SciGRID_gas: The merged IGGINL gas transmission network data set

Release 1.0

J.C. Diettrich & A. Pluta & W. Medjroubi

Dec 07, 2020

CONTENTS

1	Intro	duction		9
	1.1	Project	information	9
	1.2	Backgr	ound	10
	1.3	Project	goal	11
	1.4	Docum	ent overview	12
	1.5	Format	ting style	12
2	Data	structu	P.0.	13
-	2.1	Data st	ructure description	13
	2.1	211	Terminology	13
	22	Summe		18
	2.2	Summe	пу	10
3	Data	sources		19
	3.1	Non-O	SM data	20
	3.2	The Int	ernetDaten (INET) data set	22
		3.2.1	Overview of the INET data set	22
		3.2.2	Origin of the data	22
		3.2.3	INET CSV file description	24
		3.2.4	INET data density	28
		3.2.5	Copyright and disclaimer for the INET data set	31
	3.3	Gas Inf	rastructure Europe (GIE) data set	32
		3.3.1	Requirements for accessing the GIE transparency platform	32
		3.3.2	Data processing of the GIE data set	33
		3.3.3	GIE data density	36
		3.3.4	Copyright	37
		3.3.5	Summary GIE data	38
	3.4	The Ga	s Storage Europe (GSE) data set	40
		3.4.1	Data processing of the GSE data set	40
		3.4.2	GSE data density	42
		3.4.3	Copyright and data disclaimer for the GSE data set	43
		3.4.4	Copyright	43
		3.4.5	Summary GSE data	43
	3.5	The Int	ernational Gas Union (IGU) data set	45
		3.5.1	Data processing of the IGU data set	45
		3.5.2	IGU data density	46
		3.5.3	Copyright and data disclaimer for the IGU data set	47
		3.5.4	Summary IGU data	47
	3.6	The No	prway (NO) data set	49
		3.6.1	Data processing of the Norway data	49
		3.6.2	NO data density	50

		3.6.3 Copyright for the Norway data set	52
		3.6.4 Summary Norway data	52
	3.7	The Long-term Planning and Short-term Optimization (LKD) data set	54
		3.7.1 Pre requirements for accessing the LKD data set	55
		3.7.2 Data processing of the LKD data	55
		3.7.3 LKD data density	56
		3.7.4 Copyright and disclaimer for the LKD data set	58
		3.7.5 Summary LKD data	59
	3.8	Data summary	61
			()
4	Merg	ing data sources	63
	4.1		63
		4.1.1 Problem description	63
		4.1.2 Methods for element identity comparison	64
	4.2	Merging pipe elements	66
		4.2.1 Problem description	66
		4.2.2 Methods of identifying identical pipelines	67
	4.3	Application to the INET, GIE, GSE, IGU, NO and LKD data set	70
		4.3.1 Merging <i>BorderPoints</i>	71
		4.3.2 Merging <i>Compressors</i>	71
		4.3.3 Merging <i>EntryPoints</i>	71
		4.3.4 Merging InterConnectionPoints	72
		4.3.5 Merging <i>LNGs</i>	72
		4.3.6 Merging <i>PipeSegments</i>	72
		4.3.7 Merging <i>Productions</i>	73
		4.3.8 Merging <i>Storages</i>	73
		4.3.9 Merging <i>Nodes</i>	73
		4.3.10 Summary	74
	4.4	Summary	74
_			==
3	Heur	stic attribute value generation	15
	5.1		75
		5.1.1 Fill value methods	76
		5.1.2 Attribute value generation pathway	78
	5.2	Example value estimation	87
	5.3	Automated attribute value generation	89
	5.4	Single network generation	89
	5.5	Summary	90
6	Final	data set	91
Ŭ	6.1	Combined IGGINL data set	91
	0.1	6.1.1 PineSegments	01
		612 Storages	03
		6.1.2 Storages	03
		614 BorderDointe	0/
		6.1.5 Compressors	94
		6.1.6 EntryDeinte	94
		0.1.0 EntryPoints	93
		6.1./ InterConnectionPoints	95
		6.1.8 Nodes	95
		6.1.9 Resulting map of data set	95
7	Conc	usion	99
0	A .		101
8	Appe		101
	0.1	01055aLy	101

8.2	Unit co	nversions	103
8.3	Attribu	te <i>exact</i>	103
8.4	Referen	nces for INET data set	103
8.5	Locatio	on name alterations	110
8.6	Countr	y name abbreviations	110
8.7	Statisti	cal background	111
	8.7.1	Out-of-bag	111
	8.7.2	Leave p-out cross-validation	111
	8.7.3	Leave one-out cross-validation	112
	8.7.4	Jackknifing	112
	8.7.5	Bootstrap	112
8.8	Acknow	wledgement	112
bliogr	aphy		113

Bibliography

How to cite

J.C. Diettrich, A. Pluta, W. Medrjoubi SciGRID_gas: The merged IGGINL data set DLR Institute for Networked Energy Systems Germany doi: 10.5281/zenodo.4288440

Impressum

DLR Institute for Networked Energy Systems Carl-von-Ossietzky-Str. 15 26129 Oldenburg Germany Tel.: +49 (441) 999 060

LIST OF FIGURES

2.1	Data structure for the SciGRID_gas data set	14
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Map of the INET data set. The legend contains the number of elements for each component.Screenshot of part of the Wikipedia page for the pipeline JAGAL.Overview map of the GIE data set for Europe.Overview map of the GSE data set for Europe.Overview map of the IGU data set for Europe.Overview of the NO data set.Map of components of the LKD data set.	23 23 39 44 48 53 60
4.1 4.2	Example data sets blue, red and yellow, all depicting a storage element with different attributes and attribute values. The figure also includes the spatial separation between the elements	64
4.3	Process flow chart for determining, if two pipes from two different networks are describing the same pipe.	68
5.1	Map of some of the larger pipelines in Germany, with corresponding attributes <i>capacity</i> (Cap), <i>pressure</i> (Pres) and <i>diameter</i> (Diam)	76
5.2	Sample file of the file "Copying Attribs.csy"	79
5.3	Sample file of the file "StatsMethodsSettings.csv"	80
5.4	Sample file of the file "StatsAttribSettings.csv"	81
5.5	Example of converting strings attributes to number attributes.	81
5.6	Example histogram plot of the <i>Compressors</i> attribute $max_cap_M_m3_per_d$	82
5./	Example of attribute max, newar, MW versus max, can M, m ² , new d from the component Compress	83
5.0	sors. The solid line represents the fit of the Lasso method to the data	85
5.9	Example CSV output of heuristic model results for the component <i>LNGs</i> , depicting columns A - E	85
5.10	Example CSV output of heuristic model results for the component <i>LNGs</i> , depicting columns I - 1.	85
5.11	Histogram of raw (blue) and estimated (red) values for <i>max_cap_store2pipe_M_m3_per_d</i> (left) and <i>max_cap_pipe2store_M_m3_per_d</i> (right) of the <i>Storages</i> component. Both subplots also indicate the	
	location of the median value for the raw data (star).	88
6.1	European map of the final IGGINL data set.	96
6.2	Map of the final IGGINL data set, for Germany only.	97

LIST OF TABLES

3.1	INET component summary.	22
3.2	INET PipeSegments data density	28
3.3	INET Compressors data density	29
3.4	Summary for the attribute <i>exact</i> of component <i>Nodes</i> of the INET data set	29
3.5	INET Nodes data density	30
3.6	INET BorderPoints data density	30
3.7	INET InterConnectionPoints data summary	30
3.8	INET <i>LNGs</i> data density	31
3.9	GIE incorporated attributes	34
3.10	GIE LNGs data density	36
3.11	GIE Storages data density	37
3.12	GIE Nodes data density	37
3.13	GIE component summary	38
3.14	Overview of GSE CSV data source	41
3.15	GSE Storages data summary	42
3.16	GSE Nodes data summary	42
3.17	GSE component summary	43
3.18	IGU Storages data summary	46
3.19	IGU Nodes data summary	46
3.20	IGU component summary	47
3.21	NO PipeSegments data density summary	51
3.22	NO Nodes data density summary	51
3.23	NO component element summary	53
3.24	LKD PipeSegments data summary	57
3.25	LKD Compressors data summary	57
3.26	LKD Storages data summary	57
3.27	LKD <i>Productions</i> data summary	58
3.28	LKD <i>Nodes</i> data summary	58
3.29	LKD component summary	59
4.1	Summary of data of the three sample <i>Storages</i> elements	63
4.2	Summary of key attribute values of the elements of the two networks "B" and "R".	67
4.3	Number of <i>Compressors</i> elements per input data set and merged data set.	71
4.4	Number of <i>LNGs</i> elements per input data set and merged data set.	72
4.5	Number of <i>PipeSegments</i> elements per input data set and merged data set.	73
4.6	Number of <i>Storages</i> elements per input data set and merged data set	73
4.7	Number of <i>Nodes</i> elements per input data set and merged data set.	74
5.1	Summary of data of the nine sample pipelines from Figure 5.1.	75
	· · · · · · · · · · · · · · · · · · ·	. 0

5.2	Input and estimated <i>capacity</i> data of the example, including the method of estimation and the corresponding estimated error. Values are given in units of $[M \text{ m}^3 \text{ d}^{-1}]$.	77
5.3	Input and estimated <i>diameter</i> data of the example, including the method of estimation and the corresponding estimated error. Values are given in units of [mm].	78
5.4	List of attributes of the <i>Storages</i> component for the IGG data sets, with some statistical properties	87
5.5	Number of elements prior and post connection with pipelines.	90
6.1	List of attributes of <i>PipeSegments</i> elements and their ratio of raw versus heuristically generated at-	
	tribute values.	92
6.2	List of attributes of <i>Storages</i> elements for the IGGIN and IGGINL data sets, with additional statistical	
	properties for each attribute.	93
6.3	List of attributes of <i>LNGs</i> elements for the IGGINL data sets, with additional statistical properties for	
	each attribute.	93
6.4	List of attributes of Compressors elements for the IGGINL data sets, with additional statistical prop-	
	erties for each attribute	94
6.5	List of components with number of elements of the final merged and filled IGGINL network data set.	95
8.1	Dataset abbreviations	101
8.2	Glossary	102
8.3	Unit conversions	103
8.4	Unit conversions	103
8.5	Country codes	111

Summary

Here, this document describes the resulting data set "IGGINL", where all missing values have been estimated using heuristic processes, and where the dataset itself was generated by combining the following data sources:

- InternetDaten data set (INET) [DPM20e]
- Gas Infrastructure Europe data set (GIE) [GasIEurop20]
- Gas Storages Europe data set (GSE) [GasSEurop20]
- International Gas Union data set (IGU) [IGU20]
- Norway data set (NO) [Gassco20a].
- Long-term Planning and Short-term Optimization data set (LKD) [FMWP+17].

The goal of the SciGRID_gas project is twofold: a) to generate a comprehensive gas transmission network dataset for Europe and b) to develop and supply automated processes to create those data sets for Europe. Gas transmission networks and their data are essential for gas network modelling. The modelling community can derive major characteristics from such networks. Such simulations have a large scope of application, for example, they can be used to perform case scenarios, to model the gas consumption, to minimize leakages and to optimize overall gas distribution strategies. The focus of SciGRID_gas will be on the European transmission gas network, but the principal methods will also be applicable to other geographic regions.

Data required for such models are the gas facilities, such as compressor stations, LNG terminals, pipelines, etc. One needs to know their locations, in addition to a large range of attributes, such as pipeline diameter and capacity, compressor capacity, configuration, etc. Most of this data is not freely available. However, throughout the SciGRID_gas project it was determined, that data can be grouped into two categories: a) OSM data, and b) non-OSM data. The OSM data consists of geo-referenced facility location data that is stored in the OpenStreetMap (OSM) data base, and is freely available. The OSM data set currently delivers highly accurate topological information on pipelines, however, does rarely contain any additional meta information. The Non-OSM data set can fill some of those pipeline data gaps, and can additionally supply information such as pipeline diameter, compressor capacity and more. Part of the SciGRID_gas project is to mine and collate such data, and combine it with the OSM data set. In addition heuristic tools have been designed to fill data gaps, so that a complete gas network data set can be generated.

In this document, the chapter "Introduction" will supply some background information on the SciGRID_gas project, followed by the chapter "Data structure" that gives a detailed description of the data structure that is being used in the SciGRID_gas project. Chapter "Data sources" describes the INET, GIE, GSE, IGU, NO and LKD data sets. To remove any missing data, the chapter "Heuristic methods" describes in detail, how missing attribute values (e.g. pipeline diameter) were generated. This is followed by the chapter "Final data set", which gives a brief overview on each set of components and in addition summarizes the changes to a previously published SciGIRD_gas data set.

The data presented here, e.g. number of pipelines if valid for this current version, but might significantly change with future updates, as additional tools become available, or new relationships between data sets can be made.

The appendix contains a glossary, references, location name alterations convention and finishes with the table of country abbreviation.

CHAPTER

INTRODUCTION

SciGRID_gas is a three-year project funded by the German Federal Ministry for Economic Affairs and Energy [BMWi20] within the funding of the 6. Energieforschungsprogramm der Bundesregierung [BMWi11].

The goal of SciGRID_gas is to develop methods to generate and provide an open-source gas network data set and corresponding code. Gas transmission network data sets are fundamental for the simulations of the gas transmission within a network. Such simulations have a large scope of application, for example, they can be used to preform case scenarios, to model the gas consumption, to detect leaks and to optimize overall gas distribution strategies. The focus of SciGRID_gas will be the generation of a data set for the European Gas Transmission Network, but the principal methods will also be applicable to other geographic regions.

Both the resulting method code and the derived data will be published free of charge under appropriate open-source licenses in the course of the project. This transparent data policy shall also help new potential actors in gas transmission modelling, which currently do not possess reliable data of the European Gas Transmission Network. It is further planned to create an interface to [MMK16] or heat transmission networks. Simulations on coupled networks are of major importance to the realization of the German *Energiewende*. They will help to understand mutual influences between energy networks increase their general performance and minimize possible outages to name just a few applications.

This project was initiated, and is managed and conducted by DLR Institute for Networked Energy Systems.

1.1 Project information

- **Project title**: Open Source Reference Model of European Gas Transport Networks for Scientific Studies on Sector Coupling (*Offenes Referenzmodell europäischer Gastransportnetze für wissenschaftliche Untersuchungen zur Sektorkopplung*)
- Acronym: SciGRID_gas (Scientific GRID gas)
- Funding period: January 2018 July 2021
- Funding agency: Federal Ministry for Economic Affairs and Energy (Bundesministerium für Wirtschaft und Energie), Germany
- Funding code: Funding Code: 03ET4063
- Project partner: DLR Institute for Networked Energy Systems

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

Institute of Networked Energy Systems Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

1.2 Background

As of today, only limited data of the facilities of the European Gas Transmission Networks is publicly available, even for non-commercial research and related purposes. The lack of such data renders attempts to verify, compare and validate high resolution energy system models difficult, if not impossible. The main reason for such sparse gas facility data is often the unwillingness of transmission system operators (TSOs) to release such commercially sensitive data. Regulations by EU and other lawmakers are forcing the TSOs to release some data. However, such data is sparse and too often not clearly understandable for non-commercial operators, such as scientists.

Hence, details of the gas transmission network facilities and their properties are currently only integrated in in-house gas transmission models which are not publicly available. Thus, assumptions, simplifications and the degree of abstraction involved in such models are unknown and often undocumented. However, for scientific research those data sets and assumptions are needed, and consequently the learning curve in the construction of public available network models is rather low. In addition, the commercially sensitivity also hampers any (scientific) discussion on the underlying modelling approaches, procedures and simulation optimization results. At the same time, the outputs of energy system models take an important role in the decision making process concerning future sustainable technologies and energy strategies. Recent examples of such strategies are the ones under debate and discussion for the Energiewende [BundesregierungDeutschland20] in Germany.

In this framework, the SciGRID_gas project initiated by the research centre DLR Institute of Networked Energy Systems in Oldenburg aims at building an open source model of the European Gas Transmission network. Releasing SciGRID_gas as open-source is an attempt to make reliable data on the gas transmission network available. Appropriate (open) licenses attached to gas transmission network data ensures that established models and their assumptions can be published, discussed and validated in a well-defined and self-consistent manner. In addition to the gas transmission network data, the Python software developed for building the model SciGRID_gas are published under the GPLv3 license.

The main purpose of the SciGRID_gas project is to provide freely available and well-documented data on the European gas transmission network. Further with the documentation, and the Python code, users should be able to generate the data on their own computers.

The input data itself is based on data available from openstreetmap.org (OSM) under the Open Database License (ODbL) as well as Non-OSM data gathered from different sources, such as Wikipedia pages, fact sheets from TSOs or even newspaper articles.

The main workload of this project is to:

- retrieve the OSM and Non-OSM data sets for the gas infrastructure
- merge all available data sets

- build a gas transmission component data set
- generate missing data using heuristic methods
- remove all gas facilities that are not connected to pipelines.

The first step of the project was to collate a Non-OSM data set by searching the web for metadata that will be useful for the project. This included information, such as pipelines, compressors, LNG terminals, and their attributes, such as diameters, capacities, etc.

This data set is called the "InternetDaten" data set (INET). The raw data set has been published previously. Additional data sets, such as the data from "Gas Infrastructure Europe" (GIE), "Gas Storages Europe" (GSE), "International Gas Union" (IGU), Norwegian gas transport system operator "Gassco" (NO) and the Long-term Planning and Short-term Optimization data set (LKD) are also available. Here those data sets were merged. In addition, any missing values have been determined using heuristic processes. Other additional data sets will be merged at later stages, and will be made available through the project webpage.

This multi-stage release will allow us to easily and effectively incorporate feedback from potential users during the lifetime of the project. Those releases can be downloaded through the SciGRID_gas webpage with documentation, and can be seen as a snapshot of the current research project state.

Further information on the project can be found on the SciGRID_gas web page: https://www.gas.scigrid.de/pages/ imprint.html.

The web page is maintained throughout the project lifetime, and will contain information on:

- · General project information
- Contact details
- Presentations
- Bug/data fixes
- Data, code and documentation releases
- Publications.

As part of the SciGRID_gas webpage, one can also sign up to the SciGRID_gas newsletter by sending an email to

news.gas-subscribe@scigrid.de

1.3 Project goal

The overall goals of the SciGRID_gas project are:

- Data output: Creation of customisable gas transmission network data sets.
- **Open source**: Any one can download the data, make changes to it, pass it on to others, or even use it in commercial projects, as long as the SciGRID_gas project is mentioned as the original source of the data (CC by).
- **Application**: The outcome of the project can be used for a variety of scientific applications (e.g. sector coupling, entry-exit models, etc.).
- **Transparency**: The Python code, the documentation and the data (that can be passed on under copyright licences) is supplied.
- **Extendibility**: Every user can extend the software code to their needs. However, we would encourage users to update and maintain the original git-repository and documentation for others.
- **Feedback**: Through constant data releases, it is hoped that the output data set will improve in quality and quantity by constantly incorporating feedback from the research community.

1.4 Document overview

This is an overview of this SciGRID_gas documentation, as this will help the user to better understand the overall project, its aims and the steps that were taken to obtain/model the resulting data set.

SciGRID_gas has been coded in Python, and hence, with that came the overall data structure that was selected for the project. As this is the most fundamental aspect for anyone wanting to use the data and the code, it is described first. In the chapter **Data Structure** we define the terms *Components*, *Elements*, and *Attributes*. We also give an overview on the internal workings of the SciGRID_gas source code.

A fundamental building block for the SciGRID_gas project is the data itself. Overall, we have classified the data into two groups: OSM and non-OSM data. The chapter **Data Sources** contains background information on the following data sets:

- InternetDaten data set (INET) [DPM20e]
- Gas Infrastructure Europe data set (GIE) [GasIEurop20]
- Gas Storages Europe data set (GSE) [GasSEurop20]
- International Gas Union data set (IGU) [IGU20]
- Norway data set (NO) [Gassco20a]
- Long-term Planning and Short-term Optimization data set (LKD) [FMWP+17].

Information is supplied on how the data was collated and how it was implemented into the SciGRID_gas data sets structure. In addition, an overview of the extent of the data will also be given for the data, e.g. the number of elements or the list of attributes that the data contains.

The following chapter describes how the individual data sets were merged. Here only elements of the component *Storages*, *LNGs*, and *PipeSegments* needed to be merged, as the data sets GIE, GSE, IGU and NO contained elements of those three components only.

The single resulting data set contains a vast amount of data, however, a large part of the data was missing as well. Hence, the chapter **Heuristic Methods** will describe the different methods that have been implemented to estimate the missing attribute values.

The chapter "Final data set" contains a summary of the resulting data set, and attempts to give an overview of the results of the statistical methods applied from the previous chapter.

The chapter "Conclusion" briefly summarises the project and data set, which is followed by the chapter **Appendix** that contains sub-sections, such as *Glossary*, *References*, etc.

1.5 Formatting style

Throughout this document certain editing format styles have been applied, to make it easier for the user to read the document.

Key SciGRID_gas component labels are written in italic, such as PipeLines, Storages etc.

Component attributes are also written in italic, such as *length_km*, *pressure_bar*.

Function names are written in bold, e.g. **M_CSV.read()**. This also includes build in statistical function, such as **mean** or **median**.

Directory names and file names are surrounded by double quotes, e.g. "StatsMethodsSettings.csv".

CHAPTER

DATA STRUCTURE

A well designed and documented data structure is fundamental in any large scale project. Good data structure in combination with tools, based on algorithms, improve the performance of any project output.

This structure needs to represent the gas flow facilities as good as possible. Hence, it needs to include components, such as pipelines, compressors, etc. A finite number of components have been identified, that are required as building blocks of a gas network. In addition each component will contain attributes, such as pipeline diameter, maximal operating pressure, maximal capacity, number of turbines etc.

It is anticipated, that the adopted data structure can be implemented in different types of gas flow models and will be used by the research community for topics, such as sector coupling or identifying gas transmission bottlenecks.

Within the SciGRID_gas project, the structure of the data model is part of classes defined within the Python code. Alterations may occur over the duration of the project, but it is envisaged, that those will be small, and that compatibility will be assured.

The goal of this section is to describe in details the data structure that has been adopted and implemented into the Python code. This will be important in understanding other aspects of this document, such as exporting the data into CSV files or generating missing values.

2.1 Data structure description

This section contains information on the SciGRID_gas data structure, the format, and the code that can be used to import publicly available data into the project, so that it can be used in subsequent steps. Paramount for an understanding of the data structure is a good understanding of the terminology used throughout this section and the document in general. Hence, terminology will be introduced in the following sub-section.

2.1.1 Terminology

Throughout this document certain terms will be used, which will be described below and have been summarized in Figure 2.1.

Figure 2.1: Data structure for the SciGRID_gas data set

Gas transmission network

The term "gas transmission network" describes the physical gas transmission grid. This does not include the distribution of gas through gas distribution companies, but includes the long distance transmission of gas from producer countries to consumer countries, as carried out by the Transmission System Operators (TSO) [Wik20g]. In addition, throughout this document, the terms "transportation" and "transmission" are seen as interchangeable, and hence, will both be used describing the same.

Gas component data set

The term "gas component data set" is used for all raw data of objects/facilities that have been loaded using Sci-GRID_gas tools into a Python environment. Gas component data sets are used as input into our SciGRID_gas project. Several data sources can be loaded as gas component data sets, and then combined into a single gas component data set. However, not all elements (e.g. compressors) must be connected to pipelines. Hence, such a data set is referred to as a "gas component data set".

Gas network data set

A "gas component data set" can be converted into a "gas network data set", by connecting all non-pipeline elements to nodes and all nodes are connected to pipelines, and as part of the process all network islands have been connected or removed, resulting in a single network. Therefore the network contains nodes and edges which are coherently connected, and all objects with the exception of pipelines are associated with nodes in this network, whereas pipelines are associated with edges.

Component

There are several component types in a gas transmission network, such as compressors, LNG terminals, or pipelines. In Figure 2.1 they are coloured red. Hence, whenever the word "component" is mentioned, it refers to one of these components. There are roughly a dozen different components that will form a gas network data set. They will be briefly explained below.

Element

The term "element" refers to individual facilities, e.g. the LNG terminal in Rotterdam, or the compressor in Radeland. In Figure 2.1 they are coloured blue. The first one is an element of the component LNG terminals, whereas the second one is an element of the component compressors. Hence, many elements make up a component. However, all elements are referring to different facilities by default. This means in a single network, one cannot have two elements of a component describing the same facility. The structure of elements is described below.

Attribute

"Attribute" is a term that is being used for the individual parameters that are associated with the elements. Examples of this term are gas "pipeline diameter", "maximum capacity", "max gas pipeline pressure", to name just a few and in Figure 2.1 they are coloured yellow. Overall there will be several hundred attributes in the SciGRID_gas project. However, the same attributes can occur in more than one component, e.g. "max flow capacity" exist for pipelines and also for compressors. Throughout the project, we have tried to keep the units of such attributes the same, so that there is no unit conversion required.

Attribute value

Each attribute has a value, most likely a number or a string. In Figure 2.1 they are coloured black. While booleans (*True/False*) are also allowed, more likely a "1" will stand for *True* and "0" for *False*. However, not all attribute values are given. Therefore a no value attribute value needs to be specified. In the SciGRID_gas Python code it is *None*.

The Figure 2.1 depicts the relationships between the terms "gas data set", "component", "element", "attribute", and "attribute value". As can be seen, a single gas data set consists of several components. On the next level, each component contains several elements. Further, each element has several attributes, where each attribute has a value. The heuristic processes described in this document at a later stage will fill all missing values with heuristically generated values.

Gas component types

A gas transmission network consists of different components, such as pipelines, compressors, etc. For the Sci-GRID_gas project a hand-full of components have been implemented, and will be described here briefly:

- *Nodes*: In a gas network, gas flows from one point to another point, which are given through their coordinates. All elements of all other components (such as compressor stations and power plants) have an associated node, which allows for the geo-referencing of each element. Overall the term *Nodes* will be used throughout this document, as it aligns with graph theory aspects.
- *PipeLines*: *PipeLines* allow for the transmission of the gas from one node to another. *PipeLines* are georeferenced by an ordered list of nodes.
- *PipeSegments: PipeSegments* are almost identical to *PipeLines*. However, are only allowed to connect two nodes. Hence, any *PipeLines* element can easily be converted into multiple *PipeSegments* elements.
- *Compressors*: *Compressors* represent compressor stations, which increases the pressure of the gas, and hence, allows the gas to flow from one node to another node. A gas compressor station contains several gas compressors units (turbines).
- *LNGs*: *LNGs* is the acronym for the LNG terminals and LNG storages, which there are several in Europe, as some gas gets transported to Europe via ships.
- *Storages: Storages* are a further network component. Surplus gas can be stored underground (e.g. in old gas fields or salt caverns), and used during low supply or high demand periods.
- Consumers: Consumers is the term used for gas users, which can be households, industry, power plants or others.
- *Production*: These can be wells inside a country where gas is pumped out of the ground. Most of the gas used in Europe comes from outside of the EU. However, there are several smaller gas production sites scattered through Europe.
- *BorderPoints: BorderPoints* are facilities at borders between countries, which are mainly used to meter the gas flow from one country to another.
- EntryPoints: These are special border points at the border of the European Union.
- *InterConnectionPoints*: These are connection points between gas transmission operators, and will be found mainly within Europe, in particular at country borders.

Element structure

As described above, elements are describing individual facilities, such as compressors or LNG terminals. However, the overall structure of those elements is the same for all elements of all components, and is described as follows:

- *id*: A string that is the ID of the element, and must be unique.
- name: A string that is the name of the facility, such as "Compressor Radeland".
- *source_id*: A list of strings that are the data sources of the element. As several elements from different sources could have been combined into a single element, one might need to know the original data sources.
- *node_id*: The ID of a geo-referenced node to which an element of the network is associated to. For a compressor, this will be just a single *node_id*. However, for a gas pipeline this entry would be a list of at least two *node_id* values: the starts node id and the end node id.
- *lat*: The latitude value of an element. For elements of type *PipeLines* and *PipeSegments lat* is a list of latitude values. Throughout the SciGRID_gas project the projection World Geodetic system 1984 (epsg:4326) will be used.
- *long*: The longitude, analogue to lat.
- *country_code*: A string indicating the 2-digit ISO country code (Alpha-2 code, see Chapter 8.6 for list of countries and their codes) of the associated node of elements or list of nodes in case of *PipeLines* or *PipeSegments*.
- comment: An arbitrary comment that is associated with the element.
- *tags*: This dictionary is reserved for OpenStreetMap data. It contains all associated key:value-pairs of an Open-StreetMap item.

In addition, there are three further groups of attributes to each element, which have been coded as Python "dictionaries", named:

- param
- method
- uncertainty.

The structure within each dictionary is the same. The dictionary *param* (short for "parameter") contains a list of attributes and their values. This list of attributes will be different for each component. For the component *PipeLines* they might be pipeline diameter, max pipeline pressure, and max pipeline capacity. For the component *Compressors* they might be, such as number of turbines, overall turbine power, energy source of turbine and more.

So the other two attribute dictionaries are *method* and *uncertainty*. Each of those two dictionaries contains exactly the same list of attributes as the *param* dictionary. However, their attribute values reflect the name of the dictionary. E.g. the attributes in the dictionary *method* contain the information on the method used to derive the attribute value that is stored in the *param* dictionary. Here methods of value generation can include heuristic methods names (in form of strings) that have been implemented in the SciGRID_gas project. However, if attribute values are not being generated by the SciGRID_gas project, but originate from one of the input data sources, then the attribute values in the *method* dictionary is set to "raw".

See example below, for an *LNGs* element with the following entries: - "make_Attrib(const)": the attributes *end_year*, and *is_H_gas* have been set to a constant value - "raw", indicating that the two attributes *max_cap_store2pipe_M_m3_per_d* and *start_year* contain original values - "Lasso(max_cap_store2pipe_M_m3_per_d)", here for the attribute *median_cap_store2pipe_M_m3_per_d* a method was used that is based on the lasso method and uses the attribute *max_cap_store2pipe_M_m3_per_d* as input.

Similar is the content of the *uncertainty* dictionary. It contains information on the uncertainty of the attributes from the *param* dictionary of that component. Again all attributes listed in the *param* dictionary are also present in the *uncertainty* dictionary. The attribute values here reflect the uncertainty of the attribute. Here, it is assumed, that

attributes with a method of "raw" have an uncertainty of zero. Only for those attributes, which were generated during heuristic SciGRID_gas methods an uncertainty larger than zero will be specified.

2.2 Summary

The SciGRID_gas software is designed to construct a gas transmission network data set form different open source gas component data sets. The gas transmission data set needs to be available and stored in a precise and predefined way, which was described in this section. We have identified several *component*-types of a gas transmission network grid, like pipelines, compressor stations, LNG-terminals, etc. Each specific facility that falls under such a component is considered an *element* of that component. Each element is described by a list of *attributes* and correspondent *attribute values*.

CHAPTER

THREE

DATA SOURCES

Original data sets describing gas transmission networks are the property of the transmission system operators (TSOs) and are generally not freely available in the form and depth that is required for modelling purposes. The major reason for the difficulty of obtaining of such data is that most of the gas network infrastructure, namely pipelines, is buried underground. Thus a pipeline diameter is hard to estimate locally. In addition, almost all of the data is commercially sensitive.

Nevertheless, some data is made available by gas transmission network operators, through different channels. E.g. information on the size and number of compressors could be made public through a press release, as part of a refurbishment. An example is given below (https://www.maz-online.de/Lokales/Teltow-Flaeming/ Neue-Verdichterstation-entsteht-in-Radeland):

"Die Eugal-Pipeline dient dazu, Gas aus der neuen Ostseepipeline Nord Stream 2 bis zur tschechischen Grenze zu leiten. 275 Kilometer von ihr verlaufen in Brandenburg. Grundsätzlich soll die neue Leitung parallel zur bestehenden Opal-Pipeline gebaut werden."

In addition some information can be found on company web pages, (https://www.open-grid-europe.com/ cps/rde/SID-752BB6B5-E0A975F2/oge-internet-preview/hs.xsl/NewsDetail.htm?rdeLocaleAttr=en&newsId= 50190C3B-E14F-4685-9E64-E40EEAB57A28):

Open Grid Europe (OGE) is investing roughly EUR 150 million at its compressor station in Werne to improve the security and flexibility of energy supply for North Rhine-Westphalia and Germany. The upgrade of the station, which is one of the hubs of the pipeline network, will allow gas flows to be switched (reversed) from north to south and south to north. In addition, OGE is preparing the station for the upcoming transition from L- to H-gas. Through this fitness programme, the station's transmission capacity will increase by about 500,000 to 6.5 million m³/h, which is equivalent to the annual consumption of more than 2,100 single-family homes. The project, which is due for completion at the end of 2018, is fully on track."

However, there is a public drive to gather such data and subsequently make it available. The major platform through which this is occurring is the Open Street Map database [Hel18]. OSM is a geo-referenced database through which people can supply geo-referenced information on all man-made and natural structures, ranging from mountains to buildings. To achieve this, people throughout the world wander the globe and geo-reference everything that they can find. This also includes gas-pipeline markers, compressor stations or LNG terminals. However, the major problem remains that one cannot measure or estimate the diameter of the underground pipelines, or the number and size of the compressor turbines, as compressors are within buildings, which are fenced off. Hence, such information is hardly supplied to the OSM platform.

For the reasons mentioned above, the available data can be separated into two different groups:

- OSM data: Data can be found in the OSM data base. OSM data is well geo-referenced, but contains little metainformation (information on the facility attributes, such as pipeline diameter or pipeline capacity). OSM data is very helpful to obtain accurate routes of pipelines.
- Non-OSM data: Non-OSM data have in general lower geographical accuracy but contain a lot of metainformation. Unfortunately, such information is only known for a few facilities. One exception to this rule

are shapefiles from TSOs. They are rare, but well geo-referenced. However, the resolution of the meta information can vary from TSO to TSO.

The following section will introduce non-OSM data sets, and at a later stage, this will be followed by a section on the OSM data.

3.1 Non-OSM data

Non-OSM data includes data from internet research, TSO press releases, TSO transparency platform, TSO public data, national open-source gas network data sets¹, etc.

Some of the TSO information had to be made available due to EU-regulations. Other information has been made public as part of a company's self-presentation and advertisement. The information used by the SciGRID_gas project focuses on:

- the quality of the data
- the format of the data
- the level of representation of the data
- and the copyright restrictions on the data.

In addition, each data source is unique. Source specific tools need to be developed, so that all data sources can be made accessible for the SciGRID_gas project.

A significant portion of the project was spent on finding non-OSM data sets. Further data sources might be available, but unknown to the authors. If the authors are made aware of additional sources, the project will try to incorporate those, as this would only increase the depth of the data available and increase the applicability of the gas network data set and model.

Non-OSM data sources are very specific, addressing only certain aspects of the entire gas infrastructure. E.g. the GIE [GasIEurop20] data set supplies information on the daily gas flow in and out of gas storages in LNG terminals. However, they fall short on specifying the fundamental information of the actual physical location. Other data sets, such as the LKD [FMWP+17] data set is quite detailed in respect of pipelines, compressors and consumptions, however, only available for Germany.

Hence, the main task is to look closely at each data source, distil which data attribute values can be used, how it can be downloaded and incorporated into the SciGRID_gas model, and identify the copyright restrictions on the data source.

Due to copyright regulations, there are roughly two groups of data:

- Non copyright restrictive data (N-CRRD): here the copyright does not restrict the download, use and distribution of the data.
- Copyright restrictive data (CRRD): here the data can be downloaded and used internally, but not re-distributed to others.

The following is a list of the data sources that will be used throughout the project and an identification into which group of copyright restriction they fall:

- **OSM** (https://www.openstreetmap.org) (N-CRRD)
- GB (https://www.nationalgridgas.com/land-and-assets/network-route-maps) (CRRD)
- NO (https://www.npd.no/en/about-us/information-services/available-data/map-services/) (N-CRRD)
- LKD (https://tu-dresden.de/bu/wirtschaft/ee2/forschung/projekte/lkd-eu) (N-CRRD)
- ENTSOG (https://transparency.entsog.eu/) (CRRD)

¹ An entire gas network data set is only available from the UK, see https://www.nationalgridgas.com/land-and-assets/network-route-maps'.

- EMAP (https://www.entsog.eu/sites/default/files/2020-01/ENTSOG_CAP_2019_A0_1189x841_FULL_401. pdf) (CRRD)
- GIE (https://www.gie.eu/) (N-CRRD)
- GSE (https://www.gie.eu/index.php/gie-publications/databases/storage-database) (N-CRRD)
- IGU (https://www.igu.org/) (CRRD)
- GasLib (http://gaslib.zib.de/) (N-CRRD)
- **INET** (see Chapter 8.4) (N-CRRD).

Each data set and source comes with a different copyright regulation. The copyright can be rather non-restrictive (e.g. INET) or can be restrictive (IGU). It is attempted to use only freely available data, so that such data can be re-distributed. In more restrictive data cases (IGU, GB), it is not allowed to download the data and distribute it to others. However, it is allowed to let other potential users know of the location of such data and supply them with tools that allow them to carry out the same data download and subsequent incorporation of the data into a gas network data set.

Note:

In case that other users are aware of other data sources, that might be useful to this project, please get in touch and supply us with a brief description of the data and the location of such data, so that additional tools can be developed to incorporate the data in this project. Please use the following email address: developers.gas(at)scigrid.de

3.2 The InternetDaten (INET) data set

This section contains information on the generated, content and nature of the so called InternetDaten data set (INET).

The INET data set is a special data set, as it was collated from many www sources and the information has been collated into CSV files. Please note, that throughout the project, the separator within CSV files will need to be ";". This section here will give an overview on the INET data set, its components and how the data is stored in INET specific CSV files. Further the processing of the data in Python will be described.

Prior to the description of those processes, a general overview of the INET data set is given first, so that the reader has a better understanding of the size and depth of the data.

3.2.1 Overview of the INET data set

The INET data set contains geographical and meta information on gas facilities that were found through Internet searches. The data originated from www pages, such as Wikipedia, gas transmission system operators, fact sheets, press releases and more. Hence, most of the data had to be extracted manually out of text pages. To make this data available throughout the project, the data is being stored in CSV files. This also allows others to add additional properties and values to the INET data set at any stage. Tools have been written to load the INET from those CSV files and make them accessible throughout the project¹.

The Table 3.1 summarises the number of elements for each component that has been found so far. However, this does not imply that there is no missing data. In contrary, this data set comes with a lot of missing data:

Component Name	Count
BorderPoints	119
Compressors	249
ConnectionPoints	0
Consumers	0
EntryPoints	37
InterConnectionPoints	118
LNGs	32
Nodes	1424
PipeSegments	920
Production	0
Storages	199

Table 3.1: INET	' component	summary.
-----------------	-------------	----------

In addition, a map (see Figure 3.1) visualizes these components for Europe.

3.2.2 Origin of the data

As has been stated before, the resulting INET data set originated from text sources found on the www. Here, for the pipeline JAGAL [Wik20h] an example from a Wikipedia page is given (https://en.wikipedia.org/wiki/JAGAL) is given in Figure 3.2:

As one can see, some information is given, such as location name of the compressor (Mallnow), total pipeline length (338 km), pipeline diameter (1200 mm) and maximum pipeline capacity (24 billion m^3a^{-1}). This is the information that is manually extracted from such pages and put into the CSV files.

To collate the data in an orderly manner, a system of CSV files has been created and will be described below.

¹ These tools will be made available during an upcoming release.

Figure 3.1: Map of the INET data set. The legend contains the number of elements for each component.

Commissioned	1999
Technica	al information
Length	338 km (210 mi)
Maximum	24 billion cubic meters
discharge	per year
Diameter	1,200 mm (47 in)
No. of compressor	1
stations	
Compressor	Mallnow
stations	

Figure 3.2: Screenshot of part of the Wikipedia page for the pipeline JAGAL.

3.2.3 INET CSV file description

Each component of the INET data set is represented by a single CSV file. Each of those files has a single header line, and it is very important to know, that entries in the first line should only be changed if one knows, what one is doing, as the first row labels (the actual words) are imported and used as variable names in the SciGRID_gas project Python programs. Hence, if certain labels would be missing, the program would fail. In addition, each label needs to be unique within each file. It is advised to incorporate the units of the attributes into the label name, where possible.

Nodes.csv file

This is a unique file, and contains information on the nodes of the INET data set. Nodes are such entities, to which and from where pipelines can run, or to which other facilities can be associated to. Nodes supply information on a location including its name, its latitude and longitude, and the country in which it is located. Additionally, they supply information on how exact is the location of the node could be determined. The nodes component data is supplied to the SciGRID_gas data model only via a single CSV file, containing the following columns:

- *id*: A unique id of a node of type string. Most likely this will be the name of an element. White spaces are allowed in this string.
- comment: Here the user can place additional information on the location node.
- *country*: Here the user needs to write the 2 letter abbreviation of the country, in which this node is located (see Table 8.5 for a list of country codes used).
- *lat*: A number of the best estimate of the latitude of the location. Best latitude value (and long value) were attempted to be generated by using metadata of the facility node and satellite maps. Using the satellite data, address information etc., it was tried to visually find the facility of the node. Values need to be added as decimal degrees.
- *long*: This is analogue to *lat*.
- *node_id*: An identifier of a node.
- *source_id*: A unique identifier describing the source of the element. Here "INET" is the abbreviation for InternetDaten data set. Hence, all elements originating from the INET data set starts with the letters "INET".
- name: A string containing the name of the location. It is allowed to contain white spaces.
- *exact*: A number in the range of 1 to 5, indicating how accurate the lat/longs were supplied for the node. Options are as follow:
 - "1": The exact location of this node is known, as one was able to verify the facility through satellite data.
 - "2": Here the lat/long is not known exactly, however, one assumes that the location is within a small region (e.g. Krummhörn), hence, uncertainty not being larger than 10 km.
 - "3": Here so little is known about the exact location, and one only knows, that the location is within a large region (e.g. Hamburg). Hence, the actual location could be out by 10 km or more but less than 100 km.
 - "4": Here so little is known about the exact location, and one only knows, that the location is within a state (e.g. Niedersachsen). Hence, the actual location could be out by 100 km or more but less than 1000 km.
 - "5": Here so little is known about the exact location, and one only knows, that the location is within a country (e.g. Ukraine). Hence, the actual location could be out by 1000 km or more.

All other components need two files, the location file and the metadata file, which will be described next.

Compressor CSV meta file

The compressor file ("Compressors.CSV") contains all the metadata for the known compressor stations.

In addition to the seven mandatory columns introduced above, the following columns are currently implemented:

- *end_year*: Integer number of the year, when the operation of this element stopped. If it contains a value of "None", than it is still operational.
- *start_year*: Integer number of the year, when the operation of this element started. If it contains a value of "None", then this year is not known.
- operator_name: A string, containing the name of the operator of the compressor station.
- *pipe_name*: A string containing the label of the pipeline that the compressor is connected to.
- source: Information on where the information of this element originated from.
- *is_H_gas*: A boolean, indicating if the gas is of high calorific gas type ("1") or of low calorific gas ("0").
- *max_cap_M_m3_per_h*: A number, which is the overall capacity of gas that can be compressed by the compressor station. Values need to be supplied in units of [Mm³h⁻¹].
- *max_pressure_bar*: A number, which is the maximum pressure that the gas can be compressed to. Values need to be supplied in units of [bar].
- *max_power_MW*: A number, which is the sum of the power of all compressor units that are installed at the compressor station. Values need to be supplied in units of [MW].
- *num_turb*: The number of compressor turbines installed at the compressor facility. This number is including the reserve turbine unit.
- turbine_fuel_isGas_1: A boolean, indicating if the turbine is powered by gas ("1"), or by electric ("0").
- turbine_type_1: A string containing additional information on the type of turbine unit, e.g. name of the turbine.
- *turbine_power_1*: A number, indicating the power of the turbine unit. The value needs to be supplied in units of [MW].
- *turbine_fuel_isGas_2*: Information for the second turbine unit. Same as for *turbine_fuel_isGas_1* applies. Currently up to 6 individual units can be stored in the database, hence, the last digit in the identifier can be as large as 6.
- *turbine_type_2*: Information for the second turbine unit. Same as for *turbine_type_1* applies. Currently up to 6 individual units can be stored in the database, hence, the last digit in the identifier can be as large as 6.
- turbine_power_2: Information for the second turbine unit. Same as for turbine_power_1 applies.

• . . .

• *turbine_power_6*: A number, indicating the power of the sixth turbine unit. The value needs to be supplied in units of [MW].

LNG CSV meta file

The LNG terminal metafile ("LNGs.CSV") contains all the metadata for the LNG terminals.

Next to the above described first seven columns the following columns are currently implemented:

- *end_year*: Integer number of the year, when the operation of this element stopped. If it contains a value of "None", then it is still operational.
- *start_year*: Integer number of the year, when the operation of this element started. If it contains a value of "None", then this year is not known.
- source: Information on where the information of this element originated from.
- *max_workingGas_M_m3*: A number, indicating the maximum amount of liquid gas that can be stored, after having been brought in by ship. Values need to be supplied in units of [Mm³] LNG.
- $max_cap_store2pipe_M_m3_per_a$: A number, indicating the maximum amount of gas that can leave the LNG terminal. This gas is in gas phase. Values need to be supplied in units of $[Mm^3a^{-1}]$.

BorderPoints CSV meta file

The metafile for BorderPoints elements ("BorderPoints.CSV") contains all the metadata for each border point.

Next to the above described first seven columns the following columns are currently implemented:

- *pipe_name*: A string, the name of the pipe that is passing the border point.
- *end_year*: Integer number of the year, when the operation of this element stopped. If it contains a value of "None", then it is still operational.
- *start_year*: Integer number of the year, when the operation of this element started. If it contains a value of "None", then this year is not known.
- source: Information on where the information of this element originated from.

EntryPoints CSV meta file

The metafile for *EntryPoints* elements ("EntryPoints.CSV") contains all the metadata for entry points of gas pipelines into Europe.

Next to the above described first seven columns the following columns are currently implemented:

- *end_year*: Integer number of the year, when the operation of this element stopped. If it contains a value of "None", then it is still operational.
- *start_year*: Integer number of the year, when the operation of this element started. If it contains a value of "None", then this year is not known.
- source: Information on where the information of this element originated from.

InterConnectionPoints CSV meta file

The *InterConnectionPoints* metafile ("InterConnectionPoints.CSV") contains all the metadata for interconnection points between the different operators within Europe.

Next to the above described first seven columns the following columns are currently implemented:

- *end_year*: Integer number of the year, when the operation of this element stopped. If it contains a value of "None", then it is still operational.
- *start_year*: Integer number of the year, when the operation of this element started. If it contains a value of "None", then this year is not known.
- source: Information on where the information of this element originated from.
- *pipe_name*: A string, the name of the pipe that is passing the border point.

Storages CSV meta file

The metafile "Storages.CSV" contains all the metadata for gas storage within Europe.

Next to the above described first seven columns the following columns are currently implemented:

- *access_regime*: String indicating the access of the storage facility, TPA or not TPA (nTPA), and could be used for heuristic processes at a later stage.
- *end_year*: Integer number of the year, when the operation of this element stopped. If it contains a value of "None", then it is still operational.
- *start_year*: Integer number of the year, when the operation of this element started. If it contains a value of "None", then this year is not known. A value of 2050 was selected, if the site is in planing/construction, but not yet in operation.
- *store_type*: A string, indicating the type of storage, such as "Leeres Gas Feld" (empty gas field), "Salz Kaverne" (salt cavern) etc.
- source: Information on where the information of this element originated from.
- *is_H_gas*: A boolean, that indicates if the gas is of high calorific nature ("1") or of low calorific nature ("0").
- *is_onShore*: A number, indicating if this gas store is on land or not. Options are "1" and the gas store is on land, whereas the second option "0" indicates, that the gas store is not on land, but off shore.
- operator_name": String, containing the name of the operator.
- *max_workingGas_M_m3*: A number indicating the maximum amount of gas that can be stored and worked with in that gas field. Values need to be supplied in units of [Mm³].
- *max_cap_store2pipe_M_m3_per_d*: A number indicating the maximum amount of gas that can move from the gas store into a gas pipe. Values need to be supplied in units of [Mm³d⁻¹].
- *max_cap_pipe2store_M_m3_per_d*: A number indicating the maximum amount of gas that can move from the gas pipeline into a gas store. Values need to be supplied in units of [Mm³d⁻¹].

PipeSegments CSV meta file

The metafile "PipeSegments.CSV" contains all the metadata for gas elements of type PipeSegments within Europe.

Next to the above described first seven columns the following columns are currently implemented:

- *is_bothDirection*: A boolean with value of '1' or '0'. If set to '1', then the gas pipeline can be operated in both directions, whereas if set to '0', then the gas can only flow from the start point to the end point. Hence, here the order of the *point_lables* in the pipes file is important.
- *length_km*: The overall length of the pipeline, and NOT of the segment. The value needs to be supplied in units of [km].
- *diameter_mm*: The diameter of the pipe in units of [mm].
- max_pressure_bar: The maximum pressure of the gas within the gas pipeline in units of [bar].
- $max_cap_M_m3_per_d$: The maximum annual gas volume that the pipe can transmit in units of [Mm³d⁻¹].
- num_compressor: The number of compressors along the pipeline.
- *end_year*: Integer number of the year, when the operation of this element stopped. If it contains a value of "None", then it is still operational.
- *is_H_gas*: A boolean, that indicates if the gas is of high calorific nature ("1") or of low calorific nature ("0").
- source: Information on where the information of this element originated from.
- *lat_mean*: Average mean latitude value of the pipe-segment.
- lat_mean: Average mean longitude value of the pipe-segment.

3.2.4 INET data density

"Data density" is defined as the ratio of the number of usable (not missing, e.g. filled or raw values) attribute values over the number of all elements of the component. Supposedly the INET would have two LNG terminals. One of the facilities has a known storage volume, whereas the other one does not. Hence, the data density would be 50% for the attribute storage volume. Here, the data density for the most relevant attributes will be given next for all components. At a later stage, missing values will be estimated through heuristic processes, to complete the data set.

PipeSegments elements

Overall, there are 920 PipeSegments elements in the INET data set.

Table 3.2 summarizes the data densities for the most important pipe-segment attributes:

Attribute name	Data density [%]
diameter_mm	43
is_H_gas	94
is_bothDirection	9
length_km	100
max_cap_M_m3_per_d	16
max_pressure_bar	31
num_compressor	3

Table 3.2: INET PipeSegments data density

Compressors elements

Overall, there are 249 *Compressors* elements in the INET data set. The data densities for the most important attributes is given in Table 3.3 below:

Attribute name	Data density [%]
is_H_gas	99
max_cap_M_m3_per_d	7
max_power_MW	16
max_pressure_bar	7
num_turb	15
operator_name	11
pipe_name	10
turbine_power_1_MW	15
turbine_power_2_MW	147
turbine_power_3_MW	9
turbine_power_4_MW	3
turbine_power_5_MW	1
turbine_power_6_MW	0
turbine_fuel_isGas_1	14
turbine_fuel_isGas_2	14
turbine_fuel_isGas_3	10
turbine_fuel_isGas_4	7
turbine_fuel_isGas_5	1
turbine_fuel_isGas_6	0
turbine_type_1	9
turbine_type_2	9
turbine_type_3	6
turbine_type_4	3
turbine_type_5	1
turbine_type_6	0

Table 3.3: INET Compressors data density

Nodes elements

Overall, there are 1424 nodes. As described above, the information supplied is an "id", latitude and longitude values, the country code and a value indicating the accuracy of the node location. Hence, Table 3.4 summarizes the relative number of nodes within the possible value range of 1 to 5:

INET da	ata set.		
	Exact value	ration of data with exact value [%]	
	1	20	

Table 3.4: Summary for the attribute *exact* of component *Nodes* of the

1	20
2	45
3	9
4	12
5	14

Storages elements

Overall, there are 199 storage elements in the INET data set. The data densities for the most important attributes is given in Table 3.5 below:

Attribute name	Data density [%]
access_regime	90
is_H_gas	12
is_onShore	22
max_cap_pipe2store_M_m3_per_d	77
max_cap_store2pipe_M_m3_per_d	77
max_workingGas_M_m3	80
operator_name	99
source	95
store_type	94

Table 3.5: INET Nodes data density

BorderPoints elements

Overall, there are 119 *BorderPoints* elements in the INET data set. The data densities for the most important attributes are given in Table 3.6 below:

Table 3.6: INET BorderPoints data density

Attribute name	Data density [%]
pipe_name	9

EntryPoints elements

Overall, there are 37 *EntryPoints* elements in the INET data set. This component does not contain any further major attribute of interest.

InterConnectionPoints elements

Overall, there are 118 *InterConnectionPoints* elements in the INET data set. The data density for the most important attributes is given in Table 3.7 below:

Table 3.7: INET InterConnectionPoints data summa	ıry
--	-----

Attribute name	Data density [%]
pipe_name	15
LNGs elements

Overall, there are 32 *LNGs* elements in the INET data set. The data densities for the most important attributes is given in Table 3.8 below:

Table 3.8:	INET	LNGs	data	density
------------	------	------	------	---------

Attribute name	Data density [%]
max_cap_store2pipe_M_m3_per_d	90
max_workingGas_M_m3	97

Overall, a lot of data has been collated and is made available through the INET data set. However, as presented in the data density tables, a significant number of attributes have low data density. The following chapter in this document will demonstrate how missing values can be estimated, so that the generated SciGRID_gas data set has a data density of 100 % for each attribute.

3.2.5 Copyright and disclaimer for the INET data set

Copyright

Open Access: This document and the INET data set are licensed under a Creative Commons Attribution 4.0 International License, which permits the user to share, adapt, distribute and reproduce in any medium or format, as long as the user gives appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons. org/licenses/by/4.0/.

A list of the sources used for the generation of the INET data set can be found in Chapter 8.4.

Disclaimer

The INET data set is supplied on a best-effort basis only, using available information as documented gathered from the Internet. While every effort is made to make sure the information is accurate and up-to-date, we do not accept any liability for any direct, indirect, or consequential loss or damage of any nature–however caused–which may be sustained as a result of reliance upon such information.

3.3 Gas Infrastructure Europe (GIE) data set

Gas Infrastructure Europe (**GIE**) is a further dataset for the SciGRID_gas project which was generated by extracting information from the GIE web pages.

Gas Infrastructure Europe defines itself through the following statement:

'Gas Infrastructure Europe (GIE) is an association representing the sole interest of the infrastructure industry in the natural gas business, such as Transmission System Operators, Storage System Operators and LNG Terminal Operators. GIE has currently 68 members in 25 European countries.' (https://www.gie.eu/).

Overall, GIE is the umbrella organisation for the following three gas components:

- Storage: GSE Gas Storage Europe representing the Storage System Operators (SSO)
- LNG: GLE Gas LNG Europe representing the LNG Terminal Operators (TO)
- Transmission: GTE Gas Transmission Europe representing the Transmission System Operators (TSO)

The storage and the LNG information can be retrieved through an API supplied by GIE. However, there is no further information on the gas transmission part.

The APIs for the gas storage and the LNG terminals are:

- AGSI+ AGGREGATED GAS STORAGE INVENTORY (https://agsi.gie.eu/api/data/)
- Aggregated LNG Storage Inventory (ALSI) (https://alsi.gie.eu/api/data/)

Documentation for the APIs can be found on the web under: https://agsi.gie.eu/GIE_API_documentation_v001.pdf.

The GIE data set is copyright protected, hence, the SciGRID_gas project is not allowed to download the data for any other end user and pass it on to them. Hence, in the following subsections a method is being described, that shows how to download the data and how to convert it into the SciGRID_gas data structure.

3.3.1 Requirements for accessing the GIE transparency platform

A private key is required for the GIE transparency platform so that one can download data from the GIE API.

As stated in the documentation for the GIE API:

The API service is available to the public free of charge. Registration on the AGSI+ or ALSI website is mandatory for non-data providers to be able to use the API. Registration will result in a personal API key that is required within the API URL. The only purpose of this registration is to enable us to assess and improve the performance of our systems where and if required (user count, user activity, most popular data set types). Your account information and settings can be updated (and cancelled) at any time after signing in. Your data will be stored and securely handles as long as your account remains active.

For this you will need to go to the following link: https://agsi.gie.eu/#/login where on the right hand side you will need to fill in the registration details.

Under "Access to:" please select "Both AGSI+ and ALSI"

After registration you will have access to your private key. Copy the key and past it into the following file:

/SciGRID_gas/Eingabe/GIE/GIE_PrivateKey.txt

This is your private key, hence, do not share it with others.

3.3.2 Data processing of the GIE data set

Gas infrastructure providers are requested to publish certain gas flow information. This data is accessible via the GIE URLs, and contains a vast amount of meta-data for storages and LNG terminals throughout Europe. Whenever the data is downloaded from the GIE API, the data needs modification, so that it is conform to the SciGRID_gas data model. Several tools have been written to achieve this. The GIE specific tools are described below for *Storages* and *LNGs*.

Processes for retrieving the data from the GIE API

First of all, one could access some meta-data on the storages and LNG terminals through the following internet links:

- LNG: https://www.gie.eu/index.php/gie-publications/databases/lng-database
- Storages: https://www.gie.eu/index.php/gie-publications/databases/storage-database

These data sets come as Excel sheets and contain information, such as name of facility, country, type of facility, and eic_code. Other information, such as max hourly capacity or LNG storage capacity, is also given, however, discarded due to copyright reasons.

LNGs elements

The following information are used from the LNG table above:

- country
- type
- eic_code
- short_name
- name
- nameShort

This information (column heading and column data) needs to be placed into a CSV document. This file needs to be named "GIE_LNG.csv" and needs to be stored in the folder "/SciGRID_gas/Eingabe/GIE/".

Other additional fields from this table are:

- Region
- Status
- Investment
- Start-up year
- Type
- Operator short name
- Max. Hourly Cap. $[m^3(N)h^{-1}]$
- Nom. Annual Cap. billion $[m^3(N)a^{-1}]$
- Possible additional Nom. Annual Cap. billion $[m^3(N)a^{-1}]$
- LNG storage capacity [m³LNG]
- Number of tanks
- Max. ship class size receivable [m³LNG]
- Number of jetties

- Min. sea depth alongside [m]
- Max. send out pressure [bar]
- TPA regime
- PCI list
- Operator long name

This list can change during the lifetime of the project.

The EIC-code, facility code and country code is subsequently used to request time series information for each location from the GIE API.

The retrieved time series contain two useful values:

- the working LNG volume in the LNG storage tank
- the gas flow amount from the storage to the gas-pipeline, in units of GWh/d (see Table 3.9)

From the so created time series, one can determine the maximum working gas volume in the LNG storage tank in units of million LNG cubic meters. Also the maximum and medium gas flow from the storage to the gas pipeline is determined, in units of GWh per day.

Prior to estimating the maximum and median value from the retrieved time series, the time series was quality assured. This was done by removing any outliers/spikes.

Field identifier	Description	Units	Example
status	E (estimated) C (confirmed) N (no data)	E/C/N	С
gasDayStartedOn	The start of the gas day reported upon	YYYY-MMDD	2015-11-02
IngInventory	The aggregated amount of LNG in the LNG	$1000 {\rm m}^3$	5373.25
	tanks at the end of the previous gas day		
sendOut	The aggregated gas flow out of the LNG fa-	GWh/d	976.5
	cility within the gas day		
dtmi	Declared Total Maximum Inventory of LNG	$1000 {\rm m}^3$	8898.99
dtrs	Declared Total Reference sendOut	GWh/d	6650.0
info	Service Announcement (if applicable)	URL	https://alsi.gie.eu/#/
			news/184

Table 3.9: GIE	incorporated	attributes
----------------	--------------	------------

The following information is incorporated into the SciGRID_gas data structure: name, max storage volume, max and medium gas flow volumes, facility code, country code, and EIC-code.

Subsequently, the LNG storage volume and flow are converted to their corresponding gas phase values. The final units of the measurements were $[Mm^3d^{-1}]$. No geo-coordinates are given for LNG terminals within the GIE data set. This information has been retrieved from the INET data set by a comparison of the name and the country code of the facility.

Storages elements

A meta-data set for the storages is available as Excel book and can be downloaded from the following URL: https://www.gie.eu/maps_data/downloads/2018/Storage_DB_Dec2018.xlsx.

In this Excel book, the sheet "Storage DB" contains the following columns:

- Country: string indicating the country of the storage
- Concatenate: -missing description-
- Country Code: two letter acronym for country code
- Company code: number of company
- Facility code: code of the facility
- Operator: name of operator
- Facility/Location: name of facility location
- Status: status of storage unit (operational/under construction/planned)
- Investment: string indicating the investment (existing/expansion/new facility)
- Start-up year: year when started operation
- Type: storage type, e.g. depleted field, salt cavern,...
- Notes:
- onshore/offshore: either onshore of offshore location of the gas storage
- Working gas (technical) TWh: maximum working gas volume in units of [TWh]
- Working gas TPA TWh: maximum working gas volume under TPA in units of [TWh]
- Working gas no TPA TWh: maximum working gas volume not under TPA in units of [TWh]
- Withdrawal technical GWh/day: maximum withdrawal rate of gas in units of [GWh/d]
- Withdrawal TPA GWh/day: maximum withdrawal rate of gas under TPA in units of [GWh/d]
- Withdrawal no TPA GWh/day: maximum withdrawal rate of gas not under TPA in units of [GWh/d]
- Injection technical GWh/day: maximum injection rate of gas in units of [GWh/d]
- Injection TPA GWh/day: maximum injection rate of gas under TPA in units of [GWh/d]
- Injection no TPA GWh/day: maximum injection rate of gas not under TPA in units of [GWh/d]
- Access regime: access regime with two options "nTPA", "rTPA", and "No TPA"
- in EU28 number: string ("n" or "y") if part of the 28 EU members
- in EU28 SUM: string ("n" or "y") if part of the 28 EU members
- EU 28 filter: string ("NO" or "YES") if part of the 28 EU members.

A subset of the above data needs to be saved as column data into a CSV file, containing only the following parameters with their data:

- Country
- Type
- EIC Code
- Short Name

- Name
- nameShort

This file needs to be name "GIE_Storages.csv" and needs to be stored in the folder "/SciGRID_gas/Eingabe/GIE/".

These is subsequently used to get access to the time series of the storage data set, by using the facility code, the country and the EIC-code.

All time series consist of the daily "working gas volume", the "daily injection capacity" and the "daily withdraw capacity". Maximum values for each of those parameters are extracted from those time series.

However, as was carried out for the LNG data set, the same testing of the goodness of the data was carried out.

In addition, gas flow values were converted from [GWh/d] to $[Mm^3d^{-1}]$.

3.3.3 GIE data density

All GIE components (*Storages* and *LNGs*) have the following mandatory attributes:

- *id*: unique identifier
- name: name of the pipe-segment
- source_id: a source id
- *node_id*: the id of the start and the end node of the pipe-segment
- *lat*: a list of latitude values
- longitude: a list of longitude values
- country_code: a string pair indicating the country code of the start and the end point
- comment: a user comment.

LNGs elements

Overall, there are 21 *LNGs* terminals in the GIE data set. In addition to the default attributes, the following non-standard attributes (see Table 3.10) are supplied. The number of attribute values supplied for each attribute is given by the parameter "data density" (see Chapter 8.1):

Attribute name	Description	Units	Data den-
			sity [%]
eic_code	EIC code of LNG terminal		100
facility_code	unique facility code		100
max_cap_store2pipe_M_m3_per_d	maximum gas flow from storage to	Mm^3d^{-1}	100
	pipeline		
max_workingGas_M_m3	maximum stored gas in LNG terminals	Mm^3	100
median_cap_store2pipe_M_m3_per_d	medium gas flow from storage to	Mm^3d^{-1}	100
	pipeline		
name_short	short name of the facility		100

Table	3.10:	GIE	LNGs	data	density
raute	5.10.	OIL	L105	uuuu	uchisticy

Storages elements

Overall, there are 109 *Storages* facilities in the GIE data set. In addition to the default attributes, the following non-standard attributes (see Table 3.11) are supplied and populated with data:

Attribute name	Description	Units	Data den-
			sity [%]
eic_code	EIC code of storage facility		100
facility_code	unique facility code		100
max_cap_pipe2store_M_m3_per_d	maximum gas flow from pipeline to storage	Mm^3d^{-1}	100
max_cap_store2pipe_M_m3_per_d	maximum gas flow from storage to pipeline	Mm^3d^{-1}	100
max_workingGas_M_m3	maximum working gas in storage	Mm^3	100
name_short	short name of the facility		100

Table 3.11:	GIE	Storages	data	density
-------------	-----	----------	------	---------

Nodes elements

Overall, there are 115 *Nodes* elements in the GIE data set. In addition to the default attributes, the following non-standard attributes (see Table 3.12) are supplied and populated with data:

Attribute name	Description	Units	Data density [%]
exact	boolean indicating that storage is planed		100
eic_code	EIC code of storage facility		100
facility_code	unique facility code		100
name_short	short name of the facility		100
elevation_m	short name of the facility		100

Table 3.12: G	IE Nodes	data	density
---------------	----------	------	---------

Data availability and data usage

The API of the GIE web portal allows for the user to download time series on the daily gas amount (stored or available) for gas storages and LNG terminals. Here, we do not pass on the downloaded time series information, but only other data, which was derived from the time series information, such as maximum storage capacity.

3.3.4 Copyright

The generally valid copyright regulations for databases apply.

Data disclaimer

In addition the data disclaimer is given as under: https://agsi.gie.eu/#/disclaimer:

"All data is provided by the contributors on a voluntary basis and free of charge. The data provided by AGSI is for information purpose only. GSE is using reasonable efforts to invest in ensuring the correctness, completeness, and timeliness of the information provided herein. Data have been carefully checked, are updated at regular intervals and may be subject to changes, removal, or amendments without prior notice. GSE neither assumes any warranty or liability for the correctness and completeness of information/services and entries nor for the mode of presentation."

Acknowledgement

Here we would like to acknowledge GIE (Gas Infrastructure Europe with registered office at Avenue de Cortenbergh, 100 - B-1000 Brussels, Belgium).

3.3.5 Summary GIE data

The GIE data set supplies information on gas infrastructure facilities all over Europe, such as gas storages and gas LNG terminals. Data for those facilities are accessible by the SciGRID_gas software through special CSV data files that are downloaded from the GIE web page. The information in those facilities are automatically filtered and reshaped to the data structure of SciGRID_gas project. Units are partially converted to align with other project data. The facilities are further geo-reference by the SciGRID_gas software with the help of the INET data set.

Below a table summarises the number of elements for each component:

Component Name	Count
BorderPoints	0
Compressors	0
ConnectionPoints	0
Consumers	0
EntryPoints	0
InterConnectionPoints	0
LNGs	21
Nodes	115
PipeSegments	0
Production	0
Storages	109

Table 3.13: GIE component summary

In addition, the map in Figure 3.3 visualizes the data for Europe.

Figure 3.3: Overview map of the GIE data set for Europe.

3.4 The Gas Storage Europe (GSE) data set

This is the data set that was partially explained in the GIE section. However, the **Gas Storage Europe** (**GSE**) data set only contains information for the gas storage units, and contains slightly different information to the GIE data set. The GSE data set will be explained in this section here.

All together there were 254 storage facilities listed in the Excel book (see Chapter 3.3). This included planed and operational storage units, and storage units inside and outside of the 28 EU member states.

The Excel book can be downloaded from the following link:

https://www.gie.eu/maps_data/downloads/2018/Storage_DB_Dec2018.xlsx

which can be found on the following URL page:

https://www.gie.eu/index.php/gie-publications/databases/storage-database

3.4.1 Data processing of the GSE data set

Gas infrastructure providers are requested to publish certain gas flow information. This data is accessible through the GSE URLs, and contains a vast amount of meta-data for gas storages throughout Europe. However, whenever the data is downloaded from the GSE web page, the data needs modification, so that it conforms to the SciGRID_gas data model. Tools have been written to achieve this.

Overall, there is only one storage specific Excel book that could be downloaded. Table 3.14 contains a list of the columns from the Excel book, including the descriptions:

Field identifier	Description	Units	Used within Sci- GRID_gas
Country	string indicating the country of the storage		
Country Code	two letter acronym for country code		Y
Company code	number of company		
Facility code	code of the facility		
Operator	name of operator		Y
Facility/Location	name of facility location		Y
Status	status of storage unit (operational/under con- struction/planned)		Y
Investment	string indicating the investment (exist-		
	ing/expansion/new facility)		
Start-up year	year when started operation	уууу	Y
Туре	storage type, e.g. depleted field, salt cavern,		
Notes			
onshore/offshore	either onshore of offshore location of the gas		
	storage		
Working gas (technical)	maximum working gas volume in	TWh	
Working gas TPA TWh	maximum working gas volume under TPA	TWh	Y
Working gas no TPA TWh	maximum working gas volume not under TPA	TWh	
Withdrawal technical	maximum withdrawal rate of gas	$GWhd^{-1}$	Y
GWh/day			
Withdrawal TPA GWh/day	maximum withdrawal rate of gas under TPA	$GWhd^{-1}$	
Withdrawal no TPA GWh/day	maximum withdrawal rate of gas not under TPA	$GWhd^{-1}$	
Injection technical GWh/day	maximum injection rate of gas	$GWhd^{-1}$	
Injection TPA GWh/day	maximum injection rate of gas under TPA	$GWhd^{-1}$	Y
Injection no TPA GWh/day	maximum injection rate of gas not under TPA	$GWhd^{-1}$	
Access regime	access regime with two options nTPA, rTPA		
in EU28 number	char (n or y) if part of the 28 EU members		Y
in EU28 SUM	char (n or y) if part of the 28 EU members		
EU 28 filter	string (NO or YES) if part of the 28 EU mem-		
	bers		
EU 28 filter	string (NO or YES) if part of the 28 EU mem-		
	bers		

Table 3 14.	Overview	of GSF	CSV	data	source
Table 5.14.	Overview	OI USE	CSV	uata	source

As was mentioned for the GIE data, no real lat/long values were given for the storage facility. Hence, the name matching with the INET data set (including the country code matching) was carried out. To achieve a better match, some of the names needed modification, such as substituting "HGas" and "H-Gas" with "H". In addition, parts of the location names were omitted, such as "SERENE Nord: ", "VGS SEDIANE B: ", "SERENE SUD" "SEDIANE LITTORAL:",....

Further, the gas flow and storage values supplied through the Excel book were of the "wrong" unit, and the following gas properties were unit converted:

- 'max_cap_pipe2store_GWh_per_d' to 'max_cap_pipe2store_M_m3_per_d'
- 'max_cap_store2pipe_GWh_per_d' to 'max_cap_store2pipe_M_m3_per_d'
- 'max_workingGas_TWh' to 'max_workingGas_M_m3'.

3.4.2 GSE data density

The data of the GSE data set contains the following components:

• Storages.

The storage component will be described below.

As all components have the following attributes, they are presented here ones:

- *id*: unique identifier
- *name*: name of the pipe-segment
- source_id: a source id
- *node_id*: the id of the start and the end node of the pipe-segment
- *lat*: a list of latitude values
- longitude: a list of longitude values
- country_code: a string pair indicating the country code of the start and the end point
- comment: a user comment.

Storages elements

Overall, there are 210 usable *Storages* facilities in the GSE data set. In addition to the default attributes, the following non-standard attributes (see Table 3.15) are supplied and partially populated with data:

Attribute name	Description	Units	Data den- sity [%]
max_cap_pipe2store_M_m3_per_d	maximum gas flow from pipeline to storage	$\mathrm{Mm}^{3}\mathrm{d}^{-1}$	67
max_cap_store2pipe_M_m3_per_d	maximum gas flow from storage to pipeline	$\mathrm{Mm}^{3}\mathrm{d}^{-1}$	74
max_workingGas_M_m3	maximum working gas in storage	Mm^3	78
name_short	short name of the facility		100
operator_name	name of the operator		100
start_year	year when the storage operation started		87
status	indicating of storage is in operation, planed,		100
	or under construction		

Table 3.15: GSE Storages data summary

Nodes elements

Overall, there are 168 *Nodes* elements in the GSE data set associated with the 210 *Storages* facilities, meaning some storage facilities are associated to the same node element. In addition to the default attributes, the following non-standard attributes (see Table 3.16) are supplied and partially populated with data:

Attribute name	Description	Units	Data density [%]
exact	accuracy of node location		100
elevation_m	elevation of node		100

Fable 3.16: GSE Nodes d	lata summary
-------------------------	--------------

3.4.3 Copyright and data disclaimer for the GSE data set

Data availability and data usage

The Excel book is available through the internet. However, no copyright has been attached to the data set. Hence, normal copyright applies. Hence, we are not able to pass on the raw information that was downloaded by the Sci-GRID_gas project to others.

3.4.4 Copyright

The copyright regulations of this data can be found under (https://agsi.gie.eu/#/privacy-policy) .

Data disclaimer

In addition the data disclaimer is given as (https://agsi.gie.eu/#/disclaimer):

"All data is provided by the contributors on a voluntary basis and free of charge. The Data provided by AGSI is for information only. GSE is using reasonable efforts to invest in ensuring the correctness, completeness, and timeliness of the information provided herein. Data have been carefully checked, are updated at regular intervals and may be subject to changes, removal, or amendments without prior notice. GSE neither assumes any warranty or liability for the correctness and completeness of information/services and entries nor for the mode of presentation."

3.4.5 Summary GSE data

The GSE data set summarizes information on gas storage facilities throughout Europe. Data for those facilities were accessible through an Excel book that was downloaded from the GIE web page. This data set applies to all of Europe, and special tools had to be written, to align their spatial data points to geo-reference location of the SciGRID_gas data set. Tools have been designed to convert the information from those CSV files and subsequently make them accessible throughout the SciGRID_gas project.

Table 3.17 lists the number of elements for each component found:

	n bannin
Component Name	Count
BorderPoints	0
Compressors	0
ConnectionPoints	0
Consumers	0
EntryPoints	0
InterConnectionPoints	0
LNGs	0
Nodes	168
PipeSegments	0
Production	0
Storages	210

ry
1

In addition, the map in Figure 3.4 visualizes the data for Europe.

Figure 3.4: Overview map of the GSE data set for Europe.

3.5 The International Gas Union (IGU) data set

A further data set for storages stems from the **International Gas Union** (**IGU**). Their data are storage summary tables for roughly 170 European storage sites, which can be accessed through their online portal and link. The tables contain information on peak withdrawal capacity, injection capacity, and more. However, due to copyright limitations, the SciGRID_gas project is not allowed to pass on the actual downloaded values from those IGU tables. But this information will be used within the heuristic data generation processes.

3.5.1 Data processing of the IGU data set

IGU describes itself as follows (http://members.igu.org/old/about-igu):

"IGU has more than 160 members worldwide and represents more than 97 % of the world's gas market. The members are national associations and corporations of the gas industry. The working organisation of IGU covers the complete value chain of the gas industry from upstream to downstream. As the global voice of gas, IGU seeks to improve the quality of life by advancing gas as a key contributor to a sustainable energy future. IGU is the key and credible advocate of political, technical and economic progress of the global gas industry, directly and through its members and in collaboration with other multilateral organizations. IGU works to improve the competitiveness of gas in the world energy markets by promoting transparency, public acceptance efforts and the removal of supply and market access barriers. IGU seeks to collaborate with governmental agencies and multilateral organizations to demonstrate the economic, social and environmental benefits of gas in the global energy mix."

And its mission is to (http://members.igu.org/old/about-igu/vision-mission-and-objectives):

"IGU is the key and credible advocate of political, technical and economic progress of the global gas industry, directly and through its members and in collaboration with other multilateral organizations. IGU works to improve the competitiveness of gas in the world energy markets by promoting transparency, public acceptance efforts and the removal of supply and market access barriers."

So the IGU data can be downloaded from their public internet port, not via an API, but through a normal HTML web page.

For the SciGRID_gas project tools were written that call those HTML web pages and then downloads the information that is required for the SciGRID_gas project. This can be done for about 170 gas *Storages* sites throughout Europe.

Through the following URL http://members.igu.org/html/wgc2003/WGC_pdffiles/data/Europe/att one can access the HTML code for each individual storage unit. Hence, a tool was written that access those web pages and retrieves the data so that is fits into the SciGRID_gas data model project. Subsequently only information was used from those facilities, that were not abandoned.

Here again, the lat/long values were not given for the individual storage locations, and in a further step, a lookup between the IGU and the INET data set was carried out, while considering the country code. 169 web pages were queried, resulting in 147 storage metadata datasets for Europe. This includes sites in Russia and other non EU member countries, as it is envisaged, those non-EU datasets will help in the heuristic attribute generation process.

3.5.2 IGU data density

The data of the IGU data set contains only the component Storages, and its attributes will be described below.

Storages elements

Overall, there are 147 active *Storages* facilities in the IGU data set. 144 of those supplied usable information for the SciGRID_gas project. In addition to the default attributes, the following non-standard attributes (see Table 3.18) are supplied and partially populated with data:

Attribute name	Description	Units	Data den- sity [%]
max_cap_pipe2store_M_m3_per_d	Peak injection capacity, from pipe to storage	$\mathrm{Mm}^{3}\mathrm{d}^{-1}$	93
max_cap_store2pipe_M_m3_per_d	Peak withdrawal capacity, from storage to pipe	$\mathrm{Mm}^{3}\mathrm{d}^{-1}$	100
max_cushionGas_M_m3	Total cushion gas volume	Mm^3	98
max_power_MW	max compressor power at storage facility	MW	75
max_storage_pressure_bphBar	Max allowable storage pressure	BHP bar	89
max_workingGas_M_m3	Installed max working gas volume	Mm^3	100
min_storage_pressure_bphBar	Min storage pressure	BHP bar	71
net_thickness_m	Net thickness	m	53
num_storage_wells	No of storage wells/caverns associated with UGS		94
operator_name	Operator: String, of name of operator		100
permeability_mD	Permeability : floats, geological parameters, 10 - 1000	mD	56
porosity_perc	Porosity, floats, geological parameter, 15 - 22	%	53
start_year	Reference year: Integer of year	уууу	100
storage_formation	Storage formation: sting describing geology of storage		59
store_type	Storage type: String indicating the storage type		100
structure_depth_m	Depth top structure (cavern roof)	m	95

Table 3.18: IGU Storages data summary

Nodes elements

Overall, there are 137 node points in the IGU data set. In addition to the default attributes, the following non-standard attributes (see Table 3.19) are supplied and partially populated with data:

Table 3.19: IGU	<i>Nodes</i> data	summary
-----------------	-------------------	---------

Attribute name	Description	Units	Data den-
			sity [%]
exact	boolean indicating that storage is planed		100

3.5.3 Copyright and data disclaimer for the IGU data set

The copyright regulations of this data can be found under (http://members.igu.org/old/about-igu/legal).

In addition the data disclaimer is given as under (http://members.igu.org/old/about-igu/legal).

3.5.4 Summary IGU data

The IGU data set supplies information on gas storage facilities. Data for those facilities are accessible through IGU HTML web pages that were downloaded from the IGU public web pages. This data set applies to all of continental Europe, and special tools had to be written, to align their spatial data points to geo-reference location of the SciGRID_gas data set. Tools have been designed to convert the information from HTML web page and subsequently make them accessible throughout the SciGRID_gas project.

Table 3.20 summarises the number of elements for each component found:

Component Name	Count
BorderPoints	0
Compressors	0
ConnectionPoints	0
Consumers	0
EntryPoints	0
InterConnectionPoints	0
LNGs	0
Nodes	137
PipeSegments	0
Production	0
Storages	144

Table 3.20:	IGU	component	summary

In addition Figure 3.5 depicts a map of the IGU data for Europe.

Figure 3.5: Overview map of the IGU data set for Europe.

3.6 The Norway (NO) data set

Norway has one main national lines operator, being **Gassco** [Gassco20a][Gassco20b]. It covers the Norwegian continental shelf for the energy sources of gas and oil to Continental Europe and Great Britain. **Gassco** allows for the download of the geo-referenced non-infield gas and oil facilities data through the **Norwegian Petroleum Directorate**. The facility data can be found under: https://www.npd.no/en/about-us/information-services/available-data/map-services/. The file to download from the table with all those links is the entry for "TUF" ("Main pipelines. The dataset contains not infield pipelines."). The data covers the territorial waters of Norway, France, Great Britain, Germany, Denmark, the Netherlands and Belgium, and will be referred to as the Norway data set (**NO**).

The facilities data set comes in form of a shapefile, and consists of polylines with some attributes, such as pipe diameter. Overall, the topological quality of the data set is very high. The entire spatial data set is automatically incorporated into the SciGRID_gas gas data project.

Additional meta data has been made available in the form of an Excel book. Among others, it contains vital pipeline capacity information. Hence, this Excel data set needs to be merged with the norwegian Shape pipelines data set. The Excel data set can be found under the following URL:

https://www.norskpetroleum.no/en/production-and-exports/the-oil-and-gas-pipeline-system/#gas-pipelines

There is a "Download data" button above the "Gas pipelines on the Norwegian continental shelf" table, which will get the user the additional meta data file. This Excel table needs to be downloaded and converted to a CSV file, by saving the main sheet from that XLSX file. The location of this file shall be the same as where the shapefiles have been stored, and shall have the file name "NorwayMetaInfo_01.CSV".

3.6.1 Data processing of the Norway data

The gas facilities data set for the Norway came in form of shapefiles. It contains a table, which was read in with SciGRID_gas tools and converted to fit into the SciGRID_gas data structure. The components that were read in are:

- PipeLines
- Nodes

Subsequent to reading the data from the shapefiles, it was necessary to process the data so that it adheres to the Sci-GRID_gas data structure. As the data for Norway was supplied in a different spatial projection, all lat/long values had to be converted from "epsg:4230" to "epsg:4326". Pipelines were converted to gas elements of component *PipeSegments*. Further for each *PipeSegments* element, additional attributes "lat_mean" and "long_mean" were calculated and added.

All these changes made the Norway data set compatible with the SciGRID_gas data structure.

Below specific steps taken for individual components are given.

In addition, the meta data CSV file ("NorwayMetaInfo_01.CSV") was also read in, and linked via the location names that were present in both data sets. This allowed for the pipe segments to also contain information on the gas flow capacities.

Pipeline data processing

There are 70 polylines in the shapefile "pipLine.shp". However, there are a lot more pipelines to be seen on the corresponding map, with a tool like ArcGIS. This is because an individual polyline can contain several parts, such as T-junctions and several pipe-segments. Hence, part of the Python loading process was the task of converting all polyline parts into individual *PipeSegments* elements. Hence, the following steps were carried out:

- Reading in a polyline
- Determine if polyline is part of gas PipeSegments element
- Determine number of parts to the polyline
- If a polyline consisted of only one part, then entire polyline was converted into a single *PipeSegments* element
- If a polyline consisted of more than one part, then the following steps were carried out:
 - Information where new parts of a *PipeSegments* element started within a polyline was given through the variable *parts*.
 - New *PipeSegments* elements start at integer values supplied through *parts*.
 - Polyline parts are converted into *PipeSegments* elements.

This process generated 43 PipeSegments elements.

Nodes data

It was also possible to generate Nodes data from the above information. Nodes are the locations for start and end points of *PipeSegments* elements.

After all, there are about 53 *Nodes* elements throughout the territorial waters of Norway, France, Great Britain, Germany, Denmark, the Netherlands and Belgium.

3.6.2 NO data density

The data of the Norway data set contains the following components:

- PipeSegments
- Nodes

Each component is derived from a shapefile table. Below you will find a summary of the information as it will appear after the conversion into SciGRID_gas data format.

PipeSegments elements

PipeSegments elements were derived from pipeline information which was read in from the "pipLine.shp" shapefile. The only additional metadata that was available for *PipeLines* element was their diameter. After the conversion of *PipeLines* element to *PipeSegments* element, the length was calculate for each pipe-segment, based on the polyline values for each *PipeSegments* element. In addition, a mean latitude and longitude value (*lat_mean, long_mean*) was calculated and added as an attribute value to the *PipeSegments* element.

Overall, there are 43 *PipeSegments* elements in the Norway data set. The *PipeSegments* elements have the following mandatory attributes:

- *id*: unique identifier
- *name*: name of the pipe-segment

- source_id: a source id
- node_id: the id of the start and the end node of the pipe-segment
- *lat*: a list of latitude values
- *long*: a list of longitude values
- country_code: a string pair indicating the country code of the start and end points
- comment: a user comment.

In addition, the following non-standard attributes are supplied (see Table 3.21) and are also given in respect of their data density (see Chapter 8.1 for a definition of 'data density'):

Attribute name	Description	Units	data den- sity [%]
diameter_mm	a pipe diameter	mm	100
max_cap_M_m3_per_d	daily gas flow capacity	Mm^3d^{-1}	100
waterDepth_m	depth of pipeline	m	100
is_H_gas	boolean if gas is high calorific		100

Table 3.21: NO *PipeSegments* data density summary

Nodes elements

Nodes were derived from all other Norway data components. Here it was assured, that the same locations (same latitude and longitude) did not appear more than ones in the data set. In addition, they have the attribute of *country_code* which is set to "NO" for all of them. In addition, each node received an attribute "exact" with a value of one. Overall there were 53 *Nodes* elements found in the Norwegian data set. The attribute *elevation_m* was added to each element and populated through a look up through the Bing web page [Mic20].

Overall, there are 53 node elements in the Norway data set. The node elements have the following mandatory attributes:

- *id*: unique identifier
- *name*: name of the pipe-segment
- source_id: a source id
- *node_id*: the node id of the location of the compressor
- *lat*: a latitude value
- long: a longitude value
- *country_code*: a string indicating the country code of the compressor location
- comment: a user comment.

In addition, the following non-standard attributes are supplied (see Table 3.22) and partially populated for Nodes:

Attribute name	Description	Units	Data density [%]
exact	value indicating the accuracy in geo-referencing		100
elevation_m	elevation of the node	m	100

Table 3.22: NO Nodes data density summary

3.6.3 Copyright for the Norway data set

Data availability and data usage

The data is provided through the Norwegian Petroleum Directorate (NPD). Here, we only use their shapefile that contained the geo-referenced gas *PipeLines* element. However, further information regarding the Norwegian data can be found under:

https://www.norskpetroleum.no/en/production-and-exports/the-oil-and-gas-pipeline-system/

Copyright

The copyright regulations of this data can be found under (https://data.norge.no/nlod/en/) and is given as:

- "The licensee, subject to the limitations that follow from this licence, may use the information for any purpose and in all contexts, by:
- copying the information and distributing the information to others,
- · modifying the information and/or combining the information with other information, and
- copying and distributing such changed or combined information.

This is a non-exclusive, free, perpetual and worldwide licence. The information may be used in any medium and format known today and/or which will become known in the future. The Licensee shall not sub-license or transfer this licence. © Norwegian Petroleum Directorate."

However, if you use this data or any data set which incorporates this data, you are also obliged to cite the original authors of the NO data as follows:

Gassco AS, The Norwegian Ministry of Petroleum and Energy www.norskpetroleum.no

Data disclaimer

As can be found under the NPD web page, the data disclaimer is given by the Norwegian Petroleum Directorate as the follow:

"Positional data accuracy is, unless otherwise stated, within approx. +/- 300 m. NPD is not responsible for accuracy on data reported by third parties. Content shall not be used for navigational purposes."

3.6.4 Summary Norway data

The data set was downloadable from the Norwegian "nationalgrid" operator. Tools have been created to load the Norway shapefiles and make them accessible throughout the SciGRID_gas project.

The Table 3.23 summarises the elements of the NO data set:

Component Name	Count
BorderPoints	0
Compressors	0
ConnectionPoints	0
Consumers	0
EntryPoints	0
InterConnectionPoints	0
LNGs	0
Nodes	53
PipeSegments	43
Production	0
Storages	0

Table 3.23:	NO	component element	summary
-------------	----	-------------------	---------

In addition, the map in Figure 3.6 visualizes the data for Norway.

Figure 3.6: Overview of the NO data set.

3.7 The Long-term Planning and Short-term Optimization (LKD) data set

The **Long-term planning and short-term optimization** data set (**lk-DEU**) is the second of two non-OSM data sets, that contain geo-referenced gas facilities. It was generated by several German research institutes and funded through the German government grants. It was part of a much larger research project (see link below). Here the gas facilities from the lk-DEU data set were used and incorporated into SciGRID_gas data model as the **LKD** data set. It contains information on gas pipelines, gas production sites, gas storages, compressor locations, and nodes.

As this data set is extremely well geo-referenced, it is of particular interest for the SciGRID_gas data project. The LKD data set can be used in conjunction with the OSM data set for training purposes, and as a data source for the heuristic processes, as a lot of attributes are available for a lot of elements.

The LKD facilities data set came in form of a shapefiles, and consisted of polylines with some attributes, such as pipe diameter, max gas flow capacity and more. In addition, parts of the shapefiles were tables of facilities, with information on storages, production, and industrial demand. Great care was taken from the original data set producers, to create a data set with a vast amount of attributes, which will be used throughout the SciGRID_gas project. Overall, the topological quality of the data set is good, as was verified by some sample checks. Gas sites could be found on satellite images within a few hundred meters. Due to the large number of elements, with a good selection of attributes and good topological information, the entire LKD data set has been incorporated into the SciGRID_gas project.

Further external information on the lk-DEU data set

More information on the data can be found under the following URL:

https://www.ewl.wiwi.uni-due.de/nl/forschung/forschungsprojekte-ewl/lkd-eu-langfristige-planung-und-kurzfristige-optimierung-des-elektrizitaetssystems-in-deutschland-im-europaeischen-kontext/.

This link describes the (Long-term planning and short-term optimization of the German electricity system within the European' data set [FMWP+17]. The project was a joined effort by:

- German Institute for Economic Research (DIW Berlin)
- Working group for Infrastructure Policy (WIP) at Technische Universitaet Berlin (TUB)
- Chair of Energy Economics (EE2) at Technische Universitaet Dresden (TUD)
- House of Energy Markets & Finance at University of Duisburg-Essen.

This project was funded by the German Federal Ministry for Economic Affairs and Energy through the grant "LKD-EU", FKZ 03ET4028A, with the aim of presenting a status quo of the German energy sector. The following three energy media were part of their project:

- electricity
- heat
- natural gas.

Here only the gas components are being used.

3.7.1 Pre requirements for accessing the LKD data set

The SciGRID_gas project has received the right to use, change and redistribute the LKD data under an open license agreement. However, if you use this data or any data set which incorporates this data, you are also required to cite the original authors of the LKD data as follows:

Kunz et al. 2017, Data Documentation: Electricity, Heat, and Gas Sector Data for Modeling the German System

In addition, the data set can be downloaded from the following location:

https://zenodo.org/record/1044463#.Xah7i2ZCSUk

Please put a copy into the following location:

/SciGRID_gas/Eingabe/LKD/

In addition, some data changes needed to be carried out due to small mistakes in the LKD data. However, these have been carried out by the SciGRID_gas project and corrected data has been written to the CSV LKD output data set. The SciGRID_gas tools that carry out those changes will be supplied as part of the SciGRID_gas project.

3.7.2 Data processing of the LKD data

The LKD gas facilities data set came in the form of several shapefiles. It contained several tables, which were read in with tools and dissected to fit into the data structure of SciGRID_gas project. The components that were read in are:

- PipeSegments, from the 'pipelines_utf8.shp' shapefile
- Nodes, from the 'nodes_utf8.shp' shapefile
- Productions, from the 'productions_utf8.shp' shapefile
- Storages, from the 'storages_utf8.shp' shapefile.

Subsequent to reading the data from the shapefiles, it was necessary to convert the data so that it adheres to the SciGRID_gas data structure. Some inconsistencies were found with the data set. The following fixes of the LKD data set had to be carried out:

- Some node ids were found more than once in the original data set for different nodes. Hence, this was manually rectified by changing some attributes of 29 nodes.
- Some nodes had a wrong country code setting. For 10 nodes, the country code attribute needed to be changed.

In an additional step, the elements of type *Compressors* were generated by using information that was supplied with the Nodes. The Node elements contained an attribute "comp_units", which stands for "number of compressor units". Hence, if this value was larger than 0, then it was assumed, that the node contained a single compressor element at that location. In addition, the attribute "comp_units" was then used as the value for the number of compressor turbines at the compressor location. E.g. if the value was two, then the compressor element's attribute *num_turb* was set to two.

At this stage of the LKD data process, there were more than 1800 pipe-segments with more than 1400 nodes. It was not apparent why there were so many nodes and pipe-segments. For many pipe-segments, two individual pipe-segments that connect with the same node contained the same attributes with the same values, and the node in question only connected two pipe-segments, not forming a T-section. Hence, pipe-segments were joined and nodes removed if the following rules applied:

- The node in question connects only two pipe-segments.
- The attributes values for *max_pressure_bar*, *is_H_gas*, *diameter_mm* and *pipe_class_LKD* needed to be identical for both pipe-segments. An exception is made for the node "Haidach" and "N_805129", where not pipe-segment joining took place.

This process reduced the number of segments to 1261, and the overall number of nodes to 938.

For some of the attribute values, the unit of the attribute value did not "agree" with the units used within the Sci-GRID_gas data project. Hence, unit transformation had to be carried out for the following attributes of the following components:

- "Storages", attribute converted from max_cap_pipe2store_GWh_per_d to max_cap_pipe2store_M_m3_per_d
- "Storages", attribute converted from max_cap_store2pipe_GWh_per_d to max_cap_store2pipe_M_m3_per_d
- "PipeSegments", attribute converted from *max_cap_GWh_per_d* to *max_cap_M_m3_per_d*.

Subsequently, the old attributes with the "wrong" units were removed from the component data set. Further attributes were added to the component:

- The length of the pipe-segment was derived using the polylines of each pipe-segment.
- The average latitude and average longitude were calculated by using the polylines of each pipe-segment.

In addition, the attribute "exact" was added to each Nodes element and a value of one was given.

In addition, for each Nodes element the following attributes were removed:

- · 'compressor'
- 'ugs'
- 'production'
- 'comp_units'.

3.7.3 LKD data density

The data of the LKD data set contains elements from the following components:

- PipeSegments
- Compressors
- Productions
- Nodes
- Storages.

Each of those components and their attributes will be described below.

As all components have the following attributes, they are presented here ones:

- id: unique identifier
- *name*: name of the pipe-segment
- source_id: a source id
- node_id: the id of the start and the end node of the pipe-segment
- *lat*: a list of latitude values
- *longitude*: a list of longitude values
- country_code: a string pair indicating the country code of the start and the end point
- comment: a user comment.

PipeSegments elements

Overall, there are 1261 *PipeSegments* elements in the LKD data set. In addition to the default attributes, the following non-standard attributes (see Table 3.24) are supplied. The number of attribute values supplied for each attribute is given by the parameter 'data density':

Attribute name	Description	Units	Data density [%]
diameter_mm	a pipe diameter	mm	100
is_H_gas	the gas type identifier	1 or 0	100
length_km	the total distance of the pipe-segment	km	100
max_cap_M_m3_per_d	maximum gas flow capacity	Mm^3d^{-1}	17
max_pressure_bar	maximum allowed pressure in the gas pipe	bar	100
operator_name	operator name		99
pipe_class_LKD	gas pipe-segment class type	1 to 6	88
lat_mean	calculated mean latitude value	degree	100
long_mean	calculated mean longitude value	degree	100

Table 3.24: LKD	PipeSegments	data	summary
-----------------	--------------	------	---------

pipe_class_LKD

For reasons of attribute generation at a later stage, the values for *pipe_class_LKD* have been converted from A, B, C,... to 1, 2, 3, ...

Compressors elements

Overall, there are 13 *Compressors* elements in the LKD data set. In addition to the default attributes, the following non-standard attributes were supplied (see Table 3.25) and partially populated for the component *Compressors*:

	•	•	
Attribute name	Description	Units	Data density [%]
entsog_key	key associated with EntsoG facility		38
license	indicator of the license		100
num_turb	the number of compressor turbines		100
operator_name	name of the operator		100

 Table 3.25: LKD Compressors data summary

Storages elements

Overall, there are 14 *Storages* elements in the LKD data set. In addition to the default attributes, the following non-standard attributes (see Table 3.26) are supplied and populated for the component *Storages*:

Attribute name	Description	Units	Data den-
			sity [%]
entsog_key	key associated with EntsoG facility		100
max_cap_pipe2store_M_m3_per_d	maximum gas flow from the network into	$\mathrm{Mm}^{3}\mathrm{d}^{-1}$	100
	the storage unit		
max_cap_store2pipe_M_m3_per_d	maximum gas flow from the storage unit	$\mathrm{Mm}^{3}\mathrm{d}^{-1}$	100
	into the network		
operator_name	name of the operator		100

Table 3.26: LKD Storages data summary

Productions elements

Overall, there are 6 *Productions* elements in the LKD data set. In addition to the default attributes, the following non-standard attributes (see Table 3.27) were supplied and populated for the component *Production*:

Attribute name	Description	Units	Data density [%]
entsog_key	key associated with EntsoG facility		100
max_production_M_m3_per_d	maximum gas production	$\mathrm{Mm}^{3}\mathrm{d}^{-1}$	100
is_H_gas	boolean indicating that H gas type	1 or 0	100
operator_name	name of the operator		100

Table 3.27: LKD Productions data summary

Nodes elements

Overall, there are 938 *Nodes* elements in the LKD data set. In addition to the default attributes, the following non-standard attributes (see Table 3.28) are supplied and partially populated for the component *Nodes*:

Attribute name	Description	Units	Data density [%]
crossborder	boolean indicating that node is a gas cross		100
	border point		
entry	boolean indicating that node is a gas entry		100
	point		
entsog_key	key associated with EntsoG facility		9
exact	value indicating the accuracy in geo-	1 to 5	100
	referencing		
exit	boolean indicating that node is a gas exit		100
	point		
H_L_conver	boolean indicating of converter between H		100
	& L gas		
license	license key		100
operator_Z	additional operator name		64
operator_name	name of the operator		98

Table 3.28:	LKD	Nodes	data	summary
-------------	-----	-------	------	---------

Additional data from the LKD data set

In addition, there is data on gas demand on a spatial level of Nut-3, leading to 402 elements. However, currently this is not being used, but might be used at a later stage.

3.7.4 Copyright and disclaimer for the LKD data set

The lk-DEU data set has been published under the Creative Commons Attribution 4.0 International Public License. This allows us to use the data in this project and re-distribute the data as well.

Disclaimer

The LKD data set is supplied on a best-effort basis only. While every effort is made to make sure the information is accurate and up-to-date, we do not accept any liability for any direct, indirect, or consequential loss or damage of any nature–However, caused–which may be sustained as a result of reliance upon such information.

Acknowledgement

We acknowledge to acknowledge the "Deutsches Institut fuer Wirtschaftsforschung" (Mohrenstr. 58, 10117 Berlin, Germany, for allowing the SciGRID_gas project to use their data.

3.7.5 Summary LKD data

The gas pipeline and gas facilities from the LKD data set is of great importance to the SciGRID_gas project. It is one of only three non-OSM data sets that contain gas facilities that are geo-referenced, and hence, can be used for validation processes covering all of Germany. In addition, it contains some attribute values in respect of gas pipelines that are fundamental for the gas data model. This data set was made available through a German research project and was downloadable from the project's web page. Tools have been written to load the LKD shapefiles and make them accessible for the SciGRID_gas project.

Below Table 3.29 summarises the number of elements for each component found:

Component Name	Count
BorderPoints	0
Compressors	13
ConnectionPoints	0
Consumers	0
EntryPoints	0
InterConnectionPoints	0
LNGs	0
Nodes	938
PipeSegments	1261
Production	6
Storages	14

Table 3.29:	LKD	component	summary
-------------	-----	-----------	---------

In addition, the map in Figure 3.7 visualizes the data for Germany, of its more than 25000 km transmission network.

Figure 3.7: Map of components of the LKD data set.

3.8 Data summary

SciGRID_gas is based on open source data. To generate a gas pipeline network data set, one needs to access different data sets that were found throughout the project and presented here. Emphasis was given to depict the number of elements per component and the data density for each data set.

MERGING DATA SOURCES

Several gas facility data sources have been described in Chapter 3. Part of the SciGRID_gas project is to joined (merged) those sets. However, some facilities might be present in more than one data source containing same but also different attributes. Hence, this chapter here will describe the current implemented methods to merge elements from different data sources.

4.1 Merging single node elements

So far, only individual data sources have been read in and converted to SciGRID_gas data sets. However, some elements might be described in more than one data set. In addition, they might be populated with different attributes and attribute values. Hence, those elements need to be merged, in such a way, that the topology stays correct and that the attributes are merged correctly, while maintaining maximum information. The tools developed here have been designed for the non-OSM data sets. However, they should be applicable to any gas component data set. In addition, the concept and tools presented in this subsection applies to single node elements only. With this it is meant that elements of type *PipeLines* and *PipeSegments* will not be covered in this subsection, as they are elements containing more than one node. Merging tools for *PipeLines* and *PipeSegments* will be presented in subsection Chapter 4.2

In this section, the problem of duplicate elements from different data sets is being described with the help of some mock data set. This is used to describe the methods that have been implemented. This will result in a single data set, not containing any duplicate non-pipe elements.

4.1.1 Problem description

In the Figure 4.1 the problem is depicted. There are elements from different data sets (different colour) with different attributes. For this example (summaries in Table 4.1) three different data sets are depicted for three different *Storages* elements: blue, red, and yellow. In addition, the spatial separation has been supplied in km.

Attribute name	Blue data set	Red data set	Yellow data set
name	Atwick	Aldbrough1	Aldbrough
max_cap_pipe2store_M_m3_per_d	1.9	1.0	1.1
max_cap_store2pipe_M_m3_per_d	2.3	1.3	
max_workingGas_M_m3		1800	
store_type	Depleted Field		Salt cavern

Table 4.1: Summary of data of the three sample *Storages* elements.

As can be seen, some elements have attribute values for the same attribute, and others do not, and the main question is: **Which elements should be merged, and which ones should not be merged?** Should all three be merged, because they are so close to each other, or none, as they all have different names, or just the red and the yellow one?

Figure 4.1: Example data sets blue, red and yellow, all depicting a storage element with different attributes and attribute values. The figure also includes the spatial separation between the elements.

Here approaches including name similarity, topological distance and country location have been developed so that an automated process can merge those elements that should be merged, and will be described next.

4.1.2 Methods for element identity comparison

Below different methods are introduced briefly to determine, if facilities from different data sets should be merged or not. The functions introduced are applicable to all components except *PipeLines* and *PipeSegments*. Different functions look at different attribute values, such as *names*, *LatLong* or *country code*. Each function returns a score between 0 and 100, with 0 indicating that there was no match between the attribute values supplied, whereas a score of 100 refers to a perfect match of the attribute values. In a second step, the user can set thresholds values, so that a function returning a score larger than the set threshold is assumed to be describing the same facility. However, as single attribute comparison might be misleading (e.g. very similar place name in two different countries), therefore multiple attribute comparisons methods have also been introduced.

Spatial distance

This method determines if two elements can be classed as the same by their geo-reference location, by calculating the distance between the two locations. If the distance between two elements is 500 km, then it would be highly unlikely that the elements are of the same facility. However, if the distance between the locations is 10 km or less, then in the scheme of Europe they might be describing the same facility. The distance can be weighted in different ways, such as just the inverse distance, the inverse power distance or the inverse log distance. Different methods work best for different components. Here again, if the lat/long of two elements is equal, then this function would return a score of 100, whereas if the distance between two elements is several 100 or even 1000 km, then this function would return a very small score, such as 10 or 5, depending on the method selected.

Name comparison

This method helps to determine if two elements describe the same facility by comparing their location *names*. For the method return score of 100, the location names are identical, whereas for a method return score of 0 there is no similarity between the names at all. The names of "UGS Stollen" and "Stollen" would return a score of about 70, as the word "Stollen" is partially in the name "UGS Stollen". The external python method implemented here, returning score values for pairs of names, is called "FuzzyWuzzy".

An additional aspect was added to this method. If one entire name is part of the other name (**name-in-name**), then the user can specify that the return score should be increased by a user specified value. For the case where the names are "Aldbrough" and "Aldbrough1", and the name-in-name score be 100, then the final score would be 195. However, if the name-in-name score was not implemented, then the overall output score for the location name pair of "UGS Stollen" and "UGS" would be 43 only. In case that the user had specified a threshold score of 60, the storages with names "UGS Stollen" and "UGS" would not be merged, if the additional name-in-name would not have been implemented. Better results were achieved with the additional name-in-name method.

Country code comparison

Another key factor in determining if two elements should be merged is their corresponding country-code. In case that the country-codes of the elements are known, one can determine the equality of the country-code.

This method only returns two values:

- "0": the country code entries of the two elements are different.
- "100": the country code entries of the two elements are the same.

Combining comparisons methods

However, it was experienced, that individual single method selections did not result in the expected element selection. From the above example, if one had selected the spatial distance method, then "Atwick" might be merged with "Aldbrough", as they are closer than "Aldbrough" and "Aldbrough1". Whereas comparing the names only would have merged "Aldbrough" and "Aldbrough1". So which method should be used?

Hence, combinations of the above methods were developed. This is achieved by executing the methods subsequently to each other, resulting in a combined method return score. Two elements were deemed to be the same, if the final score was larger than a user specified score.

Example results

Above an example was given in Figure 4.1. "Atwick" and "Aldbrough" are only 2 km apart, whereas "Aldbrough1" is separated by 10 km to any of the other two elements.

First of all the method return score was determined for the spatial separation of the elements. The "Atwick"-"Aldbrough" spatial separation lead to a method return score of 50, whereas the same value for the "Aldbrough" and "Aldbrough1" pair is 10 only. In a second step the names were compared, resulting in method return scores of 0 and 195 respectively. Hence, for a user specified threshold score of 60, only the elements "Aldbrough" and "Aldbrough1" would be merged. As can be seen in Table 4.1, the elements "Aldbrough" and "Aldbrough1" have same and complementing attributes. The attributes that the resulting merged element will have will be described in the subsection below.

Attributes of resulting element

As can be seen in Table 4.1, "Aldbrough" and "Aldbrough1" have a mix of different and same attributes, with partially different values for the same attribute. Here the following attribute merge path is being implemented:

- Assume that "Aldbrough1" will be merged into "Aldbrough".
- The resulting element will have all those values from element "Aldbrough"
- Any element that was not given through "Aldbrough", and is present in "Aldbrough1" will be copied to "Aldbrough"

Hence, the resulting "Aldbrough" element would have the following attributes with the following values:

- name: "Aldbrough"
- max_cap_pipe2store_M_m3_per_d: 1.1
- store_type: "Salt cavern"
- max_workingGas_M_m3: 1800
- max_cap_store2pipe_M_m3_per_d: 1.3.

Summary

The above text example was used to explain the merge process of single node elements, such as *LNGs*, *Storages* and *Productions*. This section will be followed by explaining a method that can be used for merging pipes, which are elements connecting more than one node.

4.2 Merging pipe elements

Merging elements that are associated with a single node (point) has been described in subsection Chapter 4.1. However, a more complex method needed to be implemented to merge *PipeSegments* or *PipeLines*. This process will be explained below.

In this section, the problem of duplicate elements from different data sets is being described with the help of some mock data sets. They will be used to describe the methods that have been implemented to achieve the merge task. This will result in a data set, which will not containing any duplicate elements for the components *PipeSegments* and *PipeLines*.

4.2.1 Problem description

In the Figure 4.2 the problem that the SciGRID_gas project needs to solve. There are two individual network data sets (subplot a)): network "B" (in blue) and network "R" (in red). By looking at the example, one could argue that pipes B3 and R1 are describing the same real facility, and pipes B4 and R2 are also describing the same facility. Here it is already assumed, that all other network pipe are only in one or the other network data set (as one can see, *PipeSegments* B1 and B2 are only in the blue network, whereas *PipeSegments* R3, R4 and R5 are only in the red network).

Further to the spatial visualization, Table 4.2 summarizes the attribute values for each element of the two data sets.

Figure 4.2: Example network data sets blue (B1..B4) and red (R1..R5). Figure also indicates the spatial separation between the nodes. Subplot a) depicts the individual networks, whereas subplot b) depicts the merged data set.

D'	- P P		A A A A A A A A A A A A A A A A A A A	1
Pipe	diameter_mm	max_pressure_bar	max_cap_ivi_m3_per_d	lengtn_km
B1				5
B2	900	85		4
B3	900	90		10
R1	910			10.9
B4	700	70	10	5.5
R2	900	90		5.6
R4	1100			3.8
R3	600			2
R5	800			3

Table 4.2: Summary of key attribute values of the elements of the two networks "B" and "R".

However, the main question is: Which pipes should be merged, and which ones should not be merged?

Here, methods of name similarity, topological distance, country location and key attribute similarity have been developed as part of the SciGRID_gas project and will be described next. This will allow an automated process to merge those elements that should be merged, and not merge those pipes, that are to different, e.g. through attribute values, which will be explained below.

4.2.2 Methods of identifying identical pipelines

Below different methods are being introduced, that are being used to help in determining, if elements from different data sets should be merged or not. Some of the functionality used has been introduced already in Chapter 4.1. Other additional functions are being introduced below.

The overall pathway of determining if two pipelines from two different networks are the same is presented in Figure 4.3, and consists of the following steps:

- · Determine if start and end nodes from different networks are the same
- Determine if the attribute values diameter are similar
- Determine if the attribute values maximum operating pressure are similar

- · Determine if the attribute values maximum flow capacity are similar
- Determine if the attribute values pipe length are similar

If the process determines yes for all those requirements, then it is assumed that the two pipes are the same and should be merged. Each of those processes will be described in more detail below.

Figure 4.3: Process flow chart for determining, if two pipes from two different networks are describing the same pipe.

Testing: End node location similarity

This process test if the geolocation of two nodes from two different datasets are similar, as has been described in Chapter 4.1. If those nodes are describing the same location, then the pipes connecting those nodes can be determined and the next step can be carried out. Otherwise, another combination of nodes will be tested.

Testing: Pipe diameter similarity

After identifying two pipelines with the same start and end nodes, the pipeline diameters are compared. As can be seen from the example listed in Table 4.2, the pipes B3 and R1 do have similar values, 900 and 910 respectively. Here, the user specifies, by how much these values are allowed to be different. In the SciGRID_gas project, this difference (tolerance) is given in respect of percent, and a value of 5% has currently been implemented. Hence, B3 and R1 have similar diameter values, whereas pipe B4 and R2 would not fulfil this requirement.

Testing: Maximum operating pressures similarity

The next test is regarding the similarity of the maximum operating pressures. Currently a threshold value of 5 % has been implemented into the SciGRID_gas project. So if two pipeline pressure values are within 5 % of each other, than the values are deemed to be the same.

However, with the example given above, incomplete information is being supplied, which will be the case for many merge attempts. Pipes B3 and R1 have the maximum operating pressure values of 90 and None, respectively (see Table 4.2). As only one pipe has a value, the following rule has been implemented: If one or both elements have no given attribute value, then the test is assumed passed. Therefore for B3 and R1, this test returned true, and it is assumed, that the pipes from those two networks describe the same pipe.

Testing: Maximum flow capacity similarity

The next test is comparing the maximum gas flow capacities. Currently a threshold value of 10% has been implemented into the SciGRID_gas project. So if two values are within 10% of each other, than the values are deemed to be the same.

Based on the above example from Table 4.2, where pipes B3 and R1 have no values, the rule introduced for the previous attribute applies. Hence, one can assume that B3 and R1 both describe the same pipe.

Testing: Pipe length similarity

The next test is checking if the summed lengths of the individual pipes are similar or not. Different threshold values have been implemented for different data sets. For the situation, where the INET and the GB data sets need to be merged, a threshold of 30 % was set. The GB data set originates from topological correct pipes path ways supplied through a shape file, where each bend or corner of the pipes can be found in the shape file.

The INET data set only connects nodes with straight lines, hence, ignoring the actual path. Hence, the variation in pipe length can be large between those two data sets. In contrast to the GB data sets, a different threshold values was applied to the Norway (NO) data set, when merging with the INET data set (this will be presented in an upcoming release, however, briefly discussed here for demonstration purposes). The NO data set also originated from a shape file. However, the pipes are (due to missing obstacles on the sea bed) dominantly straight lines, like connection nodes via the shortest path, which is also the case for the INET data set, hence, the threshold value was set at 10 %.

For our above example, where the pipe length are 10 and 10.9 km for the B3 and R1 pipes respectively, the variation in the attribute value is less than 10 %, and hence, those two pipes would also pass this test.

Results of sample merge

Hence, after applying the above method path way to the pipes from the two networks, in the resulting network the original pipes B3 and R1 were merged, whereas the pipes B4 and R2 were not merged (Figure 4.2 b)). Here the colour coding of the pipe labels indicates, from which data set the attributes of the resulting pipes originated from. Blue means, that all attributes for this pipe come from the corresponding blue pipe. Red indicates, that the attribute originate from the red network data set. And black indicates that the resulting pipe contains attributes from both data sets.

Comment

It should be pointed out, that there might be multiple parallel pipelines in one or both data sets. Here it is assumed, that parallel pipelines within the same data set are describing different pipelines, and hence, are not allowed to be merged. However, the method described above can be applied to a situation, were one or both data sets contain parallel pipes. E.g. if data set "R" has a set of parallel pipes (**R1** and **R2**) between nodes **A** and **B**, and the second data set "B" has three parallel lines between (**B1**, **B2**, and **B3**) between nodes **A** and **B**, then the above method would tests if the following pipe combinations could be merged:

- 1) **R1** with **B1**
- 2) **R1** with **B2**
- 3) **R1** with **B3**
- 4) **R2** with **B1**
- 5) **R2** with **B2**
- 6) **R2** with **B3**

If through the above process it is found that **R1** should be merged with **B2**, than the test for **R1** and **B3** would not be carried out any more, and would jump to testing **R2** and **B1** next. Hence, the system was designed in such a way, that it can also deal with identical pipelines from the same data set (e.g. same length, same pathway, same pressure, and max capacity). This was achieved by removing merged pipelines from the pool of mergeable pipelines.

Summary

The above subsection examples demonstrated how pipes from different networks can be identified to be describing the same physical pipe, so that the information from such pipes can be merged, and the pipes are not duplicated in a merged network data set. For this a method pathway flow chart of the tests/methods has been introduced, that pipe pairs need to fulfil to be considered identical pipes. With this, networks can be merged, so that duplicate pipeline elements have been removed.

4.3 Application to the INET, GIE, GSE, IGU, NO and LKD data set

For the data sets of INET, GIE, GSE, IGU, NO and LKD, elements from the following components needed to be merged:

- BorderPoints
- Compressors
- EntryPoints
- InterConnectionPoints
- LNGs
- PipeSegments
- Productions
- Storages
- Nodes

4.3.1 Merging BorderPoints

Elements from the component *BorderPoints* are only present in the data set INET, hence, no merging of elements from different data sets is required. The final number of *BorderPoints* elements is 119.

4.3.2 Merging Compressors

For the identification of the correct elements from the different data sets, a combination of "name" and "spatial distance" was implemented. An overall threshold score of 20 was set for the data sets. Hence, in a first step the distance was investigated. Here the inverse method was selected. For this method the spatial distance between two elements is being determined and returned as distance in units of km. Then the following equation was carried out:

$$score = min(100/distance_km, 100).$$

In a second step the method return score for the name is being determined. Values can range between 0 and 200, as the name-in-name method (see Chapter 4.1) was also included.

In the final step both method return scores were added. And element pairs with a value of 20 or larger were deemed to be the same and were merged.

For the *Compressors* terminals only the INET and the LKD data sets contained any information on the component *Compressors*. It was determined, that the user specified threshold value of 20 works best for *Compressors* elements.

The number of elements per data set are listed in Table 4.3. The table shows that the merged data set has the same number of elements as the INET input data set. This indicates that the LKD data set did not contain any new facilities that were not present in the INET data set. However, possible better geo-referencing of the elements from the LKD data set can led to better geo-reference values in the final data set.

Data set	Number of Compressors elements
INET	249
GIE	0
GSE	0
IGU	0
NO	0
LKD	13
Merged data set	249

Table 4.3: Number of *Compressors* elements per input data set and merged data set.

4.3.3 Merging EntryPoints

Elements from the component *EntryPoints* are only present in the data set INET, hence, no merging of elements from different data sets is required. The final number of *EntryPoints* elements is 37.

4.3.4 Merging InterConnectionPoints

Elements from the component *InterConnectionPoints* are only present in the data set INET, hence, no merging of elements from different data sets is required. The final number of *InterConnectionPoints* elements is 118.

4.3.5 Merging LNGs

Merging *LNGs* terminals follows the same path as described for merging *Compressors* elements. Here only the INET and the GIE data sets contained any information on the component *LNGs*. It was determined, that the user specified threshold value of 25 works best for *LNGs* elements as well.

The number of elements per data set are listed in Table 4.4. The table also indicates that the merged data set has the same number of elements as the INET input data set. This indicates that the GIE data set did not contain any new facilities that were not present in the INET data set. However, different attributes and attribute values were supplied through the GIE data set, resulting in "better" data of the merged data set.

Data set	Number of LNGs elements
INET	32
GIE	21
GSE	0
IGU	0
NO	0
LKD	0
Merged data set	32

Table 4.4: Number of *LNGs* elements per input data set and merged data set.

4.3.6 Merging PipeSegments

Merging *PipeSegments* terminals follows the path as described Chapter 4.2. Here only the INET, the NO data sets and the LKD data set contained information on the component *PipeSegments*.

The number of elements per data set are listed in Table 4.5. The table indicates that the merged data set increased significantly in numbers of pipes. Here it can be pointed out, that the raw sum of pipes (INET = 920, NO = 43, and LKD = 1261) could have resulted in a total of 2224 pipes (920 + 43 + 1261). However, some of the pipes in NO and the LKD data sets would have been present in the INET data sets as well, and needed merging. This resulted in the slightly smaller data set of 2135 pipes. Here of 130 INET *PipeSegments* that were in Germany, 74 merged with 146 LKD *PipeSegments* from the possible 1248 LKD *PipeSegments*. In addition, Table 4.5 lists the length of the *PipeSegments* for each and the merged data set.

As described in Chapter 3.6 and Chapter 3.7 the data sets of NO and LKD are of slightly different nature, where the NO data originates from a shape file with very high topological accuracy, whereas the LKD data set originates from a shape file, however, with lower topological accuracy. Hence, when merging the NO and the LKD data set to the INET data set, different merging function threshold values were implemented. For the NO data set, a threshold of 30 was selected, whereas the LKD data set had a threshold value of 2.5. Those values were derived after significant testing processes.

Data set	Number of <i>PipeSegments</i> elements	Length [km]
INET	920	60206
GIE	0	
GSE	0	
IGU	0	
NO	43	9321
LKD	1261	25511
Merged data set	2135	87771

Table 4.5	: Number	of	PipeSegments	elements	per	input	data	set	and
merged d	ata set.								

4.3.7 Merging Productions

Elements from the component *Productions* are only present in the data set LKD, hence, no merging of elements from different data sets is required. The final number of *Productions* elements is 6.

4.3.8 Merging Storages

Merging *Storages* facilities follows the path as described for the component *Compressors*. Here the INET, the GIE, the GSE, the IGU and the LKD data sets contained information on the component *Storages*. It was determined, that the user specified threshold value of 24.05 works best for *Storages* elements.

The Table 4.6 shows the number of *Storages* of the individual data set prior to the merge process, and the resulting number of elements after the merge process. As can be see, by combining the GIE, GSE, IGU and the LKD data sets to the INET data set, 23 additional elements were added to the INET data set. In addition, part of the merge process was also the migration of the attributes and attribute values, which will be discussed in more detail in Chapter 6.

Data set	Number of Storages elements
INET	199
GIE	109
GSE	210
IGU	144
NO	0
LKD	14
Merged data set	222

Table 4.6: Number of *Storages* elements per input data set and merged data set.

4.3.9 Merging Nodes

Elements of type *Nodes* were not merged as such, as all the other processes above were leading to nodes being moved and merged. However, for completeness, in Table 4.7 the number nodes for each original data has been listed. The final number of nodes after the merge process of the resulting merged data set is 1886.

Data set	Number of <i>Nodes</i> elements
INET	1424
GIE	115
GSE	168
IGU	137
NO	53
LKD	938
Merged data set	1886

Table 4.7: Number of *Nodes* elements per input data set and merged data set.

4.3.10 Summary

In Chapter 4 different merge selection methods were introduced. These were applied to the INET, GIE, GSE, IGU, NO and the LKD data sets for the components *Storages*, *LNGs* and *PipeSegments*. Merging the data sets for the component *Storages* resulted in additional elements, when compared with the INET data set. Merging the data set for the component *LNGs* did not result in additional elements, when compared with the INET data set. And merging *PipeSegments* resulted in a significantly increase number of elements. Merging those data sets has led to an increase in topological knowledge, and in an increase in attribute values, which will be demonstrated in Chapter 6

4.4 Summary

When several data sets are combined, the situation can occur, that the same facility is presented by two or more data sets. Instead of this facility being present several times in the final merged data set, methods were presented, that would determine the likelihood that elements from different data sources are describing the same facility. Those element pairs were detected through a comparison of names, location and country-code values. Elements that were deemed to be the same were merged accordingly, so that individual facilities were only present ones in the final data set.

HEURISTIC ATTRIBUTE VALUE GENERATION

Gas facility data sources have been described in Chapter 3. However, those data sources might not contain values for all attributes, and hence, those values need to be generated. This chapter here will describe the current implemented heuristic methods that can be used to estimate missing attribute values.

5.1 Attribute value generation

The SciGRID_gas project has been set up to generate a data set of the European gas transmission network. Despite merging several data sources of gas facilities, the resulting gas component data set will contain a large number of missing values. This section here describes how missing attribute values can be generated through different heuristic methods.

In this section, the problem of missing data is described with the help of some mock data set. This is followed by the description of the heuristic methods that have been implemented, and the general pathway that the user needs to undertake to eliminate missing values.

Problem description

In Figure 5.1 the data sets contain different elements of different components, where many attributes values could not be found. The example given in the following sections shall depict the gas pipelines, where the attributes in question are *diameter*, *capacity* and *pressure*. The data is summarized in Table 5.1.

Pipeline name	capacity [M m 3 d $^{-1}$]	pressure [bar]	diameter [mm]
Jagal	76	80	1200
RHG		84	800
Midal 1	40		900
Midal 2	50		1000
Midal 3	35		800
Midal 4	34		800
Stegal_1			800
Stegal_2			900
Wedal	27		

Table 5.1: Summary of data of the nine sample pipelines from Figure 5.1.

As can be seen, all but one *PipeSegments* contain an attribute value for the attribute *diameter*. For the attribute *capacity* three values are missing, and of all nine *PipeSegments*, only two have a value for the attribute *pressure*. The corresponding data densities for the attributes *capacity*, *pressure* and *diameter* are 67 %, 22 % and 89 % respectively. The overall goal will be to achieve a data density of 100 % for all attributes.

5.1.1 Fill value methods

As one can see, the *capacity* attribute value is given for six of the nine facilities. Several options exist in determining the missing values. A simple solution would be to use the average or median of the input values as a method of estimating any missing value. Here the **mean** and **median** value are $41 \,\mathrm{Mm^3d^{-1}}$ and $35 \,\mathrm{Mm^3d^{-1}}$, respectively. However, selecting the best approach can be difficult, and needs to be transparent. Hence, an "estimation uncertainty" term will be used as decision criteria to determine the best method.

Conventionally, in the worlds of data engineers and big data, one splits the data into a training data set and a test data set. Normally a 70/30 rule is applied, where 70 % of the data ends up in the training data set, and 30 % in the test data set. In the first step a method (e.g. **median**) is applied to the training data set. In the second step, the fitted method results are used to predict the values of the test data set. In the third step one calculates the absolute error between the method results and the test data set. The smaller the absolute error, the better the method. This error value could be used as the "estimation uncertainty" and can be used to choose the method that would estimate any missing values with the smallest error values.

However, the SciGRID_gas project only contains relatively small data sets. Any splitting of the input data set into training and test data sets would create a data set too small for training and testing purposes. As an example, there are roughly 35 *LNGs* terminals in Europe, and splitting such data set would result in roughly 10 values for testing purposes only. Hence, throughout the SciGRID_gas project the "Leave-one-out" method will be used (see Chapter 8.7), and the error is calculated using the "mean absolute error" (MAE), where the absolute error is the absolute difference between a single raw input data value and the model estimation of that value instance. This means, instead of having a 70/30 percent split, one uses all but one data value for training the model and then uses the trained model to estimate the one data value that was not part of the training process. This is being repeated for all data values.

The **MAE** for the **mean** and the **median** method is $25 \,\mathrm{Mm^3d^{-1}}$ and $16 \,\mathrm{Mm^3d^{-1}}$, respectively. Hence, based on the **MAE**, it would be best to use the **median** method approach, and one could fill all missing values with the value of $35 \,\mathrm{Mm^3d^{-1}}$, with an **MAE** of $16 \,\mathrm{Mm^3d^{-1}}$. The **median** method is normally selected for data sets, which contain outliers or the data is not normal distributed. However, the sample size is small, and one could argue, to select the

method with the smallest MAE. However, overall, the MAE is very large in respect of the actual *capacity* value. Therefore other method approaches also need to be investigated.

An attribute will also need a linear correlation with one or several other attributes. Here, one could use a linear regression. However, linear regressions tend to weight the independent feature data equally, if more than one is given. Other methods, such as the Lasso-linear regression, tend to weight the independent variables unequally and can even indicate that it would be better to remove some independent variables [Wik20d]. Therefore, if not stated otherwise, the Lasso-linear regression will be used here, instead of a simple linear regression.

Here, the Lasso-linear regression is applied to the *capacity* variable (also referred to as the "predictor" or "regression input"), and the variable *diameter* is the independent variable (also referred to as the "feature" variable). For the pipe RHG, where the *capacity* value is missing and a *diameter* value of 800 mm is given, the Lasso-linear regression estimated the following *capacity* value: $33.9 \text{ Mm}^3 \text{d}^{-1}$ with a **MAE** of $2.4 \text{ Mm}^3 \text{d}^{-1}$. As one can see, the **MAE** of the Lasso method is significantly smaller when compared with the **MAE** of the **mean** and the **median** methods. However, this example should not lead to the assumption, that a Lasso-linear regression is always better than a simple estimation using a **mean** or a **median** value. For example, an attribute data set could be unrelated to any other attribute; hence, using a Lass method would be wrong. In addition, for some attribute values the methods of **mean** or **median** might have to be used, due to lack of feature data.

The process described above has been applied to the example data presented in Table 5.1. Table 5.2 and Table 5.3 summarize the input values, estimation values, estimation method, and the corresponding **MAE** based on the "Leave-one-out" approach. Results for the attribut *capacity* are given in Table 5.2, and for attribute *diamter* in Table 5.3 for the attribute *capacity* and *diameter* respectively. As the attribute *pressure* only contained two input values, no values could be estimated with the above process, as the system has been set up that it needs at least four values. For the other two attributes, the input and estimated values are being presented, and the difference between estimated and input value is close to the given uncertainty. As one can see, the estimated values agree better with the input data for the method of "Lasso", when compared with the method of "mean". However, not all values could be estimated using the Lasso method, due to missing values (e.g. *diameter* for pipeline Stegal_2).

Pipeline name	Input capacity	Estimated capacity	Method	Uncertainty
Jagal	76	69.7	Lasso	2.4
RHG		33.9	Lasso	2.4
Midal 1	40	42	Lasso	2.4
Midal 2	50	51.8	Lasso	2.4
Midal 3	35	33.9	Lasso	2.4
Midal 4	34	33.9	Lasso	2.4
Stegal_1		33.9	Lasso	2.4
Stegal_2		42.8	Lasso	2.4
Wedal	27	43.7	Mean	12.9

Table 5.2: Input and estimated *capacity* data of the example, including the method of estimation and the corresponding estimated error. Values are given in units of [M m³ d⁻¹].

Pipeline name	Input <i>diameter</i>	Estimated Diameter	Method	Uncertainty
Jagal	1200	1233	Lasso	23
RHG	800	900	Mean	100
Midal 1	900	875	Lasso	23
Midal 2	1000	975	Lasso	23
Midal 3	800	826	Lasso	23
Midal 4	800	816	Lasso	23
Stegal_1	800	900	Mean	100
Stegal_2	900	900	Mean	100
Wedal		746	Lasso	23

Table 5.3: Input and estimated *diameter* data of the example, including the method of estimation and the corresponding estimated error. Values are given in units of [mm].

Hopefully the above example and description can be used as an explanatory blueprint of the problem that the Sci-GRID_gas project is facing, and how the missing value generation can be approached. The following section will describe the implemented method pathway within the SciGRID_gas project code.

5.1.2 Attribute value generation pathway

This section describes how the generation of the missing attribute values has been implemented. Overall, there are six steps that need to be carried out in chronological order. They are described in more detail in the following sub sub-sections:

- 1) Loading network data
- 2) Configuration of the setup files
- 3) Generation of plots for data QA
- 4) Parameters generation for the heuristic methods
- 5) Selecting individual estimation methods for each attribute
- 6) Simulation of missing attribute values

1) Loading network data

The first step is to load the data into memory. Functions have been designed as part of the SciGRID_gas project, and will be introduced in an upcoming documentation.

2) Configuration of the setup files

In the next step the user needs to set up the three required setup files. The first one ("Copy_Attribs.csv") allows for moving attribute values from one element to another element, where the elements are of different component type. The second setup file ("StatsMethodsSettings.csv") contains meta information for each method (e.g. **mean**, **median**) is being supplied in addition to other settings. The second setup file ("StatsAttribSettings.csv") contains a list of attributes, including attribute specific metadata. All three setup files are being described next.

Copying_Attribs.csv

Here the user has the option of copying values from one type of component to another type of component, as long as the elements are physically connected to each other. This option has been implemented, as the attribute *max_power_MW* from the component *Compressors* might be "related" to the attributes *max_pressure_bar*, *diameter_mm* and *max_cap_M_m3_per_d* of the component *PipeSegments*. However, current methods implement do not allow for a correlation across different components. Hence, a method has been implemented, that copies attributes from one component to another component, as long as the elements are physically connected. In the above example the *Compressors* attribute *max_power_MW* could be moved to those *PipeSegments* elements, that are physically connected to the *Compressors* element (having the same *node_id*). The CSV file in the directory "../Ausgabe/GeneratedNetz/.../SetupFiles/Copy_Attribs/Copying_Attribs.csv" contains the information in respect of which attribute from which component shall be moved to which other component. An example of such file is give in Figure 5.2.

1	A	В	С	D	E
1	Comp_Source	Attrib_Source	Comp_Destination	Attrib_Destination	FillMethod
2	PipeSegments	pipe_class_EMap	Compressors	Pipe_pipe_class_EMap	fill
3	PipeSegments	diameter_mm	Compressors	Pipe_diameter_mm	fill_max
4	PipeSegments	max_cap_M_m3_per_d	Compressors	Pipe_max_cap_M_m3_per_d	fill_max
5	PipeSegments	min_cap_M_m3_per_d	Compressors	Pipe_min_cap_M_m3_per_d	fill_min
6	PipeSegments	max_pressure_bar	Compressors	Pipe_max_pressure_bar	fill_max
7	PipeSegments	pipe_class_type	Compressors	Pipe_pipe_class_type	fill
8	PipeSegments	max_cap_M_m3_per_d	LNGs	Pipe_max_cap_M_m3_per_d	fill_max
9	PipeSegments	pipe_class_type	LNGs	Pipe_pipe_class_type	fill
10	PipeSegments	pipe class EMap	LNGs	Pipe pipe class EMap	fill

Figure 5.2: Sample file of the file "Copying_Attribs.csv"

The file contains the following five columns:

- Comp_Source: String, name of the component type, from where the data shall be from.
- Attrib_Source: String, name of the attribute type, containing the data to be used.
- Comp_Destination: String, name of the component type, to where the data shall be written to.
- Attrib_Destination: String, name of the attribute type, into which the data shall be written into.
- FillMethod: String, containing one of the following options:
 - fill: Copies variable value to destination element, if no value was given in the destination element.
 - fill_max: Copies variable value to destination. In addition, checks if destination value smaller than current source value and if so then replaces with new source value.
 - fill_min: Copies variable value to destination. In addition, checks if destination value larger than current source value and if so then replaces with new source value.
 - replace: Copies variable value to destination element, and overwrites any existing value.

These new attributes can be used throughout the heuristic attribute generation process. Most likely, those generated values and attributes will be removed prior to the release of the data set.

StatsMethodsSettings.csv

In this file the user selects which methods (e.g. "Lasso") shall be used for testing the data and their relationships. A sample method setup file is given in Figure 5.3.

	А	В	С
1	MethodNam	Param	ToBeApplied
2	Lasso		1
3	LogisticReg	{'solver':'lbfgs'}	1
4	Mean		1
5	Median		1
6	Min		1
7	Max		1

Figure 5.3: Sample file of the file "StatsMethodsSettings.csv"

Column "A", which has the label "MethodName", contains the heuristic method names that have been implemented into the SciGRID_gas project code. Currently the following methods have been implemented:

- Lasso: A type of linear regression that uses shrinkages. It has been described as [s119]: "The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to its tendency to prefer solutions with fewer non-zero coefficients, effectively reducing the number of features upon which the given solution is dependent. For this reason Lasso and its variants are fundamental to the field of compressed sensing. Under certain conditions, it can recover the exact set of non-zero coefficients."
- LogisticReg: Here the attributes to be predicted are of binary type or are multiple discrete values. The Logistic-regression is described by the scikit-learn.org web portal as [sl19]: "Logistic regression, despite its name, is a linear model for classification rather than regression. In this model, the probabilities describing the possible outcomes of a single trial are modelled using a logistic function.".
- Mean: Calculation of the mean attribute value of the predictor attribute values.
- Median: Calculation of the median value of the predictor attribute values.
- Min: Calculation of the min value of the predictor attribute values.
- Max: Calculation of the max value of the predictor attribute values.

The second column with the label "Param" contains possible parameters that are applied to the method within the SciGRID_gas Python code. Here for the **LogisticReg** a solver is needed to be specified. As can be seen, the following entry was supplied:"{ 'solver':'lbfgs'}" (See [Wik20e] for an explanation of the 'lbfgs' solver). All other methods currently do not need additional parameter settings.

The column "ToBeApplied" describes if the method should be a part of the test suit ("1") or not ("0").

StatsAttribSettings.csv

In this CSV file (**StatsAttribSettings.csv**), additional information in respect of the attributes is being supplied. Here, the user selects the attributes (e.g. $max_cap_M_m3_per_d$) that shall be used during the heuristic testing suit. A sample of such file is presented in Figure 5.4.

The file consists of seven columns and they are described as follow:

• **CompName**: This column contains the component name. Options are all component names as introduced in Chapter 2.

	А	В	С	D	E	F
1	CompName	AttribName	Features	Predictors	Convert2Float	RegressionType
2	Compressors	max_cap_M_m3_per_d	1	1	0	lin
3	Compressors	is_H_gas	1	1	0	log
4	Compressors	max_power_MW	1	1	0	lin
5	Compressors	max_pressure_bar	1	1	0	lin
6	Compressors	num_turb	1	1	0	lin
7	Compressors	turbine_fuel_isGas_1	1	1	0	log
8	Compressors	turbine_fuel_isGas_2	1	1	0	log
9	Compressors	turbine_fuel_isGas_3	1	1	0	log

Figure 5.4: Sample file of the file "StatsAttribSettings.csv"

- AttribName: This column contains the attribute names of the component given under "CompName", that can be part of the heuristic testing process.
- Features: This indicates that the attribute values shall be a feature variable ("1") or not ("0").
- **Predictor**: This indicates if this variable shall be tested ("1") or not ("0"). Attributes with value settings of "1" will be loaded, independent of the settings under "Feature".
- **Convert2DiscreteValue**: This indicates, if the loaded data is to be converted from string variables to numbers. Below in Figure 5.5 an example is given of a column of "gender" entries and "age" values, where the attribute *gender* is being converted.

Gender	Age	
Male	25	Convert2DiscreteValue
Male	31	
Female	30	
Male	45	

Gender_Male	Gender_Female	Age
1	0	25
1	0	31
0	1	30
1	0	45

Figure 5.5: Example of converting strings attributes to number attributes.

RegressionType This is a string, indicating the regression method to be applied to the data. The following two options are currently implemented:

- "lin": This stands for "linear regression", and includes the Lasso linear regression, median, min and max sample values.
- "log": This stands for "logistic regression", and refers to a logistic regression.

Hence, with the above settings, the user can supply all information required for the testing phase, and the user has the option of modifying the testing runs by excluding certain variables. The following section will describe further required steps the user will need to undertake as part of the attribute value generation.

3) Generation of plots for data QA

Having a good understanding of the quality and quantity of the data is very important, before one can apply any heuristic methods for generating missing attribute values. Hence, THE USER NEEDS TO (VISUELLY) INSPECT THE DATA THAT CAN BE USED AS INPUT FOR THE HEURISTIC PROCESSES!

This is carried out with the function **M Stats.gen DataHists**(*Netz, CompNames, AttribNames, StatsInputDirName*, DataStatsOutput). It requires the following inputs:

- *Netz*: A copy of the network.
- CompNames: A list of components to be visualized.
- AttribNames: A list of attribute names to be visualized.
- *StatsInputDirName*: A relative path to the above setup file "StatsAttribsSettings.csv".
- DataStatsOutput: A relative path to the main folder, where the plots will be stored into. After the plot generation, this folder will contain the following:
 - HistPlots: A subfolder containing further subfolders, one for each component and each subfolder will contain the corresponding plots. Each plot consists of a scatter-plot of the data, and a histogram, see Figure 5.6 as an example. In addition, the title contains the name of the attribute next to information in respect of the attribute data density.
 - **Overview.png**: A file with the name "Overview.png" and contains pair-plots of attributes. (See Figure 5.7 as an example). Here each attribute of a component is plotted against all other attributes of the same component. This can be used to investigate if there are correlations between individual attributes.

max cap M m3 per d: 18/237 (7.6%)

Figure 5.6: Example histogram plot of the *Compressors* attribute max_cap_M_m3_per_d.

With the help of the plots and data density values, the user can embark on the following steps:

- Correct any wrong data.
- Adding more data where data density is low, if possible.

Figure 5.7: Overview of the mutual attribute relations for the component Compressors.

• Select and unselect attributes from the subsequent steps due to data distribution and data density issues, resulting in changes in the setup files.

4) Parameters generation for the heuristic methods

After the data has been loaded into the Python memory and the setup files have been adjusted, the methods in conjunction with the feature attributes will be used to test to generate missing values (predictors). For this the function **M_Stats.gen_StatsParam**(*Netz, CompNames, StatsInputDirName, DataStatsOutput, MaxCombDepth*) has been generated. It needs the following inputs:

- *Netz*: A copy of the gas component data set.
- CompNames: A list of component names for which this process needs to be carried out.
- AttribNames: A list of attribute names for which this process needs to be carried out.
- StatsInputDirName: A relative path, where both input setup files can be found.
- DataStatsOutput: A relative path, where output information will be written to.
- *MaxCombDepth*: This gives the number of independent attributes, which can be used by each estimation method. The larger this value, the more combinations exists for a given list of independent attributes. However, more significant is that larger "MaxCombDepth" can lead to over-fitting. The number of resulting combinations of attributes can be estimated using n!/(r!(n-r)!), where n the number of attribute variables to choose from, and r of them are chosen, where repetition is not allowed and order does not matter.

The output of the function M_Stats.gen_StatsParam() will be twofold: additional plots and measures of fit values.

A sample of such a plot is given in Figure 5.8. Each predictor (here $max_cap_M_m3_per_d$) is plotted against the selected features that were used to determine the predictor attribute (here max_power_MW). Here the predictor is plotted on the y-axis, whereas the feature is plotted on the x-axis. The solid line is the estimation of the method used. The title contains information on the method selected, and an R-square value of the fit that was determined using the method.

In addition to the graphical output, additional simulation information is stored in individual CSV files for each component. These files are described in more detail below.

An example output file is given in Figure 5.9 and Figure 5.10 for the component LNGs.

These files are written to the folder "/Ausgabe/Sample/StatsData/". All generated files start with the name "RetSummary" and are followed by the name of the component, separated by an underscore. Therefore, the CSV file name for the component *LNGs* is "RetSummary_LNGs.csv".

The files contain information on attributes, methods, errors and parameter settings, where each line is a single run/test result. The columns are as follow:

- CompName: Name of the component.
- *AttribName*: Name of the predictor attribute.
- NumElements: Number of elements of this component.
- MethodName: Name of the method used that was selected through the setup file "StatsMethodsSettings.csv".
- NumFeatures: Number of features used to estimate the predictor.
- FeatureNames: List of feature attribute names that were used to estimate the predictor.
- *Plots*: A link to the individual plots of the features and attribute relationship, where the hyperlink currently works under Excel on Windows only.
- *NumSamples*: Number of samples of the feature data, which were used as part of this method evaluation (this number can never be larger than the value in column *NumElements*).

Figure 5.8: Example of attribute *max_power_MW* versus *max_cap_M_m3_per_d* from the component *Compressors*. The solid line represents the fit of the Lasso method to the data.

	А	В	С	D	E	F
1	CompName	AttribName	NumElements	ModelName	NumFeatures	FeatureNames
2	LNGs	max_cap_store2pipe_M_m3_per_d	32	Lasso	1	["Pipe_max_cap_M_m3_per_d"]
3	LNGs	max_cap_store2pipe_M_m3_per_d	32	Lasso	1	["median_cap_store2pipe_M_m3_per_d"]
4	LNGs	max_cap_store2pipe_M_m3_per_d	32	Lasso	1	["max_workingGas_M_m3"]
5	LNGs	max_cap_store2pipe_M_m3_per_d	32	Mean	1	["max_cap_store2pipe_M_m3_per_d"]
6	LNGs	max_cap_store2pipe_M_m3_per_d	32	Median	1	["max_cap_store2pipe_M_m3_per_d"]
7	LNGs	max_workingGas_M_m3	32	Lasso	1	["median_cap_store2pipe_M_m3_per_d"]
8	LNGs	max_workingGas_M_m3	32	Lasso	1	["max_cap_store2pipe_M_m3_per_d"]
9	LNGs	max_workingGas_M_m3	32	Mean	1	["max_workingGas_M_m3"]
10	LNGs	max_workingGas_M_m3	32	Median	1	["max_workingGas_M_m3"]

Figure 5.9: Example CSV output of heuristic model results for the component LNGs, depicting columns A - F.

G	Н	1	J	К	L	М	N	0
Plots	NumSamples	NumFill	BIC	MeanAbsError	R_2	R_2_adj	ReplaceType	ModelParam
/StatsDa	4	0	14.3057177	4.845552454	0.72296201	0.584443015		{"SC_Mean": [34.5343801375], "SC_Scale": [28
/StatsDa	21	0	85.2509268	4.756034276	0.822467826	0.813124027		{"SC_Mean": [29.326994301428574], "SC_Scale
/StatsDa	28	4	109.381584	5.140814158	0.846444198	0.840538205		{"SC_Mean": [256364758.0], "SC_Scale": [1687
/StatsDa	29	3	166.939796	12.85032496	0	-0.037037037		{"SC_Mean": [0], "SC_Scale": [0], "Intercept":
/StatsDa	29	3	168.158632	12.42324043	-0.04292456	-0.081551394		{"SC_Mean": [0], "SC_Scale": [0], "Intercept":
/StatsDa	21	0	764.014679	69016010.55	0.786511086	0.775274828		{"SC_Mean": [29.326994301428574], "SC_Scale
/StatsDa	28	2	1011.07223	56118773.21	0.849922646	0.84415044		{"SC_Mean": [24.677103718199607], "SC_Scale
/StatsDa	31	1	1180.27533	149945270.6	0	-0.034482759		{"SC_Mean": [0], "SC_Scale": [0], "Intercept":
/StatsDa	31	1	1181.666	147160879	-0.04588166	-0.081946546		{"SC_Mean": [0], "SC_Scale": [0], "Intercept":

Figure 5.10: Example CSV output of heuristic model results for the component LNGs, depicting columns G - O.

- *NumFill*: Number of elements for which the predictor attribute can be simulated with the method, where the attribute had missing values. (This value also includes the value given under *NumSamples*.)
- *BIC*: Indicator for the goodness of fit of the model using the BIC (Bayesian information criterion) value. The lower the BIC value the better the method fit.
- MeanAbsError: Measure of goodness of fit of the model using the mean absolute error (MAE).
- *R*_2: R-square model value.
- *R_2_adj*: Adjusted R-square value.
- *ReplaceType*: An empty column that will be used at a later stage.
- *ModelParam*: An entry containing all the fitting parameters used by the methods and attributes, the scaling values of the features attributes ("SC_Mean", and "SC_Scale"), and the method parameters ("Intercept", "Coef").

With the above information, visual and values, the user can make an informed decision in respect of which method could be used with which attribute to fill missing values.

5) Selecting individual estimation methods for each attribute

As described in the above processes, the function **M_Stats.gen_StatsParam()** generates plots and CSV files containing information on the goodness of the methods for each attribute. With this information the user can decide which method in combination with feature attribute values can be used to generate the missing attribute values.

Hence, in the next step the user needs to create a setup file, which contains the settings for methods and attributes that will be used for the generation of those missing attribute values. For this the user can use the output files from the previous step, by carrying out the following actions:

- Copy the above output CSV files to a new location.
- Open one of those files after the other, and carry out the next steps for each file:
 - With the information of the graphs and the indicator of goodness of fit values (e.g. **MAE**), remove all those method attribute combinations that shall not be used for any heuristic processes.
 - Place one of the following keywords into the column *ReplaceType*:
 - * "replace": All values will be replace with the simulated value. Even the original input data will be replaced by the newly simulated values.
 - * "fill": Here only the missing attribute values will be determined, therefore, the original input data will not be overwritten, in contrast to option "replace".
 - * "fill_ARR": Here missing attribute values are being filled, and values that stem from copyright protected sources are also being overwritten.
 - * Order the entries in respect of order of execution, as the methods creating attribute values with the smallest error should be executed first.

However, independent on the replace type setting, some attributes might not be estimated with a single method and single feature attribute set. This can be due to missing feature attribute values required during the estimation process. Hence, the user will need to select several different methods for the generation of all missing attribute values, by retaining several different method lines for a single attribute in the CSV file. This can be seen in Figure 5.9 in the depicted rows two to four. Here, the attribute to be estimated and the model method are the same. However, the feature input variables differ for each line. With this approach one should be able to estimate all missing values. To retain the highest confidence in the estimated values, the user will need to select only those methods and feature attribute value combinations, that results in smallest errors.

Here, it is important to notice, that the attribute values are generated in the order as they appear in the CSV input file. Hence, the user should order the methods in such a way, that the method with the "best" predictions are being carried out first. This could be followed by methods that generate attribute values with larger errors. To assure that there are no further missing values one could retain the **mean** or **median** method as the last method, filling any values that were left unfilled by any previous estimation.

6) Estimation of missing attribute values

The actual estimation and filling of the attributes is carried out with the function **M_Stats.pop_Attribs**(*Netz, Comp-Names, StatsInputDirName*) and is the last step in getting attribute values filled in a gas component data set. This function requires the following input:

- Netz: A copy of the component data set.
- CompNames: A list of components for which the element's attributes shall be generated and filled.
- StatsInputDirName: A relative path name of the location of the above modified setup files.

The return of this function is a component data set, where all missing attribute values have been generated.

5.2 Example value estimation

As an example, a result for the attributes *max_cap_pipe2store_M_m3_per_d* and *max_cap_store2pipe_M_m3_per_d* of the component *Storages* will be presented for the combined IGG data set. The table contains three columns with numbers, with the following definition:

- "N": The number of raw input values; hence, this number is equal or smaller than the number of all facilities of this component.
- "A": The overall average value after all missing values have been estimated, using input and estimated values.
- "M": The mean absolute error, of those elements, of which the attribute value had to be determined.

Overall, there are 216 *Storages* elements in the data set. 48 values were missing for both attributes. After the attribute value estimation, the overall **mean**() of the attributes $max_cap_pipe2store_M_m3_per_d$ and $max_cap_store2pipe_M_m3_per_d$ were 13.9 and 14.6 respectively. The **mean absolute error**(**M**) calculated to be 10.9 and 11.2 for the attributes $max_cap_pipe2store_M_m3_per_d$ and $max_cap_store2pipe_M_m3_per_d$. This seems large in comparison with the overall average value A. However, the individual values range from 0 to more than 100 for both attributes.

Table 5.4: List of attributes of the *Storages* component for the IGG data sets, with some statistical properties.

Attribute name	Ν	A	М
max_cap_pipe2store_M_m3_per_d	168	13.9	10.9
max_cap_store2pipe_M_m3_per_d	168	14.6	11.2

A histograms of the raw and the estimated values, depicted in Figure 5.11, gives the distribution for both attributes.

The estimated values are roughly distributed the same way that the raw values are distributed. The exceptions are the larger counts of the bin containing the median value of the raw data set. Here the median value is the value used, if there was no other means of determining a missing value. As can be seen, the median value was used substantially for several elements.

Here a quick statistical Z-score was carried out [UoO14], giving Z-score values of around -1.45 for both attributes. This indicates that the raw and the estimated distributions are the same, as their absolute values are smaller than two.

Figure 5.11: Histogram of raw (blue) and estimated (red) values for *max_cap_store2pipe_M_m3_per_d* (left) and *max_cap_pipe2store_M_m3_per_d* (right) of the *Storages* component. Both subplots also indicate the location of the median value for the raw data (star).

5.3 Automated attribute value generation

In addition to the manual process described in Chapter 5.1 and Chapter 5.1 an automated process has also been developed and will be briefly explained below. The automated process has been implemented for users with little statistical background, and to get first results fast.

However, the user should be aware, that by applying the automated process, some methods might be selected, that lead to incorrect results (e.g. negative *Storages* capacity for increasing max pipeline pressure of connected pipes). Hence, the user should carry out the manual process, instead of relying on the automated process results, where those bad relations could be eliminated.

To overcome the above mentioned generation of wrong negative values, the automated process was amended. For a predefined list of attributes, any negative attribute value was replaced with the mean of the non-negative attribute values.

Overall the difference to the manual process described in Chapter 5.1 is that the selection of the attribute generation methods, as described in Chapter 5.1.2, has been automated. As was described in Chapter 5.1.2, one is supposed to select those methods with the best goodness of fit, e.g. **BIC** or **MAE**. Here for the automated process, the **MAE** value is the value that has been selected to determine which attribute generation method is to be used. The automated process selects the methods with increasing **MAE** value. Up to four different methods are automatically selected. In addition, if the median method is not part of the selected methods, then this method will be added to the list of methods to be executed, and will be executed last.

All other processes are as described in Chapter 5.1.

Values supplied with this data set here have been generated using the automated attribute value generation process.

5.4 Single network generation

So far raw gas data has been loaded, and converted into SciGRID_gas data sets. The data sets have been combined into a single data set. Any missing attribute values have been generated with the help of implemented regression methods. Where no heuristic method could be found, best guess values by the user were selected. The last step is to assure, that all component elements are connected with each other into ONE comprehensive large network. Here a method has been designed that looks for facilities, such as *Storages* elements, that are not connected to a pipeline. Therefore the position of a facility is moved to the next adjacenting pipeline if its distance to the pipeline is smaller than the a user specified treshold. This is carried out with the function **M_Shape.moveComp2Pipe**(*Netz, CompName, PipeName, maxDistance_km*). Any element that is further away than the user specified value is being removed from the final network. The inputs are as follow:

- *Netz*: A copy of the gas component data set.
- CompName: A name of the component for which this process needs to be carried out.
- *PipeName*: A name of the type of pipeline that are used in the network. Options are "PipeSegments" and "PipeLines".
- *maxDistance_km*: The maximum distance by which the facility will be moved in units of [km].

The table below (Table 5.5) shows the number of elements prior and after this process, whereas the number of segments only changed by one and the overall networklength increased from 87771 km to 88089 km. Here the value for $maxDistance_km$ was set to 100 km.

Component name	# of elements prior to process	# of elements post process
BorderPoints	119	118
Compressors	249	230
EntryPoints	37	37
InterConnectionPoints	118	117
LNGs	32	29
Storages	220	198
Nodes	1886	1604

Table 5.5: Number of elements prior and post connection with pipelines.

As can be seen, this resulted in discarding several elements, as their distance to the nearest pipeline was larger than the user specified distance of 100 km. This assures, that the entire data set is fully connected, forming a single gas network data set, and all attribute values have been estimated.

5.5 Summary

Here a method pathway has been described to fill missing attribute values. This is a complex process, where the Python code generates plots and model output values, which need to be considered by the user. With the information on hand, the user can decide if certain missing attribute values should be estimated using implemented regression methods. In addition, an automated process has been described, that can be used to generate all missing attribute values without any additional user input, however, the user has been made aware, that this can lead to selecting incorrect attribute relationships, leading to incorrect values, as expert human input is missing.

In addition, a process to generate a single network was briefly introduced, so that all elements, such as LNG terminals, are connected with pipelines with each other. Such generated data set is ready to be used by modellers.

CHAPTER

FINAL DATA SET

The SciGRID_gas project has the goal of generating a transmission gas network data set for all of Europe. Several individual data sources have been found as part of the project. However, they cannot be used individually, as individual data sets do not contain all the information that is needed for a complete gas transmission network data set. Therefore, several data sets have been combined into a single data set with methods described in previous chapters. After such a processes, significant number of attribute values were still missing in the resulting data set. Chapter 5 described a pathway of how to generate missing attribute values. This resulted in a final gas transmission network data set.

Here the final data set will be described, and differences to a previously published SciGRID_gas data set will be presented as well.

6.1 Combined IGGINL data set

This chapter here will describe the resulting gas transmission network data set, which was constructed by combining the INET, GIE, GSE, IGU, NO and the LKD data sets, resulting in the so called IGGINL data set. Each component will be described briefly, mainly focusing on the number of raw versus estimated values. In addition, the IGGINL data set will be compared with the previously published IGGIN data set [DPDM20], emphasising on the increase of elements, increase of attributes, the increase of raw input values, and hopefully a reduction in estimation error for some of those attribute values.

6.1.1 PipeSegments

Overall there are 2136 PipeSegments elements in the final data set with a length of 88908 km.

The Table 6.1 depicts the most important attributes that are part of *PipeSegments* elements. The table also presents the number of raw original data, and the number of values that were generated heuristically, including some uncertainty values. The table column headings are described below, and will be applicable to all other tables in this chapter here as well:

- "Attribute name": The attribute name.
- "N(IGGIN)": The number of elements of the IGGIN data set, that contained raw data of this attribute.
- "N(IGGINL)": The number of elements of the IGGINL data set, that contained raw data of this attribute.
- "A(IGGIN)": The overall average value of the attribute from the IGGIN data set.
- "A(IGGINL)": The overall average value of the attribute from the IGGINL data set.
- "U(IGGIN)": The mean uncertainty of the attribute from the IGGIN data set, where only the non-raw data values were selected.
- "U(IGGINL)": The mean uncertainty of the attribute from the IGGINL data set, where only the non-raw data values were selected.

• "Z+": This is the absolute Z-score (Z+) of the histogram distributions when comparing the two data sets IGGIN and IGGINL. An absolute value smaller than two indicates, that the distributions are the same.

Attribute name	N(IGGIN)	N(IGGINL)	A(IGGIN)	A(IGGINL)	U(IGGIN)	U(IGGINL)	Z+
end_year	0	0	2050	2050	20.0	20.0	N/A
start_year	226	268	1987	1985	20.0	20.0	4.88
max_cap_M_m3_per_d	160	183	46.5	52.3	17.8	26.5	9.9
is_H_gas	866	2041	0.99	0.90	0.28	0.27	13.9
is_bothDirection	88	96	0.05	0.02	0.50	0.50	3.44
max_pressure_bar	281	1337	76.6	70.4	11.3	11.5	10.1
diameter_mm	441	1529	926	810	188	132	13.8

Table 6.1: List of attributes of *PipeSegments* elements and their ratio of raw versus heuristically generated attribute values.

As can be seen, the attribute *is_bothDirection* contained the least number of raw input values with 96 only. This relates to a data density of less than 5 %. As no method has been developed so far to estimate this attribute, all missing values were filled with a constant value of "0", indicating, that the pipeline is uni-directional. The relatively large Z+-score indicates that the estimated values have a different distribution compared with the raw data. This is logical, as only a value of zero was used as the estimated values, whereas the raw data contains some pipelines which are bi-directional.

For the attributes of *start_year* and *end_year*, no heuristic process exists to relate the missing values with other attributes or to determine the missing values heuristically. Hence, any missing values for those two attributes were given a constant value of "1983" and "2050", respectively. While setting this missing value for those elements, an uncertainty was also given to those attributes for those elements. Here an uncertainty value of "20" years was selected. This approach has been carried out for all components (e.g. *LNGs*). The large Z+-score value for the attribute *start_year* is due to the increase in number of elements when comparing the IGGIN (962) and the IGGINL (2136) data sets. Hence, for a larger portion of elements this value needed to be set, resulting in a different distribution reflected in the Z+-score larger than 4. In addition, the attribute *end_year* did not have any raw values, therefore no Z+-score could be estimated.

The attribute is_H_gas has a data density of 95 %, and a high average value (A(IGGINL)) of 0.90, indicating, that 90 % of the pipelines in this data set are transporting high calorific gas. is_H_gas is an attribute, for which no relation to any other attribute could be determined. Hence, a constant value of "1" was used to fill all missing attribute values of is_H_gas , where an uncertainty of "0.5" was also used for those elements. This approach has been applied to all missing is_H_gas attribute values for all components. Here the Z+-score value is very large. This is indicating that the distribution of the IGGIN and the IGGINL are quite different, due to the additional information supplied through the LKD data set.

The attribute $max_pressure_bar$ has a mean value of 70.4, whereas the uncertainty U is 11.45 and the Z+-score is 10.1, indicating that the LKD data set contributed and the heuristic processes generated quite a different distribution of this attribute value.

The attribute $max_cap_M_m3_per_d$ consists of only 183 raw input values. Here the mean absolute error U has a value of 26.5, whereas the mean value is 52.3, meaning there is a large uncertainty in respect of the attribute values. However, the range of raw input data ranged from a value of 5 to a value of 200. The Z+-score is larger than 2, indicating that the distributions of values between the IGGIN and the IGGINL data sets are different. Here clearly, as more attribute values needed to be generated for the larger IGGINL data set, the estimation methods lead to different values.

This data set contained a larger portion of raw values for the attribute *diameter_mm*, where more than 70 % of this attribute was supplied as raw values. However, as can be seen, this IGGINL distribution is different to the IGGIN distribution, symbolized by the large Z+-score value of 13.8. Overall the average attribute value for *diameter_mm* decreased from 926 (IGGIN) to 810 (IGGINL). As all additional diameter values are for the region of LKD, one can conclude, that in LKD the pipe diameters are different, also reflected in the difference of mean values for the IGGIN and IGGINL data set.

6.1.2 Storages

Overall there are 198 *Storages* elements in the final IGGINL data set. The Table 6.2 depicts the most important attributes that are part of the *Storages* elements.

Attribute name	N(IGGIN)	N(IGGINL)	A(IGGIN)	A(IGGINL)	U(IGGIN)	U(IGGINL)	Z+
end_year	5	5	2049	2049	20.0	20.0	0.01
start_year	192	192	1998	1998	20.0	20.0	0.03
is_H_gas	33	33	0.97	0.97	0.50	0.50	0.01
max_workingGas_M_m3	188	188	682	682	627	627	0.00
max_cap	188	189	12.5	12.2	10.4	8.91	0.11
_pipe2store_M_m3_per_d							
max_cap	188	189	15.9	16.0	7.15	9.56	0.02
_store2pipe_M_m3_per_d							
max_cushionGas_M_m3	101	101	1276	1253	945	935	0.08
max_power_MW	74	74	21.9	20.7	20.4	19.5	0.45
max_storage_pressure_bar	94	94	136	141	52.3	42.5	0.88
min_storage_pressure_bar	77	77	60.1	59.0	21.6	22.1	0.57
num_storage_wells	97	97	40.9	38.2	35.5	34.9	0.39

Table 6.2: List of attributes of *Storages* elements for the IGGIN and IGGINL data sets, with additional statistical properties for each attribute.

For the four attributes $max_workingGas_M_m3$, $max_cap_pipe2store_M_m3_per_d$ and $max_cap_store2pipe_M_m3_per_d$, one can see that incorporating the LKD data set did not change the final output, even though there was a small number of additional *Storages* facilities in the LKD data set. Hence, the estimated values, e.g. A(IGGIN) and A(IGGINL) are very similar. In addition, the Z+-score has been presented in the last column of Table 6.2. One can see, that one can assume that the distributions are almost identical, with absolute Z+-score of 0.11 and smaller.

As can be seen for the attribute *max_cushionGas_M_m3*, no additional raw data was supplied through the LKD data set. The small change in mean estimated value is due to slightly heuristics input data set, however, not leading to a different distribution of this attribute, as can be seen from the small Z+-score.

The following attributes *max_power_MW*, *max_storage_pressure_bar*, *min_storage_pressure_bar* and *num_storage_wells* all depict the same situation as was described for the attribute *max_cushionGas_M_m3*.

6.1.3 LNGs

Overall there are 29 *LNGs* elements in the final data set. The Table 6.3 depicts all important attributes of the *LNGs* component. Attributes for the component *LNGs* were only given in the data sets INET and GIE, whereas the LKD data set did not contribute any new information. Hence, Table 6.3 depicts information in respect of the distribution of the main attributes for the IGGINL data set only.

Attribute name	N(R)	N(E)	A(IGGINL)	P(10)	P(90)	U(E)	Z+
max_cap_store2pipe_M_m3_per_d	27	2	25.3	8.77	49.4	6.55	6.36
max_workingGas_M_m3	28	1	205	23.0	376	63.7	2.97
median_cap_store2pipe_M_m3_per_d	21	8	25.1	9.25	49.4	2.48	4.09

Table 6.3: List of attributes of *LNGs* elements for the IGGINL data sets, with additional statistical properties for each attribute.

Large Z+-score values seem concerning. However, for the first two attributes $max_cap_store2pipe_M_m3_per_d$ and $max_workingGas_M_m3$, the number of values to be estimated (N(E)) is very small, meaning those one or two values

to be estimated are not representing a distribution and hence, will lead to a large Z+-score automatically.

Only for the attribute *median_cap_store2pipe_M_m3_per_d*, the resulting Z+-score is large for the relatively large number of raw values (21) in respect of the number of attributes, that need to be estimated (eight).

After the original heuristic generation of the attributes $median_cap_store2pipe_M_m3_per_d$ and $max_cap_store2pipe_M_m3_per_d$, it was found that the average value and the P(10) value of the attribute $median_cap_store2pipe_M_m3_per_d$ were larger than the corresponding values of the attribute $max_cap_store2pipe_M_m3_per_d$. So why is the median value of the maximum flow from the storage into the pipe larger than the maximum values??? The answer is that those two attributes originate from different data sources. The attribute $max_cap_store2pipe_M_m3_per_d$ originated from the INET and the GSE data set, whereas the attribute $median_cap_store2pipe_M_m3_per_d$ originated from the GIE data set. As the median value was derived from daily GIE time series data, the SciGRID_gas project puts more trust on the time series, than a maximum value derived by the GSE or from the INET data set. Hence, only when there were no attribute values from the GIE data set, then they were supplemented with data from other sources.

6.1.4 BorderPoints

Overall there are 118 *BorderPoints* elements in the final data set. The overall attribute density for elements of type *BorderPoints* is low. There are only three attributes: *start_year*, *end_year* and *pipe_name*. There were no raw input values for the attributes *start_year* and *end_year*. Hence, all of those attributes were determined as described above. For the attribute *pipe_name*, 17 elements contained a value. However, currently there is no method of generating any additional pipe-line names.

6.1.5 Compressors

Overall there are 230 *Compressors* elements in the final data set. The Table 6.4 depicts the most important attributes that are part of the *Compressors* component.

Attribute name	N(R)	N(E)	A(IGGINL)	P(10)	P(90)	U(E)	Z+
is_H_gas	228	2	0.98	1.00	1.00	0.50	2.02
max_cap_M_m3_per_d	18	212	36.6	30.5	35.1	13.6	1.69
max_power_MW	37	193	51.9	39.0	52.7	7.29	0.63
max_pressure_bar	17	213	94.9	92.7	98.2	5.67	0.29
num_turb	38	192	2.99	3.00	3.00	0.68	0.34
turbine_fuel_isGas_1	36	194	0.97	1.00	1.00	0.50	2.95
turbine_fuel_isGas_2	35	195	0.97	1.00	1.00	0.50	2.96
turbine_fuel_isGas_3	23	207	0.99	1.00	1.00	0.50	1.48
turbine_fuel_isGas_4	8	222	1.00	1.00	1.00	0.50	N/A
turbine_fuel_isGas_5	3	227	1.00	1.00	1.00	0.50	N/A
turbine_fuel_isGas_6	0	230	1.00	1.00	1.00	0.50	N/A
turbine_power_1_MW	19	211	15.8	12.5	15.9	2.97	0.35
turbine_power_2_MW	18	211	16.0	12.6	16.1	3.02	0.04
turbine_power_3_MW	13	204	15.5	15.2	15.2	2.83	1.15
turbine_power_4_MW	3	6	13.2	11.8	14.4	5.02	1.55
turbine_power_5_MW	2	1	15.5	9.01	22.9	6.53	0.59
turbine_power_6_MW	0	0	N/A	N/A	N/A	N/A	N/A

Table 6.4: List of attributes of *Compressors* elements for the IGGINL data sets, with additional statistical properties for each attribute.

For the attributes *turbine_fuel_isGas_1* and *turbine_fuel_isGas_2*, the calculated absolute Z+-score is larger than two, indicating that the distribution of the estimated values is different to the distribution of the raw input data. Here it

needs to be pointed out that all missing values were set to 1 as a blanket rule, as there were no heuristic capabilities of estimating the missing values. All other Z+-scores indicate that the distribution of the estimated value is similar to the raw data distribution.

6.1.6 EntryPoints

Overall there are 37 *EntryPoints* elements in the final data set. There are only two attributes: *start_year* and *end_year*. There were no raw input values for the attributes *start_year* and *end_year*. All attribute values were derived as has been described for the component *Storages*.

6.1.7 InterConnectionPoints

Overall there are 117 *InterConnectionPoints* elements in the final data set. There are also only three attributes: *start_year*, *end_year* and *pipe_name*. There were no raw input values for the attributes *start_year* and *end_year*. All attribute values were derived as has been described for the component *Storages*. For the attribute *pipe_name*, 17 contained a value. However, currently there are no methods of generating any additional pipe-line names.

6.1.8 Nodes

Overall there are 1606 *Nodes* elements in the final data set. Each original data set contributed some or many *Nodes* elements to the final data set. The nature of the *Nodes* elements is to supply the topological information only. Any latitude and longitude values were derived from the original data set, and any height information was derived using the BING web API.

Overall, by adding the LKD data set to the IGGIN data set lead to the formation of the IGGINL data set. The LKD data set contained information for components of type *PipeSegments*, *Storages*, *Productions* and *Compressors*. For most attributes, the increase in facilities and the subsequent increase in raw attribute values led to a reduction in uncertainty.

6.1.9 Resulting map of data set

Below a spatial presentation of the final IGGINL data set is given in Figure 6.1, resulting in a network of 88908 km in length. In addition, Figure 6.2 shows the result for Germany only. In addition, the number of elements for each component is listed in Table 6.5.

Component name	Number of elements
BorderPoints	118
Compressors	230
EntryPoints	37
InterConnectionPoints	117
LNGs	29
Nodes	1606
PipeSegments	2136
Storages	198

Table 6.5: List of components with number of elements of the final merged and filled IGGINL network data set.

Figure 6.1: European map of the final IGGINL data set.

Figure 6.2: Map of the final IGGINL data set, for Germany only.

CHAPTER

SEVEN

CONCLUSION

This document here is the documentation of one of the data sets that is part of the SciGRID_gas project. This document here started off with the introduction of the SciGRID_gas project, such as funding, duration and goals. In a subsequent chapter the data structure within the SciGRID_gas project was described, such as components, elements, attributes and attribute values, and how a transmission network data set could be an input to certain gas flow model. The third chapter introduced all the different individual data sources, such as INET, GIE, GSE, IGU, NO and LKD data sets. In the next chapter, tools for merging elements were introduced. This was followed by a chapter describing the heuristic generation of any missing attribute value. The final chapter describes briefly the final data set, with its more than 2100 pipes and 230 compressors, where all elements have been connected to a single network, and where all missing attribute values have been estimated using heuristic processes. The final data set is termed "IGGINL" data set and spans with 88089 km of pipes over Europe.

CHAPTER

EIGHT

APPENDIX

8.1 Glossary

Dataset abbreviations can be found in Table 8.1.

Name	Abbreviation	Description
Raw InternetDaten	INET	Label/name for the raw InternetDaten data set
data set		
Raw Gas Infrastruc-	GIE	Label/name for the raw Gas Infrastructure Europe data set
ture Europe data set		
Raw Gas Storage Eu-	GSE	Label/name of the raw Gas Storage Europe data set
rope data set		
Raw Norwegian data	NO	Label/name for the raw Norwegian data set
set		
Raw Long-term plan-	LKD	Label/name for the raw Long-term planning and short-term optimiza-
ning and short-term		tion data set
optimization data set		
Raw International	IGU	Label/name for the raw International Gas Union data set
Gas Union data set		
Raw EntsoG-Map	EMAP	Label/name for the raw EntsoG-Map data set
data set		
Merged and filled	IGG	Filled data sets, for which the INET, GIE and GSE data sets were
IGG data set		merged
Merged and filled	IGGI	Filled data sets, for which the INET, GIE, GSE and IGU data sets were
IGGI data set		merged
Merged and filled	IGGIN	Filled data sets, for which the INET, GIE, GSE, IGU and the NO data
IGGIN data set		sets were merged
Merged and filled	IGGINL	Filled data sets, for which the INET, GIE, GSE, IGU, NO and the
IGGINL data set		LKD data sets were merged
Merged and filled	IGGINLGE	Filled data sets, for which the INET, GIE, GSE, IGU, NO, the LKD,
IGGINLGE data set		GB and the EMAP data sets were merged

The glossary terms can be found in Table 8.2.

Name	Abbreviation	Description
component		A gas network consists of different components, such as: pipelines,
		compressors, LNG terminals, storages, entry points and production
		sites
element		Elements are instances of component. Hence, "10 compressor ele-
		ments" refers to a data set that contains information for 10 compressor
		stations
attribute		Gas facilities, such as pipelines or compressors, can be described with
		a large set of parameters, such as pipeline diameter, or compressor
		capacity. Those parameters are referred to as attributes
facility		General term used for a gas appliance, such as a single compressor
		station, or a single LNG terminal
PipeLine		A gas pipeline entity, which has one start and one end point, however,
		can run via many nodes
PipeSegment		A gas pipeline, that has only one start and one end point, but no nodes
		in-between
LNG	LNG	Liquefied natural gas
CNG	CNG	Compressed natural gas
flow duration curve	FDC	It is the cumulative frequency curve that shows the percent of time
		specified flow were equal or exceeded during a given period. The tem-
		poral information, when certain events occur, is lost
Energiewende		German term for the change in using primary energies, the move away
		from coal to renewable energies, such as wind or solar
gas component data		Raw input data, associated with components of the gas transmission
set		grid
gas network data set		Output data, a coherent network of gas transmission components
OSM	OSM	Data that is available from the openstreetmap.org
non-OSM	Non-OSM	Data that is not part of the OSM data set
gas type		There are two types of gas High (H) and Low (L) calorific gas
mean absolute error	MAE	mean difference between input values and estimated values
data density		The ratio of the number of usable (not missing) attribute values over
		number elements of the component, in units of [%]
Transmission System	TSO	An entity entrusted with the transportation of natural gas/electricity, as
Operators		defined by the European Union
gas transmission net-		This describes the physical gas transmission grid, however, it excludes
work		any facilities/components that would be part of a distribution network
		and their facilities
gas component data		The term "gas component data set" is used for raw data sets of gas net-
set		work facilities. However, not all elements (e.g. compressors) need to
		be connected to pipelines, where the emphasis is on the term compo -
		nent
gas network data set		A "gas component data set" can be converted into a "gas network data
		set", by connecting all non-pipeline elements to nodes and all nodes
		are connected to pipelines. Hence, the emphasis here is on the term
		network

Table 8.2: Glossary
8.2 Unit conversions

From Unit	To Unit	MultiVal
LNG Mt	$LNG Mm^3$	2.47
$ m gas~tm^3h^{-1}$	$ m gas Mm^3 d^{-1}$	24/1000
$LNG Mm^3$	$gas Mm^3$	584
LNG t	gas Mm ³	1442.48

Table 8.3: Unit conversions

8.3 Attribute exact

Each element of type *Nodes* has an attribute *exact*. With this, the SciGRID_gas project is trying to let the user know, how well the actual location of the *Nodes* elements are known. The actual location (latitude longitude pair) can be spot on (verifiable through satellite imagery) or can be unknown by 10's or 100's of km, where city names or country names are known only. Here the attribute value for *exact* is being given, ranging from "1" to "5" as listed in Table 8.4 below.

Exact value	Description	Uncertainty [km]
1	The exact location of this node is known, as one was able to	0
	verify the facility through satellite data.	
2	Here the lat/long is not known exactly. However, one assumes	10
	that the location is within a small region (e.g. Krummhörn).	
	Hence, not being much larger than 10 km	
3	Here so little is known about the exact location, and one only	100
	knows, that the location is within a large region (e.g. Ham-	
	burg). Hence, the actual location could be out by 10 km or	
	more but less than 100 km	
4	Here so little is known about the exact location, and one only	1000
	knows, that the location is within a state (e.g. Niedersachsen).	
	Hence, the actual location could be out by 100 km or more but	
	less than 1000 km	
5	Here so little is known about the exact location, and one only	> 1000
	knows, that the location is within a country (e.g. Ukraine).	
	Hence, the actual location could be out by 1000 km or more.	

Table 8.4: Unit conversions

8.4 References for INET data set

Below a list of those sources used to generate the INET data set.

- http://belarus-tr.gazprom.ru/
- http://corporate.vattenfall.com/about-vattenfall/operations/market-transparency/gas-storage/
- http://en.gaz-system.pl//
- http://gaslager.energinet.dk/EN/Pages/default.aspx
- http://interfaxenergy.com/article/19138/lng-better-than-norway-pipeline-ex-polish-pm
- http://ir.gasplus.it/home/show.php?menu=00002

- http://italgasstorage.it/eng/progetto.html
- http://media.edfenergy.com/Misc/AboutUs.aspx
- http://mmbf.hu/en/company/gas_storage
- http://mndgsgermany.com/
- http://mysolar.cat.com/cda/files/870985/7/Solar_Turbines_5000_Gas_Compressor_News_Rel_Sent.pdf
- http://sse.com/whatwedo/ourprojectsandassets/thermal/Aldbrough/
- http://sse.com/whatwedo/wholesale/gasstorage/
- http://www.bayernugs.de/4-1-Home.html
- http://www.bendisenergy.com.tr/tr/Projelerimiz/24-toren-dogalgaz-depolama-ve-madencilik-as
- http://www.berliner-erdgasspeicher.de/en/Pages/default.aspx
- http://www.botas.gov.tr/
- http://www.bulgartransgaz.bg/en/pages/transstorge-110.html
- http://www.caythorpegasstorage.com/caythorpe/
- http://www.centrica-sl.co.uk/
- http://www.ceskaplynarenska.cz/en/ultimate-speed-underground-gas-storage
- http://www.dea-speicher.de/en
- http://www.depomures.ro/
- http://www.edisonstoccaggio.it/en
- http://www.ekb-storage.de/de/home/
- http://www.emplpipeline.com/en/the-gas-pipeline/
- http://www.emplpipeline.com/en/the-gas-pipeline/,Extra
- http://www.enagas.es/enagas/en/Transporte_de_gas/Almacenamientos_Subterraneos
- http://www.energystock.com/
- http://www.ewe-gasspeicher.de/english/index.php
- http://www.fluxys.com/belgium/en/Services/Storage/Storage
- http://www.gasnaturalfenosa.com/en/activities/lines+of+business/1285338591925/supply+and+transportation+of+gas.html
- http://www.gasspeicher-hannover.de/startseite.html
- http://www.gasstorage.cz/en/operation-information/available-firm-capacity/
- http://www.gasstoragebergermeer.com/gas-storage-bergermeer-2/
- http://www.gastrade.gr/en/the-company/the-project.aspx
- http://www.gas-union-storage.de/
- http://www.gatewaystorage.co.uk/
- http://www.gazprom.com/about/production/underground-storage/
- http://www.geogastock.it/ITA/Home.asp
- http://www.grtgaz.com/en/major-projects/beynes-compressor-station/presentation/news/
 compressor-station-at-the-beynes-site.html

- http://www.grtgaz.com/fileadmin/plaquettes/en/2017/Essentiel-plaquette-institutionnelle-EN-2017.pdf
- http://www.gsa-services.ru/
- http://www.halite-energy.co.uk/our-project/project-overview/
- http://www.hradf.com/en/portfolio/south-kavala-natural-gas-storage
- http://www.humblyenergy.co.uk/about-us#useful-information
- http://www.islandmageestorage.com/
- http://www.kge-gasspeichergesellschaft.de/
- http://www.kgsp.co.uk/
- http://www.kingstreetenergy.com/
- http://www.kinsaleenergy.ie/gas-storage.html
- http://www.le.lt/index.php/projects-in-progress/syderiai-underground-gas-storage/535
- http://www.lg.lv/index.php?id=3376&lang=eng
- http://www.magyarfoldgaztarolo.hu/en/Lapok/default.aspx
- http://www.mnd.eu/en/2014-11-26-12-13-02/mnd-group-companies
- http://www.nafta.sk/en/about-gas-storage
- http://www.nam.nl/en/about-nam/facts-and-figures.html
- http://www.omv.com/portal/01/com/gas/storage
- http://www.petroceltic.com/operations/bulgaria.aspx
- http://www.pgnig.pl/reports/annualreport2012/en/ar-obrot-magazynowanie-2.html
- http://www.pozagas.sk/en/?PHPSESSID=8d83cc7890abb7980f6793cf56633a72
- http://www.psp.hr/home
- http://www.rag-energy-storage.at/en.html
- http://www.romgaz.ro/en/content/ugs-n-366-new-gas-storage-facility-romania
- http://www.romgaz.ro/en/content/ugs-n-371-sarmasel-storage-facility-upgrading
- http://www.romgaz.ro/en/inmagazinare
- http://www.rwe.com/web/cms/de/37110/rwe/presse-news/pressemitteilungen/?pmid=4005467,http: //digitalnewsservice.net/clients/net4gas-nimmt-neue-hochdruck-gas-pipeline-gazelle-in-betrieb/
- http://www.rwe.com/web/cms/en/531750/rwe-gasspeicher/
- http://www.scottishpower.com/pages/hatfield_moor_gas_storage_facility.asp
- http://www.snam.it/en/transportation/Thermal_Year_Archive/Thermal_Year_2013_2014/Info-to-users/index. html
- http://www.sppstorage.cz/#
- http://www.srbijagas.com/naslovna.1.html
- http://www.stogit.it/en/index.html
- http://www.storengy.com/countries/deutschland/en/products-services.html
- http://www.storengy.com/countries/france/en/
- http://www.storengy.com/countries/unitedkingdom/en/oursites.html

- http://www.taqaglobal.com/our-regions/netherlands/gas-storage/peak-gas-installation/overview?sc_lang=en
- http://www.terranets-bw.de/en/gas-transmission/we-transport-your-natural-gas/
- http://www.thueringerenergie.de/Unternehmen/Ueber_uns/Geschaeftsfelder/Speicher.aspx
- http://www.tigf.fr/en/what-we-can-offer/storage.html
- http://www.tpao.gov.tr/eng/?tp=m&id=31
- http://www.tpao.gov.tr/eng/?tp=m&id=84
- http://www.trianel-gasspeicher.com/
- http://www.ugs-katharina.de/en/unternehmen.html
- http://www.vng-gasspeicher.de/content/en/Speicher/index.html
- https://de.wikipedia.org/wiki/Baumgarten_an_der_March
- https://de.wikipedia.org/wiki/Erdgasleitung_Jamal%E2%80%93Europa,https://en.wikipedia.org/wiki/Yamal% E2%80%93Europe_pipeline
- https://de.wikipedia.org/wiki/Hungaria-Austria-Gasleitung
- https://de.wikipedia.org/wiki/MIDAL,https://www.gascade.de/netzinformationen/unser-leitungsnetz/midal/
- https://de.wikipedia.org/wiki/Mittel-Europ%C3%A4ische_Gasleitung,https://en.wikipedia.org/wiki/MEGAL_pipeline
- https://de.wikipedia.org/wiki/NEL_(Pipeline), https://en.wikipedia.org/wiki/NEL_pipeline, https://www.fluxys.com/nel/en/NELSystemInfo/AboutNEL
- https://de.wikipedia.org/wiki/Norddeutsche_Erdgas-Transversale,https://en.wikipedia.org/wiki/Netra
- https://de.wikipedia.org/wiki/OPAL_(Pipeline),https://en.wikipedia.org/wiki/OPAL_pipeline,https: //www.opal-gastransport.de/netzinformationen/ostsee-pipeline-anbindungsleitung/
- https://de.wikipedia.org/wiki/Penta-West
- https://de.wikipedia.org/wiki/Rehden-Hamburg-Gasleitung,https://en.wikipedia.org/wiki/Rehden%E2%80% 93Hamburg_gas_pipeline
- https://de.wikipedia.org/wiki/Trans_Austria_Gasleitung, https://en.wikipedia.org/wiki/Trans_Austria_Gas_ Pipeline
- https://de.wikipedia.org/wiki/Trans-Adria-Pipeline,https://en.wikipedia.org/wiki/Trans_Adriatic_Pipeline
- https://de.wikipedia.org/wiki/Trans-Europa-Naturgas-Pipeline
- https://de.wikipedia.org/wiki/Transgas-Pipeline,Extra
- https://de.wikipedia.org/wiki/WEDAL,https://www.gascade.de/netzinformationen/unser-leitungsnetz/wedal/
- https://de.wikipedia.org/wiki/West-Austria-Gasleitung
- https://en.wikipedia.org/wiki/Arad%E2%80%93Szeged_pipeline
- https://en.wikipedia.org/wiki/BBL_Pipeline
- https://en.wikipedia.org/wiki/BRUA_Pipeline
- https://en.wikipedia.org/wiki/Europipe_II
- https://en.wikipedia.org/wiki/Giurgiu%E2%80%93Ruse_pipeline
- https://en.wikipedia.org/wiki/MEGAL_pipeline,https://de.wikipedia.org/wiki/Mittel-Europ%C3%A4ische_ Gasleitung

- https://en.wikipedia.org/wiki/National_Transmission_System
- https://en.wikipedia.org/wiki/Scotland-Northern_Ireland_pipeline,E127
- https://en.wikipedia.org/wiki/South_Wales_Gas_Pipeline
- https://en.wikipedia.org/wiki/Transitgas_Pipeline,https://web.archive.org/web/20070808033932/http: //www.swissgas.ch/en/3_2.php
- https://en.wikipedia.org/wiki/Transitgas_Pipeline,transitgassystem_en.gif,https://web.archive.org/web/ 20070808033932/http://www.swissgas.ch/en/3_2.php
- https://en.wikipedia.org/wiki/V%C3%A1rosf%C3%B6ld%E2%80%93Slobodnica_pipeline
- https://www.fnb-gas.de/media/FNB_GAS_Projekte_2014_02_17_anlage_6_nep-gas-2014_ projekt-steckbriefe.pdf
- https://globallnghub.com/wp-content/uploads/2018/09/King.pdf
- https://globallnghub.com/wp-content/uploads/2018/09/King.pdf
- https://news.err.ee/610905/vopak-to-build-initially-4-000-cubic-meter-lng-terminal-at-muuga
- https://globallnghub.com/wp-content/uploads/2018/09/King.pdf
- https://www.lngworldnews.com/tallinna-sadam-alexela-to-work-on-paldiski-lng-terminal/
- https://globallnghub.com/wp-content/uploads/2018/09/King.pdf
- https://www.sourcewatch.org/index.php/Delimara_Malta_LNG_Terminal
- https://theodora.com/pipelines/france_and_belgium_pipelines.html
- https://theodora.com/pipelines/france_and_belgium_pipelines.html, E21
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E10
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E106
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E11
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E112
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E113
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E13
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E14
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E16_1
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E16_2
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E17_Skikda
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E22_Arzew_1
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E22_Arzew_2
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E48
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E64
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E65
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E78
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E80_1
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E80_2

- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E81
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E85
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E86
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E87
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E88
- https://theodora.com/pipelines/france_and_belgium_pipelines.html,E91
- https://transparency.entsog.eu/
- https://www.astora.de/storage-locations/haidach-storage-facility.html?L=1
- https://www.astora.de/storage-locations/jemgum-storage-facility.html?L=1
- https://www.astora.de/storage-locations/jemgum-storage-facility.html?L=2
- https://www.astora.de/storage-locations/rehden-storage-facility.html?L=1
- https://www.baltic-pipe.eu/de/das-projekt/
- https://www.enagas.es/stfls/ENAGAS/Transporte%20de%20Gas/Documentos/CAT_English.pdf
- https://www.enbw.com/unternehmen/konzern/geschaeftsfelder/speicher/gasspeicher/zahlen-daten-fakten.html
- https://www.eneco.nl/over-ons/projecten/gasspeicher/voorraadniveau
- https://www.energiefachmagazin.de/Branchen-News/VNG-Gasspeicher-GmbH-legt-Erdgasspeicher-Buchholz-still
- https://www.enovos.de/industrie/ueber-uns/erdgasspeicher
- https://www.eugal.de/eugal-pipeline/,https://www.mdr.de/nachrichten/politik/regional/ baubeginn-erdgastrasse-eugal-umstritten-100.html
- https://www.europipe.com/de/referenzen/referenzprojekte/
- https://www.eustream.sk/en_transmission-system/en_transmission-system
- https://www.fluxys.com/belgium/en/about%20fluxys/infrastructure/network/network
- · https://www.gascade.de/en/our-network/compressor-stations/radeland/
- https://www.gascade.de/en/our-network/our-pipelines/jagal/
- https://www.gascade.de/netzinformationen/unser-leitungsnetz/stegal/
- https://www.gascade.de/netzinformationen/unser-leitungsnetz/stegal/,https://en.wikipedia.org/wiki/STEGAL, https://de.wikipedia.org/wiki/STEGAL
- https://www.gascade.de/presse/presseinformationen/pressemitt,http://www.friedrich-vorwerk.de/de/aktuell/ projekte/neubau-nowal-dn-1000.htmleilung/news/bau-der-nord-west-anbindungsleitung-nowal-startet-anfang-maerz/
- · https://www.gasinfocus.com/en/indicator/existing-and-planned-lng-terminals/
- https://nauticor.de/lng-terminal-nynaeshamn
- https://www.gazprom.com/f/posts/86/569604/portovaya_eng.pdf
- https://www.habau.at/de/projekte/erdgasleitung-wag-expansion-3
- https://www.habau.at/de/projekte/erdgasleitung-wag-plus-600-phase-1
- https://www.hydrocarbons-technology.com/projects/swedegas-lng-facility-port-gothenburg/
- https://www.ign.ren.pt/en/armazenamento-subterraneo3
- https://www.ign.ren.pt/en/armazenamento-subterraneo4

- https://www.innogy-gasstorage.cz/en/index/
- https://www.innogy-gasstorage.cz/en/stramberk/
- https://www.n-ergie.de/geschaeftskunden/produkte/erdgas/erdgasspeicher.html
- https://www.ontras.com/fileadmin/user_upload/Dokumente_Download/Publikationen/ONTRAS_ Netzpufferanlage_Burggraf_Bernsdorf.pdf
- https://www.osm.pgnig.pl/en
- https://www.rnf.de/hintergrund-die-erm-gasleitung-von-ludwigshafen-nach-karlsruhe-58182/
- https://www.shz.de/lokales/landeszeitung/wissenschaftler-unter-zeitdruck-id5845016.html
- https://www.sourcewatch.org/index.php/Lithuania-Latvia_Interconnection_Gas_Pipeline
- · https://www.storengy.com/countries/france/en/nos-sites/beynes.html
- https://www.storengy.com/countries/france/en/nos-sites/cere-la-ronde.html
- https://www.storengy.com/countries/france/en/nos-sites/manosque.html
- https://www.storengy.com/countries/france/en/our-sites/saint-clair-sur-epte.html
- https://www.swedegas.com/Our_services/Storage
- https://www.uniper-energy-storage.com/cps/rde/xchg/ust/hs.xsl/3252.htm?rdeLocaleAttr=en
- https://www.uniper-energy-storage.com/cps/rde/xchg/ust/hs.xsl/3437.htm?rdeLocaleAttr=en
- https://www.vng-gasspeicher.de/storage_locations
- https://www.wesernetz.de/netznutzung/bremen/gasnetz-speicheranlagen.php
- https://www.wingas.com/storage-uk-ltd/home.html
- https://www.PLE
- https://www.www.gascade.de/Verdichterstation_Bunde_2016.pdf
- https://www.www.gascade.de/Compressor_station_Eischleben_2016.pdf
- https://www.www.gascade.de/Verdichterstation_Lippe_72dpi060614.pdf
- https://www.www.gascade.de/Anlandestation_Greifswald_Lubmin_2016.pdf
- https://www.www.gascade.de/Verdichterstation_Mallnow_2016.pdf
- https://www.www.gascade.de/Compressor_station_Olbernhau_2016.pdf
- https://www.www.gascade.de/Verdichterstation_Reckrod_2016.pdf
- https://www.www.gascade.de/Verdichterstation_Rehden_2016.pdf
- https://www.www.gascade.de/Compressor_station_Rueckersdorf_2016.pdf
- https://www.www.gascade.de/Verdichterstation_Weisweiler_201609.pdf
- https://www.opal-gastransport.de/Compressor_Station_Radeland_72dpi.pdf
- https://www.opal-gastransport.de/Verdichterstation_Radeland_2016.pdf
- https://www.pipelinesystems.com/: "NETRA compressor station Wardenburg"
- https://www.grtgaz.com: Plan_decennal_2017-2026.pdf
- https://www.streicher.de
- https://www.open-grid-europe.com

- https://www.open-grid-europe.com
- https://www.open-grid-europe.com, Pressinformation, May 2017, "Herbstein compressor station new build project"
- https://www.fluxys.com/tenp/de
- Presseinfo Bayernets, WinGas, 19-Sep-2008
- NWZonline.de, 22-04-2010: "ExxonMobil gibt kräftig Gas" by Tanja Mikulski
- Porzerleben.de: 6-sep-2011, "Open Grid Europe investiert in europäischen Netzverbund"
- Christoph Edler, Bachelorarbeit PR 370005, Technische Universität Wien, "Das österreichische Gasnetz", Juli 2013.

8.5 Location name alterations

Location names should be changed into the 26 letters used in the English language.

For names from the individual countries please follow the suggested approach:

- Germany/Austria: Umlaute to be replaced with the letter followed by an 'e', e.g.: ü = ue.
- France/Belgium: Omit accent de gues and accent de graphs, e.g.: 6 = 0.
- Sweden: Please change the last three letters of the Swedish alphabet and replace e.g.: $\ddot{a} = a$.
- Poland: Please change any letter, that cannot be found in the English alphabet, knowing that for some letters, that one can only use a single letter instead of the three different letters used in the Polish alphabet, e.g.: z = z.
- Spain/Portugal: Please change any letter, that cannot be found in the English alphabet, e.g.: $\tilde{n} = n$.
- Greece: Please do not use Greek letters. Please try to write the Greek words with Latin letters.
- Denmark: Please change any letter that contains non-English letters, e.g.: "å" with "aa".
- Slovakia, Czech Republic, Hungary, Rumania, Latvia, Lithuania, Estonia, Bulgaria, Slovenia, Croatia: PLEASE use your common sense, based on the examples from the other countries above.

8.6 Country name abbreviations

For convenience we provide a short list of names and two-digit codes (see Table 8.5) for the probably most important countries associated with the European Transmission Grid.

Country name	Country code	Country name	Country code
Albania	AL	Kosovo	XK
Armenia	AM	Latvia	LV
Austria	AT	Liechtenstein	LI
Azerbaijan	AZ	Lithuania	LT
Belarus	BY	Luxembourg	LU
Belgium	BE	Malta	MT
Bosnia and Herzegovina	BA	Moldova	MD
Bulgaria	BG	Montenegro	ME
Croatia	HR	Netherlands	NL
Cyprus	CY	Norway	NO
Czech	CZ	Poland	PL
Denmark	DK	Portugal	PT
Estonia	EE	Romania	RO
Finland	FI	Serbia	RS
France	FR	Slovakia	SK
Georgia	GE	Slovenia	SI
Germany	DE	Spain	ES
Greece	GR	Sweden	SE
Hungary	HU	Switzerland	СН
Iceland	IS	Turkey	TR
Ireland and Northern Ireland	IE	Belarus	UA
Italy	IT	Great Britain	GB
Russia Federation	RU	Europe	EU
Ukrain	UA		

Table 8.5: Country codes

8.7 Statistical background

Here some of the statistical methods mentioned in the document are described briefly. This is so that actions described in this document can be understood better by the user, and is not thought of giving a full explanation. Most descriptions have been copied from the Wikipedia pages, or other internet pages, and will be referenced accordingly.

8.7.1 Out-of-bag

This is a method of measuring the prediction error of random forests, boosted decision trees, and other machine learning models utilizing bootstrap aggregating (bagging) to sub-sample data samples used for training. [Wik20f]

8.7.2 Leave p-out cross-validation

The following has been copied from [Wik20b]:

"Leave-p-out cross-validation (LpO CV) involves using p observations as the validation set and the remaining observations as the training set. This is repeated on all ways to cut the original sample on a validation set of p observations and a training set.

LpO cross-validation requires training and validating the model C_p^n times, where *n* is the number of observations in the original sample, and where C_p^n is the binomial coefficient. For p > 1 and for even moderately large *n*, LpO CV can become computationally infeasible. For example, with n = 100 and p = 30 % of 100, $C_{30}^{100} \approx 3 \times 10^{25}$."

8.7.3 Leave one-out cross-validation

The following has been copied from [Wik20b]:

"Leave-one-out cross-validation (LOOCV) is a particular case of leave-p-out cross-validation with p = 1.

The process looks similar to jackknife; however, with cross-validation one computes a statistic on the left-out sample(s), while with jackknifing one computes a statistic from the kept samples only.

LOO cross-validation requires less computation time than LpO cross-validation because there are only $C_1^n = n$ passes rather than C_k^n . However, *n* passes may still require quite a large computation time, in which case other approaches such as k-fold cross validation may be more appropriate."

8.7.4 Jackknifing

The following text has been copied from [Wik20c]:

"In statistics, the jackknife is a resampling technique especially useful for variance and bias estimation. The jackknife pre-dates other common resampling methods such as the bootstrap. The jackknife estimator of a parameter is found by systematically leaving out each observation from a data set and calculating the estimate and then finding the average of these calculations. Given a sample of size n, the jackknife estimate is found by aggregating the estimates of each

The jackknife technique was developed by Maurice Quenouille (1924-1973) from 1949, and refined in 1956. John Tukey expanded on the technique in 1958 and proposed the name "jackknife" since, like a physical jack-knife (a compact folding knife), it is a rough-and-ready tool that can improvise a solution for a variety of problems even though specific problems may be more efficiently solved with a purpose-designed tool.

The jackknife is a linear approximation of the bootstrap."

8.7.5 Bootstrap

The following has been copied from [Wik20a]:

"Bootstrapping is any test or metric that uses random sampling with replacement, and falls under the broader class of resampling methods. Bootstrapping assigns measures of accuracy (bias, variance, confidence intervals, prediction error, etc.) to sample estimates. This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods.

Bootstrapping estimates the properties of an estimator (such as its variance) by measuring those properties when sampling from an approximating distribution. One standard choice for an approximating distribution is the empirical distribution function of the observed data. In the case where a set of observations can be assumed to be from an independent and identically distributed population, this can be implemented by constructing a number of resamples with replacement, of the observed data set (and of equal size to the observed data set)."

8.8 Acknowledgement

We acknowledge the contribution of Dr. Ontje Luensdorf from the DLR Institute of Networked Energy System to the SciGRID_gas project.

BIBLIOGRAPHY

- [AFW14] M. Ahmed, B.T. Fasy, and C. Wenk. *New Techniques in Road Network Comparison*. Penguin Random House, New York, NY, 2014.
- [AG99] H. Alt and L. Guibas. *Discrete geometric shapes: matching, interpolation, and approximation-a survey.* Sack JR, Urrutia J, Handbook of Computational Geometry, Elsevier, New York, NY, 1999.
- [DPDM20] J.C. Diettrich, A. Pluta, J. Dasenabrock, and W. Medjroub. *SciGRID_gas: The combined IGGIN gas transmission network data set.* DLR-Institut für Vernetzte Energiesysteme e.V., Oldenburg, Germany, 2020.
- [DPM20a] J.C. Diettrich, A. Pluta, and W. Medjroub. SciGRID_gas: The INET gas transmission network data set. DLR-Institut für Vernetzte Energiesysteme e.V., Oldenburg, Germany, Aug 2020. URL: https://doi.org/ 10.5281/zenodo.4008975, doi:10.5281/zenodo.4008975.
- [DPM20b] J.C. Diettrich, A. Pluta, and W. Medjroub. SciGRID_gas: The combined IGG gas transmission network data set. DLR-Institut für Vernetzte Energiesysteme e.V., Oldenburg, Germany, Aug 2020. URL: https: //doi.org/10.5281/zenodo.4009129, doi:10.5281/zenodo.4009129.
- [DPM20c] J.C. Diettrich, A. Pluta, and W. Medjroub. *SciGRID_gas: The combined IGGI gas transmission network data set.* DLR-Institut für Vernetzte Energiesysteme e.V., Oldenburg, Germany, Aug 2020.
- [DPM20d] J.C. Diettrich, A. Pluta, and W. Medjroub. *SciGRID_gas: The combined IGGINL gas transmission network data set.* DLR-Institut für Vernetzte Energiesysteme e.V., Oldenburg, Germany, 2020.
- [DPM20e] J.C. Diettrich, A. Pluta, and W. Medjroub. SciGRID_gas: The raw INET data set. DLR-Institut für Vernetzte Energiesysteme e.V., Oldenburg, Germany, Aug 2020. URL: https://doi.org/10.5281/zenodo.3985249, doi:10.5281/zenodo.3985249.
- [DPM20f] J.C. Diettrich, A. Pluta, and W. Medjroub. SciGRID_gas: The raw LKD data set. DLR-Institut für Vernetzte Energiesysteme e.V., Oldenburg, Germany, Aug 2020. URL: https://doi.org/10.5281/zenodo.3985271, doi:10.5281/zenodo.3985271.
- [FMWP+17] Kunz F., Kendziorski M., Schill W.-P., Weibezahn J., Zepter J., von Hirschhausen C., and Hauser P. Electricity, Heat, and Gas Sector Data for Modeling the German System. Deutsches Institut f
 ür Wirtschaftsforschung, Daten Documentation 92, Berlin, 2017.
- [Hel18] D. Helle. OpenStreetMap Deutschland. https://www.openstreetmap.de/, 2018. Accessed: 2019-12-12.
- [Kha13] Y. Khalid. What is Pickle in python? https://pythontips.com/2013/08/02/what-is-pickle-in-python/, 2013. Accessed: 2019-10-10.
- [LSS+19] P. Lustenberger, F. Schumacher, M. Spada, P. Burgherr, and B. Stojadinovic. Assessing the performance of the european natural gas network for selected supply disruption scenarios using open-source information. *Energies*, 12(4685):1–28, 2019. doi:{10.3390/en12244685}.

- [MMK16] C. Matke, W. Medjroubi, and D. Kleinhans. SciGRID An Open Source Reference Model for the European Transmission Network (v0.2). https://power.scigrid.de, 2016. Accessed: 2019-09-09.
- [Mic20] Microsoft. Bing maps api. https://www.microsoft.com/en-us/maps/licensing, 2020. Accessed: 2018 to 2021.
- [Nis20] A. Nisbet. Open topo data api. https://www.opentopodata.org, 2020. Accessed: 2020 to 2021.
- [San19] B. Sandvik. World Borders. http://thematicmapping.org/downloads/world_borders.php, 2019. Accessed: 2019-07-07.
- [SAB+17] M. Schmidt, D. Aßmann, R. Burlacu, J. Humpola, I. Joormann, N. Kanelakis, T. Koch, D. Oucherif, M.E. Pfetsch, L. Schewe, R. Schwarz, and M. Sirvent. *GasLib—A Library of Gas Network Instances*. 2017. doi:{10.3390/data2040040}.
- [sl19] scikit-learn. 1.1. Linear Models (scikit learn). https://scikit-learn.org/stable/modules/linear_model.html, 2019. Accessed: 2019-08-08.
- [UoO14] USA University of Oregon. Comparing distributions: Z Test. http://homework.uoregon.edu/pub/class/es202/ztest.html, 2014. Accessed: 2020-07-07.
- [Wik20a] Wikipedia. Bootstrapping (statistics). https://en.wikipedia.org/wiki/Bootstrapping_(statistics), 2020. Accessed: 2019-06-06.
- [Wik20b] Wikipedia. Cross-validation (statistics). https://en.wikipedia.org/wiki/Cross-validation_(statistics)#Exhaustive_cross-validation, 2020. Accessed: 2019-07-07.
- [Wik20c] Wikipedia. Jackknife resampling. https://en.wikipedia.org/wiki/Jackknife_resampling, 2020. Accessed: 2019-08-08.
- [Wik20d] Wikipedia. Lasso (statistics). https://en.wikipedia.org/wiki/Lasso_(statistics), 2020. Accessed: 2020-04-04.
- [Wik20e] Wikipedia. Limited-memory BFGS. https://en.wikipedia.org/wiki/Limited-memory_BFGS, 2020. Accessed: 2020-06-06.
- [Wik20f] Wikipedia. Out-of-bag error. https://en.wikipedia.org/wiki/Out-of-bag_error, 2020. Accessed: 2019-07-07.
- [Wik20g] Wikipedia. Transmission system operator. https://en.wikipedia.org/wiki/Transmission_system_operator/, 2020. Accessed: 2019-09-09.
- [Wik20h] Wikipedia. JAGAL. https://en.wikipedia.org/wiki/JAGAL, 2020. Accessed: 2020-01-01.
- [BMWi11] BMWi. Forschung für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/6-energieforschungsprogramm-derbundesregierung.pdf?__blob=publicationFile&v=12, 2011. Accessed: 2019-02-02.
- [BMWi20] BMWi. Home page of BMWi. https://www.bmwi.de/Navigation/DE/Home/home.html, 2020. Accessed: 2020-03-03.
- [BundesregierungDeutschland20] Bundesregierung Deutschland. Home page of Bundesregierung Deutschland. https://www.bundesregierung.de/Webs/Breg/DE/Themen/Energiewende/_node.html, 2020. Accessed: 2020-01-01.
- [EntsoG20] EntsoG. Home page of EntsoG. https://www.entsog.eu/, 2020. Accessed: 2020-03-03.
- [GasIEurop20] Gas Infrastructure Europ. Home page of Gas Infrastructure Europ. https://agsi.gie.eu, 2020. Accessed: 2020-01-01.
- [GasSEurop20] Gas Storages Europ. Home page of Gas Storages Europ. https://www.gie.eu/index.php/transparency/gse-transparency-template, 2020. Accessed: 2020-01-01.

- [Gassco20a] Gassco. Data page of facilities from Gassco. https://www.npd.no/en/about-us/informationservices/available-data/map-services/, 2020. Accessed: 2020-01-01.
- [Gassco20b] Gassco. Home page of Gassco Norway. https://www.gassco.no/en/, 2020. Accessed: 2020-01-01.
- [IGU20] IGU. Home page of International Gas Union. https://www.igu.org/, 2020. Accessed: 2018-10-01.
- [nationalGrid20] nationalGrid. Home page of National Grid UK. https://www.nationalgrid.com/uk/, 2020. Accessed: 2018-10-01.