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Inferring causal relations from observational time series data is a key problem across science and engineering whenever
experimental interventions are infeasible or unethical. Increasing data availability over the past decades has spurred
the development of a plethora of causal discovery methods, each addressing particular challenges of this difficult task.
In this paper we focus on an important challenge that is at the core of time series causal discovery: regime-dependent
causal relations. Many dynamical systems feature transitions in time, depending on some, often persistent, unobserved
background regime, and different regimes may exhibit different causal relations. Here, we assume a persistent and
discrete regime variable leading to a finite number of regimes within which we may assume stationary causal relations.
To allow for flexible linear and nonlinear, high-dimensional analysis settings, we utilize the constraint-based PCMCI
causal discovery method, and combine it with a regime assigning linear optimisation, inspired by the regime learning
in non-stationary Markov regression or clustering, to detect regime-dependent causal relations. Our method, Regime-
PCMCI, is evaluated on a number of numerical experiments demonstrating that it can distinguish regimes with different
causal directions, time lags, effects and sign of causal links, as well as changes in the variables’ autocorrelation. Further,
Regime-PCMCI is employed to observations of El Niño Southern Oscillation and Indian rainfall, demonstrating skill
also in real-world data sets.

Keywords. causal discovery, time series, non-stationarity,
regime-dependence, high dimensionality, climate research

I. INTRODUCTION

Understanding causal relationships among different pro-
cesses is an ubiquitous task in many scientific disciplines as
well as engineering (e.g., in the context of climate process1,
econometrics2 or molecular dynamics3). Yet, the common
approach to gaining causal knowledge by conducting experi-
ments is often infeasible or unethical, for example in Earth sci-
ences. All that is often given is a set of time series describing
these processes with no specific knowledge about the direc-
tion and form of their causal relationships available. The chal-
lenge, termed causal discovery, is then to reconstruct the un-
derlying graph of causal relationships from time series data4.
Based on that graph the processes that generated the data can
then be modelled in the framework of structural causal mod-
els (SCMs,5) to further understand causal relations, predict the
effect of interventions, and for forecasting.

Today’s ever-growing abundance of time series data sets
promises many application scenarios for data-driven causal
discovery methods, but many challenges emerging from the
dynamic nature of such data sets have not yet been met. Fur-
ther, causal knowledge cannot be gained from data alone and
each method comes with its particular set of assumptions6

about properties of the underlying processes. See4 for an
overview over methodological frameworks, challenges, and

application scenarios.
A particular and wide-spread challenge is regime-

dependence, a common property of nonlinear dynamical sys-
tems that can also be described as one form of non-stationary
behaviour. Regime-dependence means that the causal rela-
tionships between the considered processes vary depending
on some prevailing background regime that may be mod-
elled as switching between different states. Further, often
such regimes have strong persistence, that is, they operate
and affect causal relations on much longer time scales than
the causal relations among the individual processes. In the
climate system, for instance, several cases of such regime-
dependencies exist. For example, rainfall in India in summer
is known to be influenced by the so-called El Niño Southern
Oscillation (ENSO), an important mode of variability in the
tropical Pacific affecting the large-scale atmospheric circula-
tion and thereby weather patterns around the globe7,8. It is,
however, generally assumed that ENSO does only marginally
affect Indian rainfall in winter9. Thus, the causal relationships
between ENSO and rainfall over India change dependent on
the season that here defines the background-regime and oper-
ates on a longer time scale (several months) than the causal
relations among ENSO and Indian rainfall (several weeks).

A. Existing work

Causal discovery has seen a steep rise with a plethora of
novel approaches and methods in recent years. Each ap-
proach has different underlying assumptions and targets dif-
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ferent real world challenges as discussed in4. In general,
causal (network) discovery methods can be classified into
classical Granger causality approaches10,11, constraint-based
causal network learning algorithms6, score-based Bayesian
network learning methods12,13, structural causal models3,14,
and state-space reconstruction methods15,16.

Here we focus on the constraint-based framework which
has the advantage that it can flexibly account for nonlinear
causal relations and different data-types (continuous and cat-
egorical, univariate and multivariate). PCMCI adapts this
framework for the time series case yielding high detection
power and controlled false positives also in high-dimensional
and strongly autocorrelated time series settings. However, one
of the general assumptions of PCMCI (as well as of other
causal discovery algorithms) is stationarity, i.e., that at least
the existence or absence of a causal link does not change
over the considered time series17. While known changes in
the background signal can be accounted for by restricting the
time series to the stationary regimes, PCMCI cannot handle
unknown background regimes.

Some recent work addresses causal discovery in the pres-
ence of non-stationarity. The authors in18 model non-
stationarity in the form of (continuous) stochastic trends
in a linear autoregressive framework.19 account for non-
stationarity in the more general constraint-based framework.
However, both address the case of a (smoothly) varying con-
tinuous background variable that continuously changes causal
relations among the observed variables. This means that these
methods will not output regime-dependent causal graphs, but
a “summary” graph that accounts for regimes modelled as la-
tent drivers. In20,21 assumed known non-stationary regimes
are exploited to estimate causal relations also in the presence
of general latent confounders.

Currently few methods exist that address the case of a
discrete regime variable leading to distinct causal regimes
that may be physically interpreted. For example, in the cli-
mate science context, regime-dependent autoregressive mod-
els (RAM) were introduced already in 199022. These can
yield physically well interpretable results that, however, re-
quire well-chosen ancillary variables and a seasonal index
which are not learned from data. Thus, RAM not only they
requires a priori knowledge of the regimes, which one often
aims to learn rather than enforce. Furthermore, the autore-
gressive framework only permits linear relationships. In the
context of discrete state spaces regime dependent causal dis-
covery has been considered in3. An another approach that
has been proposed to model time dependent Granger (non)
causality is based on Markov Switching VAR ansatz with a
economics application in mind2. Specifically the regime as-
signments are computed by sampling from a Markov chain.

A more general framework to handle discrete regimes is the
Markov-switching ansatz of23, which flexibly models regime-
dependence utilizing the assumption of a finite number of
regimes and a level of persistency in the transitions between
different regimes. The key underlying assumption is that that
the system exhibits some form of persistence. This ansatz
has been successfully realised in combination with many dif-
ferent model assumptions (e.g., see24) here we want to ex-

plore it for causal networks and combine it with PCMCI25,
a constraint-based time series causal discovery method6. We
call our method Regime-PCMCI.

The remainder of the paper is structured as follows: First, in
section I A we discuss existing methods for regime-dependent
causal discovery. Second, in section II the underlying math-
ematical problem, concepts, and key assumptions are for-
malised, and a motivating example is discussed to provide
some intuition. Our novel method Regime-PCMCI is then
presented in section III. These theoretical and algorithmic
parts are complemented by a thorough numerical investiga-
tion of the proposed method in various artificial settings in
section IV. Finally, in section V, Regime-PCMCI is applied
to a real-world data set from climate science, addressing the
changing relationships of ENSO and rainfall over India.

II. PROBLEM SETTING

Let {Xt}t∈Z be a sequence of real-valued NX dimensional
random variables Xt ∈ RNX where t is associated with time.
A realisation over the time interval [0,T ] of this stochastic
process is denoted {xt}t∈[0,T ] and we assume that it is pos-
sible to obtain observations of these realisations. We assume
that the underlying process is modelled by a regime-stationary
discrete-time structural causal model (SCM)

X j
t = g j

t (P
j

t ,η
j

t ) with j = 1, . . . ,NX . (1)

Here the measurable functions g j
t depend non-trivially on all

their arguments, the noise variables η
j

t are jointly indepen-
dent and are assumed to be stationary, i.e., η

j
t ∼ D j for all t

for some distribution D , and the sets P j
t ⊂ (Xt−1,Xt−2, . . .)

define the causal parents of X j
t . Here we assume lagged rela-

tionships, but this is not a necessity. In contrast to approaches
assuming stationarity, both g j

t and P j
t are allowed to depend

on regimes in time as further formalized in Assumption II B.
Then the problem setting considered in this manuscript is of
the nature of the following inverse problem

xt = Ĝt

(
xt−1, . . . ,xt−τmax ;Θt

)
(2)

with Ĝt = [ĝ1
t , . . . , ĝ

NX
t ] where ĝ j

t belong to an appropriate
functions space for each t and i. In other words, the aim is to
fit a set of unknown parameters Θt on the basis of an observed
time series {xt}t∈[0,T ]. In the next section we will discuss the
particular structure of the parameters Θt we are interested in.

A. Causal Graphs

Representing causal relations between different processes
as graphs (also referred to as networks) is common practice
in the context of causal inference and causal discovery5,6. For
time series, we use the concept of time series graphs. The
nodes in the time series graph associated with the SCM (1) are
the individual time-dependent variables X j

t with j = 1, . . . ,NX



Reconstructing regime-dependent causal relationships from observational time series 3

at each time t ∈ Z. Variables X i
t−τ and X j

t for a time lag τ >
0 and a given t are connected by a lag-specific directed link
“X i

t−τ → X j
t ” if X i

t−τ ∈P j
t for a particular t. We denote the

maximum time lag of any parent as τmax.
For a more detailed introduction the reader is referred to25.

In the following we will use graphs and networks interchange-
ably.

The collection of parent sets for all components at time t
is denoted Pt = {P1

t , . . . ,P
NX
t }. This set of parents is part

of the unknown parameters we want to infer. Note that their
dimensionality is assumed finite, but not known a priori. The
other quantity of interest is the functional form of the causal
relations g j

t (P
j

t ,η
j

t ) in SCM (1) corresponding to these links
which we here restrict to an appropriate function class as mod-
elled in Eq. (2). If we assume linear functions with coeffi-
cients Φi

t , then the inverse problem Eq. (2) simplifies to

xt = Ĝt(Pt ;Φt) (3)

Thus for a given time series xt ∈ RN and with t ∈ [0,T ] and
functional Gt the aim is to find the unknown parameters Θt =
[Pt ,Φt ].

B. Persistence

As mentioned above, in many application areas non-
stationarity may be modelled not in form of abrupt or continu-
ous changes, but via piece-wise constant regimes3,26,27. These
regimes will further exhibit a certain persistent behaviour. In
order to capture non-stationary systems with these properties
we will restrict our inference to regime-dependent persistent
dynamics.
Assumption: Denote the parents and functional dependency
of a given variable j for a regime k as P j

t = P j
k and

g j
t (P

j
t ,η

j
t ) = g j

k(P
j

k ,η
j

t ). We call a regime persistent if the
parents and functional dependencies are stationary for an av-
erage of NM consecutive time steps t. Further, we assume that
there is a finite number of regimes on the whole time domain,
i.e., k ∈ {1, . . . ,NK}.

Note that persistence enters here via a regime average
persistence NM , which naturally implies a finite number of
regimes NK ≤ T/NM .
Under Assumption II B the considered linear inverse problem
(3) reduces to finding a set of parameters

{P1, . . . ,PNK ,Φ1, . . . ,ΦNK}.

and the change points between the regimes given by the
regime assigning process

Γ(t) = [γ1(t), . . . ,γNK (t)].

C. Motivating example

Before we introduce our novel regime detecting causal dis-
covery algorithm, we illustrate the underlying challenges of

a) Ground truth regimes

b) PCMCI reconstruction 

Regime 1 Regime 2  

FIG. 1. (a) Regime dependent ground truth: regime-assigning pro-
cess and regime-dependent networks. The links are labelled with the
associated linear coefficient and the lag, Φ

j
k(i,τ) (l+τ), and the sign

of the coefficient is highlighted with the color (red for positive, blue
for negative). (b) Network reconstruction with PCMCI fitted on the
whole time series, i.e. links are assumed to be stationary.

causal discovery in the face of regime-dependence by giv-
ing a simple example. Consider the case of two background
regimes and two time-series X1 and X2 and the associated
causal graphs as shown in Fig. 1. Variable X1 linearly in-
fluences X2 but the sign changes in time, alternating between
a positive (during regime 1) and a negative (during regime 2)
influence. Here the two regimes alternate equidistantly. The
cross-correlation of X1 and X2 over the whole time-period is
zero because the opposite sign effects cancel each other out
in the linear regression. Thus, any linear causal discovery al-
gorithms would fail in detecting the influence of X1 on X2

when no a priori knowledge on the two background regimes
exists. For example, applying PCMCI on the whole time sam-
ple would give a network of disconnected variables (Figure 1,
top-right).

In contrast, if the regimes are known and PCMCI is applied
to samples from both regimes separately, the positive and neg-
ative links are correctly detected. To deal with such problems
automatically, our algorithm needs to learn both the regimes
as well as the regime-dependent causal relations.

III. METHOD

Our approach is designed to alternate between learning the
regimes and the causal graphs for each regime in an itera-
tive fashion. In principle, any causal discovery method that
yields a causal graph can be used. Here we chose PCMCI25

as a method that adapts the constraint-based causal discovery
framework to the time series case.
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A. Causal discovery

The constraint-based framework has the advantage that it
can flexibly account for nonlinear causal relations and dif-
ferent data-types (continuous and categorical, univariate and
multivariate) since it is based on conditional independence
defined as follows.

Definition: Two variables X and Y are conditionally indepen-
dent given a (potentially multivariate ) variable Z if

X ⊥⊥Y |Z ⇔ p(x,y|z) = p(x|z)p(y|z) (4)

where p denotes associated probability density functions.
There exist a large variety of conditional independence

tests, see25 for a discussion. If relationships are assumed lin-
ear, as is the case of the present work, a simple partial corre-
lation can be used.

As is explained in detail in25, PCMCI is based on a variant
of the PC algorithm (names after its inventors Peter Spirtes
and Clark Glymour6) combined with the momentary condi-
tional independence (MCI) test. It consists of two stages:
(i) PC1 condition selection to identify relevant conditions P̂ j

t
for all time series variables X j

t and (ii) the MCI test to test
whether X i

t−τ → X j
t with

MCI: X i
t−τ ��⊥⊥ X j

t | P̂
j

t \{X i
t−τ}, P̂ i

t−τ . (5)

Thus, MCI conditions on both the parents of X j
t and the time-

shifted parents of X i
t−τ . These two stages serve the follow-

ing purposes: PC1 is a Markov set discovery algorithm based
on the PC-stable algorithm28 that removes irrelevant condi-
tions for each variable by iterative conditional independence
testing. A liberal significance level αPC in the tests lets PC1
adaptively converge to typically only few relevant conditions
that include the causal parents with high probability, but might
also include some false positives. The MCI test then addresses
false positive control for the highly-interdependent time series
case, which is why we chose it here. A causal interpretation
of the relationships estimated with PCMCI comes from the
standard assumptions in the constraint-based framework6,17,
namely causal sufficiency, the Causal Markov condition,
Faithfulness, non-contemporaneous effects, and stationarity
within the regimes as further discussed below. As demon-
strated in25, PCMCI has high detection power and controlled
false positives also in high-dimensional and strongly autocor-
related time series settings.

The main free parameter of PCMCI are the chosen condi-
tional independence test, the significance levels α in MCI and
αPC in PC1, the latter should be regarded as a hyper-parameter
and can be chosen based on model-selection criteria such as
the Akaike Information Criterion (AIC)29 or cross-validation.

PCMCI is applied to sample subsets of the time series per-
taining to an estimated regime k in an iterative step of our
method. Given a significance level α , the output of PCMCI
is a the set of parents Pk for all time series variables for that
regime.

B. Regime learning

Given an estimated set of parents Pk, the regimes are
learned assuming a particular non-stationary setting of finite
metastable regimes as defined in Assumption II B. This learn-
ing approach is based on ideas first proposed in24 and later
extended to many different models23.

In the following we focus on the linear setting. To learn the
regime parameters for the inverse problem (3) introduced in
Section II,

Φk for every k ∈ {1, . . . ,NK} (6)

given Pk (the output from PCMCI), we define a cost func-
tional

L(Γ,P) =
T

∑
t=0

NK

∑
k=1

γk(t)d(xt −Gt(Pk;Φk)) (7)

subject to constraints

NK

∑
k=1

γk(t) = 1 ∀ t, with γk(t) ∈ [0,1] (8)

and

T−1

∑
t=1
|γk(t +1)− γk(t)| ≤ NC ∀k (9)

where d is a distance measure such as the squared euclidean
distance ‖ · ‖2 and γ is a regime assigning process describing
the weight of the individual networks at each time t.

The format of L(Γ,P) relies on the assumption that the
system associated with the considered data exhibits metasta-
bility in time (see Assumption II B, that translates in the sum-
mation over k). Note that the persistence enters the functional
in form of a regularization (see Constraint 9). An alternative
option is to add a regularisation term that enforces so form of
smoothness of Γ (e.g., Tikhonov regularisation30).

Here we choose the free tuning parameter NC so that the
average time to be in a regime is approximately NM . For K = 2
for example, it has to be approximately NC ≈ T/NM . Note that
in practice, the average regime switching time NM might not
be exactly known. However, we expect in many application
areas that prior domain knowledge on reasonable time scales
of regime switching is available. The tuning of parameters,
including choices of value NK , will be discussed in Section
IV B 3.

C. Pseudocode

The Regime-PCMCI algorithm iterates over two key esti-
mation steps where q indicates the current iteration. Note that
(q) is added as a superscript combined with brackets to the
variables changing with each loop. The details of the consec-
utive subroutines are laid out below.
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1. Step 1: Causal discovery for learning the parents

The first step is to find a set of parents {Pk}(q+1) and
coefficients {Φk}(q+1) with k ∈ {1, . . . ,K} on the basis of a
fixed {Γ(t)}(q) obtained in step 2 of the previous iteration
(see lines of Algorithm 1 and Section III C 2). The coeffi-
cients {Pk}(q+1) and {φk}(q+1) are estimated on the basis of
a subset of the time series xt with

t ∈ {ϒk}(q) :=
{

t : {γk(t)}(q) ≥ 0.5
}

(10)

for each regime k. The regime dependent parents set Pk is
computed via PCMCI. Here we choose partial correlation as a
conditional independence test and the PCMCI hyperparameter
αPC = 0.2 as recommended in31. Further, we consider parents
that are significant at α = 0.01 (for NX = 2) and α = 0.05 (for
NX = 15).

a. Fit of coefficients To obtain the reconstructed time-
series x̂t an estimate of the coefficients Φk characterising the
assumed functional relationship G between each variables and
its detected predictors Pk (for each regime) has to be com-
puted. Here we assume that the functionals g j

k are linear which
yields that the coefficients can be estimated via an appropriate
regression that assumes the following holds for each fixed k:

x j
t = ∑

(i,τ)∈P j
k

{Φ j
k(i,τ)}

(q)xi
t−τ + ε

j
t (11)

for t ∈ {ϒk}(q). In other words for every k ∈ {1, . . . ,NK} the
following optimisation has to be solved

{Φ j
k(i,τ)}

(q) = argmin
∥∥∥x j

t − ∑
(i,τ)∈P j

k

{Φ j
k(i,τ)}

(q)xi
t−τ

∥∥∥2

2

(12)
for t ∈ {ϒk}(q). Note that the coefficients not indicated as rele-
vant via the parent set are defined to be zero, i.e., Φ

j
k(τ, i) := 0

for (τ, i) /∈P j
k .

2. Step 2: Regime learning

Step 2 is to determine an optimal regime assigning process
{Γt}(q+1) ∈ [0,1]NK×T given the current estimates {Pk}(q) for
the parents and {φk}(q) coefficients (see lines of Algorithm 1).
For this the following optimisation problem needs to be solved

{Γt}(q+1) = argmin
NK

∑
k=1

T

∑
t=1

γk(t)
∥∥∥xt −{x̂k,t}(q)

∥∥∥2

2
(13)

subject to the constraints (8) and (9), and where

x̂ j
k,t = ∑

(i,τ)∈P j
k

Φ
j
k(i,τ)x

i
k,t−τ for t ∈ {1, . . . ,T}. (14)

Since the first τmax time steps cannot be predicted, we choose
to set those to x̂ j

k,t = x j
k,t and to not consider this portion of the

time series in the algorithm evaluation.

In order to search for the global minimum, the algorithm
is run for a number NA of different initializations of {Γ}(0)
(annealing). The annealing run with the lowest cost functional
objective is chosen as optimal fit. Note that the individual
annealing steps are embarrassingly parallelizable.

Algorithm 1 Method
Input:

• time series xt ∈ RNX with t ∈ {1, . . . ,T}
• Set parameters:

– number of assumed regimes NK

– maximum number of transitions within a single regime
NC

– maximal lag τmax for each regime
– functional model G
– conditional independence measure according to G (e.g.

partial correlation ρ for linear G)
– significance level α

– type of masking ‘y’

– annealing steps NA

– number of optimisation iterations NQ

for a = 0 : NA do
Initialize random {Γ}(0) ∈ [0,1]NK×T

for q = 0 : NQ do
Fit network:

• Infer parents {Pk}(q) by means of PCMCI run on subset{
xt : t ∈ {ϒk}(q)

}
for each k

• Fit model coefficients {Φk}(q) via (12) for each k, and use
them to generate k reconstructed time-series {x̂k,t}(q) de-
fined for every t ∈ {1, . . . ,T} according to (14).

Fit regime assigning process:

• Update {Γ}(q+1) solving 13.

Break if {Γ}(q+1) = {Γ}(q) (a local or global minimum is
reached)

end for
end for

Output:
• Γ = [γ1(t), . . . ,γNK (t)]

† ∈ [0,1]NK×T

• causal parents Pk and causal effect Φk for every k ∈
{1, . . . ,NK}

return

D. Reconstruction of time series

A prediction from Eq 14 can be build as the weighted sum
over k

x̂∗ j
t =

NK

∑
k=1
dγk(t)ex̂ j

k,t for t ∈ {1, . . . ,T}. (15)



Reconstructing regime-dependent causal relationships from observational time series 6

But note this is never used in the code (only 14 via its presence
in 13 is used).

E. Consideration on nonlinearity

It is important to mention that the choice of functions g j
k in

the learning problem (2) should be determined according to
the considered applications and on assumptions on the data.
Further, the conditional independence test used in PCMCI
should cover at least an equally expressive functional depen-
dency class. For example, if Gaussian processes are used to
estimate g j

k, then the Gaussian Process Distance Correlation
(GPDC) test (see25) can be used.

Consequently, a nonlinear version of the presented Regime-
PCMCI would require a different cost functional. The com-
plexity of the assumed model would increase significantly
due to the two-fold presence of non-linearity (one through
the regime-dependence and the other one via nonlinear causal
relations). Therefore, we here restricted ourselves to linear
functions g j

k. Addressing nonlinearity in combination with the
considered non-stationarity will be explored in subsequent re-
search.

IV. NUMERICAL INVESTIGATION

In the following we investigate the performance of Regime-
PCMCI by means of several toy examples. The artificial data
is designed to test the methods robustness and accuracy with
respect to various potential scenarios that could occur in real
applications. At first low dimensional (NX = 2) causal rela-
tions are studied as the results can be interpreted more easily.
Next, we also consider higher dimensional settings (NX = 10).
The reference time series are generated with the following
variant of SCMs:

x j
t =

K

∑
k=1
{γk(t)}ref

∑
(τ,i)∈P j

k

{Φ j
k(i,τ)}

refxi
t−τ +{ε

j
t },

ε
j

t ∼N (0,{Σ}ref)

(16)

with x j
t = ε

j
t and predefined {Γ(t)}ref, {Φk}ref, {Ξ}ref and

{Σ}ref. Note that the reference set of parents is specified by the
non-zero coefficients {Φ j

k(i,τ)}
ref defining the causal child-

parent links (i,τ) ∈ {P j
k}

ref.

A. Low dimensional data with two underlying regimes

First we focus on a simple setting of two regimes, i.e.
NK = 2, and a two dimensional underlying process Xt ∈ R2

(i.e., NX = 2). Our aim is to test the performance of Regime-
PCMCI for different elemental features that can change be-
tween regimes. For brevity, links X i

t−τ → X i
t will be called

auto links and X i
t−τ → X j

t cross links. We consider the follow-
ing scenarios as summarised in Table I: sign change of coef-
ficient (in auto link and cross variables link), lag change (in

cross link), coefficient change (in auto link) and child-parent
inversion defined via an assortment of linear functions and as-
sociated coefficients. In all examples, each variable is also
auto-linked at lag 1, which is a realistic yet challenging as-
sumption for many algorithms. At first we will describe the
specific design of the toy data sets and the settings of the
algorithms runs. Then the results obtained via the proposed
methods are going to be compared to the reference values.

1. Experiment settings

We design five toy models, in network terms, corresponding
to different sets of parents defined via the references parame-
ters {Φ j

k(i,τ)}
ref given in columns 4 to 5 of Table I. Further,

synthetic regime assigning processes {Γ(t)}ref are generated
for all examples. More specifically, {γ1(t)}ref is designed to
consist of 41 alternating windows, i.e., {NC}ref = 40 regime
transitions. The regime assignment is indicated by setting it to
1 (active regime) and 0 (inactive regime). The length of these
windows is randomly selected to be between 70 and 100 and
the constraint (8) imposes {γ2(t)}ref = 1−{γ1(t)}ref. The fi-
nal length of the time series is capped at T = 3,000 to ensure
equally-long regime assignment time-series.

Then an artificial time series {xt}ref via (16) with {Σ j j}ref =
1 can be generated. Note that the stochastic process (16)
can be exactly reconstructed via the coefficients {Φ j

k(i,τ)}
ref,

their activation {Γ(t)}ref and a specific realisation of the inno-
vation term {ε j

t }ref.
The PCMCI parameters are chosen as follows: α = 0.05,

PC-α = 0.2, τmax = 3 and masking type ‘y’ (see the doc-
umentation of tigramite for the definition of masking
types). The regime parameter is NK = 2 and the max regime
transitions NC = 40, i.e., correct guess on number of regimes
and switches (model selection in terms NK is discussed in
Section IV B 3). The number of iterations is NQ = 20 and
the annealing are NA = 50. A summary of the parameters is
shown in Table II. The reconstructed time-series is generated
via (15) where coefficients {Φk} are estimated for each
variable via multiple linear regression on the detected parents.

The random procedure of generating γk(t), and the associ-
ated its xt , is repeated NR = 100 times for each example, thus
testing the algorithm on a variety of data for each family of
time series (robustness to data).

2. Results

The ability of the proposed method to recover the networks
and the path assigning process on the basis of the artificially
designed time series are presented in the following. Figures
2-6 present results for each case in Table I, focusing on one of
the NR synthetic data sets. Table V shows statistics from the
NR runs.

The case sign X1X2 is discussed in detail. The ground-truth
regime evolution and networks are shown in the top part of
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example k = 1 k = 2 {Φ j
1(i,τ)}

ref {Φ j
2(i,τ)}

ref

arrow direction X1→ X2 X1← X2 {Φ2
1(1,1)}ref = 0.8 {Φ1

2(2,1)}ref = 0.8

{Φ1
1(1,1)}ref = 0.2 {Φ1

2(1,1)}ref = 0.2

{Φ2
1(2,1)}ref = 0.2 {Φ2

2(2,1)}ref = 0.2

causal effect X1 |a|−→ X1 X1 |b|−→ X1 {Φ1
1(1,1)}ref = 0.8 {Φ1

2(1,1)}ref = 0.1

{Φ2
1(2,1)}ref = 0.4 {Φ2

2(2,1)}ref = 0.4

lag X1 τ=1−−→ X2 X1 τ=2−−→ X2 {Φ2
1(1,1)}ref = 0.8 {Φ2

2(1,2)}ref = 0.8

{Φ1
1(1,1)}ref = 0.2 {Φ1

2(1,1)}ref = 0.2

{Φ2
1(2,1)}ref = 0.2 {Φ2

2(2,1)}ref = 0.2

sign X1 X1 |a|−→ X1 X1 −|a|−−→ X1 {Φ1
1(1,1)}ref = 0.8 {Φ1

2(1,1)}ref =−0.8

{Φ2
1(2,1)}ref = 0.2 {Φ2

2(2,1)}ref = 0.2

sign X1X2 X1 |a|−→ X2 X1 −|a|−−→ X2 {Φ2
1(1,1)}ref = 0.8 {Φ2

2(1,1)}ref =−0.8

{Φ1
1(1,1)}ref = 0.2 {Φ1

2(1,1)}ref = 0.2

{Φ2
1(2,1)}ref = 0.2 {Φ2

2(2,1)}ref = 0.2

TABLE I. Artificial model configurations for different experiments.

NK NC α τmax mask NQ NA NR

2 40 0.01 3 ‘y’ 20 50 100

TABLE II. Algorithm setting for PCMCI for runs on low dimensional
data with two underlying regimes.

panels a and b in Figure 2; in the middle part of both panels
their Regime-PCMCI reconstruction is shown; in the bottom
part the difference between true and reconstructed regimes are
presented to visually inspect the accuracy. The reconstructed
regime assigning process for each regime matches the truth in
99.6% of time steps (97% average value over NR). The corre-
sponding networks have all and only the correct links (average
network TPR = 0.99 and FPR = 0.01); their linear causal ef-
fect is also well estimated with each link correct up to ±0.02
(average error per link is 0.028 (9%)).

The other four cases are presented in Figures 3-6. The
causal effect example results being the hardest to detect, as
it is further exposed by the average over the NR data sets.
The reason if probably traceable to weak identifiability of the
model based on the data. In causal effect - and in lag change to
a lesser extent - the difference between the individual regimes
and a mixed state of the two is not so dramatic and thus the
identification results harder. This adds to the general chal-
lenge of non-convexity of the functional we are optimising
for, that we mitigate for via the annealing steps. A similar
challenge of identifiability is found for some high dimensional
runs for which we refer to Section IV C.

Table V records the regime-averaged result for each case
after repeating the Regime-PCMCI discovery for NR differ-
ent ground-truth regime evolution. The estimation errors are
presented in terms of regime assigning process (second col-
umn), network structure (third to sixth) and causal effect of
links (last three columns). The second column, ∆γ% , is

the average percentage of wrongly estimated time steps per
regime (the lower the better, note that this value is the same
for k = 1,2 by construction). In terms of networks, the perfor-
mance in link detection is evaluated via the true positive rates
(TPR) and false positive rates (FPR) and compared with the
reference value, i.e. what is obtained if PCMCI is run on the
ground-truth regime data (superscript ref ). The accuracy in
links’ causal effects is assessed via ∆Φ, the average difference
between the reconstructed linear coefficient and the reference
values of the ground truth links. ∆Φ is also expressed as per-
centage, i.e. each difference is weighted by the absolute value
of the ground truth coefficient. The last column, ε̂ , is the ex-
pected prediction error per variable and per time step and is
computed as ε̂ =

√
L/NX T with L defined in Eq 7 and with

NX and T referring to the number of variables, here two, and
the length of the time series respectively. The precise defini-
tion of all the above statistics can be found in the Appendix.

In summary, Table V shows that :

• ∆γ%: on average, the regime assigning process is re-
constructed correctly in ∼ 94% of the time steps for all
cases except causal effect. The causal effect and lag
examples are the hardest to infer, with causal effect be-
ing particularly deficient. In these examples a mixed-
regime state (e.g. arising from assigning a consider-
able fraction of wrong time steps to a regime) is still
quite close to any of the true the case. Therefore the
algorithm might struggle to decide which time steps be-
long to which regime, since they could fit both to some
degree. Yet, there are 7 instances where ∆γ < 15%
(one presented in Figure 6) and those, as expected from
PCMCI, give very good network fit. We notice that
these runs do not correspond to the lowest objective val-
ues of the NR set (i.e. better fit) which proves that runs
that end up in mixed states can still fit the data quite
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example ∆γ% TPRall TPRref
all FPRall FPRref

all ∆Φ ∆Φref ∆Φ % ∆Φref % ε̂

arrow direction 3.0 1.0 1.0 0.02 0.01 0.021 0.020 7.0 7.0 0.76

causal effect 43.0 0.81 0.98 0.11 0.01 0.286 0.020 120.0 10.0 0.68

lag 6.0 0.98 1.0 0.04 0.01 0.027 0.018 11.0 8.0 0.68

sign X1 4.0 0.98 1.0 0.03 0.01 0.033 0.016 10.0 6.0 0.65

sign X1X2 3.0 0.99 1.0 0.01 0.01 0.028 0.019 9.0 7.0 0.75

TABLE III. Results from NR = 100 data generated per each examples described in Table I. Mean is taken over the NK = 2 regimes and over
NR.

Regime 1 (ref) 

Sign X1X2
a) Regime learning 

b) Network learning

Regime 2 (ref) 

Regime 1 (reco.) Regime 2 (reco.) 

Regime 1 (reco.-ref) Regime 2 (reco.-ref) 

FIG. 2. Sign X1X2. (a) The ground-truth regime-assigning process,
{γ}re f (top), the Regime-PCMCI reconstructed process, {γ}reco.

(middle) and the difference between the two, ∆γ (bottom). (b) The
ground-truth networks for each regime (top), the Regime-PCMCI re-
constructed networks (middle) and the difference between the two
(bottom). The links are labelled with the associated linear coefficient
and the lag, Φ

j
k(i,τ) (l+τ), and the sign of the coefficient is high-

lighted with the color (red for positive, blue for negative).

well. Also, we notice that causal effect setup reaches
local minima in 16% of the 100 runs, thus in most of
the runs the algorithm cannot easily find a stable solu-
tion and points at a weaker confidence in the output.

• TPR: despite some errors in reconstructing the regime
assigning process, the TPR is always very close to 1.
This can indicate that the true signals, dynamic wise,
are strong enough to be detectable.

• FPR: Ideally the false positive rate should be upper-
bounded by α . This is also the case if we assume the
correct regimes (see columns FPRref). However, if the

Regime 1 (ref) 

Sign X1
a) Regime learning 

b) Network learning

Regime 2 (ref) 

Regime 1 (reco.) Regime 2 (reco.) 

Regime 1 (reco.-ref) Regime 2 (reco.-ref) 

FIG. 3. Sign X1. Constructed as Figure 2.

regimes are learned, in most of the examples the FPR
value is higher due to errors in learning the regimes. If
a wrong regime is learned, then both false positives and
false negatives can occur. False negatives, i.e., missing
links in the PC1 step of PCMCI can lead to false posi-
tives in the MCI step.

• ∆Φ%: Errors in parents’ detection (either due to false
positives (FPR) or to false negatives (missed links, FNR
= 1-TPR)) surely impact the estimation of link effects.
Since the TPR and FPR are good, except for causal ef-
fects, we expect to obtain also good results for the linear
coefficients. This is indeed the case, as the difference in
each entry is order 10−2. Put in the context of the true
coefficients, the relative error is of about 10%.
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Regime 1 (ref) 

Arrow direction
a) Regime learning 

b) Network learning

Regime 2 (ref) 

Regime 1 (reco.) Regime 2 (reco.) 

Regime 1 (reco.-ref) Regime 2 (reco.-ref) 

FIG. 4. Arrow direction. Constructed as Figure 2.

B. Low dimensional data with three underlying regimes

In order to illustrate how the algorithm deals with more than
two regimes we also considered a toy time series with based
on 3 different causal regimes. It is of course possible to con-
sider the case NK > 3, yet in most application it is often desir-
able to infer a few prominent and very relevant regimes rather
than having too many that are not interpretable anymore. In
other words the aim is to avoid overfitting and to increase the
information gain by reducing the complexity of the assumed
model.

1. Experiment settings

The artificial time series is generated via a regime depen-
dent causal graph that is designed by combining two of the
regimes settings we had in IV A, namely sign X1X2 change
and arrow inversion (for details see Table IV). The regime
assigning references process {Γ}ref is generate by randomly
choosing between different persistence lengths 60, 70 and 80
and iteration over it for 20 times.

2. Results

In Figure 7 one can see the obtained regime assignment
and coefficient φk compared to the values used to generate
the data. There are only minimal deviations from the refer-
ences values which confirms that the proposed method is ca-
pable to deal with NK > 2. This is also projected in the av-

Regime 1 (ref) 

Lag
a) Regime learning 

b) Network learning

Regime 2 (ref) 

Regime 1 (reco.) Regime 2 (reco.) 

Regime 1 (reco.-ref) Regime 2 (reco.-ref) 

FIG. 5. Lag. Constructed as Figure 2.

eraged results obtained for NR = 100 runs presented in Table
V. Yet it is important to note that we chose a combination
of causal graphs that performed well for NK = 2, i.e, causal
effect changes would also be difficult to detect for NK = 3.

3. Model selection

Determining a suitable choice of the unknown number of
regimes NK is a difficult task. In particular it is hard to find
the right balance between avoiding to overfit and to choose ap-
propriately complex models to describe a specific data set and
thus the underlying dynamics well. One way to assess this bal-
ance heuristically is to employ an information criterion (IC)32

which has been derived in the context of regression models
and since been adapted to various other model scenarios in-
cluding graphs33. An IC is designed to capture the goodness
of fit penalised by the number of parameters in order to pre-
fer models with as few parameters as possibles, to avoid over
fitting. Here the number of parameters is defined via

Npara = (NK−1)NC +
NK

∑
k=1

NX

∑
j=1
|P j

k |. (17)

The first term in (17) relates to the number of parameters re-
quired to describe Γ which can be fully determined via the
change points. The second term in (17) counts the number
of relevant parents; in other words the non-zero coefficients
Φ

j
k(i,τ). Due to the fact that only the links are counted to-

wards the number of parameters a higher number of regimes
NK does not necessarily result in an increase of the total num-
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example k = 1 k = 2 k = 3 Φ
j
1(i,τ)

ref {Φ j
2(i,τ)}

ref {Φ j
3(i,τ)}

ref

sign X1X2 X1 |a|−→ X2 X1 −|a|−−→ X2 X2 |a|−→ X1 {Φ2
1(1,1)}ref = 0.8 {Φ2

2(1,1)}ref =−0.8 {Φ1
3(2,1)}ref = 0.8

and arrow {Φ1
1(1,1)}ref = 0.2 {Φ1

2(1,1)}ref = 0.2 {Φ1
3(1,1)}ref = 0.2

direction {Φ2
1(2,1)}ref = 0.2 {Φ2

2(2,1)}ref = 0.2 {Φ2
3(2,1)}ref = 0.2

TABLE IV. Artificial model configuration for an example of NK = 3

∆γ% TPRall TPRref
all FPRall FPRref

all ∆Φ ∆Φref ∆Φ % ∆Φref % ε̂

4.0 0.98 1.0 0.05 0.01 0.033 0.020 10.0 7.0 0.5

TABLE V. Results from NR = 100 data generated per each examples described in Table IV. Mean is taken over the NK = 3 regimes and over
NR.

Regime 1 (ref) 

Causal effect
a) Regime learning 

b) Network learning

Regime 2 (ref) 

Regime 1 (reco.) Regime 2 (reco.) 

Regime 1 (reco.-ref) Regime 2 (reco.-ref) 

FIG. 6. Causal effect. Constructed as Figure 2.

ber of parameters. Further it is important to mention that the
objective value (7) decreases for increasing NC. This effect is
natural to optimisation procedures which unless forced via a
constraint such as the persistency (see (8) and (9)) or restricted
number of parameters prefer the best fit in terms of the under-
lying cost function. Due to this fact we weight NC = {Nref

C }
with {NK}ref/NK for NK > {NK}ref while we consider model
selection with respect to NK . Here we will use the corrected
Akaike Information criterion (AICc) first proposed in34 to es-
timate NK . Note that we use the corrected version of the orig-
inal AIC29 to correct for small samples sizes relative to the
number of parameters

AICc =−2log(L )+2Npara +
2Npara(Npara +1)
NT −Npara−1

Sign X1X2  and arrow direction
a) Regime learning 

b) Network learning

Regime 1 (ref) Regime 2 (ref) 

Regime 1 (reco.) Regime 2 (reco.) 

Regime 1 (reco.-ref) Regime 2 (reco.-ref) 

Regime 3 (ref) 

Regime 3 (reco.) 

Regime 3 (reco.-ref) 

FIG. 7. Nk = 3 case, Sign X1X2 and arrow direction. Constructed as
Figure 2 but with 3 regimes.

and L is the maximum value of the likelihood function for the
model one assumes for the residuals (see35 for a more detail
discussion). The resulting AICc values for two test scenarios,
{NK =}ref = 2,3, with NR = 29, NQ = 20 and NA = 20 are
displayed in Figure 8. We note that the lowest NK at which
the AICc plateaus is the ground-truth one.

C. High dimensional linear network

In this section the algorithm is briefly tested on high-
dimensional data sets, with each dataset consisting of NX = 10
interacting variables. The background regimes are generated
with two regular alternating regimes of 300 time steps each,
for a total length T = 15,000. The networks’ structured are
randomly generated from a family of linear networks defined
via the parameters shown in Table VI, where L is the number
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AICc

b)  {"!}"#$ = 3

a) {"!}"#$ = 2

FIG. 8. AICc values for runs with different NK values and (a)
{NK}ref = 2 for three networks examples (sign X1X2, arrow and lag
change) and (b) {NK}ref = 3 for the sign X1X2 and arrow change ex-
ample. In each example, individual dots represent the value attained
by the NR = 29 runs, and the dashed line goes through the mean
values of each set. The vertical grey bar highlights the ground-truth
number of regimes {NK}ref.

of randomly drawn cross variable links with random coeffi-
cients from the fouth column. Note that each variable is also
auto-linked at lag 1 with coefficient randomly drawn from the
second column. The time series xt ∈ R10 is generated follow-
ing the Eq (16). The procedure is repeated for NR = 70 times
to ensure robustness of the results to data.

N L Φ
j
k(i,τ) Φi

k(i,τ) max lag

10 30 [-0.4, 0.4] [ 0.2,0.5, 0.9] 3

TABLE VI. High dimensional network parameters

Finally, Regime-PCMCI is run with the setting shown in
Table VII

NK NC α τmax mask NQ NA NR

2 49 0.05 4 ‘y’ 30 50 70

TABLE VII. Algorithm setting for runs on high dimensional data
with two underlying regimes.

The results are shown in Table VIII, which is structured
as Table V. Regime-PCMCI performs very well even in this

challenging setting. Notably, individual runs can perform ex-
tremely well, with ∆γ reaching as low as 0.02%, and a total
of 53 runs below total average of ∆γ = 11.7% (second row in
table). The other 7 runs are responsible most of the deviation
of the average statistics from the reference values (first row).

As in the causal effect case, there is a mismatch between
runs with the lowest prediction errors ε̂ and the lowest error
on regime-assigning process ∆γ , i.e. we cannot use a filtering
on ε̂ to find the best performing runs. This behaviour can
be explained as the tendency of the algorithm to still over-fit
when too many degrees of freedom are available, as well as
the complexity of distinguishing different links causal effects
(a challenge already manifested in the causal effect case).

D. Computational complexity

Table IX shows some indicators of performance of the al-
gorithm: the fraction of NR runs that correspond to a (local)
minima, the percentage of annealing per each run that reach a
minima and the corresponding average number of q-iterations
to get there. The mean value of the prediction error across all
NR.

V. A REAL-WORLD EXAMPLE: THE EFFECT OF
EL NIÑO SOUTHERN OSCILLATION ON INDIAN
RAINFALL

We finally test the performance of Regime-PCMCI on real-
world data, and apply it to address the non-stationary relation-
ship of El Niño Southern Oscillation (ENSO) and all-India
rainfall (AIR) mentioned in the introduction. We are inter-
ested if, for given time-series of ENSO and AIR, our method
is able to distinguish between the winter and summer months,
i.e. the background-regimes, and to detect a reported link
from ENSO to AIR during summer.

This example can be considered a difficult case as the ex-
pected signal form ENSO to AIR is likely small compared
to natural variability7. Further, climate data is typically very
noisy with causal relationships being diluted by other, often
unknown processes given a complex and fully coupled climate
system27.

Our input data consist of monthly observations of ENSO
and AIR, for the years 1871 to 2016, resulting in two time-
series consisting of 1740 monthly values each. More pre-
cisely, ENSO is represented by the so-called relative Nino3.4
index provided by the National Oceanic and Atmospheric Ad-
ministration (NOAA)36. Data for AIR anomalies (relative to
climatology) are provided by the Indian Institute of Tropical
Meteorology (IITM)37

As free parameters of Regime-PCMCI we chose K = 2
regimes to be detected and C = 292, which is equivalent to
assuming two seasons per year. For the PCMCI settings, we
chose the significance level α = 0.01. Further, we chose a
maximum time-lag of two months, i.e. τmax = 2, and set mask
type ’y’. The optimisation is attempted NA = 100 annealing
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selection ∆γ% TPRcros TPRref
cros FPRcros FPRref

cros ∆Φ ∆Φref ∆Φ % ∆Φref % ε̂ number

all 11.7 0.94 1.0 0.18 0.08 0.059 0.005 16.0 1.5 0.85 70

∆γ < 11.7 % 0.19 1.0 1.0 0.08 0.07 0.006 0.005 1.8 1.5 0.70 53

TABLE VIII. Results from NR = 100 data generated per each examples described in Table IV. Mean is taken over the NK = 3 regimes and
over NR.

example n. local minima (%) iterations to minima runtime (s)

arrow direction 92 (98 %) 7 600

causal effect 16 (32 %) 13 970

lag 60 (848 %) 11 1,130

sign X1 52 (74 %) 12 970

sign X1X2 70 (93 %) 9 700

sign X1X2 and arrow 56 (80 %) 10 2,670

high dimensional 65 (97 %) 6 10,780

TABLE IX. Run performance of all examples examples. Average over respective NR.

times, to span many local minima, with each annealing al-
lowed up to NQ = 100 iteration to converge.

Among the annealing steps, which correspond to different
random initial guess on the regime-assigning process Γ, some
clearly performed better in terms of fitting the data. We define
the average prediction error associated with one annealing, ε̂ ,
defined in Section IV A. Figure 9(top) shows the average pre-
diction error for all the annealings (ranked according to ε̂),
with a red box highlighting the top performing cluster (13).

All of the top 13 annealing find a link from ENSO to AIR
during one of their two regimes only (for simplicity hereafter
called regime 1). In the following we present results averaged
over these annealing.

The causal link from ENSO to AIR in regime 1 has an av-
erage standardized linear effect of −0.4, meaning that a one
standard deviation increase in ENSO results in a reduction of
0.4 standard deviations in AIR. This negative dependence is
well documented in the literature7. During regime 2, in con-
trast, ENSO and AIR are, on average, almost independent,
with only a very weak link (−0.05) detected from AIR to
ENSO.

More importantly, our results indicate a clear seasonal de-
pendence. Figure 9 shows the number of months assigned to
each regime (normalised by the number one would expect on
the hypothesis of no seasonality, see figure caption). A clear
peak in summer months is found for regime 1. More precisely,
most of the months between June to September are assigned
to regime 1 (70%). These are the months in which the Indian
summer Monsoon is active and for which a robust influence
from ENSO has been shown. In contrast, months assigned to
regime 2 are predominantly winter months (60% of all De-
cember to March months). Thus, despite the relatively weak
mean causal effect of ENSO on AIR during summer, and the
large inter-annual variability, our algorithm successfully re-
constructed this well-documented relationship given all-year
time-series of ENSO and AIR.

Overall, these results are promising and show the po-
tential of Regime-PCMCI to understand and detect regime-
dependent causal structures in a system as complex as the cli-
mate system. On the other hand, it also shows that domain
knowledge is required to assure a suitable choice of parame-
ters (C and K) and an interpretation of the results. This is yet
a common caveat to many data-driven approaches, which we
nevertheless want to stress strongly.

VI. DISCUSSION AND CONCLUSION

A novel Regime-PCMCI algorithm that overcomes one of
the key drawbacks of many causal recovery methods by al-
lowing to learn non-stationary causal relations has been in-
troduced. The performance of the technique is analysed for
many different artificially generated causal scenarios and for
varying regimes. Except in the context of identifiability issues
that might require more and distinct samples (see Figure 6) the
results are impressively accurate for all settings (see Figures
2-5 and Table V). The good performance of the algorithm is
maintained even for high dimensional state spaces (see Table
VIII) as well as for more than two regimes (see Figure 7 and
Table III). This thorough investigation of different scenarios
by means of toy models allowed us to reveal the strength and
also the limits of the proposed algorithm which is a valuable
asset when the method is applied to real data sets from vari-
ous application areas. Further the capability of the Regime-
PCMCI is verified by means of a well understood real data set
of ENSO and Indian rainfall (see Figures 9). Concluding the
proposed approach presents a promising approach in the con-
text of nonlinear causal links manifested in regime changes in
time.
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b) Regime learning 

a) Prediction error

c) Network learning d) Seasonality

Regime 1 (reconstr.) 

Regime 2 (reconstr.) 

FIG. 9. Prediction error for each annealing step in ascending order,
lowest 13 annealings highlighted in red box. All the other panels
refer to this selection (a). Regime learning (b): regime-assigning
process corresponding to the best annealing (rank 0) (top) and de-
parture from this estimate of the remaining best 12 annealings (in
percentage difference). Network learning (c): mean networks per
regime, each causal effect is the mean of of the corresponding co-
efficient in the individual 13 annealings. Seasonality of the regimes
(d): Number of months assigned to each regime (Nk

m). The values is
normalised by a factor N∗m corresponding to the expected number of
months assigned to a given regime under the null hypothesis of no
seasonality (months assigned to each regime with probability 1/NK)
(N∗m = 13 ·T/(12∗NK)).

A. Outlook

There are several interesting aspects that could be explored
in the future by building on the fundament laid out here. As
already discussed in Section III E the stationary PCMCI algo-
rithm allows for nonlinear causal links and a nonlinear exten-
sion of the Regime-PCMCI and through investigation of its
properties is a potential next step. Further it would be possi-
ble to learn the structure of the noise term and allow for non-
stationary noise. In terms of application it would be highly
interesting to utilise the proposed method for observations not
as well understood as the presented El Niño-Indian rainfall
scenario.

Further note that a causal interpretation of estimated links
in our framework still assumes causal sufficiency, that is, no
unobserved common causes. However, estimated non-links
do not require this assumption. Our approach could be ex-
tended by combining latent causal discovery methods with our
regime assignment procedure instead of PCMCI.
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Appendix A: Definition of result statistics

The definition for the statistics presented in Tables V, III
and VIII is outlined in the following.

1. Regime assigning process

∆γ(%) =
∑

T
t=τmax |{γk(t)}reco.−{γk(t)}re f |

T − τmax
×100% (A1)

2. Links’ detection

TPR

TPR =
TPX

PX
(A2)

Over the cross-variables links (in Tables VIII):

TPcros = |{(i, j,τ) : {Φ j
k(i,τ)}

reco. 6= 0 &

{Φ j
k(i,τ)}

re f 6= 0 & i 6= j}|

Pcros = |{(i, j,τ) : {Φ j
k(i,τ)}

re f 6= 0 & i 6= j}|

(A3)

And over all links (in Tables V and III):

TPall = |{(i, j,τ) : {Φ j
k(i,τ)}

reco. 6= 0 &

{Φ j
k(i,τ)}

re f 6= 0}|

Pall = |{(i, j,τ) : {Φ j
k(i,τ)}

re f 6= 0}|

(A4)

FPR

FPR =
FPX

NX
(A5)

Over the cross-variables links (in Tables VIII):

FPcros = |{(i, j,τ) : {Φ j
k(i,τ)}

reco. 6= 0 &

{Φ j
k(i,τ)}

re f = 0 & i 6= j}|

Ncros = |{(i, j,τ) : {Φ j
k(i,τ)}

re f = 0 & i 6= j}|

(A6)

And over all links (in Tables V,III):

FPall = |{(i, j,τ) : {Φ j
k(i,τ)}

reco. 6= 0 &

{Φ j
k(i,τ)}

re f = 0}|

Nall = |{(i, j,τ) : {Φ j
k(i,τ)}

re f = 0}|

(A7)

3. Links’ coefficients

∆Φ=
1

NK

NK

∑
k=1

1

∑ j |P
j

k |
∑

j
∑

(i,τ)∈P j
k

| {Φ j
k(i,τ)}

reco.−{Φ j
k(i,τ)}

re f |

(A8)
Can be also computed as average percentage error per regime:

∆Φ(%) =

1
NK

NK

∑
k=1

1

∑ j |P
j

k |
∑

j
∑

(i,τ)∈P j
k

| {Φ j
k(i,τ)}

reco.−{Φ j
k(i,τ)}

re f |
{Φ j

k(i,τ)}re f
×100%

(A9)
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4. Prediction error

ε̂ ≡ 1
NX T ∑

t
∑

j
|{x j(t)}re f −{x j(t)}reco.|=

√
L

NX ·T
(A10)

Abbreviations
AIC Akaike Information criterion
AICc corrected Akaike Information criterion
ENSO El Nino Southern Oscillation
FPR false positive rate
MCI momentary conditional independence
MLR multi linear regression
PCMCI causal discovery algorithm
RAM Regime-dependent Autoregressive Model
SCM structural causal model
TPR true positive rate

TABLE X. Abbreviations used throughout the manuscript.

List of notation
{Xt}t∈Z Stochastic Process
NX Spatial dimension of {Xt}
NK Number of regimes
NC Bound for switches of γk(t) for each k
NQ Number of iteration steps
NA Number of annealing steps
NR Number of runs for random initial values
Npara Number of parameters
α link confidence level
P j

t parents of component X j
t

Γ(t) regime assigning process
Φt causal effect parameters, time dependent
ϒk collection of specific time steps, dependent on regime
xt time series

TABLE XI. Notation used throughout the manuscript.


