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Abstract—Vast areas of the Arctic host ice-rich permafrost,
which is becoming increasingly vulnerable to terrain-altering
thermokarst in a warming climate. Among the most rapid and
dramatic changes are retrogressive thaw slumps. These slumps
evolve by a retreat of the slump headwall during the summer
months, making them detectable by comparing digital elevation
models over time using the volumetric change as an indicator. Here,
we present and assess a method to detect and monitor thaw slumps
using time series of elevation models applied on two contrasting
study areas in Northern Canada. Our two-step method is tailored
to single-pass InSAR observations from the TanDEM-X satellite
pair, which have been acquired since 2011. For each acquisition,
we derive a digital elevation model and uncertainty estimates. In
the first step, we difference digital elevation models and detect
the significant elevation changes using a blob-detection algorithm.
In the second step, we classify the detections into those due to
thaw slumps and other causes using a simple thresholding method
(accuracy: 78%), a random forest classifier (87%), and a support
vector machine (86%). When our method is applied to other areas,
the classifiers should be trained with data from part of the study
area or with data obtained from similar areas in terms of topogra-
phy, vegetation, and thaw slump characteristics to achieve the best
performance. The obtained locations of thaw slumps can be used as
a starting point to extract important slump properties, such as the
headwall height and the volumetric change, which are currently
not available on regional scales.

Index Terms—Abrupt thaw, banks island, digital elevation
model (DEM) differencing, DEM generation, interferometry,
Mackenzie river delta, permafrost, remote sensing, retrogressive
thaw slumps (RTSs), single-pass radar interferometry, synthetic
aperture radar (SAR), thermokarst.

I. INTRODUCTION

ABOUT one-quarter of the landmass in the Northern Hemi-
sphere are underline by permafrost, which is becoming

increasingly vulnerable to rapid thaw in a warming climate [1],
[2]. Rapid permafrost degradation has major impacts on the local
hydrology and ecosystems, and it can also reinforce climate
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change by mobilizing organic carbon, leading to the emission
of the greenhouse gases CO2 and CH4. One important land
surface characteristic arising from rapid thaw are retrogressive
thaw slumps (RTS). RTSs are characterized by a steep headwall,
which can reach several tens of meters in height (see Fig. 1) [3].
During the summer, the ice in the headwall melts and sediments
get transported downslope, leading to a continuous retreat of
the headwall. In the context of recent warming, an increase in
the rates and size of RTSs in permafrost regions of Northern
Canada and Alaska has been found [3]–[7]. Nevertheless, on
the pan-Arctic scale, the prevalence and rates of thaw slumping
remain poorly constrained, and so does their contribution to
climate change. This is mainly due to the remote landscape
and the severe climate conditions in the Arctic, making remote
sensing techniques highly important for studying RTSs in these
areas.

In recent years, remote sensing techniques have been explored
to map and investigate RTSs on large scales ranging from
aerial photographs [8], laser scanning (LiDAR) [9], [10], and
satellites in the optical and microwave domain [10]–[14]. The
most detailed and highest resolution can be achieved using aerial
photographs and LiDAR measurements from airplanes, but at
the disadvantage of high costs and no pan-Arctic coverage. A
large-scale coverage of vast lands is only possible by remote
sensing satellites. In this regard, optical satellites can detect
active RTSs by identifying disturbed soil due to the movement
of the headwall and the transport of sediments downslope. [15],
[16]. Due to the need for cloud-free observation as well as solar
irradiation, the amount of usable data is limited. Additionally, the
implementation of RTS detection methods is especially difficult
in the vegetation sparse Arctic tundra regions.

Another option for measuring changes over time are syn-
thetic aperture radar (SAR) systems, which have great potential
for a pan-Arctic monitoring of permafrost degradation. Since
these systems use an active radar, there is no need for solar
irradiation, making it possible to observe the Arctic landscape
year around and are furthermore independent of cloud cover.
To measure elevation changes over time, differential as well
as topographic approaches have been used. In the differential
approach, SAR observations are taken from the same position at
different times (repeat-pass InSAR) and measure ground move-
ment on a millimeter- to centimeter-scale, e.g., thaw subsidence
by permafrost thaw [17], [18] or glacier movement [19] under the
assumption that surface properties do not change significantly
between acquisitions. Since RTSs can change strongly over
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Fig. 1. Aerial photograph of an RTS close to Inuvik (photo by Simon Zwieback
taken in summer 2018) with headwall and scar zone.

timescales of months, investigating the headwall movement
over a multiyear time frame is not feasible using repeat-pass
interferometry due to the effect of temporal decorrelation on the
signal [11].

The topographic InSAR approach from single-pass observa-
tions can provide large-scale maps of thaw slump activity and
volumetric changes. Here, two observations are taken with a
spatial separation (baseline) between the satellites. The phase
difference between the two observations can then be used to gen-
erate digital elevation models (DEM). In the single-pass bistatic
mode, two satellites fly close to each other and take observations
at the same time where one antenna emits a radar signal that gets
then observed by both. This has the advantage that the temporal
decorrelation as well as the atmospheric phase contribution
are greatly reduced. By comparing DEMs that are generated
from a series of single-pass observations, temporal elevation
changes can be measured. DEMs from single-pass InSAR are
a unique but largely untapped data source for monitoring thaw
slumps. Till now, the single-pass method has been mainly used
for the quantification of volumetric changes after volcanic erup-
tions [20] and the estimation of glacier mass balances [21].

Pan-Arctic repeated single-pass InSAR data have been ac-
quired by the TanDEM-X pair since 2011. TanDEM-X is a
high-resolution single-pass interferometry satellite mission that
was launched by the German Aerospace Center (DLR), with
the purpose of generating a high-resolution global DEM [22].
The satellite pair started observations in 2011 and are still
operational until today. From 2011 to 2018, the global land areas
are observed at least three times. Both satellites carry an active
synthetic radar (SAR) operating in the X-band at a wavelength
of 3.11 cm. A planimetric resolution after averaging of about
10–12 m and, depending on the distance between the satellites,
vertical height resolutions of the order of about 2 m can be
achieved. This accuracy is better than a typical RTS headwall
height of 5–10 m and can provide accurate estimates of the thaw
slump topography.

The TanDEM-X archive provides unparalleled opportunities
for mapping thaw slumps and their environmental impacts on
large scales. By using DEM time series, RTS drivers and controls

Fig. 2. Outline of the study area in the Northwest Territories in Northern
Canada. The red and blue rectangles correspond to the MRD and the Banks
study sites, respectively.

for their development and growth can be investigated. The
possibility of measuring the induced volumetric change makes
it potentially possible to estimate the amount of mobilized and
displaced materials, including organic carbon, nutrients, and
sediment. Since the TanDEM-X observations cover the whole
pan-Arctic landscape, a method to extract these information has
the potential to greatly improve our knowledge of RTSs activity
on large scales. The detection and classification of elevation
changes in the Arctic is an important step toward this goal.

Here, we develop and assess an RTS mapping procedure using
data obtained by the TanDEM-X satellites. For each observation,
we generate a DEM and estimate the uncertainties. In a first step,
we difference the generated DEMs to track elevation changes
over time. The induced volumetric changes of RTSs with small
headwall heights and low retreat rates are of the order of the
systematic errors. We implement methods to deal with errors
due to low coherences and waterbodies and apply a detection
algorithm on the generated elevation change maps. Nevertheless,
several detections are not related to active RTSs. In a second step,
we use statistical and machine learning classification methods
to remove detections that are not caused by active RTSs. To
validate our method, we use reference classifications from high-
resolution optical data and apply our method on two contrasting
study areas with different topographies, vegetation and RTS
characteristics. To explore the applicability on large scales, we
quantify the spatial transferability by training the classifiers on
one area and evaluate it on the other. We additionally investigate
the use of DEMs generated at different times of the year and
assess the data availability and accuracy needed for large-scale
mapping.

II. STUDY AREAS

For our study, we choose two contrasting areas in Northern
Canada (see Fig. 2) that show differences in climatic conditions,
vegetation, as well as topographic characteristics. The first area
is limited by the Tuktoyaktuk Coastlands to the north, the start
of the tree-covered region to the south (Inuvik), the Husky Lakes
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to the East, and the Mackenzie River Delta in the west (in the
following named as “MRD”). It spans about 8500 km2. The
second study area is located on the southeastern part of Banks
Island with a size of about 7000 km2 (in the following named as
“Banks”). In the south and west, the Banks study area is limited
by the Arctic Ocean. The soil in both study areas contains large
amounts of ground ice, making it vulnerable to the development
of RTSs [23], [24]. The RTSs in the two study areas differ in
their morphology and size. In recent years, increases in RTS
abundance and activity have been reported from both areas [4],
[7], [12], [24].

The MRD study site is located in the low Arctic and the
climatic conditions change from forested vegetation in the south
toward a shrub tundra in the north. Due to the ice-rich ground,
thermokarst features, such as thermokarst lakes, degraded high-
centered polygons and active-layer detachment slides are com-
mon in the area. Likewise, RTSs are prevalent and occur mostly
along lake shores. The largest thaw slumps can reach heights of
up to 15 m and affect areas of several hectares in size. However,
most slumps are much smaller with headwall heights of <10 m
and affected areas of <2 hectare [25].

The Banks study site is located in the high Arctic and is only
sparsely vegetated. The maximum elevation of 350 m is reached
toward the center of the island. In the summer month, the water
from snow melt and precipitation flows from the more mountain-
ous area toward the sea in trenches and valleys. In winter, winds
redistribute the snow leading to large snow accumulations. Due
to the glacial and periglacial history, the ground has a high ice
content leading to a widespread development of thermokarst
features. The typical headwall heights of RTSs ranges from
2–15 m [23], [26].

III. DEM GENERATION

At the core of our processing chain are TanDEM-X bistatic
single-pass observations, delivered by the German Aerospace
Center (DLR). To obtain DEMs with reasonable vertical accu-
racy, we exclude observations with height of ambiguities (HoA)
larger than 80 m. The incidence angles range from 36◦–44◦.
All observations were taken in an ascending orbit with look
direction to the right in single-polarization mode (VV or HH).
In total, our dataset contains 149 bistatic single-pol TanDEM-X
observations (MRD: 87, Banks: 62) acquired between 2011 and
2017. These observations cover our study areas with about four
to five observations of which at least one observation is taken
during winter before 2013 and one during winter 2016/2017 (see
Fig. 3). We generate DEMs for each observation with a final
planimetric resolution of 10–12 m and vertical accuracies of
about 2 m in areas with high coherences. To improve our DEM
generation process, we additionally use the TanDEM-X 12-m
DEM product as reference DEM. The interferometric processing
was done using the Gamma Remote Sensing software [27]. All
further processing steps are implemented using the program-
ming language Python. An overview of the processing chain
can be seen in Fig. 4.

For each bistatic single-pass TanDEM-X observation, we
started with the single-look complex (CoSSC) product delivered

Fig. 3. HoA and the expected standard error corresponding to an assumed
coherence of 0.9. The lowest HoAs are around 30–40 m. During winter of
2010/2011, the spring and summer of 2012, and twice during the winter
2016/2017, both study areas have a total coverage. Parts of the MRD study
site was also observed, in 2013 and 2014.

by DLR and verified the coregistration using a cross-correlation
algorithm. We compute the interferograms after applying range
spectral filtering to allow for the incorporation of large baseline
interferograms. To reduce speckle noise, we apply a multilook-
ing window of size 4 pixels × 4 pixels, reducing the original
resolution from 2–3 m to 8–12 m. The complex coherence was
computed based on the flattened interferogram where the phase
contribution due to a flat topography was removed. Additionally,
we compute a simulated interferogram as well as a layover and
shadow mask based on the orbit information and the reference
DEM. To minimize errors due to phase unwrapping, we first
subtract the observed interferogram from the simulated one
before applying the minimum cost flow algorithm [28]. The
unwrapped phases are converted to elevation heights in meters.
We use the orbit information for the orthoretification and apply
the layover and shadow mask to remove areas that are affected by
layover and shadow effects. The obtained DEMs contain height
offsets and tilts, as well as horizontal misalignments on the order
of a few meters. We do an initial correction of these two errors
using the reference DEM to obtain an estimate of the absolute
vertical offset by computing the mean difference. We fit a second
degree polynomial to the spacial difference to remove tilts.

The DEMs were split into tiles to facilitate the comparison of
DEMs acquired from different orbits. The tiles have an extent
of about 13 × 13 km with a buffer of 1 km to avoid edge
effects.

IV. ACCOUNTING FOR RANDOM AND SYSTEMATIC ERRORS

When comparing DEMs generated from single-pass interfer-
ometric observations, the elevation differences contain several
error sources that have to be considered. These can arise due
to errors in the DEM generation, such as an inaccurate DEM
registration and remaining large-scale trends, a random error
in each DEM, related to phase inaccuracies in the individual
observations as well as systematic elevation biases related to
water, snow, or vegetation. These effects can lead to apparent
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Fig. 4. Overview of our processing chain. We use the TanDEM-X CoSSC data as input for the DEM generation process and the waterbody mask generation.
Additionally, the Sentinel-2 Level 2 A (L2A) product is used for the waterbody mask generation in areas where there is no TanDEM-X summer observation available.
After applying DEM differencing, we detect, in a first step, significant elevation changes. This includes the computation of a test statistic, a blob detection, and a
clustering algorithm. In a second step, the detections are classified to find elevation losses that are caused by RTSs. Here, three classifiers, namely a simple threshold
method, a support vector machine (SVM), and a random forest (RF) classifier, are used.

elevation changes in single-pass interferometric observations of
several meters.

A. High-Precision DEM Registration

Our generated DEMs can contain weak large-scale trends, an
absolute height offset, and misalignments. We tried to account

for these errors during the DEM generation process, but in areas
experiencing large random error, such as over water bodies,
small trends, offsets, and misalignments remain. We thus employ
a second DEM registration step where we again try to remove
these errors.

We correct for misalignments in a first step using the Nuth
and Kääb method, which exploits the shift-induced relation
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between the elevation differences and terrain aspect [29]. To
achieve a good result, the random errors need to be smaller
than the shift signal, and prior to the correction, we apply a
waterbody and coherence mask (see Section IV-B and IV-D)
to remove areas with large errors. We obtain good registration
results if topographic features, such as deep trenches and large
and steep hills, are present but the registration becomes error
prone for areas with only little topography. For these areas,
mostly in the MRD study area, we additionally orthorectify
the backscatter intensities and remove the misalignment using
a cross-correlation algorithm. This improves the registration in
these areas. After correcting for the obtained shift, we again
apply a large-scale trend removal and correct for a vertical offset.
These steps are repeated until no misalignments and shifts can
be detected.

B. Random Height Errors

The heights are affected by random errors that are due to noise
in the interferometric phases. The coherence γ is a measure
of the quality of the interferometric phase between the two
observations and takes values between 0 (low phase quality) and
1 (high phase quality). For the single-pass bistatic TanDEM-X
observations, interferometric coherence loss due to temporal
decorrelation, ambiguities, baseline decorrelation, and relative
shifts of the Doppler spectra are highly suppressed (γ > 0.95)
and the main contribution to the decorrelation is due to volume
decorrelation and low backscatter intensities (low signal-to-
noise ratio) [22], [30].

The coherence estimate can be translated into an estimate on
the elevation error using the Cramer–Rao bound

σγ
h =

√
1− γ2

γ
√

2L

HoA

2π
(1)

where HoA is the height of ambiguity, defined as the height
change in one interferometric phase cycle and L is the number
of looks to reduce speckle noise.

Since we are normalizing our height measurements in the
generation of the test statistic image, we also include mea-
surements with low coherence. Due to the large errors in the
elevation measurements at very low coherence values, which
become problematic for phase unwrapping and for the Cramer–
Rao bound equation (1) to be applicable, we mask for each
observation the pixels with an estimated coherence of less than
0.3 [31].

C. Systematic Errors

When comparing DEMs generated at different times, water,
snow, and vegetation can generate apparent elevation gains or
losses of several meters. Water bodies induce large errors for sev-
eral reasons. During the ice-free summer months, low backscat-
ter intensities from the smooth water induce low coherences and
a large random phase error. Additionally, the nonzero along-
track baseline decorrelation can lead to spurious movement-
induced phase contributions [25]. During winter, floating ice
causes a strong reflectance due to the large differences between
the dielectric properties of ice and water. This leads to high

values in the radar backscatter as well as the coherence values
of the measured elevation at the ice–water interface. On the
other side, if the ice freezes completely to the ground (bedfast
ice), the dielectric contrast drops leading to low backscatter and
coherence values [32]. Additionally, waterbodies can induce
real changes in elevation by changes in the water level and the
formation or drainage of lakes.

In terms of snow, the winter temperatures in the Arctic fall to
average monthly temperature values of below −20 C◦ resulting
in a dry snow pack and radar waves can propagate through
without being strongly affected, measuring the elevation at the
ground. On the contrary during the time of snow melt, the water
content in the snow pack increases and interacts with the radar
waves by reflection and absorption. This leads to an apparent
change in elevation as well as to a decrease in the coherence and
thus in the accuracy of the height measurements [33].

In regard to vegetation, shrub heights along lake shores or
along trenches and streams can reach several meters in height in
the more southerly Arctic tundra regions. When the landscape
is frozen, the microwaves interact little with the vegetation. In
contrary, in the summer months, leaf growth and an increased
water content in the vegetation can induce an apparent elevation
change as well as large errors due to volume decorrelation [25].

Errors in DEMs generated from observations when the land-
scape is frozen can be dealt with by masking low coherence
measurements and the utilization of a waterbody mask. In DEMs
generated from observations taken when the landscape is not
frozen, errors are more extensive and the best strategy is to
remove these observations from the analysis. Due to the climatic
conditions, in our study areas, we can in general assume a frozen
landscape between October and May and therefore exclude
observation taken in the months from April to September for
the general RTS detection procedure. To investigate how strong
the influence of these error sources are, we additionally apply our
processing scheme on a dataset including the April to September
observations.

D. Waterbody Mask

To remove errors due to waterbodies, we generate a wa-
terbody mask. If a radar observation is available during the
summer months (July and August), we apply a threshold-based
masking, using the measured backscatter intensities as well as
the measured coherence. This has the advantage of having a
high resolution and a good coregistration to the DEMs. Due
to the short time frame of an ice- and snow-free landscape,
TanDEM-X observations for the generation of a water mask
are only available for parts of the MRD study area. For the
remaining parts, we use Sentinel-2 multispectral observations
for the waterbody mask generation.

To generate the waterbody mask based on TanDEM-X ob-
servations, we determine our backscatter threshold value using
the histogram of the measured backscatter intensities. For areas
with a high abundance of lakes, we can identify two peaks, one
coming from land surfaces (high) and the other coming from
water surfaces (low). We set the minimum value between the
two distributions as our threshold value [34]. If no peaks can
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be identified, we use a threshold value of 0.4 of the average
intensity. The coherence threshold was set to 0.3 [35].

For the optical waterbody mask, we select observations with-
out cloud cover at the end of summer to avoid misclassification
due to clouds and a frozen snow-covered landscape. We use
the Normalized Difference Water Index with a threshold value
of 0.1 to separate between water and nonwater [36], [37]. The
optical waterbody masks have a resolution of 10 × 10 m, which
is on the same order as the radar observations. Furthermore, the
horizontal alignment of the TanDEM-X reference DEM and the
Sentinel-2 observations are less than 20 m, such that no addi-
tional coregistration step is necessary [38]–[40]. To minimize
errors due to horizontal misalignments and emergent vegetation
in the littoral zone, we apply a morphological filter (dilation) of
two pixels on the optical water masks to slightly increase the
water area. If several Sentinel-2 observations are available, we
generate a waterbody mask for each observation and combine
them using an “OR” operation to obtain the final mask.

V. DETECTION AND CLASSIFICATION

We compute elevation changes by differencing the DEMs and
apply a waterbody mask to remove water-induced artifacts. In a
first step, we normalize the data using the estimated coherences
and detect significant elevation changes using a blob detection
method followed by a clustering algorithm to merge detections
in the same locations over time. In a second step, we classify
the detections using a simple threshold method and two ma-
chine learning classifiers, namely RF and SVM, to separate the
detections into induced by active RTSs and other causes.

A. Step 1: Detection of Significant Elevation Changes

To detect significant elevation changes, we apply DEM dif-
ferencing on our data. Since the largest changes occur between
DEMs taken further apart in time, we compute all possible differ-
ence maps between DEMs generated by observations separated
by more than two years.

The error on the measured elevation depends on several prop-
erties and can be estimated by σγ

h . We normalize the elevation
changes using the Gaussian standard error

dnorm =
h1 − h2√

σ1(γ̂1,HoA1)2 + σ2(γ̂2,HoA2)2
(2)

where dnorm is the normalized elevation difference and h1,2 the
measured elevation of the first and the second DEM, respec-
tively. A pixel by pixel thresholding approach yields many wrong
detections since headwall heights can be only of the order of a
few meters and thus only slightly above the expected standard
error. Since typical thaw slumps are larger than a resolution cell,
we additionally use the spatial size of the slumps by computing
a test score T over a moving window (Ωk)

Tk =

∑
i∈Ωk

dnorm
i

n(Ωk)
(3)

where n indicates computing the number of valid elements. We
compute the test scores for square windows of size 3, 5, 8, and
15 pixels. On each of the test score images, we run a blob

TABLE I
PARAMETER SETS FOR THE BLOB DETECTION ALGORITHM

The multiple entries correspond to different window sizes of 3, 5, 8, and
15 pixels.

detection algorithm based on the determinant of the Hessian
using a Gaussian kernel [41]. Here, four parameters have to
be set: σmin indicating the minimum standard deviation of the
Gaussian kernel, σmax for the maximum standard deviation of
the Gaussian kernel, and σnum for the number of intermediate
values as well as a threshold based on typical RTS sizes (see
Table I). The two most important parameters are σmin and the
threshold, since these determine the smallest blobs in size and
intensity that are detected. We choose three different settings
(low, mid, high) to investigate the dependence of the parameters
in relation to the number of RTS detections.

The exact location of the blob-detected RTSs can vary over
time. To group blob detections corresponding to the same active
RTS, we apply a hierarchical clustering scheme with a maximum
cluster size of 40 pixel, corresponding to about 250 m [42]. Only
very large slumps exceed this limit, which would lead to two
or more cluster locations corresponding to the same RTS. The
individual clusters are counted as one detection. We average the
positions of the individual location of the blob detections inside
a cluster to obtain the final detection location used in the further
analysis. An example of the detection locations, elevation loss,
and the computed test score for part of the MRD study area is
shown in Fig. 5.

1) Accuracy Assessment (Step 1): Two important quantities
that can be used to evaluate the detection method are the positive
predictive value (PPV), indicating the number of detected RTSs
in relation to the total number of detection, as well as the false
negative rate corresponding to the number of active RTSs that
were not detected.

Knowledge of the proportion of RTS and non-RTS detec-
tions is important since a high number of the latter needs a
more accurate second classification step. We thus compare the
detection results for the different blob detection parameters
based on the PPV. To estimate the PPV, we use high-resolution
optical imagery time series (Sentinel-2 and Planet RapidEye)
to determine if a detection is caused by active RTSs. Sentinel-2
data are available starting in 2015 with a 10-m resolution in the
optical and infrared bands. The RapidEye satellites provides data
over all our study time period with a 5-m resolution in the optical
and infrared bands [43]. The criteria for classifying a detection
as an active RTS are the exposure of bare soils, a movement over
time, their location related to the possibility of sediment removal
as well as the presence of a headwall [3]. This allocation into
RTS and non-RTS detections is also used as class labels in the
second classification step.

To get an estimate on the false-negative rate, we use reference
data from the study [7] for the Banks study area. The Google
Earth Engine Landsat time-laps dataset was used to identify
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Fig. 5. Examples of Step 1: Detection of significant elevation changes. (a) Locations of detections for part of the MRD study region with the mid-parameter
setting. (b) Elevation change between observations taken on February 15, 2011 and October 25, 2016. Three blue spots showing elevation losses are visible to the
east of the masked lake. (c) Calculated test-statistic values. The three areas corresponding to strong elevation losses show high values in the test score statistic. (d)
World-View Google Earth image from summer 2012. One RTS is visible at the top of the lake. (e) Sentinel-2 false color image taken on June 30, 2017. Compared
to the World-View Image of 2012, three RTSs at the location show elevation losses. (f) Elevation change between observations taken on February 15, 2011 and
October 25, 2016. The arrow indicates the location of an RTS visible in the Google Earth World-View image of 2017. (g) Calculated test-statistic values. The
slumps along the lake is much better distinguishable and was detected using the mid parameter setting, but missed in the low setting. (h) World-View Google Earth
image from summer 2012. (i) Sentinel-2 false color image taken on June 30, 2017. Compared to the World-View Image of 2012, a small increase in the area without
vegetation is visible.

active slumps by their change over time (1985–2015). We
include all RTSs that show signs of movement after the year
2011 (“Lewkowicz sample”). It is to note that due to the use
of optical data, not every year is guaranteed to contain usable
observations and that the cutoff between active and nonactive
RTSs is governed by the relatively coarse resolution. The exact

year of stabilization and activation of RTSs in the Lewkowicz
sample can thus be erroneous. Nevertheless, for each of the 982
RTSs in the Lewkowicz sample, we look for a counterpart in
our detections. Some RTSs moved several hundred meters since
their initiation or merged over time and the location given in the
Lewkowicz sample and our detection location was separated
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by a considerable amount. We again use optical data to follow
the slump movement over time and assign the detections
accordingly.

B. Step 2: Classification

To map active RTSs, we classify the previously detected
candidates with significant elevation changes using three dif-
ferent classifiers. Our first choice for a classifier is a simple
threshold method based on the total volumetric change. In recent
years, the use of machine learning algorithms to classify remote
sensing data showed an increase in the classification accuracies
compared to previous methods [44]. Since our problem can be
formulated as a supervised two-class classification problem with
the additional limitation that the amount of trainings data is
small, we choose two machine-learning classifiers, namely an
RF and an SVM, that are generally among the best-performing
classification algorithms in these type of classification prob-
lems [45]–[48]. For the implementation of the machine learning
algorithms, we use the Python scikit-learn module [49]. The
class labels (“RTS,” “non-RTS”) of the individual detections
are determined by the accuracy assessment performed in Step 1.

1) Feature Extraction: We calculate several features at the
detection location based on the DEM and the elevation change
over time. To characterize the elevation change over time, we use
the volume change between the first and last valid observations
(Vtot) and the integrated volumetric change (Vint). The volumet-
ric change between an observation m and an observation n in a
window Ω, centered at the detection location, can be computed
by

Vm,n =
∑

i∈Ω
(hi

m − hi
n) (4)

where hi
m and hi

n indicate the elevations in pixel i measured
by observation m and observation n, respectively. The total
volumetric change Vtot in a window Ω is then defined as

Vtot = V1,nobs (5)

where the available DEMs are ordered by observation date from
1 (earliest observation) tonobs (latest observation). We computed
Vint by subtracting all available observations from the earliest
one and obtain the final value by integrating over time

Vint =

nobs∑

n=2

V1,n−1 + V1,n

2
·Δtn,n−1 (6)

whereΔtn,n−1 is the number of seconds between observations n
and n−1. The features based on the DEM values are the circular
variance (φvar), the mean slope (mmean), and the maximum
slope (mmax). The circular variance is defined as

φvar = 1−
√(∑

i∈Ω cos(φi)
)2

+
(∑

i∈Ω sin(φi)
)2

(7)

where φi denotes the aspect in radians and Ω denotes an area
around the location whereφvar is computed.φvar is a measure of
how variable the orientation of the slope vectors are with values
close to 0 if all slope vectors point in the same direction and
close to 1 for random orientations. The motivation to select this

TABLE II
OVERVIEW OF GENERATED FEATURES

properties is based on how active RTSs appear and evolve as
well as to find typical sources for detections that are not caused
by active RTSs. Since RTSs occur along lake and sea shores
as well as at steep slopes due to the need of sediment removal
they typically show a low circular variance and moderate to
high values in the slope. On the contrary, wrong detections
in flat and polygon covered areas show high values in the
circular variance and low slope values. The circular variance
is additionally sensitive to small trenches and depressions. An
overview of the calculated features can be seen in Table II.

For the feature computation, the window sizeΩ has to be set. It
should be big enough, such that detections due to large errors are
distinguishable from small RTSs induced ones. If the window
is too big, the elevation changes of small RTS movements do
not show up in a significant way. To balance these two factors,
we used a window size Ω of 5 pixels × 5 pixels, corresponding
to a square with length of approximately 20 m for the feature
computation. To compute the features φvar, mmean, and mmax,
we used the reference DEM as input for the computation. To
avoid numerical difficulties in the training of the machine learn-
ing methods, we normalize our features to values around 0± 1.
φvar, mmean, and mmax can easily be expanded to [−1,1]. Vint

and Vtot have a more dynamic range and we use the mean and
standard deviation of the training data to normalize them.

2) Classifiers:
a) Thresholding onVtot (Simple Threshold): In a first step,

we analyze the use of a simple threshold on the total volumetric
change. To determine the threshold value, we use the receiver
operator characteristic (ROC) curve that is commonly used to
evaluate binary classifiers [50]. The ROC curve is generated
by plotting the sensitivity against (1−Specificity) for different
threshold settings. To determine the best threshold, we use the
Youden index J defined as

J = maxt (Sensitivity(t) + Specificity(t)− 1)

= maxt (TPR(t)− FPR(t))
(8)

where t indicates the threshold, TPR the true positive rate, and
FPR the false positive rate [51], [52].

b) Random Forest (RF): Our first choice as a machine
learning classifier is an RF classifier based on the generation and
combination of ordinary binary classification trees [53]–[56].
In the initialization, hyperparameters, such as the number of
decision trees (Ntress), maximum tree size (dmax), and a splitting
criterion, need to be set. For setting the values ofNtress anddmax,
we use a grid search on the training data. For the splitting crite-
rion, we use the Gini index. We apply bootstrapping on the input
data to reduce the variance and improve generalization [57].
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TABLE III
RESULTS OF HYPERPARAMETER ESTIMATION USING

A FIVEFOLD CROSS VALIDATION

The advantage of this classifier is the ability to understand the
classification behavior by visualizing some of the decision trees
as well as the possibility of computing a feature importance
ranking.

c) Support Vector Machine (SVM): As a second machine
learning classifier, we use an SVM [58]–[60]. Here, each detec-
tion is characterized by n features and represented as a vector
in a n-dimensional space. The classification is achieved by
separating the points by an n− 1 dimensional hyperplane. The
criterion for finding this hyperplane is to maximize the signed
distance of the data points in each class to the hyperplane.
Nonlinear decision boundaries can also be represented by an
SVM, provided a suitable kernel function is used. For the kernel,
we use a radial basis function with a free kernel parameter γ,
which is a typical choice for SVMs. Additionally, a penalty
parameter C has to be defined indicating the weight of the error
term in the classification.

3) Training and Hyperparameter Estimation: We split our
data into a training set containing 70% of the sample. The
remaining 30% are used for evaluation. For all classifiers, several
hyperparameters need to be set. We use a grid search approach
with a fivefold cross validation to evaluate different options.
The RF classifier was initialized with different number of trees
Ntress: [3, 5, 10, 20, 100, 1000] and tree size dmax: [3, 5, 7,
10, 20, 100]. For the SVM, we use different options for the
penalty parameter C: [0.1, 1, 10, 100, 1000, 10 000] and for
the radial-basis kernel, the gamma parameter γ: [0.0001, 0.001,
0.01, 0.1, 1]. We also use a fivefold cross validation to determine
the optimal threshold for the simple threshold method by aver-
aging the results. The result of the hyperparameter estimation
can be seen in Table III.

The RF and SVM classifiers are then trained on the whole
training dataset. We evaluate the accuracy of the methods using
the evaluation set. To investigate differences in the two study
areas, we train and evaluate the classifiers on the two study areas
separately.

Additionally, to infer the spatial transferability of the clas-
sifiers, we generate classifiers that are trained in one area and
evaluate it on the other.

4) Accuracy Assessment (Step 2): After the training of the
classifiers on the training set, we assess the accuracy of the
classifiers using the evaluation set. To assess the accuracy, the
overall accuracy (OA), defined as the number of correctly clas-
sified detections divided by the total number of detections, the

TABLE IV
RESULT OF STEP 1 (CHANGE DETECTION) FOR THE TWO STUDY AREAS WITH

DIFFERENT BLOB DETECTION PARAMETER SETTINGS

Due to the high number of detections for the high parameter
setting on Banks, a manual assessment of the positive predictive
value (PPV) was not feasible.

average accuracy (AA), defined as the average of the accuracies
of the two classes, and the Cohen’s kappa coefficient (κ), which
measures the degree of classification agreement, are used [61].

VI. RESULTS

We first present the results of the detection prior to classifi-
cation, and then the combined two-step approach. For the latter,
we contrast the performance of the simple thresholding, RF, and
SVM approaches and investigate the transferability across the
study regions. We additionally investigate the influence of using
DEMs, which are generated during the spring and summer, on
the number of RTS and non-RTS detections.

A. Change Detection

In the first step, we investigate the dependence of the param-
eter settings low, mid, and high of the blob detection algorithm.
Here, we focus on two objectives: First, we want to detect as
many significant elevation changes due to active RTSs as pos-
sible; but second, limit the number of non-RTS detections since
these have to be weed out in the following classification step.

The result of the change detection can be seen in Table IV. The
total dataset is defined as the combination of the data from both
study areas. With the low parameter setting, we found in total
897 detections. Of these detections, 605 could be related to active
RTSs, corresponding to a PPV of 68%. For the midparameter
setting, the number of detections increased to 1302 with an
improvement of the PPV to 73%. Decreasing the threshold
values further (high parameter setting), the number of detections
increased significantly to 3837. On the Banks study site, it was
not possible to manually classify the detections due to their high
number. An overview of the location of the detections for the
midparameter setting of the two study sites can be seen in Fig. 6.
On MRD, non-RTS detections are typically found in vegetated
trenches along streams and rivers, in polygon covered areas as
well as along vegetated lake shores (for example, see Fig. 9).
On the Banks study, these non-RTS detections are often found
in deep valleys and along hillslopes and ridges.

In the MRD study area, anthropogenic activities, such as
gravel pits, for road construction triggered significant height
changes. We found 49 detections in the midparameter setting that
are related to anthropogenic activities. Considering the whole
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Fig. 6. Detection result with the midparameter setting (Step 1). (a) Banks study region and (b) MRD study region. On MRD, several detection could be attributed
to anthropogenic causes, mainly due to gravel pits for road construction.

pan-Arctic landscape, such detections are very unusual and not
a concern for large-scale applications and we removed these
detections for the computation of the detection rates and the
further analysis.

On Banks, we could additionally estimate the number of
RTSs that were not detected. For the mid-parameter setting, we
found that 719 of the 982 RTSs in the Lewkowicz sample had
a matching detection in our sample (false negative rate: 26%).
For the low parameter setting, the false negative rate increased
to 52% (471/982 detected). Considering that typical RTSs on
Banks have headwall heights of about 5–10 m with maximum
retreat rates of 6–8 m per year, the calculated non-RTS detection
rate of 26% for the midparameter setting indicates a good
performance of our detection method [24], [26], [62], [63]. On
MRD, no current RTS inventory is available, but past studies
found typical headwall heights of about 3 m and mean retreat
rates of about 2 m per year [4], [6], [25]. Since these values are
just at the border of our detection limit, the 141 RTSs that could
be detected show the potential of our method to be applied on
areas with relatively small RTSs.

We used the midparameter setting for the further analysis
since it provides the most balanced result between the detected
RTS and the non-RTS detections. The following classification
step is intended to weed out the non-RTS detections.

B. Classification

In the second step, we classify the detections that were found
by the blob detection algorithm in Step 1 to improve the accu-
racy of our method. We investigated the performance of three

different classification approaches, which differ in their ability to
distinguish between the detected significant elevation changes
due to active RTSs and other causes (see Fig. 8). The SVM
and RF machine learning approaches archived higher accura-
cies, but they were also less transferable across regions [see
Fig. 10(a)].

1) Thresholding on Vtot (Simple Thresholding): As a first
classifier, we investigated the possibility of setting a threshold on
the total volumetric change Vtot. The distribution of Vtot of RTS
and non-RTS detection can be seen in Fig. 7(a). The distribution
of the total volumetric change of RTS detection is shifted toward
higher values than the non-RTS detection. We investigate the use
of setting a threshold by calculating the true positive rate (TPR),
false positive rate (FPR), and number of remaining detections
(Ntot) after removing detection below the different thresholds
values. We removed detections withV i

tot < V thres
tot whereV thres

tot

indicates the threshold and V i
tot indicates the value of the ith

detection. The obtained result for different thresholds values can
be seen in Fig. 7(b). In general, increasing the thresholds leads
to a decrease in the number of classified thaw slumps. A strong
increase and decrease in the number of true positives and false
positives, respectively, is visible between 0 and about 3000 m3

indicating that mostly false positives are removed. To determine
an optimal threshold, we used the ROC curve and compute the
maximum value of the Youden J index [see Fig. 7(c)]. By using
a fivefold cross validation, we found an average threshold value
of t = 2897 m3 for the total dataset, t = 3479 m3 for MRD,
and t = 2705 m3 for Banks. Applying these thresholds on the
respective test sets yields overall accuracies of 0.78 for the total
dataset and 0.83 for MRD and 0.75 for Banks (see Table V).
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Fig. 7. Simple thresholding method for the total dataset. (a) Kernel density plot of the feature Vtot. The Vtot values corresponding to non-RTS detections show
an earlier peak in the distribution than for the RTS detections. (b) False-positive rate, true positive rate, and normalized number of detections remaining after setting
a threshold on the total volumetric change (V thres

tot ). (c) Plot of the ROC curve for the training dataset for the simple threshold method. The best threshold value
was found at a Youden index value of J = 0.51 corresponding to 2897 m3.

Fig. 8. Overall classification accuracies of the three classifiers for the total
dataset (total), Banks, and MRD. The two machine learning classifiers (RF
and SVM) perform better than the simple thresholding method. The classifier
performance is better on MRD than on Banks.

TABLE V
ACCURACY ASSESSMENT OF SIMPLE THRESHOLDING, SVM,

AND RF CLASSIFIERS WITH CALCULATED OA, AA, AND

COHEN’S KAPPA COEFFICIENT (κ)

2) RF and SVM: The results of the RF and SVM classi-
fier can be seen in Table V. Both machine-learning classifiers
show higher classification accuracies than the simple threshold
method. The RF classifiers perform slightly better (OA = 0.87)
than the SVM classifier (OA = 0.86) on the total dataset. When
using the data of the two study areas separately, the MRD area
shows a higher classification accuracy for both classifiers. On

TABLE VI
ACCURACY ASSESSMENT OF SVM, RF CLASSIFIERS, AND SIMPLE THRESHOLD

METHOD FOR DIFFERENT TRAINING AND EVALUATION SETS WITH

CALCULATED OA, AA, AND COHEN’S KAPPA COEFFICIENT (κ)

Banks, the SVM performs slightly better than the RF classifier
with OA of 0.84. The AA values are generally close to the overall
accuracies indicating no bias in terms of a better classification
of RTSs or non-RTSs. The calculated κ values are in the range
of 0.42–0.82, indicating a moderate to good performance of
the classifiers. An example area showing the result of the RF
classifier can be seen in Fig. 9.

3) Spatial Transferability: To investigate the spatial transfer-
ability we applied the classifiers that are trained on one study
site and used it to evaluate it on the other [see Fig. 10(a) and
Table VI]. For the simple threshold method, the performance
stays about the same, since the optimal threshold values for the
two study sites are only minimally different. On the contrary, the
accuracies of the SVM and RF classifiers drop below the simple
threshold method with the RF showing a stronger reduction than
the SVM.

For the RF classifier, the feature importance values for the
different features can be calculated [see Fig. 10(b)]. On MRD,
the most important feature is the total volumetric change fol-
lowed by the features based on the DEM (φvar, mmax, mmean).
On Banks, the total volumetric change as well as the integrated
volumetric change shows a higher importance than the features
based on the DEM.

On MRD, wrong classifications are mainly found in veg-
etated trenches and in areas showing signs of polygons (see
Fig. 9). In contrary, RTSs occur mainly along lake shores. At
the Banks study, area larger topographic features are present
in the landscape, leading to non-RTS detections. Since RTSs
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Fig. 9. Parts of the MRD area showing the result of the RF classification. Area 1 and Area 2 show two examples of typical false classifications. Area 3 and Area
4 show typical false detections that are classified correctly by the RF classifier. (a) Locations of detections and the generated classification in RTSs and non-RTSs
by the RF classifier. The underlying image shows the elevation loss between February 15, 2011 and October 25, 2016. (b) Google Earth WorldView image of Area
1 taken in summer 2012. It shows a strongly vegetated area on the top, transitioning to a more sparsely vegetated area in the lower part. An old stabilized RTS is
visible in the lower left part. The false classification as RTS (blue circle) is located at the transition between the strongly and sparsely vegetated area. The area
around the detection shows a uniform slope gradient toward the NE. (c) Sentinel-2 false color image of Area 1. The uniform red color at the detection location
indicates no bare soil. When compared to the WorldView Image (b) of 2012 no thaw slump is visible at the detection location (blue circle). (d) Google Earth
WorldView image of Area 2 taken in summer 2006. The false classification as RTS is located at a vegetated area at a lake shore. When compared to the Sentinel-2
false color image of 2017 (e) no RTS activity exposing bare soil is visible. The location of the false classification is similar to locations where typical RTSs are
found. (f) Google Earth WorldView Image of 2012 with two false detections (blue circle) along a small stream that are correctly classified as non-RTS by the RF
classifier. (g) WorldView image taken in summer 2012 of Area 4. The false detection is located at a polygon covered flat area. The RF classifier correctly classified
the detection as non-RTS.

occur mainly along hillslopes, the features based on the DEM
properties cannot distinguish between RTSs and other detec-
tions. The dependence on the input features is also visible in the
drop-off of the accuracies when the classifiers were trained on
the MRD study area and evaluated on Banks. The DEM features
are assigned high importance in the training but are not useful
when applied on the detections found on Banks. Since the simple
threshold method only uses the total volumetric change, it shows

a relatively constant performance, independent of what area was
used for training and evaluation.

C. DEM Errors in Spring and Summer

Spring and summer acquisitions are less suitable for thaw
slump mapping due to seasonal vegetation and late-lying snow
packs that persistent long into the summer. On MRD several
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Fig. 10. (a) Overall classification accuracies of the classifier when training and evaluation were done on different study areas. The left panel shows the result
when the classifiers were trained on the MRD data and applied on the two study areas. All classifiers show a reduction in the accuracies with the RF classifiers
showing the strongest drop from 90% to 61% accuracy. The right panel shows the result when the classifiers were trained on the Banks data and applied on the two
study areas. The reduction in the accuracies is not as strong as when training was done on the MRD data, with even an increase in the OA for the simple threshold
method. (b) Feature importance values generated by the RF classifiers for the two study sites. On both study sites, the most important feature is the total volumetric
change. The features based on the DEM show a higher importance on the MRD study site in contrary to the Banks study site.

Fig. 11. Example of influence of vegetation on elevation measurements on MRD. (a) and (b) Measured elevation change and calculated test statistic between
DEMs generated from observation taken on July 16, 2012 during the summer and on October 25, 2016 when the landscape was frozen. (c) Planet observation taken
on July 28, 2012 of the same area, indicating that area, which shows signs of an elevation change, is covered by vegetation.

TanDEM-X observation were taken during the summer of 2012.
When using the generated DEMs for the detection of significant
elevation changes we found many detection caused by vegeta-
tion. An example of the influence of vegetation on MRD can be
seen in Fig. 11. The area showing significant elevation changes
in the test score image is covered by vegetation and water is
potentially flowing below the canopy, inducing wrong elevation
measurements. On Banks, several TanDEM-X observation were
taken in spring 2012, leading to many false detections. An
example area can be seen in Fig. 12. Wet late-lying snow packs
can be identified as the reason for many apparent elevation
changes, indicated by low backscatter intensities in valleys and
trenches. Snow packs potentially also accumulate and persist
in RTSs. This would lead to false classifications and to false
estimations of the volumetric changes.

Consequently, the investigation of using DEMs generated
from observations that were taken during a time when the
landscape is not frozen (April to September) showed increase in
detections for both study areas. The increase in detections was

stronger for the mid and high, than for low parameter setting.
For the low parameter setting, the number of detections for
MRD increased from 120 to 207 detections with a decrease in
the PPV from 87% to 82%. Of the 87 new detections, 27 are
additional RTSs. For the mid parameter setting, the change was
more pronounced with an increase of 227 to 545 and a decrease
in the PPV from 62% to 47% with 67 new RTS detections. On
Banks using the low parameter setting, the number of detection
increased from 777 to 1402 with a decrease in the PPV from
71% to 48% with 124 additional RTSs. For the midparameter
setting, the number of detections increased significantly to 4791
and a manual assessment of the detections (accuracy assessment
Step 1) in RTS and non-RTS detection was not possible.

VII. DISCUSSION

We present the first mapping algorithm for RTSs based on the
volumetric changes induced by thaw slump activity. This is in
contrast to prior studies where the 2-D information from optical
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Fig. 12. Influence of snow on elevation measurements on Banks. (a) and (b) Elevation change and computed test score, respectively, for DEMs generated between
January 22, 2011 and January 19, 2017. Several significant height changes are visible corresponding to active RTSs. The circles show the locations of active RTSs
that were detected. (d) and (e) Elevation change and computed test score, respectively, for DEMs generated between June 11, 2012 and January 19, 2017. The
measurements show many disturbances especially at locations in trenches. (c) True-color Planet RapidEye observation taken on June 16, 2012. Several late-lying
snow packs at similar location than the elevation changes in the TanDEM-X difference image are visible. (f) Influence of wet snow is also visible in the backscatter
intensity image for the TanDEM-X observation taken on June 11, 2012. The darker areas corresponding to lower backscatter values and are in similar areas then
the snow areas in the optical Planet true-color image.

satellites based on time-series analysis on Landsat data [15]
and deep learning methods on Planet data [16] have been used.
The growth of the scare zone and the accompanied vegetation
change is used as an RTS indicator. Our two-step approach is
tailored to TanDEM-X single-pass SAR observations obtained
at different times to generate DEMs and estimate the volumetric
change by differentiation. The use of the volumetric change as
an RTS indicator is a more direct indication of RTS activity
and furthermore independent on vegetation coverage, which
is especially important for the vegetation sparse Arctic tundra
regions.

A. Two-Step Algorithm for Mapping Thaw Slumps With
TanDEM-X

In a first step, we detected significant elevation change in the
DEM difference images. The computation of a test statistic, ad-
ditionally using the spatial size of the thaw slumps, followed by
blob detection algorithm and a clustering step, successfully ex-
tracted spatially extensive physical height changes from isolated
artifacts due to noise. The detection step needs to strike a balance
between the number of RTS detections in relation to non-RTS
detections. This is a particular challenge for small thaw slumps
since two counter acting objectives have to be considered. On
the one hand, we want to detect RTSs with properties as close

as possible to the detection limit but decreasing the thresholds
and thus the amount of detected RTSs leads on the other hand
to an increase in the number of non-RTS detections. Since in
the following classification step RTS and non-RTS detection are
separated, we selected the midparameter setting as the optimal
threshold, in which also slumps with retreat rates and headwall
heights just at the detection limit are detected but nevertheless
very small or barely active RTSs are missed. The PPV value of
73% of the total dataset using the midparameter setting indicates
a good performance of our algorithm in narrowing down the sites
of potential slump activity. Nevertheless, 27% of the detections
could not be related to RTSs and a second classification step is
needed to separate RTS and non-RTS detections.

To weed out non-RTS detection, we investigated the use of
three classifiers and investigated their transferability between
the study areas. All classifiers showed a good performance
(OA: 75%–90%) in separating between RTS and non-RTS de-
tections. The performance of the machine learning classifiers
(SVM, RF) was about 5%–10% better than for the simple
threshold method. The classifiers performed better on the MRD
study area than on Banks Island. This difference can be ex-
plained using the feature important values generated by the
RF classifier [see Fig. 10(b)]. On MRD, the most important
feature is the total volumetric change followed by the features
based on the DEM. On the contrary on the Banks data, the
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DEM features show relatively low importance values. This hints
toward a difference in the topographic locations of RTS and
non-RTS detections in the two study sites. On MRD, wrong
detections are mainly found in vegetated trenches and in areas
showing signs of polygons, whereas RTSs occur mainly along
lake shores. Since the features φvar and mmean are features
detecting these differences, they show a high importance for
distinguishing between RTS and non-RTS detections. In contrast
to the MRD study site, Banks Island has much larger topographic
features, generating many wrong detections in similar places as
typical RTSs. Consequently, the features based on the DEM
were not helpful in distinguishing between RTS and non-RTS
detections.

The assessment of our algorithm requires high-quality train-
ing data, which are difficult to obtain. Our validation data were
subject to three limitations. First, the volumetric changes that
characterize slump activity are not directly visible in the ≈10 m
resolution optical satellite images we used for validation. In
particular, slowly stabilizing slumps are difficult to distinguish
from stabilized slumps in optical data, and recent small slumps
are difficult to detect. These errors may have falsely increased
the number of non-RTS detections (moderately active slump
not included in the reference data) as well as the PPV thus the
number of detected RTSs (stable slumps wrongly characterized
as active). Second, for the estimation of the false negative rate,
the reference data from Banks Island did not include the final
two years of our study period, such that potentially more active
slumps have been missed. Third, the sample size of the training
data was limited due to the considerable effort required for
manual mapping. While the amount was sufficient for the low to
moderate complexity machine learning classification algorithms
we employed, the training data requirements of more powerful
deep learning methods will be more difficult to meet in practice.
Training data requirements are also an important consideration
for extending our algorithm to larger scales.

B. Opportunities and Limitations for Large-Scale Mapping

Our two-step method can potentially be applied on a pan-
Arctic scale, thanks to the repeated blanket coverage by
TanDEM-X. However, the nonuniform temporal coverage and
available viewing geometries have to be considered. These
properties are related to the global TanDEM-X acquisition strat-
egy [64].

In terms of the temporal coverage, we generally have at least
two observations in the years 2011/2012 and two in 2016/2017
covering the whole pan-Arctic areas with HoA’s of below 80 m.
Nevertheless, one total coverage of the MRD study area was
obtained in summer 2012 and for the Banks study area in spring
2012. When we included DEMs generated from these observa-
tions during which the landscape was not frozen, the number
of detections increased significantly. The additional detections
are related to vegetation covered areas and wet late-lying snow
packs (see Figs. 11 and 12). The induced elevation changes are
on the order of typical RTS movements. DEMs generated during
this time frame can also lead to false volume change estimates,
for example, from snow accumulation at the foot of the slump

headwall. Due to these problems, we found that the best strategy
is to remove these observations from the analysis. The need for
observations that are taken when the landscape is frozen reduces
the number of usable observations. This implies that if one or
two observations are taken in the spring and summer time, no or
only one observation pair is well suited for the RTS detection and
property extraction leading to gaps in the pan-Arctic coverage.
We expect an improved data availability in the future due to
the current second global TanDEM-X acquisition plan with an
additionally coverage of the global permafrost region in the
winter with HoA’s of 35–45 m [65].

Our study area is observed in the same viewing geometry
(right looking, ascending). Hill slopes and trenches are influ-
enced by the radar viewing angle, increasing or decreasing the
backscatter values and thus the coherence as well as the spatial
resolution. Additionally, the right looking, ascending viewing
geometry leads to a potential bias in terms of the orientation of
the detected RTSs related to layover and shadow. For example,
if the headwall is oriented away from the sensor, the headwall
and part of the slump floor cannot be observed by the radar
waves. Due to the complex interplay between these factors
and the limited amount of validation data regarding location,
headwall height, and movement of RTSs on large scale, we could
not quantify the sensitivity of our method regarding possible
biases. The absence of descending observations is related to the
acquisition strategy for generating the global TanDEM-X DEM
in which terrain with relatively flat topography was observed
with lower variability in different observation modes than for
more difficult mountainous terrain. In areas with relatively flat
topography, the effect of layover and shadow on the detection
accuracy should be minor, but when using our detections to
investigate RTS drivers and controls as well as for the com-
putation of the induced volumetric changes the potential error
due to the viewing geometry needs to be investigated in detail.
Similarly, the application to more mountainous terrain needs to
be investigated separately and it is likely that additional methods
dealing with layover, shadow, and the DEM coregistration need
to be implemented.

When extending our RTS detection procedure to different
study sites, the topography as well as vegetation characteristics
need to be similar to our study areas. Knowledge about the
expected location of RTSs as well as non-RTS detections can
improve the classification accuracy. For example, since typical
non-RTS detections on MRD are located in trenches and flat
polygon covered areas, the two machine learning algorithms
showed a higher classification accuracy than the simple thresh-
old method. But when applying the classifier trained on the MRD
study on the Banks data, the classification accuracy dropped
significantly [see Fig. 10(a)]. To achieve the best performance,
the use of machine learning classifiers trained on part of the study
area or on a similar area regarding typical RTSs and landscape
characteristics (e.g., topography and vegetation) should provide
the best result. Nevertheless, using a simple threshold method
on the volumetric change with a threshold at about 3000 m3 can
significantly improve the result without the need for trainings
data. Additional datasets based on optical data, such as the
ArcticDEM or optical satellites (Sentinel-2, RapidEye), have
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the potential to further improve the detection rates as well as
provide additional information on the detected RTSs.

VIII. CONCLUSION

We presented and assessed a method to detect active RTSs,
using for the first time the volumetric change as an RTS indicator
by applying DEM differencing. Our suggested approach is ap-
plicable on flat and medium mountainous terrain and provides an
important step toward an RTS detection and monitoring method
on the pan-Arctic scale.

In our methods first step, we isolated significant height
changes using a statistical multiscale approach that is intended
to discard spurious changes induced by measurement noise. In
total, 1302 significant height changes were detected but refer-
ence data showed that 27% are due to processes other than thaw
slumps. In a second step, we classified those significant height
changes into RTS and non-RTS using thresholding and two
machine learning algorithms. The machine learning classifiers
exploited the characteristic properties of RTSs and common
non-RTS detections, such as their size and their topographic
position. We found that these differed markedly between the
two study regions. For example, non-RTS detections in the MRD
study area were often found in flat areas in contrary to the Banks
study area where many non-RTS detections were located close
to large topographic features. Accordingly, the transferability of
the algorithms was limited: a simple threshold-based algorithm
outperformed the SVM and the RF classifiers when transferred
to the other study region. Provided that training data from a
similar study region are available, our algorithm is expected
to perform with accuracies of 85%– 90% using the SVM and
RF classifiers. Since the TanDEM-X observations cover the
whole pan-Arctic landscape, the availability of an RTS detection
method makes it possible to generate large-scale inventories of
RTSs. Such inventories have the potential to be used as a starting
point to measure RTS-induced volumetric changes and estimate
the amount of mobilized materials including organic carbon,
nutrients, and sediments.
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