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and André L. F. de Almeida, Senior Member, IEEE

Abstract—Reliable signal acquisition with low computational
complexity is an important design objective for the evolution
of global navigation satellite systems (GNSS). Most GNSS sig-
nals consist of long pseudorandom noise (PRN) codes whose
acquisition is expensive in terms of memory, computation time,
and energy. As these resources are particularly scarce in the
emerging mass-market user segment, cyclostationary pilot signals
with short PRN codes are an attractive option to keep the
number of acquisition search bins low. However, reducing the
code length degrades the acquisition performance, as multiple
access interference (MAI) becomes more pronounced and can
lead to an increased false alarm rate. We demonstrate that, quite
different from stationary MAI, cyclostationary MAI does not
affect each bin of the search space uniformly, and is therefore
not easily modeled with the well-known spectral separation
coefficient (SSC). We propose a new randomized SSC (SSC-R)
based on code/Doppler interference functions, which can be used
for simple and accurate acquisition performance evaluation. As
an application example, we demonstrate how the SSC-R can be
utilized in signal design to minimize the PRN code length under
an acquisition performance constraint. We conclude that feasible
PRN code lengths for GNSS can be on the order of 300-700.

Index Terms—Global navigation satellite system (GNSS),
global positioning system (GPS), coarse/acquisition (C/A), self-
interference.

I. INTRODUCTION

S IGNAL acquisition is a resource-hungry process for re-
ceivers of global navigation satellite systems (GNSS). A

GNSS satellite transmits pseudorandom noise (PRN) code and
navigation data which arrive at the receiver with low signal-
to-noise ratio, unknown code-phase, and unknown Doppler
frequency. To acquire such a signal, the receiver must correctly
detect that the signal is actually present at the receive antenna,
and estimate the two unknown synchronization parameters
code-phase/Doppler with coarse resolution [1]. The necessary
2-D search for correlation over a set of code-phase/Doppler
hypotheses (bins) requires considerable computation time (if

Manuscript submitted December, 2020. This work has been carried out
within the framework of the project “R&D for maritime safety and security
and corresponding real time services” led by the Program Coordination
Defence and Security Research within the German Aerospace Center (DLR).
This work was also supported in part by CNPq - Brazilian National Research
Council - under grant 309248/2018-3 PQ-2.

(Corresponding author: C. Enneking.)
C. Enneking is with the German Aerospace Center (DLR), Oberpfaffen-

hofen, Germany (e-mail: christoph.enneking@dlr.de). A. L. F. de Almeida and
C. Enneking are with the Federal University of Ceará (UFC), Fortaleza, Brazil
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bins are searched sequentially), memory (if bins are searched
in parallel), and in any case energy [2]–[5]. Besides these
complexity measures, the global probability of false alarm
(GPF) and the global probability of detection (GPD) indicate
the statistical reliability of the acquisition in the presence
of nuisances such as noise, interference, or navigation data
transitions [6], [7]. Together, GPF and GPD form the receiver
operating characteristic (ROC). In case of a false alarm or
missed detection, even more receiver resources are consumed,
e.g. due to false initialization of tracking loops or due to an
acquisition restart.

The computational expense of GNSS signal acquisition
poses a major challenge especially to mass-market consumer
electronics such as mobile phones, asset trackers, or internet of
things devices [4], [5], [8]. Typically, such receivers are only
occasionally prompted to provide positioning or navigation, so
that they spend much of their duty cycle in acquisition mode.
Moreover, they are built on very small integrated circuits with
limited memory, but are expected to acquire several signals
within few seconds and to economize the precious battery
energy. A compromise between memory and computation time
can be achieved, using serial, parallel, or hybrid search tech-
niques [9], [10]. The consumed energy, however, is essentially
a constant proportional to the number of bins and cannot be
traded off at the cost of some other resource. Despite the
widespread use of assisted GNSS [5], [11], which can help to
exclude some regions of the search space a priori, the overall
number of bins to be searched is still considerable, especially
if the signal’s PRN code is long.

(Quasi-)Pilot GNSS signals have been designed [12]–[15] or
re-designed [16] to address emerging mass-market user needs.
So far, these designs have focused on the use of very low data
rates (0-50 Hz) to avoid sensitivity loss due to data symbol
transitions, i.e., they enhance the GPD. The successful GPS L1
C/A signal (50 Hz data / 1023 chips PRN code) has served
as a blueprint in most of these considerations. Interestingly,
another apparently obvious signal design option has not yet
been evaluated systematically, and that is the reduction of the
PRN code length. The decisive feature which makes L1 C/A
an extremely attractive acquisition signal is not its low data
rate, but the combination of a low data rate with a relatively
short PRN code, as is widely agreed [5], [11], [16]. This
feature leads to a low number of search bins and a decent
ROC performance, and is currently offered by no other GNSS
service, which gives L1 C/A a competitive edge in consumer
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GNSS to the present day. As the authors of [16] point out, this
feature (more precisely, the repetition of more than one PRN
code period during the transmission of a single data symbol)
has a potentially hazardous implication though. Signals with
this feature cease to be stationary and are especially vulnerable
to multiple access interference (MAI) caused by other satellites
transmitting the same service. It is known that MAI can create
a detectable false correlation peak in near-far scenarios [17].
Under nominal received power levels, it needs to be ensured
qua design that the ROC is not degraded excessively by MAI.

The theory of spectral separation coefficients (SSCs) is a
powerful tool to model the MAI between any two signals,
in particular, MAI between a locally generated PRN code of
interest and another interfering PRN. While the standard SSC
as originally proposed by Betz [18], [19] is only accurate
for stationary signals, more accurate versions of the SSC
have been proposed which also work well with GPS L1
C/A and similar cyclostationary signals [20]–[24]. While these
proposed modifications of the SSC vary slightly in form or
value, they agree in that the SSC shoud be modeled as a
function of the involved signals’ Doppler frequencies, and
possibly even more channel parameters such as (fractional)
code-phase. Therefore, they all have in common that they
depend on channel parameters and treat these as deterministic,
which is why we summarize these variants under the term
deterministic SSC (SSC-D). Computed over an acquisition
search grid, the SSC-D would depend on more than a few
parameters, and can therefore not readily be applied to model
the ROC. Such a straightforward application of the SSC-D
would simply require considerable processing, as the MAI
from a set of interfering satellites on each local replica of the
2-D search space would have to be evaluated explicitly. Doing
this during a system optimization process, in which the PRN
code length is a design parameter, would be computationally
prohibitive.

In this work, we propose a methodology to assess the impact
of cyclostationary MAI on the ROC for any given PRN code
length. Our approach is based on the SSC-D, but a randomized
version thereof called SSC-R. The SSC-R approximates the
SSC-D as a random variable (RV). A key assumption is that
MAI can be approximated as independent and identically dis-
tributed (i.i.d.) RVs over all bins. This approximation obviates
the need to compute the SSC-D explicitly for each bin, but
allows to work with one representative probability density
function (PDF) instead. Our approach is a trade-off between
the accuracy of the SSC-D and the simplicity of the SSC,
simple enough to use for optimization of system parameters.
As an application example, we demonstrate how the proposed
methodology can be used to minimize the PRN code length,
while ensuring constraints on reliability and sensitivity. For
simplicity, we only consider intrasystem MAI in this work
(all users have the same symbol rate and code length), but the
approach can be easily generalized to intersystem MAI using
[22].

The rest of this paper is organized as follows. In Section II,
we define the acquisition system, consisting of the received
signal model, the generation of decision statistics, and the
search strategy. In Section III, we review SSC and SSC-D,

develop the novel SSC-R, and derive models for the probabil-
ity of false alarm under either SSC version. In Section IV, we
model the probability of detection, taking into account MAI,
symbol transitions, and finite search resolution. In Section V,
the validity of the SSC-R is demonstrated at the example of
numerical simulations. Finally, we present an application of
the proposed model for signal design in Section VI.

II. SYSTEM MODEL

We consider K satellite signals received over an additive
white Gaussian noise (AWGN) channel, where one signal is
to be acquired and the remaining K−1 signals are interference.
For P code bins and Q Doppler bins, we describe the
processing steps for the generation of PQ decision statistics
based on the same set of input baseband samples. An arbitrary
but fixed number of coherent and noncoherent summations
is considered. Subsequently, we briefly describe the search
strategy for serial and parallel search.

A. Baseband Signal

The received signal in complex baseband notation is

r(t) =

K∑
k=1

√
Pkxk(t) + w(t), (1)

where the kth satellite contributes the signal xk(t) with
power Pk, while the real and imaginary part of w(t) are two
independent white Gaussian noise processes each with two-
sided PSD N0/2. A model for xk(t) is shown at the top of
Fig. 2. For k = 1, . . . ,K, the satellite signals are given as

xk(t) = ej2πνkt+jϕk

∞∑
m=−∞

sk(t−mT0 − τk)bk[m]. (2)

The parameters τk, νk, and ϕk denote to the unknown code-
phase, Doppler frequency, and carrier-phase, respectively. The
signal sk(t) is a known code waveform, which repeats with
code rate 1/T0 and is modulated by a symbol sequence
bk[m] ∈ {−1,+1}. We consider only direct-sequence code-
division multiple access waveforms of the structure

sk(t) =

Nc−1∑
j=0

ck[j]h(t− jTc), (3)

where ck[j] is a known PRN code, and h(t) is a real-
valued analog pulse shape (for instance, a rectangular pulse).
Therefore, the code period is equal to T0 = NcTc, where
Nc is the code length and Tc is the pulse duration. For
k = 1, . . . ,K, the code-phase, carrier-phase, and Doppler
frequency are assumed to be independent RVs on the in-
tervals (−T0/2, T0/2), (−π, π), and (−F0/2, F0/2), respec-
tively, with some Doppler span F0 > 0.

We introduce the pulse’s Fourier transform H(f) ,∫
R h(t)e− j2πft dt and its autocorrelation function ρh(t) ,∫
R h(τ)h(τ + t) dτ , with normalization ρh(0) = Tc. For

simplicity, we assume that the pulse satisfies the Nyquist
condition ρh(nTc) = 0 for all n = ±1,±2, . . . This condition
is fulfilled by many pulse shapes that are relevant for GNSS,
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Fig. 1. Autocorrelation of the binary symbol sequence bk[m], with symbol
boundaries every M elements. In this example, M = 20 (e.g. GPS L1 C/A).

Fig. 2. Top: kth transmitter. Bottom: ith bin decision statistic.

e.g. by all pulses which are zero outside the interval (−Tc, Tc),
or by the root-raised cosine (RRC) pulse.

The statistical properties of the PRN code ck[j] and the
symbol sequence bk[m] are an important aspect of our analy-
ses, as they can have a fundamental impact on the distribution
of MAI. We model the PRN code ck[0], . . . , ck[Nc − 1] as
a coin-flip sequence of length Nc (i.e., Nc i.i.d. binary RVs
which assume values {−1,+1} with equal probability). The
values of the symbol sequence bk[m] are equiprobable in
{−1,+1} and are not, in general, independent, as transitions
can only occur every M elements. Mathematically, this can
be expressed as bk[m] = dk[d(m− ϑk)/Me], where dk[m] is
an infinite coin-flip sequence, ϑk ∈ {1, . . . ,M} is a uniformly
random initial symbol-phase, and M ∈ N. The autocorrelation
of such a symbol sequence (for random ϑk) is a triangular
sequence [20], [24] as shown in Fig. 1. The PRN code
ck[j] and the symbol sequence bk[m] are assumed mutually
independent, and also independent for k = 1, . . . ,K. Note that
we model both as truly random, although in fact PRN code
will always and symbols (e.g. secondary code) may sometimes
be pseudorandom.

It is important to distinguish between the symbol rate
1/(MT0) and the code rate 1/T0. A few typical setups are
worth mentioning: (i) balanced: M = 1; (ii) quasi-pilot:
M � 1; (iii) pure pilot: M →∞. The balanced configuration
(i) is typical for modernized civil GNSS services such as the
Galileo Open Service [25], and will reduce the autocorrelation
in Fig. 1 to a unit impulse. In this work, we will focus on (ii)
and (iii), as they are the most attractive options for acquisition
signals, and the most prone to MAI.

B. Decision Statistics

Without loss of generality, we consider k = 1 as the signal
of interest (SOI). The acquisition task is specified as follows.
Decide for either of the following hypotheses:
• H0: the SOI is absent (P1 = 0);
• H1: the SOI is present (P1 > 0);

additionally, if the decision is taken for H1, select a coarse
estimate for τ1 from a set of code-phase candidates Xτ , and
a coarse estimate for ν1 from a set of Doppler candidates Xν .

These candidate sets form a 2-D grid of bins with P code-
phases and Q Doppler frequencies, distributed uniformly over
the uncertainty intervals (−T0/2, T0/2) and (−F0/2, F0/2),
respectively. Thus we have

Xτ =

{
−T0 + ∆τ

2
,−T0 + 3∆τ

2
, . . . ,

T0 −∆τ

2

}
, (4)

Xν =

{
−F0 + ∆ν

2
,
−F0 + 3∆ν

2
, . . . ,

F0 −∆ν

2

}
, (5)

with code-phase spacing ∆τ = T0/P and frequency spacing
∆ν = F0/Q. We use a linear index i ∈ {1, . . . , PQ} to refer
to the 2-D bin (τ (i), ν(i)) ∈ (Xτ ×Xν). We define the correct
bin with index i = 1 as the bin that deviates the least from
the true parameters in the sense that

|τ (1) − τ1| 6 ∆τ/2 and |ν(1) − ν1| 6 ∆ν/2. (6)

It is easily checked that this assignment is unique, i.e., there is
always one correct bin with probability one.1 The remaining
bins i = 2, . . . , PQ are in no particular order yet.

For each bin i, an associated statistic Z(i) is generated
as follows. First, the receiver performs the correlation of the
received signal r(t) with the ith local replica

x(i)(t) , ej2πν
(i)t

∞∑
n=−∞

s1
(
t− nT0 − τ (i)

)
, (7)

The structure of x(i)(t) is the same as of the SOI x1(t), except
from the modulating symbol sequence, which is assumed
unknown to the receiver. Correlation with the local replica
can thus also be viewed as matched filtering with respect to
pulse shape and PRN code. Correlating during the coherent
integration time T leads to the correlator output

Y (i)[`] =
1√
T

∫ (`+1)T

`T

x(i)(t) r(t) dt (8)

for coherent subintervals ` = 0, . . . , L− 1. We consider only
integration times which are an integer multiple of the code
period, i.e., T = NT0. Secondly, the L correlator outputs are
noncoherently combined

Z(i) =

L−1∑
`=0

∣∣∣Y (i)[`]
∣∣∣2. (9)

The total dwell time for the generation of Z(i) is LT . One
possible receiver implementation is described at the bottom of
Fig. 2.

1Special cases, where the true code-phase and/or Doppler frequency lie
exactly at a bin boundary, have probability measure zero.
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C. Decision criterion

We consider only acquisition strategies based on threshold
comparison, implemented either as serial or parallel search.

1) Serial search: Determine the starting index j ∈
{1, . . . , PQ} (uniformly random or according to prior knowl-
edge). Serially for i = j, j− 1, . . . , 1, PQ, PQ− 1, . . . , j+ 1,
compare the statistic Z(i) to a fixed threshold λ > 0. As soon
as Z(i) > λ, immediately accept H1, return the bin i, and
terminate the search.2 If no statistic has exceeded the threshold
after PQ comparisons, accept H0.

2) Parallel search: Compare all statistics to the threshold in
parallel. Determine the subset J of all bins j ∈ {1, . . . , PQ}
for which Z(j) > λ. If J is non-empty, accept H1 and return
the bin i = arg maxj∈J Z

(j) as code-phase/Doppler estimate.
Otherwise, accept H0.

III. PROBABILITY OF FALSE ALARM

Let H0 be the true hypothesis. We say that a bin false alarm
occurs in the ith bin if Z(i) > λ for any i ∈ {1, . . . , PQ}
(regardless of whether the actual search is terminated before
reaching the ith bin). Moreover, a global false alarm is raised
if at least one bin false alarm occurs (in that case, the receiver
will erroneously decide for H1). Let the unknown probabilities
of these events be denoted by

• the bin probability of false alarm (BPF) P (i)
f (λ);

• the global probability of false alarm (GPF) PF (λ).

Clearly, these probabilities do not depend on whether serial or
parallel search is used [26].

In the following Sections III-A to III-D, we discuss four
different models for the approximation of BPF and GPF,
starting from a very simplistic AWGN-only model, moving
on to the state-of-the-art models based on SSC and SSC-D,
and finally presenting the novel model based on randomized
SSCs.

All four models will make use of the following parame-
terized cumulative distribution function (CDF). Let the RV
Z be the sum of the squares of L i.i.d. circularly-symmetric
complex Gaussian (CSCG) RVs with mean zero and variance
N0. Then Z has the CDF

FZ(z;N0) , 1− e−
z

N0

L−1∑
`=0

1

` !

(
z

N0

)`
, z > 0, (10)

This is a scaled version of the CDF of a central χ2-distribution
with 2L degrees of freedom.

A. AWGN Performance

We begin with the BPF and GPF for the case of AWGN
only, neglecting MAI. In the absence of MAI, it can be shown
that Y (i)[1], . . . , Y (i)[L] are i.i.d. CSCG with mean zero and

Var
[
Y (i)[`]

]
= N0. (11)

2Note that the search bins, for which we had defined no particular order
yet, are simply indexed according to the serial search index sequence.
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Fig. 3. Pulse shapes: rectangular (REC), binary offset carrier (BOC), root-
raised cosine (RRC) with zero roll-off factor.

A short proof for (11) is given in the Appendix. Now the
probability that Z(i) > λ can be expressed in terms of the
parameterized CDF (10) as

P
(i)
f (λ) = 1− FZ(λ;N0), (12)

and the GPF is simply

PF (λ) = 1−
(
FZ(λ;N0)

)PQ
. (13)

B. Standard SSC

If MAI is present in addition to AWGN, this results in an
increased correlator output variance

Var
[
Y (i)[`]

]
= N0 + I0, (14)

where the contribution of MAI is

I0 =

K∑
k=2

Ik (15)

Ik = Pk SSC. (16)

The well-known SSC in units of 1/Hz is given by [18]

SSC =

∫∞
−∞ |H(f)|4 df∫∞

−∞ |H(f)|2 df
∫∞
−∞ |H(f)|2 df

= Tc α0, (17)

where we also defined the dimensionless coefficient α0 ,
1
T 3
c

∫∞
−∞ |H(f)|4 df for reasons that will become evident later.

A proof for (14)-(17) can be found in the Appendix.
The SSC does not depend on the bin index i or any channel

parameters such as code-phase or Doppler frequency, but is
determined solely by the pulse shape. As we consider MAI
within a single service, interfering and desired signal both use
the same pulse shape, so that the notion of spectral separation
is somewhat misleading at this point. Therefore, the SSC in
(17) is also known as self-SSC. Some common pulse shapes
are shown in Fig. 3, and their self-SSCs are given in Table I.

To obtain BPF and GPF, we simply reuse results from the
pure AWGN channel, replacing N0 by N0 + I0, to obtain

P
(i)
f (λ) = 1− FZ(λ;N0 + I0) (18)

PF (λ) = 1−
(
FZ(λ;N0 + I0)

)PQ
. (19)
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Table I
COMMON PULSE SHAPES: SSC AND INTERFERENCE FUNCTION FOURIER

COEFFICIENTS

h(t) SSC α0 α1 α2

REC 2Tc/3 2/3 1/π2 1/(4π2)
BOC Tc/3 1/3 1/π2 5/(4π2)
RRC Tc 1 0 0

C. Deterministic SSC (SSC-D)

While the standard SSC model is very convenient, it is based
on the assumption that the correlator output in the presence of
MAI is still zero-mean CSCG distributed, hence fully charac-
terized by its variance (14). Works in the context of satellite
navigation have found that this is often not true, because
the variance can increase or decrease considerably when it
is computed conditioned on the signals’ Doppler frequencies
[20]–[24]. Moreover, research in terrestrial communications
indicates that a comparable (albeit more subtle) effect can
be observed when conditioning on the (fractional) code-phase
[27], [28]. While this conditioning leads to a dependency of the
variance on several channel parameters, it also improves the
quality of the CSCG approximation of the correlator output,
as was shown analytically by Zang and Ling [28], and later
verified for satellite navigation scenarios [29].

These state-of-the-art findings are summarized in the follow-
ing proposition. While these are known results and have been
published in similar form across the above mentioned works,
the detailed derivation of the combined effect of code-phase
and Doppler frequency is unique to this paper. The proposition
will also serve as a solid theoretical basis for the development
of the SSC-R model.
Proposition 1. Let the interferers’ random Doppler fre-
quencies and code-phases be contained in the vectors ν ,
[ν2, . . . , νK ]T and τ , [τ2, . . . , τK ]T , respectively. Then, the
conditional variance of the correlator output is given by the
ith effective noise floor

Var
[
Y (i)[`]

∣∣∣τ ,ν] = N0+I
(i)
0 (τ ,ν), i = 1, . . . , PQ. (20)

The contribution of MAI is given by

I
(i)
0 (τ ,ν) =

K∑
k=2

I
(i)
k (τk, νk) (21)

I
(i)
k (τk, νk) = Pk SSCD

(
τ (i) − τk, ν(i) − νk

)
. (22)

For any τ, ν ∈ R, the SSC-D factorizes as

SSCD(τ, ν) = Tc α(τ)β(ν), (23)

with a pulse interference function α(τ) and a code interference
function β(ν). These functions can be expressed as the Fourier
series

α(τ) = α0 + 2

∞∑
m=1

αm cos(2πmτ/Tc) (24)

β(ν) = β0 + 2

N−1∑
n=1

βn cos(2πνnT0). (25)

The series coefficients are given by

αm =
1

T 3
c

∫ ∞
−∞
|H(f)|2

∣∣∣∣H (mTc − f
)∣∣∣∣2 df (26a)

=
1

T 3
c

∫ ∞
−∞

ρ2h(t)e− j2π mTc t dt (26b)

βn =
(

1− n

M

)(
1− n

N

)
, n ≤ N ≤M. (27)

Proof. A proof for the results (20)-(27) is given in the
Appendix.

The SSC-D has several interesting properties, which show
that it is a generalization of the SSC:
• Like the standard SSC, the SSC-D has units of seconds

(or 1/Hz). Rather than a coefficient, it is a function of
relative code-phase and relative Doppler frequency.

• The two interference functions are dimensionless and
periodic with Tc or T−10 , respectively. They are shown
in Figs. 4, 5.

• The pulse interference function α(τ) is determined solely
by the pulse shape and the fractional part of τ/Tc.
Computation of the coefficients αm via (26a) is more
convenient for band-limited pulse shapes, while (26b)
is easier to compute for time-limited pulse shapes. For
the common pulse shapes shown in Fig. 3, the first few
Fourier coefficients are given in Table I.

• The code interference function β(ν) depends on the
fractional part of νT0, as well as on the number of
code repetitions per correlation (N ) and per symbol
(M ). Compared with α(τ), it can cause much greater
variations of the SSC-D. It assumes a maximum of
N + (1−N2)/(3M) if its argument is a multiple of the
code rate. The expression (27) appears to be new to the
literature in this form, but the special cases M = N and
M →∞ are known (e.g. [24]). In all other cases, where
N < M < ∞, the function graph of β(ν) is between
solid and dash-dotted lines of the same color in Fig. 5.

• The standard SSC is simply determined by the mean com-
ponents of the interference functions as SSC = Tcα0β0.

• The mean component of the code interference function is
always β0 = 1, which is why the effect of the important
system parameters M and N cannot be reflected by the
standard SSC.

• The standard SSC can be interpreted as the expectation
of the SSC-D with respect to the uniformly distributed τk
and νk, since E[α(τ (i)−τk)] = α0 and E[β(ν(i)−νk)] =
β0 (assuming that F0T0 � 1). Thus, E[SSCD(τ (i) −
τk, ν

(i) − νk)] = SSC and E[I
(i)
0 (τ, ν)] = I0.

• There are even some special signals for which the
SSC-D is fully equivalent to the SSC. If the pulse shape
satisfies α(τ) ≡ α0 (e.g. a RRC pulse with zero roll-off)
and the symbol rate equals the code rate (M = 1), we
have SSCD(τ, ν) ≡ Tcα0β0 = SSC = const.

We use the name effective noise floor for (20), as this name
has been established for interference measures with dimension
W/Hz that allow the use of standard AWGN performance
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formulas [30], [31]. In particular, we could use the effective
noise floors i = 1, . . . , PQ to compute very accurate BPF and
GPF for a given τ ,ν with the scaled χ2-CDF

P
(i)
f (λ|τ ,ν) = 1− FZ

(
λ;N0 + I

(i)
0 (τ ,ν)

)
(28)

PF (λ|τ ,ν) = 1−
PQ∏
i=1

FZ

(
λ;N0 + I

(i)
0 (τ ,ν)

)
. (29)

The difficulty of that straightforward approach is the necessity
to calculate not one, but PQ effective noise floors for any
given τ ,ν. Even if the simplifying assumption α(τ) ≈ α0

can be made, this will leave the problem of computing Q
effective noise floors. The following scenario shows that
the effective noise floor can vary considerably from bin to bin.

Example. Consider Fig. 6. A static receiver observes a
Walker(24/3/1) constellation [32]. Each in-view satellite trans-
mits a pure pilot signal with PRN code length Nc = 341, RRC
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Fig. 6. Variation of the effective noise floor vs. Doppler bins during a satellite
pass. The correct Doppler ν1 of the SOI is indicated by the dotted line.

pulse with zero roll-off, and chip rate 1/Tc = 1.023 MHz.
The noise floor N0 is −204 dBW/Hz, and the received powers
Pk are between −160 dBW and −152 dBW, using an ele-
vation dependent model [33]. The SOI is transmitted from
satellite k = 1, whose pass takes about five hours and
whose Doppler frequency ν1 is indicated by gray dots. The
coherent integration time is 20 ms, thus we have N = 60 code
periods per coherent correlation and M → ∞ (pure pilot).
In Fig. 6, the effective noise floor is shown as a function
of a bin’s Doppler candidate ν(i) and time. The maximum
contribution of interferer k to the effective noise floor is equal
to NPkTc ≈ −194 dBW/Hz, and occurs whenever the relative
Doppler ν(i)−νk is close to a multiple of 1/T0 = 3 kHz. This
can happen for up to three interferers at the same time for the
same Doppler bin, while most other Doppler bins experience
an effective noise floor close to the AWGN floor N0.

Such a constellation simulation approach is usually
computationally unacceptable. It requires PK evaluations
of (24) and QK evaluations of (25), in addition to the
costly computation of the overall product (29). Moreover, the
performance expressions (28) and (29) are still conditional
probabilities. As such, they may be very accurate for an
instantaneous satellite constellation, but not representative of
all possible τ ,ν.

As a final remark on the SSC-D, we learned that Proposition
1 does not capture some of the more recent findings of
Hegarty [24]: he conditioned the effective noise floor on data
bit misalignments between interferer and SOI, but averaged
over the fractional delay. By contrast, we averaged over the
former effect (implicitly, by assuming the stationarized symbol
autocorrelation in Fig. 1) but conditioned on the latter. Neither
work conditioned on both effects, which could be worth an
effort as both appear to be on the order of 3 dB. Nevertheless,
the Doppler effect remains the most pronounced by far (10 dB
and more) and tends to mask the other effects.
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D. Randomized SSC (SSC-R)

The SSC-R is an attempt to model the non-uniformity of
the effective noise floors, without having to compute each
effective noise floor explicitly with the exact conditional
formula (20), and replacing them by randomized effective
noise floors instead.

We can remove the conditioning on τ ,ν in the exact
conditional performance expressions (28) and (29) to get
rid of the dependency on relative code-phases and Doppler
frequencies. Consider any bin i ∈ {1, . . . , PQ}. For the BPF,
the law of total probability [34] states that the conditioning
can be removed by computing

P
(i)
f (λ) = E

[(
1− FZ(λ;N0 + I

(i)
0 )
)]

=
1

(F0T0)K−1

∫ F0/2

−F0/2

. . .

∫ T0/2

−T0/2

×
(

1− FZ
(
λ;N0 + I

(i)
0 (τ ,ν)

))
dτ dν

=

∫ ∞
0

(
1− FZ(λ;N0 + x)

)
fI0(x) dx (30)

denoting the PDF of the RV I0 , I
(i)
0 (τ ,ν) by fI0(x). Thus

we can either compute (30) by a (2K−2)-dimensional integral
over all possible τ ,ν or by a single integral along a PDF. To
be able to use the second (and preferable) option, we first need
to find the PDF fI0(·), or an approximation for it. This leads
to the notion of the SSC-R.

We propose to approximate I0 by a weighted sum of
randomized SSCs

I0 ≈
K∑
k=2

Pk SSCRk (31)

SSCRk , TcUkVk, (32)

where SSCRk and Uk, Vk are appropriately defined RVs to
emulate the structure of the SSC-D (23). Uk and Vk are
mutually independent and, for k = 2 . . . ,K, i.i.d. according
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Fig. 8. PDF of the MAI variance I0 for K − 1 interferers. (Scenario: REC
pulse, 1/Tc = 1.023 MHz, P2 = . . . = PK = −153 dBW, M = N = 20.)

to PDFs fU (·), fV (·), respectively. Then the PDF fI0(·) can
be constructed as follows:
• Starting from the RVs U , α(τ) and V , β(ν) for

uniformly distributed τ ∈ [0, Tc) and ν ∈ [0, T−10 ), com-
pute the PDFs fU (x), fV (x) for all possible realizations
x ≥ 0, using the law of transformation of RVs [34]. The
result is shown in Fig. 7.

• Compute the PDF fW (·) of the product W , UV . Using
that U and V are independent [34],

fW (x) =

∫ ∞
0

fV (ξ)fU (x/ξ)
1

ξ
dξ, x ≤ 0. (33)

The result is shown in Fig. 7.
• The PDF of the SSC-R is the scaled version of fW (x)

fSSCR(x) =
fW

(
x
Tc

)
Tc

. (34)

• The PDF of the weighted sum (31) of independent RVs
is obtained by the convolutions

fI0(x) =
fSSCR

(
x
P2

)
P2

∗ . . . ∗
fSSCR

(
x
PK

)
PK

(35)

An exemplary result for K = 2, 4, 8 satellites is shown
in Fig. 8.

Note that the PDF fI0(x) represents the distribution of aggre-
gate MAI as experienced by a specific user antenna and front-
end. In particular, any elevation-dependent user antenna gain
pattern must be reflected in the weights Pk. There are of course
other ways than (31)-(35) to construct fI0(x). While the
above approach is matched to the system model from Section
II, it is also possible to compute an empirical PDF fI0(x)
via measurements or constellation simulation. This would
even allow for more sophisticated scenarios, including non-
independent Doppler frequencies, fading, or a varying number
of in-view satellites. For instance, we could choose to calculate
the SSC-D explicitly during a GNSS constellation period of
interest, compute weights Pk according to satellite elevation
and antenna gain patterns, and then compute a single histogram
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of I(i)0 (τ ,ν) over the entire considered constellation period
and all search bins i = 1, . . . , PQ. Depending on whether the
observed constellation period is short-term or long-term, the
PDF will be more representative of an instantaneous scenario
or of many possible scenarios.

The obtained density fI0(x) can now be used to compute
the BPF via the simple integral in (30). Note that this ex-
pression leads to the same BPF regardless of the bin index
i = 1, . . . , PQ. We have effectively modeled the distribution
of any statistic Z(i) by compounding the distributions (10) and
(35). If we approximate the statistics as not only identically
distributed but also independent across bins, we finally obtain
the desired SSC-R based approximation for the GPF

PF (λ) = 1−
(∫ ∞

0

FZ(λ;N0 + I0)fI0(I0) dI0
)PQ

. (36)

The similarity to the SSC-based GPF becomes obvious when
we rewrite the standard result (19), using I0 = E[I0], as

PF (λ) = 1−

(
FZ

(
λ;N0+

∫ ∞
0

I0 fI0(I0) dI0
))PQ

. (37)

While both expressions are approximations of the true GPF,
the SSC-R is expected to be much better suited for most
relevant scenarios, as it does not assume PQ identical effective
noise floors N0 + I0 across all bins, but only PQ i.i.d.
realizations of a random effective noise floor N0 + I0.

IV. PROBABILITY OF DETECTION

Let H1 be the true hypothesis, i.e., the SOI is present. We
say that global detection occurs if the receiver decides for H1

and returns the correct bin i = 1. The probability of this event
is called global probability of detection (GPD). It is denoted
by P ↓D(λ) for serial search and by P ‖D(λ) for parallel search,
respectively.

A. Conditional GPD

We define the ith noncentrality energy as the energy that is
delivered to the statistic Z(i) in the absence of MAI and noise

E(i) , Z(i)
∣∣∣
N0=0
K=1

, i = 1, . . . , PQ. (38)

Ideally, we would expect E(1) = P1LT and E(2) = . . . =
E(PQ) = 0. In practice, this is not the case: energy is lost in the
correct bin and can leak into other bins due to various effects.
In fact, the noncentrality energies are functions of τ1, ν1 and
the states of the symbol sequence b1 , [b1[0], . . . , b1[LN ]]T

during the observation time. Therefore, E(1), . . . , E(PQ) are
statistically dependent RVs. Exemplarily, we determined the
marginal distribution of the noncentrality energy E(1) numer-
ically in Fig. 9. It can be shown that [7]

E(i) = αC
(
τ (i)−τ1

)
βC
(
ν(i)−ν1;ϑ1T0+τ1, b1

)
P1LT, (39)

with a code-phase correlation function

αC(τ) =

∞∑
i=−∞

ρ2h(τ − iT0)

T 2
c

(40)
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Fig. 9. PDF of the energy loss in the correct bin with code-phase spacing
∆τ = Tc and Doppler spacing ∆ν = 1/T , for a REC pulse and pure pilot
signaling (b = 1).
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and a Doppler correlation function

βC(ν; θ, b) =
T 2
c

T 2

sin2(πνT )

sin2(πνTc)

(
1− 2X(b)

L
φ(ν, θ)

)
, (41)

with the number of symbol transitions X(b) ∈ {0, . . . , L} and
an auxiliary function3 [7]

φ(ν, θ) = cot2(πνT )
(

tan(πνT ) sin(2πνθ)− 2 sin2(πνθ)
)
.

(42)
If a pure pilot signal is considered, we can simply use βC(ν) ,
(Tc/T )2(sin(πνT )/ sin(πνTc))

2. The energy loss and leakage
effects are illustrated in Figs. 10, 11.

Unlike MAI and noise, the contribution of the SOI to the
statistic Z(i) is not Gaussian distributed. As proposed by [7],
[35], we model this contribution by modifying the central χ2-
distribution from (10) to a noncentral χ2-distribution with

3Note that the auxiliary function becomes more complicated if L > 1 and
N < M , a case which is ommitted at this point for brevity but is treated in
the thorough work of O’Driscoll [7].
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random noncentrality parameter (hence, a compound prob-
ability distribution). MAI and noise are the same as under
H0 and can be modeled by either of the previously discussed
models (Sections III-A-III-D), which we represent by a generic
effective noise floor N (i)

0 at this point. Adding the noncentral
component to (10) leads to the generic CDF of Z(i) under H1,
given E(i) and N (i)

0 ,

F ′Z

(
z; E(i),N (i)

0

)
, 1−QL

√2
E(i)

N (i)
0

,

√
2

z

N (i)
0

 , z > 0.

(43)
Here, QL(·, ·) denotes the Lth order Marcum Q-function [36].
This CDF is a scaled version of the CDF of a noncentral
χ2-distribution with 2L degrees of freedom and noncentrality
parameter 2E(i)/N (i)

0 . The according (yet conditional) bin
probability of detection (BPD) is

P
(i)
d (λ) = 1− F ′Z

(
λ; E(i),N (i)

0

)
. (44)

This probability is a compound probability in E(i) and, de-
pending on which SSC model is used, in N (i)

0 .
Next, we compute the conditional GPD, given the vector

of all noncentrality energies E , [E(1), . . . , E(PQ)]T and the
vector of effective noise floors N0 , [N (1)

0 , . . . ,N (PQ)
0 ]T .

Well-known formulas [26] lead to the following results for
serial or parallel search

P ↓D
∣∣E,N0 =

1− F ′Z
(
λ; E(1),N (1)

0

)
PQ

PQ∑
j=1

j∏
i=2

F ′Z
(
λ; E(i),N (i)

0

)
(45)

P
‖
D

∣∣E,N0 =

∫ ∞
λ

f ′Z
(
z; E(1),N (1)

0

) PQ∏
i=2

F ′Z
(
z; E(i),N (i)

0

)
dz,

(46)

as long as we condition on E and N0. It remains to remove
the conditioning on these parameters.

To simplify computation of the above equations, we assume
E(i) ≈ 0 if |τ (i) − τ1| > Tc and |ν(i) − ν1| > 3/(2T ).

Therefore, apart from the the correct bin and some few
adjacent bins, most bins are treated as central χ2-distributed.

B. Removing the conditioning

Starting from the conditional GPD (45) or (46), respectively,
we remove the conditioning as follows.

1) Apply an SSC model:
• To use the standard SSC, simply set N (i)

0 = N0 + I0
for i = 1, . . . , PQ.

• To use the SSC-D, simply set N (i)
0 = N0 + I

(i)
0 (τ ,ν)

for i = 1, . . . , PQ.
• To use the SSC-R, apply the law of total prob-

ability w.r.t. N0: replace the conditional CDF
F ′Z
(
z; E(i),N (i)

0

)
by the partly conditional CDF

F ′Z
(
z; E(i)

)
,
∫ ∞
0

F ′Z
(
z; E(i), N0 + x

)
fI0(x) dx

(47)
for all bins. For parallel search and i = 1, replace the
conditional PDF with f ′Z

(
z; E(1)

)
, d

dzF
′
Z

(
z; E(1)

)
.

2) Remove the conditioning on E directly by averaging over
the random SOI parameters τ1, ν1 and (if applicable) the
possible symbol sequences b1,4 using (39) as in [7].

3) In case the SSC-D was used, average over the remaining
random parameters τ , ν.

V. NUMERICAL RESULTS

Unless stated otherwise, the following baseline setup is used
for the remainder of this work.
• REC pulse, chip rate 1/Tc = 1.023 MHz;
• symbol rate 1/Tb = 0 (pure pilot);
• code length Nc = 341⇒ code period T0 = 0.33 ms;
• coh. integration time T = 1 ms ⇒ N = 3 code periods;
• number of noncoherent summations L = 1;
• Doppler span F0 = 8 kHz;
• number of satellites K = 8;
• noise floor N0 = −204 dBW/Hz;
• code-phase spacing ∆τ = Tc;
• Doppler spacing ∆ν = 1/T .

This setup leads to PQ = 341× 8 = 2728 bins. Furthermore,
we consider three characteristic scenarios, which are repre-
sented by three different power profiles (P1, . . . , PK):

1) Balanced scenario: maximum received power [25] for all
satellites: Pk = −153 dBW for k = 1, . . . ,K.

2) Near-far scenario: maximum received power for k =
2, . . . ,K, minimum received power [25] for the SOI:
P1 = −158.5 dBW.

3) Weak signals scenario: very low received power for all
signals: Pk = −180 dBW for k = 1, . . . ,K.

As per definition, P1 = 0 always under H0. Note that
the power profiles of Scenarios 1 and 2 are within system
specifications [25], while only few systems are committed to

4There are (L+1)M possible symbol sequences, as b can be parameterized
in terms of the number of symbol transitions X(b) ∈ {0, . . . , L} and the
uniformly random initial symbol-phase ϑ1 ∈ {1, . . . ,M}. If L > 1, X(b)
follows a binomial distribution with L trials and success probability 1/2.
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simulation results.

service in weak signal conditions such as Scenario 3 [37].
However, these conditions are of some interest for navigation
in space [12] or indoors [38].

A. Baseline Setup

Fig. 12 shows the BPF that is obtained with the baseline
setup in Scenarios 1 and 2. In fact, there is not one BPF
but many, depending on the bin’s effective noise floor. The
simulation results (markers) were obtained by Monte-Carlo
simulations, randomly selecting one of the PQ bins and
determining its BPF. The BPF obtained with the SSC-R is
representative not for any particular bin, but for the ensemble
of bins, and matches well with the simulation results. The
standard SSC leads to a slight underestimation of the BPF.
For the SSC-D, only the BPF of the bin with the highest
and lowest effective noise floor are shown. It is interesting to
note that the BPFs under SSC and SSC-D appear as straight
lines in a semilogarithmic plot, as the BPF for L = 1 is an
exponential function (10) of the threshold. By contrast, the
SSC-R leads to a compound (mixture) BPF and appears as a
slightly curved line. For the BPD in bin i = 1, all SSC models
lead to essentially the same results.

Fig. 13 shows the global probabilities PF (λ), P
‖
D(λ), P ↓D(λ)

as a function of the threshold, for Scenarios 1 and 2. As these
scenarios differ only in terms of the SOI power, PF (λ) is
the same in either case, while detection is less likely in the
near-far scenario. It can be observed that the standard SSC
underestimates the GPF and slightly overestimates the GPD
for all thresholds, while the SSC-R is in line with results from
Monte-Carlo simulations.5 Plotting the GPD against the GPF,
with the threshold 0 6 λ <∞ as the varying parameter, leads
to the ROC curve in Fig. 14. The receiver can operate at any
point on the ROC curve by choosing the threshold accordingly.

5Note that we were not able to report any GPF values obtained via the
SSC-D, since the evaluation of the product (29) and subsequent averaging
with respect to τ ,ν indeed turned out to be too computationally burdensome.
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Fig. 14. ROC curve for Scenarios 1 (balanced) and 2 (near-far) with baseline
setup (Nc = 341, T = 1 ms). Solid lines: SSC-R, dotted lines: SSC, markers:
simulation results. PQ = 341× 8 bins.

B. Increasing the coherent integration time T

Increasing the coherent integration time is a good receiver
side solution to enhance the acquisition reliability, especially
in a near-far scenario. This leads to a proportional increase
of the number of Doppler bins Q, while the number of code-
phase bins P remains constant. As the code length Nc and
code period T0 remain fixed, the receiver performs coherent
integration over multiple code periods N . Increasing N reveals
the great weakness of the standard SSC: it depends only on T
but not on N = T/T0. Thus, for large values of N , the BPF
is grossly underestimated by the standard SSC, but correctly
modeled by the SSC-R, as is shown in Fig. 15. The standard
SSC also leads to a very overoptimistic ROC for T = 5 ms
and N = 15 in Fig. 16.
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markers: simulation results. PQ = 341× 40 bins.

C. Increasing the number of noncoherent summations L

For weak signals such as in Scenario 3, a good option to
enhance reliability further is to increase the number of nonco-
herent summations L. Increasing the coherent integration time
T further and further would lead to an excessive number of
Doppler bins, and is also difficult due to limitations of the
receiver clock stability of mass-market devices. Using more
than T = 20 ms (hence N = 60 in this case) is usually not
practical. In Fig. 17, we show the ROC for N = 60 and
L = 1, 5, 10, 20, 30. It can be observed that despite the large
value of N , the standard SSC is already accurate (and virtually
coincides with the SSC-R). This is due to the very low relative
threshold λ/N0 at the relevant operating points. As could be
observed from Fig. 15, SSC and SSC-R lead to similar results
as long as the ratio λ/N0 is small.
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Fig. 17. ROC for Scenario 3 (weak signals) with N = 60 coherent
integrations and L noncoherent summations. Solid lines: SSC, markers:
simulation results. PQ = 341× 160 bins.

VI. SIGNAL DESIGN: MINIMIZING PRN CODE LENGTH

As an application example of the proposed methodol-
ogy, we consider the design of an acquisition signal for
the European GNSS Galileo. This signal would complement
the existing Galileo Open Service signals E1-B and E1-C
transmitted at 1575.42 MHz [25] and will be called E1-D
in the following. E1-B and E1-C use a PRN code length
of Nc = 4092, which is why we consider integer divisors
Nc = 2046, 1023, 682, 372, . . . as possible E1-D code lengths:
this would allow for an easier handover to the signals with
longer PRN code. In terms of symbol rate, we consider the
two options of a ”pure pilot” signal and a ”quasi-pilot” [14]
signal with symbol duration MT0 = 20 ms. The pulse shape
is REC with chipping rate 1/Tc = 1.023 MHz.

We aim to minimize the PRN code length over the set
of integer divisors of 4092, while ensuring that the target
reliability of P ‖D(λ) > 80%, PF (λ) < 5% can be achieved for
some λ > 0. The coherent integration time is T = 4 ms, while
L = 1. Interferers k = 2, . . . , 8 are received with maximum
power Pk = −153 dBW. In Fig.18 (presented at [39]), we
show the sensitivity, i.e., the necessary received power P1 at
which reliable acquisition is possible. For a PRN code length
to be feasible, the sensitivity should not be above the nominal
minimum received power level of −158.5 dBW [25]. As a
result, we suggest the minimum code length of Nc = 341 for
a pure pilot signal or, alternatively, Nc = 682 for a quasi-pilot
signal with 50 Hz symbol rate. The slightly worse sensitivity
of the quasi-pilot compared with a pure pilot is due to symbol
transititons that occasionally lead to an energy loss. Note that
the standard SSC is accurate only if T = T0 and is therefore
of no use for this application.

VII. CONCLUSION

We argued in the introduction that signals with short PRN
code and low symbol rate are an attractive option to facilitate
rapid, low energy acquisition, but are vulnerable to MAI.
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We demonstrated that some few Doppler search bins can be
severely affected by MAI, and are thus more likely to lead to
a global false alarm in the acquisition search. We proposed
a methodology that can be used to assess the acquisition
reliability in terms of the ROC curve (GPF plotted vs. GPD).
The methodology is general and simple enough to be used
in a signal design approach, where PRN code length, symbol
rate, and other signal characteristics are flexible parameters
to be selected. Applying the methodology to a signal design
example, we showed that PRN code lengths on the order of
300-700 are feasible options for a dedicated acquisition signal
for Galileo, which would reduce the number of search bins
by a factor of 1.5 - 3 as compared with GPS L1 C/A. As
an outlook, radio frequency compatibility of such a signal
with co-existing signals in the same frequency band should be
assessed, using models to assess cyclostationary intersystem
MAI [22].
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APPENDIX
DERIVATION OF SSC AND SSC-D

For the following calculations, it is useful to define the `th
segment of the local replica

x
(i)
` (t) , ej2πν

(i)t
`N+N−1∑
n=`N

s1
(
t− nT0 − τ (i)

)
, (48)

for segments ` = 0, . . . , L − 1 and bins i = 1, . . . , PQ, and
then rewrite the complex correlator output as

Y (i)[`] =
1√
T

∫ (`+1)T

`T

x(i)(t) r(t) dt

≈ 1√
T

∫ ∞
−∞

x
(i)
` (t) r(t) dt. (49)

Note that this approximation is exact if the code waveform
is strictly time-limited to (−T0/2, T0/2), e.g. if a REC or
BOC pulse shape is used. For band-limited waveforms, the
approximation is still reasonably accurate and facilitates the
analysis considerably.

We begin by expressing the correlator output as the super-
position of K signal contributions plus noise

Y (i)[`] =

K∑
k=1

X
(i)
k [`] +W (i)[`] (50)

X
(i)
k [`] =

1√
T

∫ ∞
−∞

x
(i)
` (t)xk(t) dt (51)

W (i)[`] =
1√
T

∫ ∞
−∞

x
(i)
` (t)w(t) dt. (52)

The noise contribution has mean zero and satisfies

E
[
W (i)[`]W (i)[`′]

]
=

1

T

∫ ∞
−∞

∫ ∞
−∞

E
[
w(t)w(u)

]
E
[
x
(i)
` (t)x

(i)
` (u)

]
dudt

=
1

T

`N+N−1∑
n=`N

`′N+N−1∑
n′=`′N

Nc−1∑
j=0

Nc−1∑
j′=0

E [c1[j]c1[j′]]

×
∫ ∞
−∞

∫ ∞
−∞

dudtN0 δ(t− u) ej2πν
(i)(t−u)

× h(t− jTc − nT0 − τ (i))h(u− j′Tc − n′T0 − τ (i))

=
N0

T
δ[`− `′]

`N+N−1∑
n=`N

Nc−1∑
j=0

ρh(0)

= δ[`− `′]N0. (53)

As w(t) is complex AWGN, it follows that
W (i)[0], . . . ,W (i)[L − 1] are i.i.d. CSCG RVs with mean
zero and variance N0.

The MAI terms X(i)
k [`] for k = 2, . . . ,K have mean zero,

since AWGN and interfering signals are independent and have
both mean zero. The conditional variance of the MAI terms
can be derived as follows,

I
(i)
k (τk, νk)

, Var
[
X

(i)
k [`]

∣∣τk, νk]
=

1

T

∞∫
−∞

∞∫
−∞

E
[
xk(t)xk(u)

∣∣τk, νk]E
[
x
(i)
` (t)x

(i)
` (u)

]
dudt

=

∞∑
m,m′=−∞

E
[
bk[m]bk[m′]

] `N+N−1∑
n,n′=`N

Nc−1∑
j,ι=0

× 1

T

∞∫
−∞

∞∫
−∞

ej2π(νk−ν
(i))(u−t)

× h(t− jTc −mT0 − τk)h(u− jTc −m′T0 − τk)

× h(t− ιTc − nT0 − τ (i))h(u− ιTc − n′T0 − τ (i)) dudt,
(54)

where we used expressions like
∑`N+N−1
n,n′=`N to indicate a

double sum
∑`N+N−1
n=`N

∑`N+N−1
n′=`N whenever the two sets of
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summation indices are identical. As a consequence of the
Plancherel theorem [40], for any t0, t1 ∈ R and f0 ∈ R

∫ ∞
−∞

ej2πf0th(t− t0)h(t− t1) dt

= ej2πf0t0
∫ ∞
−∞

H(f)H(f − f0)ej2πf(t1−t0) df

≈ ej2πf0t0
∫ ∞
−∞
|H(f)|2ej2πf(t1−t0) df, (55)

where the approximation H(f − f0) ≈ H(f) is reasonably
accurate if |f0| � 1/Tc, which is the case for Doppler
frequencies f0 on the order of kHz and chip rates 1/Tc on the
order of MHz, as is typical in the context of GNSS. Applying
(55) to (54), we obtain

Var
[
X

(i)
k [`]

∣∣τk, νk]
=

1

T

∞∑
m,m′=−∞

E
[
bk[m]bk[m′]

] `N+N−1∑
n,n′=`N

Nc−1∑
j,ι=0

× ej2π(ν
(i)−νk)(jTc+mT0+τk)ej2π(νk−ν

(i))(jTc+m
′T0+τk)

×
∫ ∞
−∞
|H(f)|2ej2πf((ι−j)Tc+(n−m)T0+τ

(i)−τk) df

×
∫ ∞
−∞
|H(s)|2ej2πs((ι−j)Tc+(n′−m′)T0+τ

(i)−τk) ds (56)

The symbol autocorrelation from Fig. 1 can be written as a
weighted sum of delayed unit impulses

E
[
bk[m]bk[m′]

]
=

M−1∑
µ=1−M

(
1− |µ|

M

)
δ[m−m′ − µ]. (57)

Thus we can perform the summation over m′ and have

Var
[
X

(i)
k [`]

∣∣τk, νk]
=

1

T

M−1∑
µ=1−M

(
1− |µ|

M

)
ej2π(ν

(i)−νk)µT0

`N+N−1∑
n,n′=`N

Nc−1∑
j,ι=0

×
∫ ∞
−∞
|H(f)|2ej2πf((ι−j)Tc+nT0+τ

(i)−τk)

×
∫ ∞
−∞
|H(s)|2ej2πs((ι−j)Tc+(n′+µ)T0+τ

(i)−τk)

×
∞∑

m=−∞
e− j2π(f+s)mT0 df ds (58)

Applying the Poisson summation formula [40]

∞∑
m=−∞

e− j2π(f+s)mT0 =
1

T0

∞∑
m=−∞

δ

(
f + s− m

T0

)
, (59)

we can perform the integration over s

Var
[
X

(i)
k [`]

∣∣τk, νk]
=

1

TT0

M−1∑
µ=1−M

(
1− |µ|

M

)
ej2π(ν

(i)−νk)µT0
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n,n′=`N

Nc−1∑
j,ι=0

×
∞∑

m=−∞
ej2π

m
T0

((ι−j)Tc+τ(i)−τk)

×
∫ ∞
−∞
|H(f)|2

∣∣∣∣H (mT0 − f
)∣∣∣∣2 ej2πf(n−n′−µ)T0 df

=

M−1∑
µ=1−M

N−1∑
n=1−N

(
1− |µ|

M

)(
1− |n|

N

)
ej2π(ν

(i)−νk)µT0

×
∞∑

m=−∞
ej2π

m
T0

(τ(i)−τk) 1

Nc

Nc−1∑
j=1−Nc

(
1− |j|

Nc

)
ej

2πm
Nc

j

× 1

T 2
c

∫ ∞
−∞
|H(f)|2

∣∣∣∣H (mT0 − f
)∣∣∣∣2 ej2πf(n−µ)T0 df, (60)

where we replaced the double summations over n, n′ and j, ι
by simple summations using the identity

n0+N∑
n=n0

n0+N∑
n′=n0

g(n− n′) = N

N−1∑
n=1−N

(
1− |n|

N

)
g(n) (61)

for n0, N ∈ Z and any locally summable function g : R→ C.
Furthermore, note that

Nc−1∑
j=1−Nc

(
1− |j|

Nc

)
e− j 2πmNc j = Nc

∞∑
j=−∞

δ[m− jNc], (62)

which we use to perform the summation over m in (60)

Var
[
X

(i)
k [`]

∣∣τk, νk]
=

M−1∑
µ=1−M

N−1∑
n=1−N

(
1− |µ|

M

)(
1− |n|

N

)
ej2π(ν

(i)−νk)µT0

×
∞∑

j=−∞
ej2π

j
Tc

(τ(i)−τk)

× 1

T 2
c

∫ ∞
−∞
|H(f)|2

∣∣∣∣H ( j

Tc
− f

)∣∣∣∣2 ej2πf(n−µ)T0 df. (63)

The integral in (63) vanishes for terms µ 6= n if either REC,
BOC, or RRC pulse with zero roll-off are used as pulse shape,
as the following calculation shows. Taking into account the
even symmetry of |H(f)|2, we can use the identity (55) once
again to show that∫ ∞

−∞
|H(f)|2

∣∣∣∣H ( j

Tc
− f

)∣∣∣∣2 ej2πf(n−µ)T0 df

=

∫ ∞
−∞

ej2π
j
Tc
tρh(t− µT0)ρh(t− nT0) dt

≈ δ[n− µ]

∫ ∞
−∞

ej2π
j
Tc
tρ2h(t− nT0) dt

= δ[n− µ]

∫ ∞
−∞
|H(f)|2

∣∣∣∣H ( j

Tc
− f

)∣∣∣∣2 df. (64)
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The approximation in (64) is exact for all time-limited
pulse shapes such as REC or BOC, for which the product
ρh(t − µT0)ρh(t − nT0) can be nonzero only if µ = n. The
approximation is also exact for the RRC pulse with zero roll-
off (also known as flat spectrum pulse), because then all terms
j 6= 0 in (64) vanish entirely and ρh(t) is itself a Nyquist
pulse. Numerical computations of the above terms for µ 6= n
led to negligible values for many other pulses as well, which
is not surprising as ρh(t) usually decays over time with 1/t
or faster.

Substituting (64) into (63) and performing the summation
over µ, we have finally

Var
[
X

(i)
k [`]

∣∣τk, νk]
=

N−1∑
n=1−N

(
1− |n|

M

)(
1− |n|

N

)
ej2π(ν

(i)−νk)nT0

×
∞∑

j=−∞
ej2π

j
Tc

(τ(i)−τk)

× 1

T 2
c

∫ ∞
−∞
|H(f)|2

∣∣∣∣H ( j

Tc
− f

)∣∣∣∣2 df, (65)

which is equivalent to the desired results for the SSC-D (22)-
(27). The desired results for the SSC (16)-(17) can now easily
be obtained by removing the conditioning on τk, νk. Upon
taking the expectation, all summands n 6= 0 and j 6= 0 vanish

E
[

Var
[
X

(i)
k [`]

∣∣τk, νk]] =
1

T 2
c

∫ ∞
−∞
|H(f)|4 df. (66)
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