
remote sensing  

Article

Shadow Detection and Restoration for Hyperspectral
Images Based on Nonlinear Spectral Unmixing

Guichen Zhang * , Daniele Cerra and Rupert Müller

Department of Photogrammetry and Remote Sensing, German Aerospace Center (DLR),
88234 Wessling, Germany; daniele.cerra@dlr.de (D.C.); rupert.mueller@dlr.de (R.M.)
* Correspondence: guichen.zhang@dlr.de

Received: 10 November 2020; Accepted: 3 December 2020; Published: 5 December 2020
����������
�������

Abstract: Shadows are frequently observable in high-resolution images, raising challenges in image
interpretation, such as classification and object detection. In this paper, we propose a novel framework
for shadow detection and restoration of atmospherically corrected hyperspectral images based on
nonlinear spectral unmixing. The mixture model is applied pixel-wise as a nonlinear combination
of endmembers related to both pure sunlit and shadowed spectra, where the former are manually
selected from scenes and the latter are derived from sunlit spectra following physical assumptions.
Shadowed pixels are restored by simulating their exposure to sunlight through a combination of sunlit
endmembers spectra, weighted by abundance values. The proposed framework is demonstrated on
real airborne hyperspectral images. A comprehensive assessment of the restored images is carried
out both visually and quantitatively. With respect to binary shadow masks, our framework can
produce soft shadow detection results, keeping the natural transition of illumination conditions on
shadow boundaries. Our results show that the framework can effectively detect shadows and restore
information in shadowed regions.
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1. Introduction

In images with high spatial resolution, shadows are frequently visible [1]. According to the
principle of formation, these consist of cast shadow and self-shadow [2]. When an object occludes
the direct solar illumination outdoors, self-shadow occurs on the part of the object with no direct
solar illumination. Cast shadow, which this paper considers, is projected instead on nearby objects,
and consist of umbra and penumbra [2]: the former is the shadowed region where the direct sun
illumination is completely blocked by the object, while the latter is the shadowed region where the
direct solar illumination is partly blocked due to the finite extension of the light source. As shadow
pixels lack direct sun illumination, their computed reflectances can be incorrect without a shadow
restoration process. The inaccurate reflectance values in shadowed regions hinder image analysis,
such as classification and target detection. Therefore, it is of great interest to restore the correct
reflectance values in shadowed areas.

Previous works studying shadow detection or shadow removal from optical images use
optical earth observation data, including RGB, multispectral, and hyperspectral images [2–4].
Imaging spectrometer data, also referred to as hyperspectral (We are aware that the terms “imaging
spectroscopy” and “imaging spectrometer data” are more exact than “hyperspectral imaging” and
“hyperspectral data”, respectively, and therefore should be preferred. Nevertheless, in this paper we
also use the term “hyperspectral” for the sake of briefness [5].), provide spectral measurements with
near-continuous acquisition wavelengths. These data convey rich spectral information related to the
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physical properties of ground materials and their chemical composition, compared with RGB and
multispectral images, and are extremely valuable for different remote sensing applications [6].

Correspondingly, shadow detection and removal methods have been proposed specifically or
generally for one among these three categories of data [2–4]. Shadow detection is frequently used as
a preliminary step before shadow removal. Many works have investigated shadow detection methods
and detailed reviews can be seen in [1,7]. One category of simple but popular shadow detection
methods sets threshold values in a given data space to detect shadow regions [3,8]. In addition to RGB
bands, near-infrared (NIR) bands are often used, because they are more sensitive to shadows [7,9].
One drawback of these methods is selecting suitable thresholds [1]. In addition, sunlit dark pixels and
shadowed bright pixels can be wrongly detected [7]. Authors in [10] applied water masks in order to
alleviate the impact from water regions. A second category of methods maps RGB images to color
spaces insensitive to lighting conditions, such as Hue-Saturation-Value (HSV), Hue-Chroma-Value
(HCV), deriving back RGB combinations after local brightness alterations [11–13]. A third category of
methods studies the geometry and light sources of the scene (ray tracing) [14,15]. These algorithms
depend on the availability and accuracy of geometrical data [16]. Other solutions consider physical
information. Authors in [17,18] assume that shadow is a zero reflectance endmember and detect
shadows through a matched filter. These methods can confuse shadows with materials characterized
by low albedo. Authors in [19] compute the proportion of a pixel relative to skylight by considering
illumination conditions in shadowed areas [19]. Furthermore, some works study shadow detection
based on unsupervised or supervised machine learning methods. Authors in [4] apply K-means
clustering, considering the shadow as one output class. In supervised methods, training samples
of sunlit and shadowed pixels are selected, then classification methods are applied to separate
shadowed from sunlit pixels [20]. The performance of machine-learning-based methods may depend
on differences between ground objects and the selection of training samples. Recently, shadow
detection based on deep learning has been proposed [21,22]. These methods usually require training
data containing input RGB images and their corresponding ground-truth binary shadow masks.
In addition, some methods solve shadow detection and restoration in the same framework [23,24]:
we will come back to them in the discussion of shadow restoration algorithms.

Numerous methods have been proposed for removing shadows from RGB images. One family
of algorithms operates in the gradient domain [23,25,26]. Those methods detect shadow boundaries,
where gradient values are large, then restore images by nullifying the gradients on shadow boundaries.
In order to locate shadow boundaries, different methods of computing illumination invariant images
have been proposed. A second category of methods is based on color space transformation [27].
Those methods aim to transform an image from the RGB color space to other color spaces, e.g., HIS (hue,
intensity, and saturation), HSV (hue, saturation, and value), HCV (hue, chroma, and value),
YIQ (luminance, in-phase, and quadrature) , or YCbCr (luminance, the blue-difference chroma
component, and the red-difference chroma component), so that pixel values in the transferred space are
insensitive to illumination changes. Following a different approach, other works focus on correlating
sunlit regions with shadowed regions at pixel or object level. In [12], the authors apply three correction
models (Gamma model, Linear model, and histogram matching) on paired sunlit and shadowed
regions. In later works, shadow and sunlit regions are matched based on texture similarity before
applying correction models [28]. Nevertheless, it proves challenging to automatically correlate regions
in large and complex scenes. In addition, it is difficult to apply a single correction model to an entire
image indiscriminately [3], because the radiometry of the image can vary largely in the spatial domain.

Finally, approaches relying on the inclusion of other types of external data have been proposed
to tackle these problems. For instance, depth data are applied through non-local matching, with the
assumption that pixels with similar chromaticity, normals, and spatial locations have similar colors [29].
Recently, deep learning methods have become popular. The method proposed in [30] learns the
most relevant features in a supervised manner using multiple convolutional deep neural networks
(ConvNets). Based on the shadow mask result, shadows are removed in a Bayesian framework.



Remote Sens. 2020, 12, 3985 3 of 22

Authors in [31] propose an automatic and end-to-end deep neural network (DeshadowNet) for shadow
detection and removal. This method requires a large amount of training data.

Compared with RGB images, shadow detection and removal in multispectral and hyperspectral
images bring specific challenges and opportunities. On the one hand, the high spectral resolution of
imaging spectrometer data provides valuable information for shadow removal; on the other hand,
it is difficult to exactly recover the spectral information for all the spectral bands of the dataset in
shadowed pixels.

Earlier works have investigated shadow removal specifically on multispectral or hyperspectral
images. One category [4] transforms hyperspectral data to hyperspherical coordinates in order to
suppress the difference between shadowed and lighted pixels of the same material. Additionally,
since hyperspectral data contain near-continuous spectra, shadow pixels are matched with sunlit pixels
by minimizing the spectral distances between them [32,33]. Recently, authors in [34] use the spectral
angle distance as reconstruction cost function [35] in a deep learning framework, so that the network
can learn brightness-independent encodings. Authors in [24] developed a deep-learning-based
framework to detect shadows and retrieve urban land-cover classes from multispectral imagery.
The network is trained on a shadow semantic annotation database, where 103 image patches are
labeled with various types of shadows and six land-cover classes. Moreover, Lidar data are used as
an additional data source when compensating shadow regions in the hyperspectral image [36,37],
as Lidar provides the precise geometry of a scene. An illumination invariant image is generated in [36]
through the physical process with the aid of Lidar data, while shadowed regions are restored in [37]
using a precise digital surface model.

A different family of algorithms relies on spectral unmixing, in which a pixel is decomposed
as a linear combination of constituent spectra, i.e., endmembers, and relative fractions,
i.e., abundances [38]. Given that endmembers are spectra of pure materials in an image, spectral
unmixing assumes multiple materials to be present in a single resolution cell, and analyzes the
percentage of each endmember present in the pixel. Conventional spectral unmixing methods regard
shadows as either a single “black” endmember, whose spectral values at all wavelengths are zeros [17],
or a “shade” endmember, whose spectral values are largely lower than other endmembers at all
wavelengths [39]. Authors in [40] propose a shadow compensation method based on linear unmixing
with the assumption that the construction of the spectral scatter plot in shadows is analogues to that
in non-shadow areas within a two-dimension spectral mixing space. Shadowed regions have lower
radiance values with respect to sunlit targets of the same material, but they should not be treated
independently. Hence, when conducting spectral unmixing, it should preferable to treat shadow areas
with different physical assumptions. Authors in [41] investigate the situation where a grass region
is shadowed by trees. Shadowed regions are therein modeled with a bilinear model, by multiplying
the reflectances of shadow and tree endmembers. In addition, spectral angle distances [32] have been
also used together with unmixing in de-shadowing tasks. The unmixing process is conducted in [42]
separately in sunlit and shadowed regions. Two groups of endmembers are then matched through
minimum spectral angle distance, followed by a shadow restoration process using sunlit endmembers.
In addition to relying on spectral angle distances, authors in [40] match sunlit endmembers with
shadowed endmembers of the same materials, under the assumption that the construction of the
spectral scatter plot in shadows is analogs to the one in sunlit areas for a two-dimension spectral
mixing space. Finally, a nonlinear mixture model has been proposed in [43] to detect shadow pixels,
by modeling optical interactions of light rays between the light source and the observer.

To the best of our knowledge, the following are the main open problems concerning shadow
detection and removal in hyperspectral images.

– Shadow detection is commonly required before shadow removal [1,33], and strongly influences
shadow removal results. Therefore, it is important to acquire a reliable shadow mask before the
shadow removal process.
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– Most shadow detection methods generate binary shadow detection results, where one pixel is
either sunlit or shadowed [10,31]. In fact, pixels located on shadow boundaries are neither
complete sunlit nor shadowed [44,45]. A natural transition on shadow boundaries should
be considered.

– Despite the fact that numerous methods have been proposed for shadow detection or removal,
there have been only few attempts [17,32,40,42] at recovering full spectra from hyperspectral data.

– Some methods require a large number of training samples as input [21,23,31], which are difficult
and time-consuming to acquire.

– Shadow restoration may introduce spectral distortion in sunlit pixels.
– Precise 3D data may be effective at assisting shadow detection and removal, but their availability

is usually limited and their cost high [7,14].
– Most of the experiments have been carried out on simple scenes, usually consisting of a single

shadowed area with limited materials [12,31]. In reality, airborne or satellite images present more
complicated scenarios.

The proposed framework could contribute to some extent to the reported open problems. In this
paper, as an extension of our previous work [46,47], we propose a shadow detection and restoration
method for high-resolution hyperspectral reflectance images based on nonlinear unmixing, considering
both umbra and penumbra. Our proposed framework restores reflectance data in shadowed regions
without the requirement of shadow detection results as an additional input. In addition to the restored
images, the framework computes soft shadow detection maps ranging from 0 to 1 which, unlike binary
masks, yield a natural restoration on the shadow boundaries. As an optional step, our method
iteratively refines the initial spectral library by automatically including undetected materials. We tested
the proposed framework on airborne data acquired by an imaging spectrometer in the visible (VIS)
and near-infrared (NIR) spectral ranges.

This paper is organized as follows. In Section 2, we propose a shadow detection and restoration
method based on radiative transfer and a non-linear unmixing model. Section 3 introduces test
data acquired by an imaging spectrometer and Section 4 analyzes experimental results, followed by
detailed discussions in Section 5. Finally, we conclude our work and give directions for possible future
extensions in Section 6.

2. Methodology

The proposed framework for simultaneous shadow detection and removal is reported in Figure 1.
The input consists of one hyperspectral image and a spectral library consisting of pure spectra from
sunlit regions, i.e., sunlit endmembers. The initial spectral library should not contain any endmember
related to shadows or penumbra regions, while it should include similar materials with large differences
in absolute magnitude. In order to fully satisfy these requirements, we manually select pure spectra
from sunlit regions in this paper. The output of the framework consists of a sunlit factor map and
a restored shadow-free hyperspectral image.

Direct and diffuse solar irradiances are the main illumination sources for outdoor scenes [48].
Sunlit regions receive both of them, while the umbra in shadowed regions receives only the diffuse
solar irradiance due to occlusion. Despite the different illumination conditions between sunlit and
shadowed regions, reflectance as a physical property remains theoretically unchanged for a material.
In reality, though, the observed reflectances in shadowed regions are much lower than those in sunlit
regions for the same material. This is caused by the fact that differences in illumination conditions in
the scene are usually ignored when computing reflectance values.

Consequently, we model the spectrum of a shadowed material given the spectrum of the same
material under sunlight (Section 2.1). Subsequently, we regard both sunlit and shadowed spectra as
endmembers and construct a nonlinear mixture model (Section 2.2). Finally, sunlit spectra weighted by
all abundance values are used to compute the restored shadow-free image (Section 2.2). The proposed
framework generates as an additional output a soft shadow detection result, i.e., sunlit factor map,
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by residual analysis of the mixture models (Section 2.3). The sunlit factor map can locate sunlit pixels,
where values of the restored image are then replaced by their input pixels.
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Figure 1. The proposed framework. The inputs are a hyperspectral image, the physical parameters
k1, k2, and k3, and a spectral library containing manually selected endmembers in sunlit regions,
i.e., sunlit endmembers. After the unmixing process, the restored image is reconstructed by a nonlinear
combination of the sunlit endmembers, using the abundances of the same materials in the shadow.
The framework outputs the sunlit factor map, computed by spectral Euclidean distances of the
reconstruction results. Finally, in order to avoid introducing spectral distortions, sunlit pixels in
the restored image are switched back to their original values.
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2.1. Shadowed Spectra Model

Direct and diffuse solar irradiances are two major illumination sources [48] and they are assumed
constant across a small scene. Assuming the ground targets to be Lambertian, the reflectance of a sunlit
pixel can be written as:

rl(λ) =
π · Ll(λ)

El(λ) + Es(λ)
(1)

where Ll(λ) =
(El(λ)+Es(λ))·rl(λ)

π is the radiance of the sunlit pixel at wavelength λ, El is the direct solar
irradiance at the sunlit pixel at wavelength λ, and Es is the diffuse solar irradiance at the sunlit pixel at
wavelength λ.

For shadowed pixels, the illumination sources are diffuse solar irradiance and multiple reflections
from the surrounding objects. In contrast, the computation of reflectances, i.e., atmospheric correction,
violates the realistic illumination conditions in shadowed pixels, if it does not consider topography
information. In other words, the atmospheric correction step assumes that the illumination sources
of shadowed pixels are the same with sunlit pixels, i.e., direct and diffuse solar irradiance. Hence,
the observed reflectance for a shadow pixel can be represented as in Equation (2). We use the term
“observed” as Equation (2) follows the computation of the atmospheric correction step. Nevertheless,
such observed reflectance is incorrect in terms of physics.

rs(λ) =
π · Ls(λ)

El(λ) + Es(λ)
+

π · L′s(λ)
El(λ) + Es(λ)

(2)

Accordingly, Ls(λ) =
Es(λ)·rl(λ)

π is the radiance of the shadowed pixel contributed at wavelength
λ by the linear part, i.e., diffuse solar irradiance, while L′s(λ) is the radiance of the shadowed pixel
at wavelength λ contributed by the nonlinear part, i.e., multiple reflections of direct solar irradiance
caused by surrounding objects.

Modeling nonlinear effects for spectral unmixing has been explored for decades (see reviews
in [38,49]). In this paper, we model L′s(λ) using the Fan model [50], which forms nonlinear interactions
through the multiplication of reflectances using abundances as coefficients:

L′s(λ) =(Es(λ) + (El(λ))·

∑
p−1
i=1 ∑

p
j=i+1 al,i · al,j · rl,i(λ) · rl,j(λ)

π

(3)

where p is the number of materials (endmembers) in one pixel, rl,i(λ) is the reflectance of the i-th sunlit
material (endmember) at wavelength λ, and ai is the i-th abundance corresponding to rl,i.

After combining Equations (1)–(3), rs can be written as:

rs(λ) =
Es(λ)

El(λ) + Es(λ)
· rl(λ)+

p−1

∑
i=1

p

∑
j=i+1

al,i · al,j · rl,i(λ) · rl,j(λ)

(4)

The ratio Es(λ)
El(λ)

indicates the proportion of the diffuse solar irradiance to the direct solar irradiance
on the ground surface. For the same time and location, this ratio becomes smaller at longer wavelengths.
In addition, this ratio depends on atmospheric conditions such as aerosol, humidity, and dust
content [51]. Consequently, we model the ratio Es(λ)

El(λ)
as a power function k1λ−k2 + k3. By assuming

atmospheric conditions to be constant across a single airborne image, all parameters k1,k2, and k3 are
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constants. Another free parameter F, representing how much diffuse irradiance a pixel receives out of
a certain direct solar irradiance, is estimated pixel-wise. The described ratio is then computed as:

Es(λ)

El(λ)
= F · (k1λ−k2 + k3) (5)

where λ is a wavelength, k1, k2, k3 are positive quantities, and F ranges from 0 to 1.
By combining Equations (4) and (5), we have:

rs(λ) =
F · (k1λ−k2 + k3)

F · (k1λ−k2 + k3) + 1
· rl(λ)+

p−1

∑
i=1

p

∑
j=i+1

al,i · al,j · rl,i(λ) · rl,j(λ)

(6)

The parameters k1, k2, and k3 in Equation (6) can be solved by using manually selected pairs
of sunlit spectra, i.e., rl(λ) and shadowed spectra, i.e., rs(λ), for selected materials in the scene.
In high-resolution images, shadow boundaries appear between sunlit and shadowed regions and may
span more than one pixel, as shown in Figure 2. As an example in Figure 2, the selected pixels in each
pair should therefore be located close to but not directly on the shadow boundary.

+
+

Figure 2. An example of selecting pure sunlit (with blue marker) and shadowed pixels (with red
marker) for the same material.

2.2. Nonlinear Mixture Model

We write Equation (6) in vector form, in order to solve for all wavelengths simultaneously and
construct a nonlinear mixture model to allow more materials to be present in one pixel. Note that el,i
is the i-th sunlit endmember, where i = 1, 2, . . . p, with p the total number of endmembers, al,i the i-th
abundance corresponding to the i-th sunlit endmember, and as,i the i-th abundance corresponding
to the i-th shadowed endmember. Given an i-th sunlit endmember el,i, a corresponding shadowed
endmember es,i can be written as:

es,i =
F · (k1λ−k2 + k3)

F · (k1λ−k2 + k3) + 1
· el,i+

p−1

∑
i=1

p

∑
j=i+1

al,i · al,j · el,i · el,j

(7)
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Then both el,i and es,i can be regarded as endmembers (spectra related to pure pixels). For one
pixel x, we construct a nonlinear mixture model through Equation (8). When solving this equation,
we additionally apply a total generalized variation (TGV) algorithm [52] to the parameter F for
spatial smoothness in an iterative manner. In the first iteration, we solve all unknown parameters in
Equation (8). After that, F is spatially filtered through the TGV algorithm, and then used as a known
parameter in the second iteration.

x =
p

∑
i=1

al,i · el,i +
p

∑
i=1

as,i · es,i

+
p−1

∑
i=1

p

∑
j=i+1

al,i · al,j · el,i · el,j

(8)

where ∑
p
i=1(al,i + as,i) = 1, al,i ≥ 0, and as,i ≥ 0. In order to account for physical considerations,

abundances are positive values. In addition, we apply the sum-to-one constraint by assuming that
all endmembers are recognized for each pixel. Since spectral values of shadowed pixels are much
lower than those of sunlit pixels, the sum-to-one constraint assures that shadowed pixels yield large
abundances of shadowed endmembers, instead of small abundances of sunlit endmembers.

With a_si and a_li representing respectively the abundance of shadowed and sunlit endmember
for the same material, the shadow restoration result xrestore for a pixel x with B spectral bands is
computed as:

xrestore =
p

∑
i=1

(al,i + as,i) · el,i

+
p−1

∑
i=1

p

∑
j=i+1

a_li · al,j · el,i · el,j

(9)

2.3. Sunlit Factor Map

From Sections 2.1 and 2.2, endmembers can be either sunlit el,i or shadowed es,i.
We decompose Equation (8) into two sub-equations by separating the el,i and es,i terms, resulting

in Equations (10) and (11). After spectral unmixing, the reconstructed images using Equations (8), (10),
and (11) are noted as x̂l,s, x̂s, and x̂l , respectively. Both sunlit and shadowed pixels can be reconstructed
with Equation (8), which contains both el,i and es,i terms. Shadowed pixels can be reconstructed with
Equation (10), while sunlit pixels can be reconstructed with Equation (11) with small reconstruction
errors through spectral unmixing. Therefore, in a B-dimensional space spanned by B spectral bands,
the Euclidean distance ds between x̂l,s and x̂s is small in shadowed pixels and large in sunlit pixels.
On the other hand, the Euclidean distance dl between x̂l,s and x̂l is large in shadowed pixels and small
in sunlit pixels. We therefore compute a sunlit factor map pixel by pixel according to the equation ds

dl+ds
.

The sunlit factor map ranges from 0 to 1. In this paper, we use two fixed thresholds set as thre1 = 0.1
and thre2 = 0.9, respectively. When sunlit factor values are smaller than thre1, pixels are assumed to
be pure shadowed pixels. When sunlit factor values are larger than thre2, pixels are assumed to be
pure sunlit pixels.

x =
p

∑
i=1

a_si · e_si (10)

x =
p

∑
i=1

a_li · e_li +
p−1

∑
i=1

p

∑
j=i+1

a_li · a_lj · e_li · e_lj (11)
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3. Dataset

We analyze six subsets from the scenes acquired over Oberpfaffenhofen, Bavaria, Germany
between 8:42 and 8:56 in the morning (Central European Summer Time (CEST)) on 4 June 2018 with
a HySpex VNIR sensor [53] flying at an altitude of 1615 m above ground level, resulting in a ground
sampling distance of 0.7 m (Figures 3 and 4). The image comprises 160 spectral bands ranging from 416
to 988.4 nm and has been atmospherically corrected using ATCOR [54]. After removing water vapor
bands, a total of 101 bands have been kept for further processing. Six subsets consist of common ground
objects, such as buildings, grass, and trees. The workflow for all six subsets is kept unaltered, including
the fourth containing a large pond of water, for which no additional water mask was used. Such targets
are usually challenging for this kind of application, as water can be confused with shadows due to
its low albedo. A spectral library is given as an input by manually selecting pure pixels of relevant
materials in sunlit regions for each subset (second row in Figure 4). In addition, ten pairs of pixels have
been selected in the experiment to compute parameters k1, k2, and k3 in Equation (6). We solve the
parameters k1 = 1.296, k2 = 6.068, and k3 = 0.442 according to Equation (6) as described in Section 2.1,
and these parameters are assumed to be constant for all the processed subsets in this paper.

1

2

3

4

5

6

Figure 3. Six subsets selected from scenes acquired with similar acquisition conditions in the study
area of Oberpfaffenhofen, Bavaria, Germany.subset 1imageendmember subset 2 subset 3 subset 4 subset 5 subset 6400 500 600 700 800 900wavelength (nm)00.10.20.30.40.50.6re� ectance400 500 600 700 800 900wavelength (nm)00.050.10.150.20.250.30.350.40.45re� ectance400 500 600 700 800 900wavelength (nm)00.10.20.30.40.50.6re� ectance400 500 600 700 800 900wavelength (nm)00.050.10.150.20.250.30.350.40.450.5re� ectance400 450 500 550 600 650 700 750 800 850 90000.10.20.30.40.50.6 wavelength (nm)re� ectance400 450 500 550 600 650 700 750 800 850 90000.050.10.150.20.250.30.350.40.450.5re� ectance wavelength (nm)

Figure 4. Six subsets with manually selected sunlit endmembers.
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4. Results

4.1. Reconstruction Error

We compare our proposed mixture model in Equation (8) with two well-known models,
i.e., the linear mixture model (LMM) [55] and the Fan model [50]. The mean reconstruction errors are
computed for each subset. For an image element x in an input image and its reconstruction x̂ achieved
through spectral unmixing, the reconstruction error R(x, x̂) is computed as:

R(x, x̂) = ‖x− x̂‖2 (12)

The mean reconstruction error is then computed as the mean value of reconstruction errors
for all pixels in one subset. In addition, we individually compute mean reconstruction errors for
sunlit and shadowed regions. Table 1 shows mean reconstruction errors in subsets 1 to 6. In sunlit
regions, we observe a small change of errors among the three models, where the difference of errors
remains within 0.04. Compared with the Fan model and the proposed model, the LMM model
presents slightly higher errors in sunlit regions. This indicates that the proposed model shows similar
reconstruction results with other models in sunlit regions. However, our model exhibits significant
improvements in shadowed regions, yielding considerably lower errors with respect to the other
two models. This improvement confirms that our method can effectively model shadowed pixels.

Table 1. mean reconstruction errors for six subsets.

Subset Region LMM FAN Proposed

1
sunlit regions 0.113 0.083 0.077

shadowed regions 0.414 0.421 0.026
both 0.191 0.171 0.064

2
sunlit regions 0.088 0.077 0.071

shadowed regions 0.209 0.210 0.021
both 0.114 0.106 0.060

3
sunlit regions 0.092 0.090 0.081

shadowed regions 0.708 0.738 0.023
both 0.290 0.298 0.062

4
sunlit regions 0.059 0.044 0.039

shadowed regions 0.099 0.100 0.018
both 0.064 0.052 0.037

5
sunlit regions 0.088 0.079 0.063

shadowed regions 0.0685 0.732 0.030
both 0.199 0.200 0.057

6
sunlit regions 0.126 0.108 0.117

shadowed regions 0.156 0.158 0.025
both 0.132 0.118 0.084

4.2. Spectral Distance

An important criteria of shadow restoration is the spectral distance between sunlit and shadowed
pixels belonging to the same material. Ideally, the reflectance is an intrinsic property of materials,
and should not change between sunlit and shadowed areas. Thus, the spectral distance between sunlit
and shadowed pixels for one material in restored images should be significantly smaller than in the
input images. In this paper, we compute the spectral distance using ‖xl − xs‖2 for the input images
and ‖x̂l − x̂s‖2 for the restored images, respectively.
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We select pairs of sun-shade pixels in each subset, as shown in the first row of Figure 5. For each
pair of pixels, the yellow and cyan markers represent sunlit and shadowed pixels, respectively.
Both markers in each pair are close to each other and to the shadow boundary, so we assume that
the selected sunlit and shadowed pixels belong to the same material. The right column of Figure 5
shows the spectral distance between sunlit and shadowed pixels for each pair of pixels on the left
column. The bars in blue and orange represent the spectral distances computed from the original and
restored images, respectively. After shadow restoration, the spectral distances decrease significantly.
One exception is represented by the sixth sample of subset 4, where the spectral distance increases by
0.1 after shadow restoration. This sample belongs to water, for which reflectances are small in both
sunlit (lower than 0.035) and shadowed regions (lower than 0.025), as is shown in Figure 6. In addition,
the shadowed water pixels are affected by nonlinear effects known to be relevant in water, and are
shadowed also by trees. This causes the restored pixels to contain a small abundance value of the
material “trees”, in the spectral range known as the red edge (Figure 6).image subset 1 subset 2spectral distance subset 3 subset 4 subset 5 subset 61 2 3 4 5 6 7 8 9 10samples00.20.40.60.811.21.41.61.8spectral distance 1 2 3 4 5 6 7 8 9 10samples00.20.40.60.811.21.4spectral distance 1 2 3 4 5 6 7 8 9 10samples00.20.40.60.811.21.41.61.8spectral distance 1 2 3 4 5 6 7 8 9 10samples00.511.522.5spectraldistance 1 2 3 4 5 6 7 8samples00.20.40.60.811.21.41.6spectral distance 1 2 3 4 5 6 7 8 9 10samples00.511.522.5spectral distance

Figure 5. Comparison of spectral Euclidean distance between input and restored images. First column:
the six subsets considered. Second column: spectral distance of up to 10 pairs of samples in each
subset (input and restored images in blue and orange, respectively).400 500 600 700 800 900wavelength (nm)0.010.0150.020.0250.030.035reectance

(a)

400 500 600 700 800 900wavelength (nm)0.030.0350.040.0450.050.0550.060.065reectance
(b)

Figure 6. Mean reflectance of water regions in subset 4 of Figure 5. The blue and red color represents
mean reflectance of sunlit and shadowed pixels, respectively. Pixels are selected from (a) the input
image and (b) the restored image for subset 4.

4.3. Restoration and Classification Results

Figure 7 compares input and restored images, along with their classifications. A total of 6565
training samples are manually selected from sunlit regions, while a total of 5927 test samples
are selected in comparable quantities from both sunlit and shadowed regions. There are seven
classes in six subsets, including tree, grass, impervious, bare soil, tiled roof, objects painted in red,
i.e., red material, and water. As an example, Figure 8 reports a detailed comparison of pixel-wise
classifications highlighting improvements after shadow restoration. The hyperspectral images used
share the same acquisition and solar zenith angles. Therefore, we cannot validate our restored images
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with additional acquisitions with shadows occupying smaller areas. As an alternative, we compare the
results with Google Earth images at same locations with the acquisition date of 10 July 2016 in Figure 9,
with the assumption that most ground objects did not change within a two years time span.tree grass impervious bare soil tiled roof red materials water

Figure 7. Rows: Six subsets. First column: input images; second column: restored images; third column:
classification maps of the input images; last column: classification maps of the restored images.

The classifications of the input images are inaccurate for most of the shadowed regions. When the
water class is not present in a subset, shadowed impervious surfaces are mostly classified as vegetation
(1, 3, and 5) or tiled roof (subset 2). When water pixels are included in the training samples (subset 4),
most of the shadowed regions are classified as water. The tree and grass pixels, both in input and
restored images, are mostly classified as vegetation because the discriminative “red edge” feature
typical of vegetation is visible also in shadowed areas. In addition to large and homogeneous areas,
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smaller objects are also recovered in shadowed regions. For example, subset 3 contains trees in the
shadow, with tree crowns becoming visible in the restored image. A white car on the left side of the
“H”-shape building in subset 3 is an example for other isolated objects being restored. Compared to
white and red cars, dark objects, e.g., black cars, are considered as shadowed pixels in our proposed
framework, as their reflectance values are small and comparable with shadowed pixels. In subset 3,
these are restored as impervious surfaces.

Impervious surfaces shadowed by trees are sometimes classified as vegetation (e.g., on the top left
side in subset 1). When pixels are shadowed by trees, especially in deep shadows, their spectra contain
the “red edge” feature, due to incoming light interactions with the nearby trees. Thus, the abundance
values of vegetation at these impervious surfaces are larger than zero, resulting in a mixture of
impervious and vegetation materials in the reconstruction.

Table 2 presents the overall accuracies (OA) and Kappa (K) values of classification results.
Both figures of merit increase by more than 10% in subsets 2, 4, 5, and 6, and increase by more
than 20% in subsets 1 and 3. The increase in performance is due to the improved classification results
in shadowed regions.

Table 2. Comparison of classification accuracies using input and restored images.

Data Input Restored

subset 1
OA = 73.472%

K = 0.552
OA = 95.366%

K = 0.927

subset 2
OA = 82.203%

K = 0.715
OA = 93.553%

K = 0.883

subset 3
OA = 55.0%

K = 0.366
OA = 93.939%

K = 0.880

subset 4
OA = 84.495%

K = 0.799
OA = 95.138%

K = 0.937

subset 5
OA = 80.340%

K = 0.703
OA = 90.170%

K = 0.852

subset 6
OA = 85.373%

K = 0.80
OA = 93.284%

K = 0.908

(a) subset 2 (b) subset 2 (c) subset 3 (d) subset 3

(e) subset 4 (f) subset 4

Figure 8. Comparison of classification results in Table 2 for input images (a,c,e) and restored images
(b,d,f) in subsets 2, 3, and 4. Correctly and incorrectly classified areas are marked in cyan and magenta,
respectively.
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1 2

(a) subset 1

1

2

(b) subset 2

1

2

(c) subset 3

1

2

(d) subset 4

1

2

(e) subset 5

1

2

(f) subset 6

Figure 9. Comparison between restored subsets and Google Earth images. For each subset, on the
left: input image with two selected regions of interest; rows on the right: regions of interest from the
restored image and screenshots from Google Earth data in which shadowed areas are partially sunlit.

4.4. Sunlit Factor Map

Sunlit factor maps in Figure 10 represent an additional output of the proposed framework.
The values range from 0 to 1. Instead of a binary mask, Figure 10 shows a smooth transition
between sunlit and shadowed areas, yielding a more realistic representation of shadows. In this paper,
we set two thresholds thre1 = 0.1 and thre2 = 0.9 to identify pure shadowed pixels (value < thre1)
and pure sunlit pixels (value > thre2). The values between thre1 and thre2 are regarded as transition
areas between sunlit and shadowed pixels, i.e., shadow boundaries. When an area is shadowed by
man-made objects, i.e., buildings, the transition areas are smaller. When an area is shadowed by
vegetation, i.e., trees, the shadow boundaries span larger regions.

4.5. The F Parameter

For a pixel on the ground surface, the diffuse solar irradiance come isotropically from the sky [48].
For a given location and acquisition time, the proportion of diffuse to direct solar irradiance is constant.
However, at a shadowed pixel where the sky is partially occluded, the diffuse solar irradiance decreases
because the pixel can not see the sky from all directions. The F parameter (Figure 11) represents
the scale of the proportion of diffuse to direct solar irradiance in Equation (5). We set F values
at sunlit pixels to zeros, as F is relevant for the shadowed terms in Equation (8). The F values
remain approximately homogeneous within one shadowed region and slightly increase on the shadow
boundaries. Among different shadowed regions, pixels shadowed by vegetation show moderately
larger values with respect to pixels shadowed by man-made objects.
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Figure 10. Sunlit factor maps ranging from 0 to 1. Values smaller than thre1 are considered as pure
shadowed pixels. Values larger than thre2 are regarded as pure sunlit pixels. For each subset, top:
sunlit factor map marked with the region of interest; bottom: zoomed-in image of the region of interest.
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Figure 11. The F parameter with the range of values from 0 to 1.
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5. Discussion

5.1. Level of Automatism

The framework runs automatically giving as input a hyperspectral image, the selected
endmembers, and the relevant parameters. This implies that our method so far depends on manually
selected endmembers, as the input spectral library is composed by pure pixels selected in sunlit regions
exclusively. However, to the best of our knowledge, existing endmember extraction methods either
do ignore shadowed regions, or regard shadowed regions as an additional dark endmember. Thus,
the extracted endmembers usually contain pixels in shadowed regions or on the shadow boundaries,
which cannot be used in our framework. In addition, the input spectral library should consider the fact
that the observed values of the same material in hyperspectral images may vary, due to the spectral
variability effect [56], which has been taken into account by manually selecting endmembers.

An endmember extraction method that excludes shadowed regions and shadow boundaries
would not only help our specific framework, but also yield a more consistent physical representation of
a scene, as the reflectance of a specific material should not change according to illumination conditions.
Therefore, we introduce a simple but effective way of extracting endmembers automatically by taking
into account shadows.

A straightforward way of selecting sunlit pixels is thresholding. In our experiment in subset 1,
all the pixels having mean reflectance larger than an empirical threshold (set to 0.08 in this
paper) are selected as candidate sunlit pixels. However, this may include some pixels located at
shadow boundaries. Thus, a Canny edge detector [57] has been applied to detect and remove all
boundary pixels from sunlit pixels candidates. In addition, considering the endmember variability
effect, we apply the method in [58] to extract endmember bundles based on Vertex Component
Analysis (VCA) [59]. By merging similar endmembers, we show the automatically extracted
endmembers in Figure 12a. By using endmembers reported in Figure 12a and our proposed framework,
our results are shown in Figure 12b,d,e. Both restoration and computed parameters are visually
similar to the results obtained by employing the manually selected endmembers. Figure 12c depicts
the Euclidean distance of the images of subset 1 restored by manual and automatic endmember
extraction, having a maximum value of 0.13. This slight difference is due to the slightly different sets
of endmembers selected.

5.2. Computational Cost

All algorithms were developed in MATLAB and run on an Intel Core i7 −8650 U CPU, 1.90 GHz
machine with 4 Cores and 8 Logical Processors. We use the MATLAB function FMINCON to perform
nonlinear optimization. The processing time depends on the number of input pixels and endmembers.
If a shadow map is unknown, the algorithm requires 2445 s to restore the image subset number 1,
having a size of 181× 245 pixels. Otherwise, the algorithm needs 1031 additional seconds to produce
a sunlit factor map. On the other hand, if a shadow detection map is given, then the algorithm
processes only shadowed pixels, requiring 948 s for shadow restoration.

5.3. Benefits and Challenges

The proposed framework shows promising results on detecting shadows and restoring spectral
information in shadowed regions for hyperspectral imagery.

Methods proposed for shadow restoration in RGB and multispectral images are difficult to adapt
to hyperspectral images, as their characteristics pose specific challenges [27,60]. For example, shadow
removal methods may use ground images [44,60] as training and test data, which would not work in
the case of airborne images. In addition, simple scenes are often used as test data [31], where a single
shadowed region exists in one test image. This assumption often does not hold for airborne images
containing more complicated scenarios. The proposed framework contributes to the open problems in
the following aspects.
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Figure 12. Shadow detection and restoration using automatically extracted endmembers in subset 1.
(a) Extracted endmembers; (b) restored image; (c) Euclidean distance between restored images using
manually and automatically extracted endmembers; (d) sunlit factor map; (e) F parameter.

As a first aspect, some previous works assume diffuse solar irradiance to have zero [17] or constant
values [32,34] across all wavelengths. These assumptions simplify real scenarios and may introduce
errors in modeling shadowed spectra. The proposed framework considers diffuse irradiance and
multiple reflections of direct solar irradiance as the illumination sources in shadowed regions, following
physical assumptions. Second, several previous studies develop shadow detection and restoration
methods in two separate frameworks, indicating that accurate shadow detection results are required
to achieve satisfying restoration [30,42]. Our proposed framework computes shadow detection maps
based on the residual analysis of pixel reconstruction through spectral unmixing, thus it does not
require a shadow map as additional input. Third, a soft shadow detection yields a more realistic
representation of shadows with respect to a binary shadow mas as, from a physical point of view,
shadow boundaries are usually neither pure sunlit nor pure shadowed pixels. In addition, soft shadow
masks allow some flexibility as they can be thresholded by an user to generate conservative or complete
binary masks. Fourth, our framework does not require a large amount of training data, usually scarcely
available and expensive to derive.

The proposed framework still contains several open problems. First, despite the correct
classification results, we observe spectral distortions of shadowed pixels for some impervious surfaces,
if slightly different materials are present in the scenes. An area in subset 2 (Figure 13) shows
an impervious surface shadowed by a building. The relative spectra appear distorted with respect
to the neighboring sunlit pixels belonging to the same material, as it is assumed that pixels on
opposite edges of a shadow boundary usually exhibit similar reflectance spectra. Thus, we investigate
the abundance maps of endmembers dominating the sunlit regions (in Figure 13c) and shadowed
regions (in Figure 13d). In Figure 13e, we show the reflectances of the endmembers corresponding to
Figure 13c as a solid line and Figure 13d as a dashed line, respectively. The spectral angle between
the two reflectances in Figure 13e is equal to 0.035, indicating that the related two materials are
highly similar. In addition, the spectral angle assumes a value of 0.032 between two reflectances in
sunlit and shadowed pixels marked with a “+” in the restored image (Figure 13f). This implies that,
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when the spectral angle between two spectra is small, the restored results may not distinguish the
related materials.

Second, endmembers used in the framework do not include black objects, such as cars in subset 3,
because spectra of black objects are similar to shadowed pixels. Thus, the proposed framework regards
black objects as shadows, as their sunlit factor values are low (Figure 10).

Third, although the sunlit factor values of water regions are higher with respect to shadowed
pixels (Figure 10d), water can still be confused with shadows due do its low albedo. Thus, distl and
dists for sunlit water pixels are comparable and considerably smaller than 0.1.

Fourth, local texture in restored shadowed regions can be lost (Figure 9f), or present a high level
of noise (Figure 9b). These examples of information loss are partly due to the signal to noise ratio for
shadowed pixels being lower with respect to sunlit pixels.
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Figure 13. An example of spectral inconsistency in the neighborhood of a shadow boundary.
Subset images from (a) the input image of subset 2 and (b) the restored image of subset 2; (c) abundance
map for a material dominating the sunlit region; (d) abundance map for a material dominating the
shadowed region; (e) endmembers corresponding to the abundance maps of (c) as a solid line and
(d) as a dashed line; (f) reflectance of sunlit (blue) and shadowed (red) pixels in (b).

6. Conclusions

In this paper, motivated by the fact that reflectance values for a given material should be
independent from illumination conditions, we have proposed a novel framework for shadow detection
and restoration of hyperspectral images based on nonlinear unmixing. The framework regards pure
sunlit and shadowed spectra as sunlit and shadowed endmembers, respectively. Pure sunlit spectra
are manually selected from the input images, while pure shadowed spectra are computed from
sunlit spectra based on physical assumptions. Subsequently, the algorithm solves abundances related
to sunlit and shadowed endmembers through a nonlinear mixture model. Then, we reconstruct
restored images pixel-wise using abundance maps and only the sunlit endmembers. As a byproduct,
the proposed framework can generate sunlit factor maps that can locate sunlit pixels. Finally,
sunlit pixels in the restored images are switched back to their original values. The proposed framework
is tested on real airborne hyperspectral images both by visual analysis and quantitative assessments.
Compared with two well-known mixture models, i.e., the linear mixture model (LMM) and the Fan
model, our proposed mixture model can reconstruct shadowed pixels with significantly lower errors.
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After restoration, shadowed regions become visually alike to adjacent sunlit regions, and exhibit
similar reflectance values. In addition, classification results are visually more convincing and
accuracies increase by more than 10% for the investigated subsets after shadow restoration. The derived
sunlit factor maps can produce soft shadow masks, representing natural transitions around shadow
boundaries. We also demonstrate the possibility of detecting and including new materials in the input
endmember library.

The work carried out so far raises open issues which are of interest for further investigation.
Embedding spatial information may decrease the spectral distortion between highly similar materials
in the neighborhood of shadow boundaries, where materials exhibit low variation in spectral shapes
and large differences in absolute magnitude. In addition, black objects and water regions require
further investigation. Future works could consider spectral bands that can increase the distinction
between shadow and dark objects. Finally, the nonlinear mixture model in this paper allows the
interactions of up to two endmembers. Higher-order nonlinear models could be included to model
more accurately the physical interactions of the different light sources in the scene.
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