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Abstract—The European Space Agency (ESA) currently pro
vides two tools for the modeling of onboard software: The Assert
Set of Tools for Engineering (TASTE) and the OnBoard Software
Reference Architecture (OSRA).

For data type modeling, TASTE uses the standardized Ab
stract Syntax Notation One (ASN.1), while OSRA provides an
internal eCorebased data type representation. Unfortunately, the
interworking between the two frameworks lacks a mechanism to
exchange data easily without duplicating the data type informa
tion.

In this work, we present our approach for the exchange of
data types and data values between software developed with
both tools. We show our additions to the OSRA infrastructure
enabling the exchange of data types between OSRA and TASTE
based on the same data type descriptions in ASN.1. This includes
complementing the OSRA editor with the ability to read and
write ASN.1 data type descriptions and to specify the data type
encodings in TASTE’s ASN.1 Control Notation.

Our previous implementation of the ASN.1 data types in Mod
ern C++ has been extended with a prototypical implementation
for the serialization of the data types compatible with TASTE’s
ACN encoded types.

As for the data types themselves, C++ metaprogramming
techniques have been used for the encoder. This allows us to
keep the code generators simple and maintainable. Some early
results on the exchange of data between OSRA, enabled with
our prototype generator, and the TASTE framework with its
own ASN.1 compiler are presented and discussed.

I. INTRODUCTION

The demand for more complex onboard functionalities for
future spacecraft continues to rise, increasing the burden on
often small software teams. To handle such a complexity,
modeldriven methodologies can help to capture the overall
architecture and design of the software. In a later step, they
also allow autogenerating source code and documentation
artifacts from the model, thereby relieving software developers
from monotonous tasks.
In order to support modelbased software development,

the European Space Agency (ESA) provides The Assert Set
of Tools for Engineering (TASTE) [1] and the OnBoard
Software Reference Architecture (OSRA) [2]. Both share
some common design concepts like separation of concerns,
componentbased modeling and graphical tooling for the de
sign tasks. OSRA targets mostly the design of spacecraft
onboard software. At the same time, it leaves the concrete

implementation of the code generators to the entity using
OSRA. TASTE, on the other hand, provides a more generic
framework, includes code generators for the C and Ada lan
guages, and has been also applied in robotics applications [3].
Unfortunately, the interworking between the two frameworks
lacks a mechanism to exchange data easily without duplicating
the data type information. Our goal is to eliminate this
problem and use the same data type descriptions across both
frameworks and also have a compatible binary representation
for the data types to allow seamless data exchange between
applications developed using TASTE or OSRA.
In this paper, we first have a short comparison between the

existing data type definition methods in OSRA and TASTE
in Section II. In the following section, we present how we
integrated support for ASN.1 and ACN to the OSRA model
editor. In Section IV, we give a short overview of the data type
system we developed previously [4] and which will be the
foundation for the encoding infrastructure. Section V presents
some of the concepts and implementation details behind our
new ACN encoding prototype. In Section VI we discuss the
current state of our prototype and its achieved results. Finally
we give our conclusions and ideas about the future direction
of our work in Section VII.

II. DATA TYPE DEFINITION IN OSRA AND TASTE

In complex software projects, data is exchanged by a
plethora of software modules, potentially developed by dif
ferent software teams. To ensure safe data exchange inside a
single as well as across many different modules, essentially
three basic problems need to be solved: First, there has to be a
common source defining the data types, ideally with the option
to define constraints. Secondly, there needs to be some way
to determine whether a value is valid or not. Finally, a shared
understanding about how to encode values of these data types
for exchange across modules or even devices is necessary.
TASTE solves the first problem by describing its data types

through the programming language agnostic Abstract Syntax
Notation One (ASN.1) notation. The second one is addressed
by generating test routines for validity checks during runtime.
The last problem is solved by implementing encoding rules
of ASN.1 or by using a custom description for the encoding



of data types using TASTE’s own ASN.1 Control Notation
(ACN).
OSRA provides mainly its metamodel, the Space Compo

nent Model (SCM), and a corresponding editor which also
provides a modeling workflow for the user. Of the three
mentioned problems, OSRA currently solves only the first
problem through its graphical data type editor. We only present
a short summary of OSRA’s type modeling system here. A
more indepth analysis was carried out by us in [4].
The data type part of the OSRA metamodel has a complex

class hierarchy with several layers of abstract classes, which
are used in other parts of the metamodel to refer to generic
types.
It provides common numerical metatypes for integer and

floating point numbers and also allows to constrain the value
space of those types. Other supported elementary metatypes
include representations for boolean types, enumerations, and
fixed point values. The OSRA metamodel also allows the
modeling of several kinds of array and string types as well
as common structured and union types.
For every type definition, it is also possible to instantiate a

constant of that type, which will be available for further use
in the model.
Additionally, there are two special metatypes available: the

AliasType that allows to declare a new type with the same
features as a reference type, but with a new name; and the
ExternalType that allows to register data types which have
not been defined through the OSRA model itself. For the latter,
the OSRA model cannot determine any properties but relies
on the external model to check validity. It only knows the
registered types’ names which is enough to use them like
native types throughout the model (for example for interface
definitions).
The OSRA editor provides a graphical interface to define

concrete types and constants from the described metatypes.
Fig. 1 shows an example of such a data type diagram, which
looks similar to data type diagrams in UML [5].
For every type or constant defined in such a way, a

corresponding element is added to the underlying eCore model
including all the range properties and base type references.

III. INTRODUCING OSRA TO ASN.1 AND ACN

Although graphical modeling of data types is intuitive, it can
become difficult to understand and maintain when complex
structured types and type hierarchies have to be modeled.
Furthermore, the data types are, by default, only available in
their internal eCore representation. This allows easy access
to the types’ model entities within Eclipse plugins using the
Eclipse Modeling Framework (EMF). However, exchanging
the types with external tools, such as TASTE, is not trivial.
As our goal is to allow the exchange of data between soft

ware developed with TASTE or OSRA without the need for
manual interventions, a common intermediate representation is
necessary. The straight forward decisions was to use ASN.1
for that purpose. Within the frame of the TASTE project,
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Fig. 1. Example of OSRA data types modeled in the SCM editor with simple
numerical types, constrainted numerical types, a structured type and an array
type.

ESA already evaluated different programming language in
dependent data type notations and decided to use ASN.1 [1].
TASTE only selected a subset of ASN.1 which provides a
reasonable feature set for space applications where type sizes
and value sets must be known at compiletime. This reduced
feature set also means less complexity in the necessary ASN.1
grammar. By adopting this approach for OSRA as well, only
OSRA needs to be complemented with an additional ASN.1
infrastructure. No changes are necessary for TASTE.
Within the ESA funded PaTaS activity [6], an intial ASN.1

grammar implementation in Xtext was already started. It
became a starting point to add an ASN.1 editor to OSRA.
Like OSRA, Xtext is also based on the Eclipse Modeling
Framework. Therefore, the ASN.1 grammar can be tightly in
tegrated with OSRA. The bidirectional implementation works
as follows: For all data types, which were created with the
graphical model editor of OSRA, a corresponding type in
ASN.1 textual notation is generated using Xtend code genera
tors [7]. For all data types which have been manually written
and for which an ASN.1 representation exists, a corresponding
ExternalType is registered in the OSRA model. In this way,
all types are available in the OSRA model and can be used in,
e.g., interface modeling. All types have also a representation in
ASN.1, which means they can be shared with external tools,
such as TASTE. This work was carried out as part of [4]
and allowed the exchange of data types between OSRA and
TASTE.
The upper part of Fig. 2 depicts these relationships between

the type representation in OSRA and ASN.1.
For the exchange of encoded data, not only data type

descriptions but also a common encoding scheme is needed.
ASN.1 provides several standardized encoding rules, e.g.,
the Binary Encoding Rules (BER) or the Packet Encoding
Rules (PER) [8]. However, in our domain of spacecraft on
board software none of those standardized ASN.1 encoding
rules are used on a regular basis. Instead, custom protocol
formats are prevalent for nearly all communication. For this
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Fig. 2. Flow between the different generation layers

purpose, TASTE already defined its ASN.1 Control Nota
tion, which allows to define a custom encoding format for
previously defined ASN.1 types [9], [10]. It offers a great
amount of flexibility for encoding rules while still maintaining
a reasonably simple grammar. Using ACN as a target for
our prototype implementation also provided a better use case
for the application of C++ metaprogramming techniques for
the encoder compared to the more narrowly defined encoding
rules like PER [8].
The usual workflow in Xtext is that a grammar is defined

from which a corresponding eCore metamodel is generated.
For the new ACN grammar to be able to crossreference
existing data types of ASN.1 it has to share the same eCore
metamodel as the ASN.1 grammar. Having two separate, albeit
closely related, grammars generating each their own meta
model generates creates a conflict. We stopped this automatic
generation process and switched to a manually maintained
common metamodel instead. Based on the original ASN.1
metamodel, the ACN entities were gradually added and then
the corresponding grammar developed. This approach requires
more manual work when changing either a grammar or the
metamodel, but it gives greater flexibility [7].
As a result we have now one common eCore metamodel

for ASN.1 and ACN, but two separate grammar definitions
which only populate their respective part of a model instance.
However, in the metamodel, the entities of one grammar are
aware of the entities of the other grammar. For example, an
ACN encoding definition can refer and resolve the corre
sponding ASN.1 type defined in another file. In this solution
each grammar has also their own respective editor plugins
which provides syntax highlighting, autocompletion and on
thefly validation in the editor. Which editor plugin is active is
decided based on the file name extension. As ASN.1 files end
with the asn extension, ACN uses files with acn respectively.

IV. A DATA TYPE SYSTEM USING MODERN C++

In the last decade, the C++ programming language un
derwent several revisions which increased the feature set of
the core language significantly. Therefore, the term Modern

C++ is commonly applied if features of the most recent
C++ standards, i.e. C++11, C++14 or C++17, are used [11].
Especially the templating system became much more powerful
in modern C++ compared to previous standards [11].
At the German Aerospace Center (DLR), we used C++ even

for mission critical software parts as part of the BIRD [12],
TET1 [13], BIROS [14] and the Eu:CROPIS [15] satellite
missions. With increasing compiler support even for embedded
targets and realtime operating systems, the question arises
which new features can be useful for onboard software and
how they can be applied.
In [4], we investigated how these new features could be

used to create a type system which allows types to be easily
generated from ASN.1 and which fulfills the following criteria:

• Support for numerical ranges: Restricting the values of
numerical types to certain ranges allows the type system
to check and ensure the validity of data.

• Clear and intuitive API: Making it easy for developers
to understand the API even with limited knowledge of
template metaprogramming. It also increases maintain
ability and the motivation to adopt the new type system.

• Compiletime checks: Spotting sources of errors like
type incompatibilities and possible range overflows dur
ing compiletime prevents introducing those errors into
the source code right at the beginning. It also relieves
developers from manually checking for such conditions
in the source code and in unit tests.

• Runtime checks: Runtime checks shall ensure that the
value of a data object stays within its bounds even
after modifications. The checks should be carried out
automatically by the type itself instead of requiring the
developer to trigger it manually.

• Memory management: Each data type shall have a
known size at compiletime in order to allow for static
memory allocation. Data objects should always create a
deep copy of its values during copy assignments.

• Compatibility to existing C/C++ code: Source code
using the new data type system will need to interact with
existing libraries. Therefore, the data types shall have
support for conversions to the basic types of C++.

To make this paper more selfcontained, we show next
some key implementation details, but do not repeat the results
presented in [4]. We will concentrate on numerical types,
structured types and union types, as they represent the sit
uations which are most common or have the potential for a
high degree of complexity. For a more indepth description of
the type system, we refer again to [4].
Using mostly variadic templates, static assertions, type

traits, and several recursive template metaprogramming pat
terns [11], it was possible to create types which are aware
of constraints. The adherence to the constraints is checked
during operations like assignment or type conversion; in many
situations already at compile time.
This way the types make sure that they hold valid data at all

times. The complexity of these compile time checks are hidden
in a general base class, keeping the user interface reasonably



simple. New types are declared usually with only few lines
of code. For example, Listing 1 presents the definition of
constrained numerical types. First, two integer types declared.
As can be seen, the range constraints can be directly part of
the type declaration. The first one has two disjoint ranges, the
second one only a single range. Both inherit from the tem
plated base class Integer. It provides all the range checking
mechanisms customized for each type automatically. The two
using statements in the types body bring in the constructors of
the base class, allowing type construction from standard C++
integer constants or variables without the need to define any
constructors explicitly. Type conversion from Int2 to Int1
are allowed. The reverse is forbidden and produces an error
at compile time.
Next, a floating point type is declared. It is not yet possible

to specify the ranges directly in the declaration since current
C++ standards do not allow floating point numbers as non
type template parameters. Therefore, a corresponding range
structure needs to be declared before the real type can be
created.
1 // Simple definition of constraint integer types
2 class Int1: public Integer<int, Range<-10, -5>,

Range<0,10> > {
3 using BaseType = Integer;
4 using BaseType::BaseType;
5 };
6 class Int2: public Integer<int, Range<1,5> > {
7 using BaseType = Integer;
8 using BaseType::BaseType;
9 };
10

11 // Not possible:
12 // class F1: public Real<float, Range<0.5, 1.0>
13

14 // Define ranges
15 struct Range1 {
16 static constexpr float min = 0.5f;
17 static constexpr float max = 1000.5f;
18 static constexpr bool minOpen = false;
19 static constexpr bool maxOpen = false;
20 };
21

22 // Define ranged float
23 class TFloat: public Real<float,Range1> {
24 using BaseType = Float<Range1>;
25 using BaseType::BaseType;
26 };

Listing 1. Example declaration of numerical types

As variadic templates are used, there is no fixed limit to how
many ranges can be assigned to a single numerical type. Of
course, each range will increase the cost for validity checking
at compile time and runtime. However, from experience it
is likely that for most types one or two ranges will usually
suffice in most situations. It is also quite obvious, that the
implementation of the codegenerator generating the C++ code
of Listing 1 is straightforward and simple.
Listing 2 presents an example declaration of an ASN.1

SEQUENCE type, which semantically corresponds to a plain
struct in C++. Here we do not only map a field name to
a type like it is done in normal C++ structs, but the type is
based on a tuple implementation which means it can also refer

to its fields via their position. The accessor methods mimic the
behavior of a normal C++ struct and map a name to each of
the tuples field. For example, the name fieldInt is assigned
to the field zero of the tuple, which will return a value of type
TInt.
1 class TSeq
2 : public Sequence<TInt, TFloat>
3 {
4 public:
5 // Inherit constructors
6 using Base = Sequence<TInt, TFloat>;
7 using Base::Sequence;
8

9 // Define for validation constructor
10 TSeq(const Sequence& other) :
11 Sequence(other) {}
12

13 // Field to field name mapping
14 TInt& fieldInt()
15 { return Base::get<0>(*this); }
16

17 TFloat& fieldFloat()
18 { return Base::get<1>(*this); }
19 };

Listing 2. Example declaration of a sequences type

Finally, Listing 3 shows the basic declaration for CHOICE
types. A CHOICE in ASN.1 is similar to a union type in C++.
In our implementation, an object of such type will keep track
of the currently active field and report an error if the program
tries to read from an inactive field. Although the declaration is
nearly the same to the one of the SEQUENCE type in Listing 2,
the behavior is very different. The return types of the acessor
methods will decay to the type of their respective field only
if the field is currently active. Otherwise they will trigger the
runtime error. For both, the SEQUENCE and the CHOICE types
the validation functions and other behavioral properties are
all inherited from the respective base classes Sequence and
Choice.
1 class TChoice
2 : public Choice<TInt, TFloat>
3 {
4 public:
5 using BaseType = Choice<TInt, TFloat>;
6 using BaseType::ReturnT;
7

8 ReturnT<0>& fieldInt()
9 { return this->getChoice <0>(); }
10

11 ReturnT<1>& fieldFloat()
12 { return this->getChoice <1>(); }
13

14 };

Listing 3. Declaration of a choice type

All presented declarations have in common that they are
easily generated using the information captured in the ASN.1
description. This scenario is depicted in the lower half of
Figure 2. It is worth pointing out that the ASN.1toC++ code
generators can be kept very simple, thereby reducing their
maintenance complexity. In the next section we present how
the previously mentioned ACN encoding rules can be applied
to such types and how C++ template metaprogramming can
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Fig. 3. Overview of the 3 layers for ACN type encoding and decoding.

also help to create customized encoders for each type requiring
only little code generated from the ACN description.

V. ACN ENCODING RULES USING MODERN C++
Our implementation for ACN encoding of types declared

as shown in the previous section has essentially three layers:
First, the BitstreamWriter and BitstreamReader classes,
which are responsible for the low level memory accesses. For
example, the BitstreamWriter’s only purpose is to write up
to 8 given bits regardless of byte boundaries to a given mem
ory address and a given bit offset. The BitstreamReader
does the same operation, but in reverse. Second, a Bitstream
class which represents the user interface.
It provides templated versions of a store and read member

functions for a user to write to or read from a given memory
space. It also keeps track of the current bit position for reading
or writing in a given memory space. However, it does not
interact with the BitstreamWriter and BitstreamReader
directly. Instead, it redirects the typespecific implementation
for the store and read operations to a templated metaclass
BitstreamTraits<T> which represents the third layer. This
metaclass is then partially specialized for the different C++
types presented in the previous section. A short overview of
these layers is given in Figure 3.
In this way a user can store or read an ACN encoded type

from a bitstream as shown in Listing 4. It is not necessary
to explicitly instantiate the templated member function of the
Bitstream class. It is automatically deduced from the type
passed by the user. The actual encoding is then delegated to
the corresponding BitstreamTraits class. In other words,
all the complexities of the C++ template metaprogramming
are effectively hidden from the user and only used in the
background.
The ACN syntax has the following structure: Every encod

ing statement starts first with the type name of a previously
defined ASN.1 type. It is followed by a set of properties in
square brackets. The supported properties range from simple
encoding properties like endianness or bit size of the encoded
type to more advanced concepts like

1 Int1 myInt(6);
2 TChoice myChoice;
3 myChoice.fieldMyInt() = 3;
4 TSeq mySeq = {5, 3.0};
5 uint8_t buffer[40] = {};
6

7 BitStream stream(buffer);
8 // Encoding
9 stream.store(myInt);
10 stream.store(mySeq);
11 stream.store(myChoice);
12

13 // Decoding
14 stream.reset();
15 stream.read(myInt);
16 stream.read(mySeq);
17 stream.read(myChoice);

Listing 4. User perspective for ACN encoding/decoding types

the addition of fixed bit patterns between fields of a sequence
or extra fields in a sequence which indicate the active type of
a following choice type.
For example in Listing 5, the type TMode is encoded as

16 bit integer in littleendian format. The type MySeq has
two fields. However, in the ACN encoding the extra field
reserved is added which introduces a fixed bit pattern. Such
extra fields are commonly used to model existing encoding
protocols which often introduce fixed padding bits or similar at
various places. Since those fields do not carry any information
for the actual program, they are not part in the ASN.1 type
definition. In line 12 the encoding rule for MySeq is overriding
the previously defined encoding rule for TMode. This override
is only applied while encoding MySeq. It does not affect
the encoding of TMode values anywhere else. A complete
description of all supported properties can be found in the
ACN User Manual [10].
1 // ASN.1
2 TMode ::= INTEGER(0..10)
3 MySeq ::= SEQUENCE {
4 mode TMode,
5 status INTEGER (-10 .. 20)
6 }
7

8 // ACN
9 TMode [size 16, endianness little]
10 MySeq [] {
11 reserved NULL [pattern '1001'B] // Extra field
12 mode [encoding ASCII],
13 status [size 32, encoding twos-complement,

endianness little]
14 }

Listing 5. Basic example for interaction between ASN.1 and ACN
descriptions.

Our goal is to keep the code generator from the ACN
model to C++ simple. Therefore, each BitstreamTraits is
designed in a way that it can encode a complete class of types,
e.g., all integer types or all sequence types which are created as
shown in the previous section. Then, the code generator only
needs to translate the actual ACN properties for each type to
C++, so that they can be passed to the BitstreamTraits
class and direct the encoding. That means, nearly everything
regarding the encoding and decoding of the types is captured
in the BitstreamTraits class and its specializations. Since



only the BitStream class uses those directly, most of the com
plexities are well hidden from the user as shown in Listing 4.
We will concentrate for the remainder of this section on the
interaction betwen the BitstreamTraits and the generated
ACN encoding properties. In the following examples, we will
also concentrate only on the encoding of the data types for
brevity. The decoding of a passed binary stream to type values
works conceptually in the same way.
For the encoding in C++ to work correctly, the ACN

properties have to be available to the BitstreamTraits
class and have to have a mapping to the corresponding type.
Since this information does not change during runtime, it
can be stored as constant expressions and type members in
a properties class.
Listing 6 shows this concept for an integer type. Using the

template specialization of the class AcnEncoding the mapping
between type TInt and the encoding properties is created in
line 2.
1 template<>
2 struct AcnEncoding<TInt> : public Properties<
3 Size<16>,
4 Endian<Endianness::little>,
5 Encode<Encoding::ascii>>
6 {};

Listing 6. Example ACN properties for an integer type

The Properties class provides default values for the type
encoding, which can be overridden. For TInt this is done for
the size, endianness and encoding properties in lines 3 to 5.
Listing 7 shows the relevant parts for the encoding of

an integer type. First, the general template class for the
BistreamTraits is declared, which only contains the general
layout of the member functions for storing and reading. Then
follows the partial template specialization for integer types
starting in line 9. Since the ACN properties are constant and
made available at compile time, the implementation can be
dependent on those properties. In Listing 7, this is shown
exemplary with the two separate store methods in line 14 and
line 20 respectively. The former is selected by the C++ com
piler only if the ACN property encoding is either pos-int
or twos-complement. The latter is selected only if it is set
to ASCII. For an integer with the properties of Listing 6, the
latter would be the case and the store method for ASCII
encoding would be selected by the compiler while the other
one would be discarded and not compiled.
This also works for the encoding of more complex types

as we will show in the following example. Listing 8 shows
an ASN.1 and ACN description. It defines multiple integer
types, a choice type with a corresponding enumeration, and a
sequence type. In ACN, the type MySeq is assigned an extra
bit pattern field reserved and an extra field modeType of
type TSelect.
The latter is used in line 20 as the target of ACN’s

determinant property, which is a special property for
CHOICE types. This property requires that an enumeration with
the same field names as the CHOICE type exists. In Listing 8
this is the case with the enumeration TSelect in line 4.

1 //General template
2 template <typename T,
3 typename P = AcnEncoding<T>,
4 typename = void
5 >
6 struct BitstreamTraits
7 { ... };
8

9 // Specialization for integer types
10 template <typename Prop, typename... Ts>
11 struct BitstreamTraits<Integer<Ts...>,

Properties >
12 {
13 // Store method for standard encodings (PosInt

and TwosComplement)
14 template <typename P = Prop, std::enable_if_t<

isStandardEncoding<P>, int> = 0>
15 static void
16 store(uint8_t*& buffer, Int data, size_t& offset

)
17 {...}
18

19 // Store method for Ascii encoding
20 template <typename P = Prop, std::enable_if_t<

isAsciiEncoding<P>, int> = 0 >
21 static void
22 store(uint8_t*& buffer, Int data, size_t& offset

)
23 {...}
24 ...
25 };

Listing 7. BitstreamTraits implementation depending on properties.

The determinant property now encodes a value for the field
modeType depending on the active field of select, i.e., 0 if
mode is active and 1, if status is active.
1 // ASN.1
2 TMode ::= INTEGER(0..10)
3 TStatus ::= INTEGER(0..5)
4 TSelect ::= ENUMERATED{ mode(5), status(10) }
5

6 MySeq ::= SEQUENCE {
7 mode TMode,
8 select CHOICE {
9 mode TMode,
10 status TStatus }
11 }
12

13 // ACN
14 TMode [size 8]
15 TStatus [size 16]
16 MySeq [] {
17 modeType TSelect [],
18 mode [size 32],
19 reserved NULL [pattern '000'B],
20 select [determinant modeType]
21 }

Listing 8. ASN.1/ACN description for a more complex example.

Listing 9 shows the corresponding definition of the ACN
properties in C++. For brevity, only the properties for the
sequence type are shown. The other properties are very similar
to the one shown in Listing 6. As explained in Section IV, in
our C++ implementation of the SEQUENCE and CHOICE types,
not only the field names are available but also the position
of each field. This is used in the generation of the ACN
properties.
For Listing 9, two extra fields are added. In line 12, the

Determinant field is added at position 0, before field mode,



and acts as the determinant of field 1, i.e., field select.
Additionally, a constant field of 3 bits is added in line 13
at position 1, i.e., before the select field. Similarly, the
properties which override the usual encoding of field mode
have a positional argument identifying the correct field as
shown in line 16.
In ACN, by default enumerations are not encoded by their

value but by the index of the field. Since there is no built
in mechanism in C++ for the determination of the index of
a value in enumerations an additional type MapTSelect is
declared in line 5 which captures this information, i.e., mode
has the index 0 and status has the index 1. This class is
passed to the determinant field in line 12 for encoding.
With all the encoding properties properly captured, the

BitstreamTraits class for sequence types can now simply
iterate over all its fields using their position. Before encoding
each field, it checks if extra fields need to be encoded
beforehand and if overrides exists for the field. That means,
no knowledge of the field names is necessary to encode a
sequence type and the encoding itself is kept generic. A similar
mechanism is used to encode the active field of the choice type
using its position.
1 enum class TSelect {
2 mode = 5,
3 status = 10
4 };
5 using MapTSelect = EnumMap<TSelect, TSelect::

mode, TSelect::status>;
6 ...
7

8 template<>
9 struct AcnEncoding<MySeq> : public Properties<>
10 {
11 using extras = Extras<
12 Determinant<0, 1, MapTSelect>,
13 Constant<1, BitField<3>, 0b000>
14 >;
15 using overrides = Overrides<
16 Override<0, Properties<Size<32>>
17 >;
18

19 };

Listing 9. C++ representation of the ACN properties of the example.

VI. RESULTS AND DISCUSSION

To validate the correctness of our approach, we used our
prototype and encoded a set of ASN.1 types with different
encoding rules and compared the binary output with one ob
tained from TASTE. For the currently implemented feature set,
the encodings of our prototype are compatible with TASTE.
In this paper we presented an extension to the data type

framework for OSRA presented in [4]. First, we extended the
existing ASN.1 metamodel with ACN encoding properties and
added a simple ACN grammar in Xtext. From this grammar, a
code generator generates the necessary C++ code to configure
the encoding of the given type according to the ACN spec
ifications. The goal was reached to keep the code generator
from the ACN model to C++ small and maintainable. Only
the actual properties need to be generated in C++.

On the C++ side, the user interface could be kept simple
and easy to use. All the complexity of the encoding is hidden
from the user in the relevant BitstreamTraits specialization
for each type class. The currently supported feature set of our
prototype does not support all ACN properties yet. The main
missing features are the presentwhen property and the deep
field access. However, from the implementation perspective
they share many similarities with the determinant property
and we do not expect any fundamental problems in their
implementation.
C++ metaprogramming techniques are used extensively in

our implementation. While in our previous work they were
used to check type and value conformance at compile time,
in this work they allow the configuration of the encoding for
a type from the ACN properties at compile time. The main
techniques used are partial template specialization and compile
time selection of code paths based on the ACN properties. In
other words, the C++ compiler knows at compile time exactly
which ACN properties apply for each defined type. It can then
discard all methods or conditional branches which depend on
any other property. Although optimization was not our focus
to during development, the compiler can optimize the code
significantly even with only the standard optimization level
of O2 enabled. For example, essentially all conditions based
on ACN properties can be evaluated at compile time and only
the code path needed for a specific configuration is compiled.
Furthermore, for most numerical types and not too complex
structured types, the encoding is completely inlined with only
few instructions in assembly. That means in these cases, all of
the classes shown in Figure 3 are optimized out by the C++
compiler and do not appear in the final binary.
As with the data type framework, the resulting C++ code,

after all templates are resolved, does not use programming
techniques which are usually forbidden in space applications,
e.g., dynamic memory allocation. Also neither the data type
framework nor the ACN encoding depend on any external li
braries. Several type traits and metaprogamming utility classes
from the C++ Standard Template Library (STL) are used for
convenience, but all of them could also be replaced with cus
tom implementations quite easily. Therefore, the compilation
of the C++ code only depends on a recent C++ compiler to
be available for the target platform.

VII. CONCLUSIONS AND FUTURE WORK
In conclusion, OSRA was enabled not only to specify its

data types in ASN.1 but also to use the ACN encoding rules to
encode its data types for custom protocols. A code generator
transforms the collected ACN properties as configuration input
for the C++ encoding infrastructure. The encoding in C++ is
implemented using Modern C++ metaprogramming techniques
in order to keep the code generator simple and provide the user
with an easy to use interface. This allows the exchange of
ACN encoded data types with TASTE generated applications.
With these data type system in place we now have a sound
basis to look at the next layer of the OSRA metamodel, namely
the interface and component type modeling, in more detail.



As mentioned previously, the ACN encoding infrastructure
is currently in a prototypical state. In order to use it not just
in examples but also in more sophisticated applications, the
missing ACN features need to be implemented. Also the code
base needs to be refactored to properly observe good coding
practices like const correctness, consistent naming conventions
and a test suite. Furthermore, besides ACN encoding, TASTE
also supports standard ASN.1 encodings like BER, PER and
XER. These could be complemented to our encoding infras
tructure as well.
The new C++20 standard is scheduled to be officially

released until the end of 2020 [16] which will be the next
major milestone in the evolution of the language. Here the
introduction of modules to C++ promises advantages to our
implementation. First, with modules, the templates in header
files do not need to be compiled for every translation unit
which includes the header files. This should reduce the com
pile times for applications which would use our type system
extensively. Also, modules make it easier to decide which
part of an API is visible to a user. The number of helper
classes for the C++ metaprogramming could be kept internally
which should reduce the number of visible classes for a user
greatly. Additionally, the introduction of concepts look like a
promising idea to set expectations on template type parameters
and check them at compile time. However, a more detailed
analysis has to wait until the final C++20 standard is published
and compiler with support for the new features are available.
Our goal is to be able to support a minimum capability set

of OSRA and be able to generate complete compilable ap
plication skeletons from an OSRA model. Therefore, our next
focus will be on the modeling of the interfaces and component
types in OSRA and how these could be implemented with our
presented type system as the basis for data exchange.
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