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Abstract— Compared to a single robot, a swarm system
can conduct a given task in a shorter time, and it is more
robust to system failures of each agent. To successfully execute
cooperative missions with multiple agents, accurate relative
positioning is important. If global positioning (e.g. with a GNSS-
based positioning) is available, we can easily compute relative
positions. In environments where a global positioning system
is unreliable or unavailable, visual odometry can be applied
for estimating each agent’s egomotion, by exploiting onboard
cameras. Using these self-localization results, relative positions
between agents can be estimated, once the relative geometry
between agents is initialized. However, since visual odometry
is a dead-reckoning process, the estimation errors accumulate
inherently without bounds. We propose a cooperative local-
ization method using visual odometry and inter-agent range
measurements. Using the proposed method, we can reduce the
drifts in position estimates with very modest requirements on
the communication channel between agents.

I. INTRODUCTION

To successfully execute missions with a swarm system,
accurate relative positioning is important to avoid collision
between agents and properly merge the data acquired by
each platform. In [1] and [2] Schumuck et al. propose cen-
tralized collaborative simultaneous localization and mapping
(SLAM) with inter-agent loop closures to reduce inherent
drifts in relative positioning. Lie et al. [3] propose a similar
method, extending the state-of-the-art SLAM algorithm for
a single agent, ORB-SLAM2 [4]. Additionally, Mohanarajah
et al. [5] propose centralized cooperative SLAM with inter-
agent map point matches using a cloud server instead of
using a central server computer. Although the drifts in
relative positioning can effectively corrected exploiting map
point matches between agents, these methods might not
be suitable for environments where data communication is
constrained (i.e. communication is only available with low
bandwidth and data rate) since large-sized data , which
include feature descriptors of each map points, need to be
exchanged between agents and a server computer (or cloud).

In order to reduce the data packet size, Cunning et al.
[6], [7] propose multi-agent SLAM with a decentralized
graph-based data fusion, by applying constraints to the
factor graph (DDF-SAM). In [8] Cieslewski et al. propose
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a fully decentralized visual SLAM with compact feature
descriptors generated with NetVLAD [9], improving their
previous works in [10] and [11]. Even though the data packet
size can be reduced with the proposed methods, the inherent
problem of using matching map points remains: robots’
movements are constrained since useful measurements for
fusing local maps are only available when agents observe
the same features in the explored environments, adding a
constraint on the mission planning.

Instead of using inter-agent map point matches, Richard-
son et al. [12] use a known pattern for a multi-UAV system:
whenever a UAV detects a known pattern (e.g. checkerboard)
on another platform, the relative pose between the agents
are corrected using this pattern information. Kim et al.
[13] propose a graph-based cooperative SLAM using both
map point matches and patterns for a swarm system with
heterogeneous platforms, as a multi-agent version of iSAM
[14]. However, as the approaches with inter-agent map point
matches, the movement of agents is still needed to be
constrained to observe a pattern on another robot.

We propose a collaborative SLAM method using a combi-
nation of visual odometry and range measurements between
agents to mitigate relative positioning errors. Unlike the
methods exploiting inter-agent map point matches and/or
pattern observations, inter-agent ranges can be obtained with
time-of-flight measurements even when agents are distributed
widely, and observe different features. In addition, our
method requires to only exchange poses of one of the agents
(6DoF) and range measurements (scalar values), which re-
duces the data packet size significantly compared to meth-
ods using map fusion. We evaluate the proposed algorithm
with an existing image dataset and synthetically generated
inter-agent range measurements between two platforms. The
proposed method could be also applied to a swarm system
with an arbitrary robots as well.

II. SYSTEM SETUP

Fig. 1 shows the setup of the proposed collaborative
SLAM with two agents. Each agent-k has a monocular
camera Ctk and a ranging tag module Ttk as on-board sensors.
The position vector from a camera to a tag is p

CT
, which

can be calibrated before conducting the mission. The local
reference frame of the agent-k is denoted with Lk whose
origin coincides with its on-board camera frame.

To describe each agent’s camera pose with respect to its
(static) local frame Lk, we use 3× 4 matrices of the SE(3)
Lie group [15]. The matrices in this group are denoted with

Tt
CkLk

=

[
Rt

CkLk
ttLkCk

0 1

]
, where Rt

CkLk
is a rotation matrix
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Fig. 1: The system setup with two agents. Each agent has a
monocular camera Ctk and a ranging tag module Ttk. The local
reference frame of the agent-k Lk is defined for each agent’s
egomotion estimation. The agent-1’s local frame Lk is assumed to
be the global frame G of the entire system. The agent-k’s camera
pose at time t with respect to its local frame is denoted Tt

CkLk
,

and pCT is the position vector from the camera to the tag at time
t. The inter-agent range measurement at time t is denoted with ρt.

that converts a vector’s reference frame from Lk to Ctk, and
ttLkCk

is a translational vector from Lk to Ctk.
We assume to work with monocular cameras that only

allow estimating the agent-k’s trajectory and map point
coordinates up to a common global scale factor λGLk

. In
addition, we assume that only agent-1 recovers its absolute
global scale λGL1

, thus setting the local reference frame of
the agent-1 L1 as the global frame G. Since the origin and
orientation of the global frame is same as the agent-1’s local
frame, the relative similarity matrix from L1 to G, denoted
with SGL1

(in the Sim(3) Lie group), only includes this global
scale factor as

SGL1
=

[
I3×3 0

0 λ−1
GL1

]
. (1)

The agent-2 recovers its global scale indirectly by estimating
the relative similarity matrix from L2 to L1:

SL1L2
=

[
Rt

L1L2
ttL2L1

0 λ−1
L1L2

]
(2)

.
The inter-agent range measurement between the tag mod-

ules at time t is described as ρt.

III. ALGORITHM OVERVIEW

We illustrate the overview of the proposed collaborative
SLAM system with two agents in Fig. 2.

First, each agent estimates local map points and poses
with respect to its own local frame using monocular visual
odometry. Since a monocular vision-based system is used,
the global scales of both agents are inherently ambiguous.
The agent-1 recovers the absolute global scale by e.g. ob-
serving a known pattern (checkerboard), while the agent-2

indirectly recovers its global scale by estimating the relative
similarity matrix from its own system to the agent-1’s system
by e.g. using map points observed by both agents. Using
the estimated global scale of the agent-1’s system and the
relative similarity matrix between the agents, the locally-
referred poses can be converted to the global frame for
the proposed data fusion. Note that our method requires to
observe a known pattern and matching map points between
agents only at the beginning of the mission to properly
initialize the global scale and relative pose between agents.
These measurements are not needed after the initialization
for the proposed data fusion method.

To fuse local data, the agent-2 transmit its poses (6DoF) to
the agent-1 after converting the reference frame from L2 to
L1, by exploiting the initialized relative similarity between
the agents. Then, on the agent-1’s onboard computer, the
reference frame of all the poses are converted to the global
frame. In addition, inter-agent range measurements are ob-
tained using time-of-flight (ToF) measurements between each
agent’s ranging onboard module (tag).

Before fusing the odometry and ranging data, we syn-
chronize the collected measurements using their timestamps.
Then, the collected local odometry data and range mea-
surements are fused to mitigate the drifts in each agent’s
local pose estimates. After this fusion process, the reference
frame of each agent’s pose is converted back to its own local
frame, and the local map points are updated using the pose
differences (before and after the fusion process) of the frame
at which map points are first generated.

As shown in Fig. 2, only the agent-2’s poses (6DoF)
and ranges (scale values) are transmitted between the agents
during the entire process, which can significantly reduce the
exchanging data size and computational load compared to
other collaborative SLAM methods that thoroughly use map
point matches between agents.

IV. FUSION OF ODOMETRY AND INTER-AGENT
RANGING

In this section, we explain a fusion of odometry and inter-
agent range measurements for accurate relative positioning.
The data fusion problem is formulated using the factor graph-
based method [14].

A. Factorization

First, we formulate a factor graph as shown in Fig.3.
In this figure, circular nodes represent the unknowns (state
variables), which are the agents’ poses converted to the
global frame:

Tov =
[
Tt1

C1G, . . . ,T
tN
C1G|T

t1
C2G, . . . ,T

tN
C2G

]
.

The likelihood of the states Tti
CkG and T

tj
CkG given the

odometry measurements

zjivo,k = T̂
tj
CkLk

(T̂
ti
CkLk

)−1



Fig. 2: An overview of the proposed decentralized collaborative SLAM. The local frame of the agent-1 is set as the global frame of the
entire system, and the computation processes for fusing data are conducted on the agent-1.

are denoted as the factors between the camera nodes φjivo,k.
Assuming Gaussian noise in the measurements,

φjivo,k = l(Tti
CkG,T

tj
CkG|zjivo,k) (3)

∝ exp{−1

2
||ejivo(Tti

CkG,T
tj
CkG, z

ji

vo,k)||2},

with ejivo(Tti
CkG,T

tj
CkG, z

ji

vo,k) denotes the visual odometry er-
ror function. Since camera poses are described with matrices
in SE(3) of the Lie group, odometry errors cannot be directly
computed by subtracting measurements from the model. To
compute the errors, first, we compute the error matrix in
SE(3) as

Evo(T
ti
CkG,T

tj
CkG, z

ji

vo,k) = (T
tj
CkLk

)−1zjivo,kT
ti
CkLk

(4)

Then, this error matrix is converted to vector
ejivo(Tti

CkG,T
tj
CkG, z

ji

vo,k), which is a 6 × 1 vector in
se(3) of the Lie algebra [15].

In addition, we add factors that represent the likelihood
of the states Tti

C1G and Tti
C2G given the inter-agent range

measurements zir as a factor φir between the camera nodes
whenever range measurements are available. With a Gaussian
noise assumption,

φir = l(Tti
C1G,T

ti
C2G|zir) (5)

∝ exp{−1

2
||eir(T

ti
C1G,T

ti
C2G, z

i

r)||2},

where eir(T
ti
C1G,T

ti
C2G, z

i

r) denotes the ranging error function.
Since range measurements are scalar values, the errors can
be easily defined as the difference between measurements
and the value computed with the model

eir(T
ti
C1G,T

ti
C2G, z

ti
r ) = zir − hir(T

ti
C1G,T

ti
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Fig. 3: The formulated factor graph including unknowns Tti
C1G and

Tti
C2G, odometry factors φjivo,k, and ranging factors φtir

.

where hir(T
ti
C1G,T

ti
C2G) is ranging measurement model func-

tion:

hir(T
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C1G,T
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C2G) = ||Gpti

T1T2
|| (7)
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B. Least-Squares Estimation

Assuming Gaussian noise in measurements, the optimal
solution that maximizes the multiplication of all the factors
is the same as the solution that minimizes the summation of
the squared errors between measurements and models:

T̂ov = argmax
Tov

∏
k

∏
i,j

φjivo,k
∏
i

φiρ (8)

= argmin
Tov

∑
k

∑
i,j

(ejivo,k)TΩvo,kejivo,k +
∑
l

(eir)
TΩre

i
r,

where the inversed measurement covariance matrices are
denoted with Ω.



To solve the least-squares problem (8), we apply the
Levenberg-Marquardt algorithm. This algorithm iteratively
updates the state with ∆T̂

∗
ov computed by solving

(H + λI)∆T̂
∗
ov = −b, (9)

where H =
∑
k JTk ΩkJk and b =

∑
k JTk Ωkek with

Jacobian matrices Jk. For the iterative computations, g2o
[16] is used.

C. Local Poses Recovery and Local Map Point Update

Finally, we recover each agent’s local poses T̂
ti
CkLk

using

the agents’ global pose estimates T̂
ti
CkG and the initially

recovered similarity matrices (1) and (2):

T̂
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=

[
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ti
C1G λ−1
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]
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)
0 1

]
Then, local map points p

LkMn
are updated on each agent’s

on-board computer, using the previous pose estimate T̃
ti
CkLk

(before the fusion) and updated ones T̂
ti
CkLk

(after the fusion)
of the camera frame at which each map point is first
generated:

p̂
LkMn

= (T̂
ti
CkLk

)−1T̃
ti
CkLk

p̃
LkMn

.

V. EVALUATIONS

First, we show the reduced exchanging data size for
the proposed collaborative SLAM method compared to the
approaches that use map fusion. Then, we evaluate the
proposed method in terms of relative positioning accuracy
with a public dataset.

A. Analysis on Data Packet Size

Table I shows the required transmitting data size for
collaborative SLAM using map matches (both centralized
and decentralized systems) and inter-agent range measure-
ments (decentralized system, our method) for two agents.
We assume that the binary robust independent elementary
feature (BRIEF) [17] descriptors are used to describe the
characteristics of feature points.

For decentralized SLAM with map fusion, one of the
agents needs to transmit its own poses (6 floats for each
pose) and local map points (3 floats for each point), as well
as detected feature point positions in image frames and their
descriptors, to the other agent. When agent-k estimates its
poses at Nk timestamps, generates total Mk map points, and
i-th map point is detected at mk,i frames, then the agent
needs to transfer

(Nk × 192) + (Mk × 96) +

Mk∑
i=1

mk,i(64 + 128)[bits].

TABLE I: The required exchanging data packet for collaborative
SLAM with inter-agent map matches and ranging. The number of
the agent-k’s poses is denoted with Nk. Mk denotes the number
of local map points estimated with the agent-k, and M0

k are the
number of local map points required to initialize relative geometry
between the agents. mk,i are the number of time instances at which
the i-th map point is observed, and nρ is the number of time-of-
flight measurements (ranging). In the last row, the total required
data size is presented in KB for a simply formulated collaborative
SLAM problem: N1 = N2 = 10, M1 =M2 = 100, M0

2 = 5, and
m1,i = m2,i = 2.

f=floats, b=binaries

Data Map Matches Ranges
Cen. Decen. (Decen., Ours)

Poses1 6N1f
Map Points1 3M1f

Features+
Descriptors2

∑M1
i=1m1,i×

(2f + 128b)

Poses2 6N2f 6N2f 6N2f
Map Points2 3M2f 3M2f 3M0

2 f

Features+
Descriptors2

∑M2
i=1m2,i×

(2f + 128b)

∑M2
i=1m2,i×

(2f + 128b)

∑M0
2

i=1m2,i×
(2f + 128b)

Time-of-flight nρf
Total [KB] 12.48 6.24 2.67

To use a central server, both agents need to send this
information to the server.

However, the proposed method only requires to send this
visual information only for initializing the relative geometry
between the agents. After the initialization, we only need to
transmit the data packet without visual data:

(Nk × 192) + (nρ × 32)[bits],

where nρ is the number of timestamps at which inter-agent
ranging is available.

The last row of Table I shows the total required data size in
kilo bytes [KB] when each vehicle estimates its poses at 10
timestamps, generates 100 local map points, 5 map points are
needed for the initialization, and each map point is observed
at two image frames. Compared to the approaches with map
fusion, the proposed method shows a largely reduced amount
of the required data transmission. Considering Nk �Mk in
practice, our method can be useful when a swarm system in
an environment where communication capabilities are very
limited.

B. Analysis on Positioning Accuracy with a Public Dataset

We evaluate the relative positioning accuracy of the pro-
posed collaborative SLAM using the image sequence 00 of
the KITTI dataset [18]. This is a image dataset acquired with
a car, so first we use two parts of the entire dataset, and
assume that each part is traveled by one agent. Since inter-
agent ranges are not included in the dataset, we generated
synthetic measurements using the ground truth trajectory and
artificially added Gaussian noise.

The errors in relative distances between two agents over
time are shown in Fig. 4a. The green line represents the
errors over time when only with visual odometry is used.



(a) The absolute relative distance errors of positions estimated using
only visual odometry and the proposed method with inter-agent
range measurements over time.

(b) The errors of relative positions estimated using only visual
odometry and the proposed method with inter-agent range mea-
surements over time.

Fig. 4: The errors in relative distances and positions over time

The blue line is the errors over time when the proposed
data fusion is applied using perfectly accurate inter-agent
range measurements (no noise). This figure shows that the
proposed method can reduce the relative distance errors
between agents, which is helpful for the swarm system to
e.g. avoid collisions.

Fig. 4b compares the error magnitude of the relative
positions estimated only with visual odometry (green) to
the proposed method with inter-agent range measurements
(blue). This figure shows that the errors in relative position-
ing are reduced with the proposed method. In Table II, we
analyze the accuracy of relative positioning in terms of rang-
ing noise magnitude. In the first row, the root mean square
error (RMSE) of the estimates obtained with only visual
odometry are presented. From the second row, the RMSE of
the estimates obtained by using the proposed method with
various noise level on inter-agent range measurements are
given. As range measurements becomes inaccurate with a
larger standard deviation (σρ), relative positioning becomes
inaccurate, and the RMSE of the relative distances between
the agents becomes larger. However, we can observe that our
method outperforms visual odometry in all the cases.

TABLE II: The RMSE of the relative distances and position
estimates obtained by using only visual odometry and the proposed
method with various standard deviation (σρ) of Gaussian noise on
inter-agent range measurements

Setting RMSE [m]
Relative dist. Relative position

Visual odometry 18.29 19.410
No noise 0.302 6.345
σρ=0.1m 0.311 6.346
σρ=0.5m 0.346 6.347
σρ=1.0m 0.477 6.350

Fig. 5 illustrates the trajectory estimates with generated
map points in horizontal and vertical planes. Fig. 5a and
Fig. 5b show the trajectory and map points estimates in the
horizontal and vertical plane of the agent-1 in its local frame.
Fig. 5c and 5d show the agent-2’s trajectory estimates in
the horizontal and vertical plane in its own local frame. The
combined trajectories and map points in the global frame are
illustrated in Fig. 5e and 5f. In these figure, we cannot see a
large improvement of absolute positioning with the proposed
method, which is expected since our approach exploits inter-
agent range measurements that only provide relative informa-
tion to the system. To mitigate the drifts in global position
estimates, we need to use absolute measurements, such as
absolute position measurements obtained with GNSS-based
systems [19] and ranging links to a base station (anchor
point) as proposed in [20] and [21].

VI. CONCLUSION

We propose an accurate cooperative positioning method
by exploiting inter-agent range measurements for swarm
systems. After the initialization, the proposed method only
requires to exchange the poses of one of the agents with
time-of-flight observations. With a simply formulated coop-
erative localization problem, we showed the reduced size of
exchanging data packets, compared to methods that use map
fusions to mitigate the estimation errors. Then, improved
accuracy of relative positioning is shown with simulation
results obtained with real images and synthetically generated
inter-agent range measurements. Since the proposed method
only reduces relative positioning errors, absolute positions
of agents could be shifted or rotated. To mitigate global
positioning errors, the proposed method needs to exploit
additional absolute measurements, such as absolute position
measurements and ranging links to a base station.
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