the exact 
mechanism is not important here. We also assume that one can arbitrarily change the potential 
difference between the particle and the electrolyte, to control the faradaic reaction rate. The exact 
mechanism is not important here as well, as long as it preserves the homogeneity of the electrolyte 
and of the electrical potential. Under such conditions, if one has a constant lithium stoichiometry 
when the charging starts, the faradaic current 0i  is the same along the interface. If one neglects the 
lithium diffusion exchange between the different regions near the surface for a while, the rate of 
change of the average lithium concentration in one such region (denoted by index a ) can be 
written down as  

 0= ,a a

a

c S i
t V

= ,a a= ,a a= ,c Sa ac Sa a i= ,i= ,0= ,0= ,0
a

= ,i= ,0= ,0i0= ,0t V
= ,

t V
= ,

at Va

= ,= ,= ,a a= ,= ,i= ,  (23) 

 where aV  is the region’s volume, aS  is the surface area of the interface between the region and 
the electrolyte. When the particle is not spherical, the regions near the surface with different local 
curvature likely have different local ratios /a aS V , and a concentration difference between them 
will thus begin to emerge. The local OCV will change and, according to formula (13), the 
overpotential will change too. Importantly, a difference between the values of these two quantities 
in the different regions will appear. This will in turn induce the local differences in 0i  affecting 
the rate /ac t . Finally, the diffusion will start to smooth out the concentration difference. These 
three factors (surface curvature variation, the lithium concentration feedback on 0i  and the 
diffusion) drive the amplitude of the concentration variation on the interface in different directions 
until they reach a dynamics equilibrium. 

Importantly, this mechanism can explain the buildup of the differences between different 
locations on the interface of such physical quantities as OCV and overpotential. The fluctuations 
of the latter were visible in the numerical simulations in [2]. Note that for such effect to occur, only 
the non-spherical shape of a single particle is sufficient, and no other microstructure complexities 
are needed. 

 
4 Mathematical theory of the local fluctuations 

 
To provide a more accurate estimate of the role of the particle shape factor we introduced 

above, we have developed a mathematical framework. It will help go beyond the purely qualitative 
analysis and answer a number of questions. First, if the local interfacial fluctuations due to the 
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particle shape are big enough to explain the results in [2]. Second, how the strong spatial 
localization of the fluctuations allows for the applicability of DFN model, which is based on 
volume averaging and whose predictions have been generally proved to be correct. The answers to 
these questions will shed light on the foundations of the reduced-order model we are going to 
introduce. 

Our method is rooted in the accurate analysis of the volume averaging procedure in 
lithium-ion cell models. The homogenization theory is usually used to derive the equations of DFN 
model (like equations (15)-(17)) from the microscopic transport-reaction laws (like equations 
(1)-(4)) [20, 21, 22]. The homogenization theory is a formal mathematical ansatz that 
demonstrates how partial differential equation problems can be upscaled when there is a length- 
and/or timescale separation and how the convergence of the upscaled problem solutions can be 
proved. Its applicability to the macroscopic LIB models construction has some limitations: it can 
not be applied to the mass transport in the active material (thus justifying the introduction of the 
representative spherical particle in DFN). It was shown in [22] with numerical experiments; only a 
numerical model that includes the homogenization for some equations and the exact microscopic 
PDE problem for the slow mass transport gives the solution to which the exact solution converges 
in the scale separation limit. For our framework, we went beyond the standard homogenization 
assumptions and introduced additional conditions on the system, to get more analytical results. We 
have used the homogenization together with other perturbation techniques. The mathematical 
details and the numerical tests will be published separately, here we will present the physical 
motivations and the main results of our theory. 

We started the analysis with listing all the small parameters that are related to the 
homogenization. The first,  

 1
0

= L
L
L  (24) 

 is the ratio of the microstructure length scale L  (for example, the active material particle size) to 
the macroscopic length scale 0L . The latter is not the electrode thickness, but rather the length 
scale on which the composition and the potentials in the electrode vary significantly to affect the 
intercalation reaction rate. As such, 0L  is related to the volume-averaged gradients in the 
electrode and depends on the cell operation conditions, like C-rate, and not only on the electrode 
geometry. One can demonstrate that, with the physically realistic transport parameters of the cells, 

11  almost always remains small. The second small parameter is the ratio of the microscopic time 
scale to the macroscopic one:  

 2 = .micro

macro

= .= .micro= .micro= .= .
macro

= .= .= .= .= .= .micro= . (25) 

 The definition of the time scales depends, again, on the whole operation regime of the cell. It can 
be shown that it scales with the averaged faradaic current density 0i  like  

 0
2

| |

cr

i
i2
| || |i| |
i

0| |0| |0| |i| |0| |0i0| |0

i
 (26) 

 where cri  is the critical current density above which the transport limitations blocks charge or 
discharge of the active material particle. The situations in which the current is relatively close to 

cri  are realistic, for example, in the fast charging protocols. Therefore, assuming 22  to be small 
may be not correct. From the formal mathematical point of view, it is exactly the condition that 
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prevents the homogenization ansatz from being fully applicable to LIBs. Physically, it means that 
the active material lithium transport is slow and rate-limiting. 

For our extensions of the standard DFN, two additional approximations should be 
introduced. The first one can be associated the parameter  

 3 = interparticleS
S3 = interparticleSinterparticleSinterparticle

S
 (27) 

 being small, where S  is the particle surface area and interparticleS  is the inter-particle contact area 
at which a direct lithium exchange between the particles not mediated by the electrolyte is 
possible. The condition 3 13 1 is a mathematical expression of the fact that the microstructure 
can be reasonably good split into separate particles. 

The smallness of 11  and 33  allows to expand the solution of the microscopic model into 
into perturbation series  

 (0) (1)= ...,e e e
(0) (1)= ...,(0) (1)= ...,(0) (1)

e e e= ...,e e e= ...,(0) (1)= ...,(0) (1)= ...,(0) (1)
e e e= ...,e e e= ...,  

 (0) (1)= ...,e e ec c c(0) (1)= ...,(0) (1)= ...,(0) (1)
e e e= ...,e e e= ...,(0) (1)c c c(0) (1)= ...,c c c= ...,(0) (1)= ...,(0) (1)c c c(0) (1)= ...,(0) (1)= ...,e e e= ...,c c c= ...,e e e= ...,  

 (0) (1)= ...,s s s
(0) (1)= ...,(0) (1)= ...,(0) (1)

s s s= ...,s s s= ...,  
 (0) (1)= ...s s sc c c(0) (1)= ...(0) (1)= ...(0) (1)

s s s= ...s s s= ...(0) (1)c c c(0) (1)= ...c c c= ...(0) (1)= ...(0) (1)c c c(0) (1)= ...(0) (1)= ...s s s= ...c c c= ...s s s= ... (28) 
 where the quantities with index 0 correspond to the zeroth-order terms, the quantities with index 1 
are linear with respect to 11  and 33 , and so on. Following our remarks above, we stress that the 
zeroth-order terms are not the solutions of the fully homogenized version of the microscopic cell 
model, but rather of a partially homogenized one. Namely, (0)

e
(0)
e , (0)

s
(0)
s  and (0)

ec  are the solution of 
the equations looking formally as (15)-(17) but with different source terms. Because of the 
smallness of 3 , (0)

sc  splits into the separate solutions of the diffusion equations for the 
independent particles. These equations are mathematically connected to each other only through 
the common boundary condition parameters (0)

e
(0)
e , (0)

s
(0)
s  and (0)

ec . 
The latter representation of the solution is identical to the one in the thought experiment 

charging we used in the previous section to explain how the surface fluctuations can emerge in just 
one active material particle. Combining that explanation with our mathematical analysis, we come 
to the conclusion that, even in the justifiable semi-homogenization limit ( 1 3, 01 3, 01 3, 01 3, 0 ), the cell 
microstructure can induce the localized fluctuations on the particle interface. 

The second approximation outside of the traditional homogenization conditions we employ 
in the analysis is the linear approximation for the intercalation reaction rate dependence on the 
lithium concentration in the active material:  

 (0)
0 0= ( ).si i c c= ( ).= ( ).= ( ).i i c c= ( ).= ( ).s= ( ).s= ( ).= ( ).i i c c= ( ).= ( ).s= ( ).i i c c= ( ).s= ( ).= ( ).= ( ).i i c c= ( ). (29) 

 Mathematically, such linear rate function can be obtained by resolving the exact one (like formula 
(13)) into its Taylor series and dropping all the terms after the linear one. The resulting PDE 
problem is  

 = ( ),s
s s

c D c
t

= ( ),sc = ( ),s s= ( ),s s= ( ),= ( ),D c= ( ),= ( ),s s= ( ),D c= ( ),s s= ( ),= ( ),= ( ),
t
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 cc  is the reference concentration that can be chosen in multiple ways, to ensure that the overall 
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reaction rate is predicted accurately. Below, we will give an example of one such choice. It’s worth 
noticing that the accuracy of the linearization can be associated with another smallness of another 
parameter and, through this, with the overall cell dynamics, similarly to 11  and 22 . The PDE 
problem in form (30) allows one to proceed much further in theoretical estimation how big the 
fluctuations are than the general dynamic laws (2), (8) and (11) would. Also, it provides valuable 
insights into the local reaction-diffusion dynamics. When (0)

0i  and  do not depend on time, the 
solution of (30) converges to a stationary gradient profile after a transient relaxation period. Two 
important dimensionless parameters emerge:  

 0| |= ,
cr

i
i
| |0| |0= ,= ,0= ,0| |= ,| |0| |0= ,0| |0  (31) 

  
 = / .sL FD= / .s= / .s= / .= / .L FD= / . (32) 

 They control the fluctuation scale in the stationary sc  profile, together with the particle’s shape. 
In real life cell dynamics, the parameters of system (30) can change with time, the same is true for 

 and . We, however, assume that the dynamic solution tends to be close and gravitates to the 
stationary one. It is possible to derive approximate formulas to estimate how big the variation of 
the concentration in the stationary profile is. Here we will concentrate on the aspects of this 
dependence that are relevant for the topic of this paper. 

Firstly, we concentrate on the important, physically feasible case 00 , in which the 
standard deviation of lithium concentration on the particle surface behaves like  
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 mc  is the maximum possible concentration of lithium in the active material, the exact 
proportionality coefficient depends on the particle shape and, naturally, becomes small when the 
particle is chosen to be close to sphere in shape. Recalling the argument about the ratio of the 
reaction current to the critical current from the discussion about the parameter 22  above and the 
definition of , one can see that the variation of sc  is not generally bound to be small relative to 

mc . Even if, after a certain amplitude of |s Sc |s S|s S|cs Scs S , the linearization assumption in problem (30) stops 
being accurate, our analysis provides strong mathematical argument for the conjecture that the 
particle shape-induced local fluctuation in the electrodes are not negligible, thus answering one of 
the questions we posed at the beginning of this section. 

The second important aspect of the behaviour of the solution of problem (30) is its 
dependence on parameter . It can be shown that, when , | 0s Sc | 0s S| 0s S| 0cs Scs S| 0 ; more precisely, 

| 1/s Sc | 1/s S| 1/s S| 1/cs Scs S| 1/ . The numerical results presented below indicate that an inverse (although not 
necessary an inversely proportional) relation between |s Sc |s S|s S|cs Scs S  and  holds for spheroid-like 
particle shapes inside a wide window of parameter  values, not only in the asymptotic case. 

In the numerical section, we will also look at the dependence of |s Sc |s S|s S|cs Scs S  on . It should be 
noted that, in the simulation of the cell with the parameters close to the realistic ones, it is hard to 
track the  dependence separately from the  dependence in general. At first, looking at the 
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definition (31), one may expect the  dependence to be identical to the current dependence. But 
in reality  and  both dynamically depend on the current:  is effectively a slope of the 
reaction kinetics vs. sc ; in the case of the Butler-Volmer formula (13), for example, it depends on 
the overpotenial, which, in turn, is conditioned on the current. The above mentioned case 00  
is the one in which the role of  can be neglected, and one can simply state that |s Sc |s S|s S|cs Scs S  grows 
with 0| |i . In the numerical simulation experiments, we will investigate exactly this case. 

The answer to the second question from the beginning of this section, about the influence 
of our findings to the applicability of DFN models, can be stated as follows. The mathematical 
form and the physical meaning of the effective parameters of the volume-averaging equations of 
DFN (15)-(17) are accurate within physically reasonable assumptions ( 1 3, 01 3, 01 3, 01 3, 0 ). The volume 
source terms, however, do not necessary evolve according to the DFN predictions. Our theory 
predicts only that, for arbitrary particle shapes, the discrepancy between the volume averaged 
sources in the DFN and the microscopic model should generally grow with parameter , which is 
not generally small. Interestingly, the results in [2] and the numerical simulations presented below 
in this paper indirectly support the conjecture about the closeness between the DFN source terms 
and the ones due to the exact solution, by demonstrating the good agreement between the 
volume-averaged overpotentials, OCV, surface lithium concentrations and the corresponding 
DFN values. 

 
5 Reduced-order model 

 
5.1 Motivation for the model choice 

 
To propose a DFN modification, we first make a list of the important requirements that the 

model in question should desirably meet, based on the analysis in the previous sections:   
    • the method should preserve the homogenized equations of DFN for the processes for 

which the homogenization is accurate;  
    • the active material lithium dynamics should be represented as the one of an ensemble 

of isolated active material particles interacting with the homogeneous electrolyte and electric 
potential;  

    • the predicted volume-averaged faradaic current dynamics should be close to the ones 
obtained in the microscopic model calculations;  

    • the lithium concentration profiles in the models should generally be close to the 
stationary solutions of PDE problem (30);  

    • the model should predict the interfacial variations of the physical quantities of 
interest, at least in a statistical sense (like the spatial standard deviations, other statistical moments, 
etc.);  

    • the model should be comparable with DFN in terms of computational efficiency.  
 
The effective spherical particle microstructure representation in DFN is exactly the 

component that reduces the computational intensity of modeling diffusion in more complex 
domains. One can treat it not as a physical object but as a mathematical abstraction, a 
reduced-order representation of the diffusion equation PDE problem that captures some basic 
characteristics of the solution at the expense of the others. We can choose another such 
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representation that meets the requirements listed above. A good candidate is the discrete 
approximation of PDEs obtained with Galerkin method. The method is widely used in the 
numerical mathematics, in particular in finite element method (FEM) applications. One can learn 
about the details in the FEM literature (for example in [25]). 

In essence, Galerkin method substitutes a differential equation over the set of continuous 
functions with a system of equations over a finite set of variables. The functions themselves are 
approximated by superpositions of a number of basis functions. In this sense, Galerkin’s ansatz is a 
problem order reduction. When one has a prior information about the solution one can choose a 
small basis set that gives an accurate solution representation at a small computational cost. 

Since we know that what we need to reproduce well are the stationary solutions of problem 
(30), we can choose the basis functions that capture the sc  profiles in these solutions in typical 
active material particles. Important notes should be done here. In FEM applications of Galerkin 
method, a set of basis functions (finite elements) is usually chosen that accurately reproduces the 
complete function with necessary numerical resolution, the elements being usually localized on 
the numerical grid cells. Contrary to this, we are satisfied with the set that only captures the 
necessary integral characteristics of the solution. A good set will be proposed and tested in the 
numerical section below. 

An important argument for the method’s choice is that, in principal, the Galerkin’s 
approach is supported by the mathematical theorems about the solution convergence and stability, 
the details to be found in the literature. It ensures that, if the solution’s accuracy is not satisfactory, 
one can always fix it by adding additional basis functions. In our investigation of the transition 
from the microscopic cell models to the homogenization-based ones, we try to follow the rigorous 
derivation whenever it’s possible, listing all the mathematiclal approximations we make, and the 
transition from the exact diffusion equation to the Galerkin’s equations is controlled by the known 
error estimates. 

 
5.2 Particle ion transport equations in the reduced-order model 

 
Here we are going to outline the formal derivation of the model representation of PDE 

problem (30) using Galerkin method, without giving the mathematical explanation of the steps. 
One has to rewrite the problem in the so-called weak formulation. First, the equation is multiplied 
by an arbitrary function ( )x( )( )x( )( )( )x( ) , then integrated over the problem domain G  (which in this context 
is the space occupied by one particle, not the electrode or the whole cell) and transformed using the 
Gauss’s divergence theorem:  

 = .s
s s s sG G G

cdx dxD c dS D c
tG G GG G G

dx dxD c dS D cdx dxD c dS D c
G G GG G GG G GG G G

cdx dxD c dS D cdx dxD c dS D c= .dx dxD c dS D c= .sdx dxD c dS D cscdx dxD c dS D cc = .s s s s= .s s s s= .
G G Gs s s sG G Gs s s sdx dxD c dS D c= .dx dxD c dS D c= .s s s sdx dxD c dS D cs s s s= .s s s s= .dx dxD c dS D c= .s s s s= .s s s sG G Gs s s sG G Gs s s s= .dx dxD c dS D c= .s s s sdx dxD c dS D cs s s s= .s s s s= .dx dxD c dS D c= .s s s s= .dx dxD c dS D c= .dx dxD c dS D c= .
G G GtG G GtG G GG G G
dx dxD c dS D c= .dx dxD c dS D c= .

tG G GtG G G
dx dxD c dS D cdx dxD c dS D c= .dx dxD c dS D c= .sdx dxD c dS D cs

G G G
dx dxD c dS D c= .dx dxD c dS D c= .= .dx dxD c dS D c= .= .dx dxD c dS D c= .dx dxD c dS D c= .= .dx dxD c dS D c= .dx dxD c dS D c= .  (34) 

 Substituting the boundary condition from (30) into (34), one obtains the weak formulation:  

 (0)
0

1 1= ( ) ( ) .s
s s sG G G G

cdx dxD c dS c c dS i
t F F

1 1
t F FG G G Gt F FG G G G

(0)1 1= ( ) ( ) .(0)= ( ) ( ) .(0)
0= ( ) ( ) .0dx dxD c dS c c dS i1 1dx dxD c dS c c dS i1 1= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .1 1= ( ) ( ) .1 1dx dxD c dS c c dS i1 1= ( ) ( ) .1 1

G G G Gt F FG G G Gt F FG G G Gt F FG G G G 0= ( ) ( ) .0= ( ) ( ) .0= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .
t F F

= ( ) ( ) .
t F F

= ( ) ( ) .
G G G Gt F FG G G GG G G GG G G G
dx dxD c dS c c dS idx dxD c dS c c dS icdx dxD c dS c c dS idx dxD c dS c c dS i= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .sdx dxD c dS c c dS iscdx dxD c dS c c dS ic 1 1= ( ) ( ) .= ( ) ( ) .s s s= ( ) ( ) .dx dxD c dS c c dS i1 1dx dxD c dS c c dS i1 1= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .1 1= ( ) ( ) .1 1dx dxD c dS c c dS i1 1= ( ) ( ) .1 1= ( ) ( ) .s s s= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .s s s= ( ) ( ) .

t F F
= ( ) ( ) .

t F F
= ( ) ( ) .s s st F Fs s s= ( ) ( ) .s s s= ( ) ( ) .

t F F
= ( ) ( ) .s s s= ( ) ( ) .

G G G Gt F FG G G Gs s sG G G Gs s st F Fs s sG G G Gs s s= ( ) ( ) .= ( ) ( ) .s s s= ( ) ( ) .= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .= ( ) ( ) .s s s= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .s s s= ( ) ( ) .
t F F

= ( ) ( ) .
t F F

= ( ) ( ) .s s st F Fs s s= ( ) ( ) .s s s= ( ) ( ) .
t F F

= ( ) ( ) .s s s= ( ) ( ) .
G G G Gt F FG G G Gs s sG G G Gs s st F Fs s sG G G Gs s sdx dxD c dS c c dS i= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .
G G G Gt F FG G G Gt F FG G G G

= ( ) ( ) .
G G G G
dx dxD c dS c c dS i= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .

t F F
= ( ) ( ) .

t F F
= ( ) ( ) .

G G G Gt F FG G G G
dx dxD c dS c c dS idx dxD c dS c c dS i= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .sdx dxD c dS c c dS is = ( ) ( ) .= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .

t F F
= ( ) ( ) .

t F F
= ( ) ( ) .

G G G Gt F FG G G G
= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .1 11 1dx dxD c dS c c dS i1 1= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .1 1= ( ) ( ) .1 1dx dxD c dS c c dS i1 1= ( ) ( ) .1 1= ( ) ( ) .= ( ) ( ) .dx dxD c dS c c dS i= ( ) ( ) .

t F F
= ( ) ( ) .

t F F
= ( ) ( ) .

G G G Gt F FG G G G
 (35) 

 At this point, to write down the final equations in the closed form, one has to specify the reference 
concentration cc . We set it to be an average surface concentration:  

 = .sGr

dSc c
S

= .s= .s= .dSc c= .c c= .= .c c= .= .
Gr

= .c c= .
S

= .c c= .c c= .= .dSc c= .c c= .= .c c= .= .
G

= .c c= .
S

 (36) 

 S  is the part of the particle surface area exposed to the faradaic reaction with the electrolyte, and 
the integration over rGrGrGr  means the integration over this part of the interface. This choice will 
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make it easy to analytically express the galvanostatic particle charge constraint in the next section 
numerical simulation and will ensure an accurate total current representation, but it is not the only 
possible choice. Let us assume that, in this section, (0)

0i  and  on the passive interface are equal 
zero. Note that it means, some surface integrals below are equal when taken both over GG  and 
over rGrGrGr . In the next step, one has to choose a set of basis functions ( )i x( )i ( )x( )( )( )x( ) , 1 i ni n . The 
representation of the lithium density as a linear combination of these functions =s i ii

c cs i iis i iis i ic cs i ic cs i is i i  is 
formally substituted into the weak formulation, with the arbitrary function ( )x( )( )x( )( )( )x( )  changing to one 
of ii .:  

 = ( )i i
j i j i s j i iG G Gi i i

cdx dx c dxD c
t tj i j i s j i idx dx c dxD cj i j i s j i idx dx c dxD cj i j i s j i iG G Gi i iG G Gi i iG G G

dx dx c dxD cj i j i s j i iG G Gj i j i s j i iG G Gj i j i s j i idx dx c dxD cdx dx c dxD cj i j i s j i idx dx c dxD cj i j i s j i i
i icdx dx c dxD cdx dx c dxD ci idx dx c dxD ci icdx dx c dxD cc

j i j i s j i i= ( )j i j i s j i i= ( )dx dx c dxD c= ( )dx dx c dxD c= ( )j i j i s j i idx dx c dxD cj i j i s j i i= ( )j i j i s j i i= ( )dx dx c dxD c= ( )j i j i s j i i= ( )dx dx c dxD c= ( )dx dx c dxD c= ( )i ii idx dx c dxD ci ii idx dx c dxD c= ( )dx dx c dxD c= ( )i idx dx c dxD ci i

G G Gi i iG G Gi i iG G GG G Gt tG G Gi i it ti i iG G Gi i iG G Gt tG G Gi i iG G Gj i j i s j i iG G Gj i j i s j i iG G Gj i j i s j i idx dx c dxD cj i j i s j i idx dx c dxD cj i j i s j i ij i j i s j i it tj i j i s j i iG G Gt tG G Gj i j i s j i iG G Gj i j i s j i it tj i j i s j i iG G Gj i j i s j i idx dx c dxD cdx dx c dxD ci idx dx c dxD ci i
j i j i s j i i= ( )j i j i s j i i= ( )

G G Gj i j i s j i iG G Gj i j i s j i idx dx c dxD c= ( )dx dx c dxD c= ( )j i j i s j i idx dx c dxD cj i j i s j i i= ( )j i j i s j i i= ( )dx dx c dxD c= ( )j i j i s j i i= ( )j i j i s j i it tj i j i s j i iG G Gt tG G Gj i j i s j i iG G Gj i j i s j i it tj i j i s j i iG G Gj i j i s j i idx dx c dxD c= ( )dx dx c dxD c= ( )= ( )dx dx c dxD c= ( )dx dx c dxD cdx dx c dxD ci idx dx c dxD ci idx dx c dxD cdx dx c dxD c= ( )dx dx c dxD c= ( )i idx dx c dxD ci idx dx c dxD cdx dx c dxD c= ( )dx dx c dxD c= ( )  

 (0)
0

1 1 .j i j i i jG G G Gri

dSdS dS c dS i
F S F
1 11 1
F S F
1 1
F S F
1 11 11 1
F S FF S FF S FF S F
1 1dS1 1dS1 11 1 (0)dS dS c dS i1 11 1dS1 1dS dS c dS i1 1dS dS c dS i1 1dSdS dS c dS idS1 1dS1 1dS dS c dS i1 1dS1 11 11 11 1dS dS c dS i1 1dS dS c dS i1 1

G G G GrF S FG G G GF S FG G G GrF S FrG G G GG G G GF S FG G G G 0 .dS dS c dS ij i j i i jdS dS c dS ij i j i i j 0 .j i j i i jG G G Gj i j i i jG G G Gj i j i i jdS dS c dS ij i j i i jdS dS c dS ij i j i i j
(0)dS dS c dS idS dS c dS ij i j i i jdS dS c dS ij i j i i jj i j i i jj i j i i jdS dS c dS ij i j i i jj i j i i jF S Fj i j i i jG G G GF S FG G G Gj i j i i jG G G Gj i j i i jF S Fj i j i i jG G G Gj i j i i jdS dS c dS idS dS c dS i

G G G GF S FG G G GF S FG G G GG G G GG G G GF S FG G G GG G G GG G G GF S FG G G GG G G Gj i j i i jG G G Gj i j i i jG G G GF S FG G G Gj i j i i jG G G Gj i j i i jF S Fj i j i i jG G G Gj i j i i jdS dS c dS ij i j i i jdS dS c dS ij i j i i jj i j i i jj i j i i jG G G Gj i j i i jj i j i i jdS dS c dS ij i j i i jj i j i i jF S Fj i j i i jj i j i i jG G G Gj i j i i jF S Fj i j i i jG G G Gj i j i i jdS dS c dS idS dS c dS i1 11 11 1dS dS c dS i1 1dS dS c dS i1 11 11 11 11 1dS dS c dS i1 11 11 1dS dS c dS i1 11 1dS dS c dS i1 1dS dS c dS i1 1dS dS c dS i1 1dS dS c dS i1 1
F S FG G G GF S FG G G GG G G GF S FG G G G

dS dS c dS ij i j i i jdS dS c dS ij i j i i jj i j i i jj i j i i jdS dS c dS ij i j i i jj i j i i jF S Fj i j i i jG G G GF S FG G G Gj i j i i jG G G Gj i j i i jF S Fj i j i i jG G G Gj i j i i jdS dS c dS i
F S FF S FF S FF S FG G G GF S FG G G GG G G GF S FG G G GF S FF S FG G G GF S FG G G GG G G GF S FG G G Gj i j i i jG G G Gj i j i i jF S Fj i j i i jG G G Gj i j i i jdS dS c dS i
F S F

dS dS c dS ij i j i i jdS dS c dS ij i j i i jdS dS c dS i
F S FG G G GF S FG G G Gj i j i i jdS dS c dS ij i j i i jdS dS c dS ij i j i i jF S Fj i j i i jF S Fj i j i i jG G G GF S FG G G Gj i j i i jG G G Gj i j i i jF S Fj i j i i jG G G Gj i j i i jdS dS c dS idS dS c dS i  (37) 

 Let us introduce typical diffusivity sDsD , typical length scale L , typical  as , typical current 
density ii , particle volume V ; a set of matrices:  

 = ,ji j iG

dxA
V

= ,= ,ji j i= ,ji j i= ,
Gji j iGji j i

dx
Vji j iVji j i= ,ji j i= ,
V

= ,ji j i= ,= ,ji j i= ,ji j i= ,  (38) 

  

 = ,i
ji jG

dxB
V t

= ,= ,ji j= ,ji j= ,
Gji jGji j

dx
V tji jV tji j= ,ji j= ,
V t

= ,ji j= ,= ,= ,= ,ji j= ,
V t

= ,
V t

= ,ji jV tji j= ,ji j= ,
V t

= ,ji j= ,= ,= ,= ,i= ,i= ,
V t

= ,
V t

= ,
V t

= ,= ,= ,= ,= ,= ,= ,i= ,  (39) 

  

 2= ( ),s
ji j iG

s

DdxM L
V D

= ( ),ji j i= ( ),ji j i= ( ),2= ( ),2= ( ),2
ji j i= ( ),ji j i= ( ),
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V Dji j iV Dji j i= ( ),ji j i= ( ),
V D

= ( ),ji j i= ( ),= ( ),= ( ),= ( ),= ( ),= ( ),ji j i= ( ),ji j i= ( ),= ( ),2= ( ),2
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s
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sV Ds
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= ;ji j i j i= ;

G G GS S SG G Gji j i j iG G Gji j i j iS S Sji j i j iG G Gji j i j i
rS S Sr

= ;ji j i j i= ;ji j i j i= ;
S S Sji j i j iS S Sji j i j i= ;ji j i j i= ;
S S S

= ;ji j i j i= ;
G G GS S SG G Gji j i j iG G Gji j i j iS S Sji j i j iG G Gji j i j i= ;dS dS dS= ;ji j i j i= ;= ;= ;= ;= ;ji j i j i= ;= ;ji j i j i= ;ji j i j iS S Sji j i j i= ;ji j i j i= ;

S S S
= ;ji j i j i= ;

G G GS S SG G Gji j i j iG G Gji j i j iS S Sji j i j iG G Gji j i j i  (41) 

 and a tuple  

 
(0)

( ) 0= .S
j jG

idSa
S i

(0)

= .= .= .j j= .j j= .dS
S ij jS ij j

(0)

= .i(0)
0i0i0

j j= .j j= .
S ij jS ij j= .= .= .j j= .j j= .j j= .

Gj jGj jS ij jS ij j= .0= .0= .0i0i0
j j= .j j= .

S ij jS ij j= .= .= .j j= .= .j j= .j j= .
S ij jS ij j= .= .0= .0= .j j= .= .= .= .= .0= .0= .0

S i
= .

S i
= .= .0= .0  (42) 

 With these notations, one can rewrite the set of equations (37) as  

 ( ) ( )
2= .S Si s

ji ji i ji i ji i j
i i i i

dc D S SiA B c M c A c a
dt L FV FV

S SiS Si
ji ji i ji i ji i j= .ji ji i ji i ji i j= .

i i i i

dc Di sdc Di sA B c M c A c aA B c M c A c a= .A B c M c A c a= .i sA B c M c A c ai s= .i s= .A B c M c A c a= .i s= .ji ji i ji i ji i jA B c M c A c aji ji i ji i ji i j= .ji ji i ji i ji i j= .A B c M c A c a= .ji ji i ji i ji i j= .dc DA B c M c A c adc Di sdc Di sA B c M c A c ai sdc Di s

dt L FV FVji ji i ji i ji i jdt L FV FVji ji i ji i ji i j
i i i idt L FV FVi i i i

S Si= .( ) ( )= .( ) ( )
ji ji i ji i ji i j2ji ji i ji i ji i j2= .ji ji i ji i ji i j= .2= .2ji ji i ji i ji i j2= .2

dc Di sdc Di s S Si( ) ( )S Si( ) ( )( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )A B c M c A c a( ) ( )A B c M c A c a( ) ( )= .A B c M c A c a= .= .A B c M c A c a= .= .A B c M c A c a= .= .A B c M c A c a= .( ) ( )= .( ) ( )A B c M c A c a( ) ( )= .( ) ( )( ) ( )S S( ) ( )A B c M c A c a( ) ( )S S( ) ( )i sA B c M c A c ai s= .i s= .A B c M c A c a= .i s= .= .ji ji i ji i ji i j= .A B c M c A c a= .ji ji i ji i ji i j= .2= .2ji ji i ji i ji i j2= .2A B c M c A c a2= .2ji ji i ji i ji i j2= .2
i sdc Di sA B c M c A c ai sdc Di s S SiA B c M c A c aS Si( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )A B c M c A c a( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )

dt L FV FVji ji i ji i ji i jdt L FV FVji ji i ji i ji i j2ji ji i ji i ji i j2dt L FV FV2ji ji i ji i ji i j2

S SiA B c M c A c a= .A B c M c A c a= .= .A B c M c A c a= .( ) ( )= .( ) ( )A B c M c A c a( ) ( )= .( ) ( )= .ji ji i ji i ji i j= .A B c M c A c a= .ji ji i ji i ji i j= .S SiA B c M c A c aS SiS SiS SiS Si( ) ( )S Si( ) ( )( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )( ) ( )A B c M c A c a( ) ( )( ) ( )= .( ) ( )A B c M c A c a( ) ( )= .( ) ( )( ) ( )S S( ) ( )A B c M c A c a( ) ( )S S( ) ( )( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )A B c M c A c a( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )S Si( ) ( )S Si( ) ( )( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )A B c M c A c a( ) ( )A B c M c A c a( ) ( )= .A B c M c A c a= .( ) ( )= .( ) ( )A B c M c A c a( ) ( )= .( ) ( )( ) ( )S S( ) ( )A B c M c A c a( ) ( )S S( ) ( )S SiA B c M c A c aS Si( ) ( )S Si( ) ( )A B c M c A c a( ) ( )S Si( ) ( )( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )A B c M c A c a( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )dc Di sdc Di sdc Di sA B c M c A c a= .A B c M c A c a= .i sA B c M c A c ai s= .i s= .A B c M c A c a= .i s= .i sdc Di sA B c M c A c ai sdc Di s S Si( ) ( )= .( ) ( )= .( ) ( )( ) ( )S S( ) ( )S Si( ) ( )S Si( ) ( )( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )( ) ( )A B c M c A c a( ) ( )( ) ( )= .( ) ( )A B c M c A c a( ) ( )= .( ) ( )( ) ( )S S( ) ( )A B c M c A c a( ) ( )S S( ) ( )( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )A B c M c A c a( ) ( )S S( ) ( )S Si( ) ( )S S( ) ( )  (43) 

 
There is a certain freedom in the choice of the basis functions. In general case, using 

functions explicitly depending on time ( / 0i t/ 0/ 0i / 0t/ 0 ) may be beneficial for accurate 
representations of transient processes in the active material particles. Here we neglect the time 
dependence of ii , hence everywhere = 0jiB . The choice of ii  that helps build an accurate yet 
efficient cell model, will be discussed below in the numerical simulation section. In this theoretical 
section, we will demonstrate how imposing certain restrictions on ii  allows rewriting (43) in a 
form more suitable for understanding of the physical meaning of the terms and of the way the 
equations encode or compress the information about the local fluctuations. To this end, we chose 
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the basis functions to be dimensionless, to make the matrices and the tuple dimensionless. Then, 
we fix the particle length scale according to the rule = /L V S  and the basis functions dependence 
on L :  

 (0)( ) ( / )i ix x L( ) ( / )i i( ) ( / )i i( ) ( / )( ) ( / )x x L( ) ( / )( ) ( / )i i( ) ( / )x x L( ) ( / )i i( ) ( / )( ) ( / )x x L( ) ( / )( ) ( / )i i( ) ( / )i i( ) ( / )( ) ( / )x x L( ) ( / )( ) ( / )i i( ) ( / )x x L( ) ( / )i i( ) ( / )( ) ( / )( ) ( / )( ) ( / )x x L( ) ( / )(0)( ) ( / )(0)( ) ( / )(0)( ) ( / )x x L( ) ( / )(0)( ) ( / )(0)x x L(0)( ) ( / )(0)  (44) 
 where functions (0)

i
(0)
i  do not depend on L explicitly. After this, the following is true, when  

and sD  are constant and equal to  and sDsD  respectively: quantities jiA , jiM , ( )S
jiA , ( )S

ja  are 
defined only by the particle’s shape. More precisely, they are either equal for the geometrically 
similar particles or can be made equal by the coordinate system axes rotation. In particular, they do 
not depend on L  or on any physical parameters of the cell or of the charging process. As an 
example, for matrix jiA , introducing new coordinates =x Lyx Ly=x Ly=  and the particle volume in the new 
coordinate system (0) 3= /V V L , one obtains:  

 (0) (0)
(0)(0)= ( ) ( ) = ( ) ( ).ji j i j iG G

dx dyA x x y y
V V

= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).= ( ) ( ) = ( ) ( ).ji j i j iG Gji j i j iG Gji j i j i
dx dy= ( ) ( ) = ( ) ( ).dx dy= ( ) ( ) = ( ) ( ).= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).ji j i j iA x x y yji j i j i= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).= ( ) ( ) = ( ) ( ).dx dy= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).dx dy= ( ) ( ) = ( ) ( ).ji j i j iV Vji j i j iV VG GV VG Gji j i j iG Gji j i j iV Vji j i j iG Gji j i j iji j i j iA x x y yji j i j iV Vji j i j iA x x y yji j i j i= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).
V V

= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).(0)ji j i j i(0)ji j i j i(0)

dx dy= ( ) ( ) = ( ) ( ).dx dy= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).ji j i j iA x x y yji j i j i(0)ji j i j i(0)A x x y y(0)ji j i j i(0)= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).(0)= ( ) ( ) = ( ) ( ).(0)ji j i j i(0)= ( ) ( ) = ( ) ( ).(0)A x x y y(0)= ( ) ( ) = ( ) ( ).(0)ji j i j i(0)= ( ) ( ) = ( ) ( ).(0)(0)= ( ) ( ) = ( ) ( ).(0)ji j i j i(0)= ( ) ( ) = ( ) ( ).(0)A x x y y(0)= ( ) ( ) = ( ) ( ).(0)ji j i j i(0)= ( ) ( ) = ( ) ( ).(0)= ( ) ( ) = ( ) ( ).dx dy= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).dx dy= ( ) ( ) = ( ) ( ).
V V(0)V V(0)ji j i j iV Vji j i j i(0)ji j i j i(0)V V(0)ji j i j i(0)G GV VG Gji j i j iG Gji j i j iV Vji j i j iG Gji j i j iji j i j iA x x y yji j i j iV Vji j i j iA x x y yji j i j i(0)ji j i j i(0)A x x y y(0)ji j i j i(0)V V(0)ji j i j i(0)A x x y y(0)ji j i j i(0)= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).
V V

= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).ji j i j i= ( ) ( ) = ( ) ( ).(0)= ( ) ( ) = ( ) ( ).(0)ji j i j i(0)= ( ) ( ) = ( ) ( ).(0)A x x y y(0)= ( ) ( ) = ( ) ( ).(0)ji j i j i(0)= ( ) ( ) = ( ) ( ).(0)V V(0)= ( ) ( ) = ( ) ( ).(0)ji j i j i(0)= ( ) ( ) = ( ) ( ).(0)A x x y y(0)= ( ) ( ) = ( ) ( ).(0)ji j i j i(0)= ( ) ( ) = ( ) ( ).(0)= ( ) ( ) = ( ) ( ).= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).dx dy (0) (0)= ( ) ( ) = ( ) ( ).(0) (0)= ( ) ( ) = ( ) ( ).(0) (0)dx dy= ( ) ( ) = ( ) ( ).dx dy= ( ) ( ) = ( ) ( ).= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).(0) (0)= ( ) ( ) = ( ) ( ).(0) (0)A x x y y(0) (0)= ( ) ( ) = ( ) ( ).(0) (0)= ( ) ( ) = ( ) ( ).dx dy= ( ) ( ) = ( ) ( ).A x x y y= ( ) ( ) = ( ) ( ).dx dy= ( ) ( ) = ( ) ( ).  (45) 

 Domain (0)G  occupied by the particle in the coordinate system yy  is the same for all 
geometrically similar particles or can be made the same through rotation, hence the invariance of 

jiA . To sum up, one can say that the matrices and tuples (38)-(43) encode only the information 
about the particle’s shape. When possible inhomogeneity of  and sD  is accounted for, they 
encode the microscopic electrode anisotropy in general. On the other hand, the coefficients in front 
of the matrices and the tuples in equations (43) reflect the main physics of the active material 
particle interaction with the environment (electrochemistry kinetics, electric current, diffusion). 
Using the notation of the previous section, setting = 0jiB , one rewrites (43) as  

 ( ) ( )
2= .

( / )
S Si s

ji ji i ji i m j
i i i

dc DA M c A c c a
dt V S

A M c A c c a= .A M c A c c a= .( ) ( )= .( ) ( )= .( ) ( )( ) ( )S S( ) ( )A M c A c c a( ) ( )A M c A c c a( ) ( )= .A M c A c c a= .( ) ( )= .( ) ( )A M c A c c a( ) ( )= .( ) ( )( ) ( )S S( ) ( )A M c A c c a( ) ( )S S( ) ( )A M c A c c aA M c A c c a= .A M c A c c a= .= .
( / )ji ji i ji i m j= .ji ji i ji i m j= .

i i i( / )i i i( / )
dc Di sdc Di sA M c A c c aA M c A c c a= .A M c A c c a= .i sA M c A c c ai s= .i s= .A M c A c c a= .i s= .ji ji i ji i m jA M c A c c aji ji i ji i m j= .ji ji i ji i m j= .A M c A c c a= .ji ji i ji i m j= .dc DA M c A c c adc Di sdc Di sA M c A c c ai sdc Di s

dt V S( / )dt V S( / )ji ji i ji i m jdt V Sji ji i ji i m j
i i idt V Si i i( / )i i i( / )dt V S( / )i i i( / )( / )ji ji i ji i m j2ji ji i ji i m j2= .ji ji i ji i m j= .2= .2ji ji i ji i m j2= .2( / )ji ji i ji i m j( / )
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 The parameters  and  from section 4 enter the equations explicitly. In this formulation, 
different terms are clearly associated with the different driving forces mentioned above, whose 
equilibrium defines the stationary concentration gradient profile in the particle encoded in values 

ic .  value being big or small indicates which of these forces is dominant. 
 

5.3 The complete set of model equations 
 
In this subsection we put together all the equations for the complete reduced-order cell 

model. We will compare them with two models presented in section 2, especially with DFN. To 
avoid overgeneralization, to provide general understanding and to keep all the formulas 
compatible with the variant we used for the numerical simulations below, we look at the case when 
the kinetic law defining the dependence of faradaic reaction rate on potentials and concentrations 
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It’s worth noting that such dependence can potentially be a part of the model and in fact is a valid 
source of the local surface fluctuations we aim to capture. In the Butler-Volmer kinetics (13), it 
would mean that 00i  is different for different interface parts. Physically, such differences can be 
induced by different crystalline surfaces exposed to the electrolyte. 

The model is structured as follows. As in DFN, the electrode is a microscopically 
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homogeneous composite material and is represented by a single geometrical domain, and the 
volume-averaged fields ( ) ( )av

ec x( )( )c x( ) , ( ) ( )av
e x( ) ( )( )av( )
e ( )x( )( )( )x( )  and ( ) ( )av

s x( ) ( )( )av( )
s ( )x( )( )( )x( )  are defined on it. The active material 

lithium concentration is represented by a tuple of numbers ( )ikc x( )( )c x( ) . Index i  denotes different basis 
functions ii , index k  denotes different types of particles (shape, material, etc.). When one 
resolves 0i  into the power series of sc  around cc defined according to equation (36), to get the 
linearized kinetics of the problem (30), the absence of the explicit coordinate dependence in 

0( , , , )e e s si c c( , , , )e e s s( , , , )e e s s( , , , )( , , , )i c c( , , , )( , , , )e e s s( , , , )i c c( , , , )e e s s( , , , )  means the absence of such dependence in (0)
0 ( , , , )e e si c c( , , , )e e s( , , , )e e s( , , , )( , , , )i c c( , , , )( , , , )e e s( , , , )i c c( , , , )e e s( , , , )( , , , )e e s( , , , )e e s( , , , )( , , , )i c c( , , , )( , , , )e e s( , , , )i c c( , , , )e e s( , , , )( , , , )e e s( , , , )e e s( , , , )  and ( , , , )e e sc c( , , , )e e s( , , , )e e s( , , , )( , , , )c c( , , , )( , , , )e e s( , , , )c c( , , , )e e s( , , , )( , , , )e e s( , , , )e e s( , , , )( , , , )c c( , , , )( , , , )e e s( , , , )c c( , , , )e e s( , , , )( , , , )e e s( , , , )e e s( , , , )  

too. 
Given this remarks, the equations of the type of (43) for the variables ikc  in which the 

dependence on the other model variables and on the particle type k  is shown explicitly are:  
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 The remaining equations of the cell model have the same form as the corresponding DFN 
equations, with the same physical meaning of the parameters, but with slightly different source 
terms:  
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 Numbers ka  are the partial specific surface areas of the particle type k  . The fluxes and the 
currents depend on the cell state according to formulas (18)-(20). Figure 1, section (C) gives a 
graphical representation of the reduced-order model. A comparison with Figure 1, section (B) 
emphasizes that the crucial differences with the traditional DFN are the active material diffusion 
representation and its mathematical binding to the remaining transport phenomena. 

It’s important to stress again that the presented model describes the same transport and 
chemical processes as the microscopic model and the DFN model there. More generally, by adding 
additional side reactions into every one of them, three families of models may be generated. For a 
model from DFN class to be applicable, the conditions outlined in section 2 should be fulfilled. For 
the models of the family similar to the one presented in the equations (47)-(51), additionally, the 
conditions of the perturbation theory applicability from section 4 should hold. The main advantage 
is the accurate account of the local interface fluctuations. 

 
6 Implementation and numerical results 
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The objective of this section is to propose a minimal set of basis functions for the 

reduced-order method that reproduces the necessary characteristics of the local shape induced 
concentration fluctuations and to asses the accuracy 

The proposed basis set { }i{ }i{ }i{ } consists of the polynomials up to the power 2:  
 2{1, , , , , ,...},x y z x xy  (52) 

 10 functions in total. The following heuristic arguments can provided in the support of this 
choice. When one considers a spherical particle, the stationary spherically symmetrical solution of 
the problem (30) is  

 2 2 2 2const= const.sc r x y z2 2 2 2const= const.2 2 2 2const= const.2 2 2 2c r x y zconst= const.c r x y zconst= const.2 2 2 2c r x y z2 2 2 2const= const.2 2 2 2const= const.2 2 2 2c r x y zconst= const.c r x y zconst= const. (53) 
 One can expect that when we gradually change the shape from spherical to slightly elongated, the 
parabolic function is still a good representation, but it becomes slightly squeezed. Also, from the 
perspective of angular dependence, a stationary solution with the polynomials up to power 2 with a 
properly chosen coordinate system contains only the spherical harmonics ( , )m

lY ( , )  up to = 2l . It 
means, the basis captures only the solution anisotropy on big angles of the order / 2/ 2 , not the 
small angular variations. It agrees with our goal to build an economical model capturing the 
averaged, coarse surface fluctuation characteristics, not the fine details. Borrowing the 
terminology from the theoretical electrodynamics, one can say that a choice of the basis functions 
including only the spherical harmonics with 2l 2  reflects only the dipole and the quadrupole 
components of the angle-sensitive solution variation. 

Since the accuracy of the reduced-order model in capturing the local fluctuations is in the 
focus of this paper, we chose an example for the numerical analysis which allows to estimate this 
particular accuracy separately. Such system is a one-particle system, similar to the one we used in 
the section 3 argument. In the multiple-particle simulation, the precision of one-particle modeling 
would be hidden in the complexity. The active material and electrolyte material parameters are 
chosen that are close to the ones of the real cells. The particle shape is spheroid with aspect ratio 
0.5 and the main axis 310 3  cm. The physical parameters are listed in table 1, with the notations 
from the paper’s text. OCV as a state of charge (SOC) function is  

 0( ) = 0.6379 0.5416 exp( 305.5309 )U V SOC( ) = 0.6379 0.5416 exp( 305.5309 )( ) = 0.6379 0.5416 exp( 305.5309 )U V SOC( ) = 0.6379 0.5416 exp( 305.5309 )  
 0.044 tanh( ( 0.1958) / 0.1088)SOC0.044 tanh( ( 0.1958) / 0.1088)0.044 tanh( ( 0.1958) / 0.1088)SOC0.044 tanh( ( 0.1958) / 0.1088)  
 0.1978 tanh(( 1.0571) / 0.0854)SOC0.1978 tanh(( 1.0571) / 0.0854)0.1978 tanh(( 1.0571) / 0.0854)SOC0.1978 tanh(( 1.0571) / 0.0854)  
 0.6875 tanh(( 0.0117) / 0.0529)SOC0.6875 tanh(( 0.0117) / 0.0529)0.6875 tanh(( 0.0117) / 0.0529)SOC0.6875 tanh(( 0.0117) / 0.0529)  
 0.0175 tanh(( 0.5692) / 0.0875)SOC0.0175 tanh(( 0.5692) / 0.0875)0.0175 tanh(( 0.5692) / 0.0875)SOC0.0175 tanh(( 0.5692) / 0.0875)  (54) 

 The state of charge definition is physical: = /s mSOC c c . The particle is subjected to the 
galvanostatic charge with average current density 4 210 A cm4 210 A cm4 2A cm4 2 . It roughly corresponds to C-rate 
3C. We do not control voltage cutoffs explicitly and instead start the charge from initial 
homogeneous state ( )= initial

s sc c  and stop at an arbitrary time 1200 s, when the local SOC on the 
surface is close to 100%. Note our comment above that some approximation errors tend to grow 
with current/C-rate; this observation ensures that, when our model is accurate for the high C-rates, 
it tends to be accurate for the low C-rates as well. In this section’s simulations we assume full 
homogenization ( 1 = 01 = 0), in line with the section 3 example. It means, variables ec , ee  and ss  
are constant on the particle scale, and equation (43) is fully decoupled from the other equations. 

The reference solution to which we compared the results of our reduced-order model is the 
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finite volume method (FVM) implementation on a cubic mesh with 60 control volumes per main 
spheroid axis, with explicit time integration. The current version of the reduced-order model is a 
ordinary differential equation system with 10 variables; its full charge simulation using a 
implementation in Python package Scipy takes less then 1 s and is therefore very robust 
computationally. The data from the simulation results has been analyzed. The time evolution of the 
standard deviation of two physical quantities on the surface is plotted: lithium concentration 
(figure 2) and local OCV (figure 3). The comparison with the same quantities in the reference 
solution is remarkable for such seemingly simple model. 

Figure 2 additionally contains the dynamics of parameter  introduced in the 
mathematical theory of the fluctuations. We mentioned that there exist an inverse relation between 
the surface concentration variation and , at least for big values of . One can notice that in the 
plot they almost always move in the opposite directions. It indicates that for the spheroid 
geometry, the inverse relation holds for finite values of  too: indeed, it varies between 0 and 3, 
which can not be considered big. 

Figures 4 and 5 demonstrate how the dynamics of the surface fluctuations changes when 
one changes the C-rate/current density. First, one notices that, with the decreasing C-rate,  
becomes closer to zero. With this, we end up with the case 00  presented in the introduction of 
the mathematical theory of the fluctuations. As we noticed there, in this case the dependence of the 
surface concentration variation on current/C-rate/parameter  is effectively dynamically 
decoupled from the dependence on  and is governed by the estimate (33). Indeed, it is exactly 
what we see in figure 5: first, the fluctuations decrease with decreasing current; second, after a 
short transient equilibration, they become almost constant in the smallest C-rate case, not sensitive 
to the peaks and valleys of the  dynamics. Note that, although the discrepancy between the 
FVM predictions and the ones of the reduced-order model grows with C-rate, the relative error, 
stays roughly the same. 

To emphasize the model accuracy not only on the integral quantities level, figure 6 gives a 
screenshot of the volume concentration distributions together with the point-by-point difference 
between the model and FVM. We compared the fluctuation scale to their respective averages 
(figures 7 and 8), to give a reader the understanding of the respective scales. Note that the 
discrepancy between the average values of the model and of the reference solution is far smaller 
than the fluctuation measures. It reminds the results of [2], where the averaged overpotentials for 
the microscopic model and for DFN are much closer to each other than the scale of their local 
fluctuations. At the moment, our theoretical analysis does not provide a general explanation for 
such property. It is, however , an interesting feature that replicates itself in two different numerical 
experiments, and an additional research may be needed. 
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Newman and coworkers (DFN models), to incorporate the effects due to these fluctuations. In 
proposing these additions, we strongly relied on the results of the mathematical analysis aimed at 
the classification of possible sources of the local fluctuations in the microustructure. As a 
byproduct of this analysis, the limitations of the mathematical homogenization ansatz to the 
transport equations in the cells has been listed. Since the homogenization of the equations plays an 
important role in the foundations of DFN equations, our analysis provides a theoretical filter for 
the assumptions that we make in the derivation. 

The resulting model is as computationally robust as DFN. The numerical example is 
chosen which emphasized the potential in the local fluctuation reproducibility. Galerkin method is 
chosen as a main model order-reducing instrument, mainly due to its rigorous mathematical 
foundations and the available options to further improve the model’s accuracy if needed.  

Overall, the instruments and the approximations behind the model were chosen due to the 
combination of the mathematical analysis and of the heuristic solutions partially relevant to the 
particular lithium ion cell model in this paper. Yet the methodology can potentially be used to 
assist in accurate derivation of macroscopic models for more complex cell models, also for 
diffusion-reaction (electro-)chemistry systems in general. We emphasized the potential for such 
generalization in the paper’s text and related it to accurate tracking of the time and space scales of 
various chemical and physical processes. 
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Figure  1: Graphical representation of the cell models from the paper’s text, with the main 
features. (A) The microscopic model, with domains representing electrolyte and active material. 
(B) DFN model, with a domain representing homogeneous upscaled electrode and a spherical 
particle domain for active material diffusion calculation. (C) The reduced-order model, with a 

domain representing homogeneous upscaled electrode and the set of variables ic , a compressed 
representation of lithium distribution in active material. 

   
 
 

Figure  2: Time evolution of the lithium concentration standard deviation on the active material 
particle surface in finite volume (FVM) and in the reduced-order model numerical simulations for 
the 3C charge rate case. Simultaneous evolution of parameter  introduced in the mathematical 

theory is plotted. 
   
 
 

Figure  3: Time evolution of the OCV standard deviation on the active material particle surface in 
finite volume (FVM) and in the reduced-order model numerical simulations for the 3C charge rate 

case. 
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Figure  1: Graphical representation of the cell models from the paper’s text, with the main 
features. (A) The microscopic model, with domains representing electrolyte and active material. 
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Figure  4: Comparison of the evaluation of parameter  introduced in the mathematical theory 
for different CC charge FVM simulations. The charge is characterised by the averaged current 

density through the particle surface. Here, SOC is the averaged surface SOC. 
   
 
 

Figure  5: Comparison of the evaluation of lithium concentration standard deviation on the active 
material particle surface for different CC charge simulations. The charge is characterised by the 
averaged current density through the particle surface. Here, SOC is the averaged surface SOC. 

FVM simulation results are plotted with solid lines, the reduced-order model results - with dashed 
lines. 

   
 
 

Figure  6: Snapshot of the lithium concentration in active material particle in finite volume 
(FVM) and in the reduced-order model numerical simulations at = 514.3t  s for the 3C charge 

rate case. The concentration profile is projected onto the axis X along the main axis of the spheroid 
particle. 

   
 
 

Figure  7: Time evolution of the lithium concentration mean and standard deviation on the active 
material particle surface in finite volume (FVM) and in the reduced-order model numerical 

simulations for the 3C charge rate case. 

 
 

Figure  8: Time evolution of the OCV mean and standard deviation on the active material particle 
surface in finite volume (FVM) and in the reduced-order model numerical simulations for the 3C 

charge rate case. 
   
 

Table  1: Physical parameters for the paper’s numerical simulation examples 
  
 Parameters   Value   Units 

( )initial
sc    32.639 102.639 10 3    3mol cm 3mol cm   

mc    22.4681 102.4681 10 2    3mol cm 3mol cm  

sD    1010 1010    2 1cm s2 1  

ec    31.2 101.2 10 3    3mol cm 3mol cm  

00i    0.002    2.5 1.5/A cm mol2.5 1.5  
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Porous electrode microstructure affects the lithium-ion cells behaviour; in particular, it 

induces the concentration fluctuations on the pore scale that can eventually lead to an uneven 
distribution of degradation side reactions. The authors derived a new theoretical cell model that 
accurately captures the characteristics of these fluctuations yet remains computationally robust. 
The derivation method allows for further generalizations, like addition of new reactions, etc.  
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