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Abstract

Understanding the complex interdependencies of processes in our climate system has
become one of the most critical challenges for society with our main current tools being cli-
mate modeling and observational data analysis, in particular observational causal discovery.
Causal discovery is still in its infancy in Earth sciences and a major issue is that current
methods are not well adapted to climate data challenges. We here present an overview
of a NeurIPS 2019 competition on causal discovery for climate time series. The Causality
4 Climate (C4C) competition was hosted on the benchmark platform www.causeme.net.
C4C offers an extensive number of climate model-based time series datasets with known
causal ground truth that incorporate the main challenges of causal discovery in climate
research. We give an overview over the benchmark platform, the challenges modeled, how
datasets were generated, and implementation details. The goal of C4C is to spur more
focused methodological research on causal discovery for understanding our climate system.
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1. Introduction

Understanding and predicting our climate system has become one of the most critical chal-
lenges for society. Climate change is affecting weather patterns and the frequency and
intensity of extreme events, therefore it is more crucial than ever to improve our knowledge
of the complex interdependencies of the climate system. To do so, we often rely to model-
ing and estimations done with climate models and observational data coming from satellite
and in situ observational data measurements of essential climate variables such as temper-
ature. These sources of information are complementary and help in the scientific discovery
process. Observational causal discovery is a major current topic in machine learning, but
still in its infancy in many applied fields, such as Earth sciences (Runge et al., 2019). But
perhaps more important is the fact that current causal discovery methods are not adapted
to the climate data challenges, and importantly they have not exhaustively evaluated in
representative climate data challenges in terms of accuracy and robustness. In this sense,
benchmark datasets and competitions have been a major driver of innovation in machine
learning, and we believe they should also play a role in causal discovery. Here we present
the Causality 4 Climate (C4C) challenge as part of the NeurIPS 2019 competitions track.
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Figure 1: Teleconnections between climate modes of variability (Xi) describe regional sub-
process interactions.

C4C offers an extensive number of climate model-based time series datasets with known
causal ground truth that incorporate the main challenges of causal discovery in climate
research. The focus is on the discovery of global climate teleconnections that causally con-
nect far-away major climate subprocesses (modes of variability) such as El Niño-Southern
Oscillation (ENSO) in the tropical Pacific and the North Atlantic Oscillation that strongly
drives European and North American climates. This paper also gives an overview of the
benchmark platform www.causeme.net where the C4C competition run. In particular, we
review the modeled challenges, how datasets were generated, the accuracy and robust scores
adopted, and some implementation details. Further contributions to these proceedings are
on the winning methods. The datasets, platform and results will be curated and freely
available, with the aim to spur more focused research and contribute to connecting the
machine learning and climate science communities to better understand one of the main
challenges of humanity – climate change.

2. Causal discovery and challenges in Earth system science

An overview of causal discovery is presented in a recent Nature Communications Perspec-
tive paper (Runge et al., 2019). A plethora of methods for causal discovery exist, all based
on connecting assumptions about properties of the data with statistical inference tech-
niques. Concepts range from Granger causality time series modeling (Granger, 1969), via
nonlinear dynamics inspired methods (Sugihara et al., 2012) to structural causal models
(Peters et al., 2017; Pérez-Suay and Camps-Valls, 2019) and the frameworks of conditional
independence-based discovery algorithms (Spirtes et al., 2000). Each of these frameworks
and their individual methods has its strengths and weaknesses and the goal of C4C is to
identify promising candidates for climate data challenges.

In a typical real life climate research scenario (Kretschmer et al., 2016), a climatolo-
gist will test a causal hypothesis by investigating dependencies between several index time
series describing relevant climatic subprocesses (such as that ENSO’s influence on rainfall
in California). The index time series are often reconstructed from gridded spatio-temporal
satellite data fields of climate variables (temperature, pressure, rainfall, etc.) by either spa-
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Challenges

Process:
1     Autocorrelation
2     Time delays
3     Nonlinear dependencies
4     Non-gaussian noise

Data:
5    Non-stationarity due to 
       unobserved drivers
6    Time subsampling
7    Time aggregation
8    Observational noise
9    Missing values

Computational / statistical: 
10  Sample size
11  High dimensionality
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Figure 2: Methodological challenges for causal discovery featured in C4C.

tially averaging the data field over conventionally defined regions, or by using dimensional-
ity reduction methods such as principal component analysis or rotated principal component
analysis (e.g., Varimax) (Hannachi et al., 2007). Figure 1 illustrates such scenario.

The challenges of such a causal discovery analysis tackled in C4C (see numbered list in
Fig. 2) are based on those presented in (Runge et al., 2019). The time-dependent nature of
the physical processes gives rise to strong autocorrelation (1) in the data and time delays
(2) by which far-away processes are connected can be very large. Not least since Lorenz
famous chaotic weather model we know that nonlinear dynamics (3) are behind weather
and climate processes which poses a challenge for statistical modeling techniques. Further,
the data distributions are often highly non-Gaussian (4) such as precipitation.

Based on these ubiquitous challenges of the underlying processes themselves, we here
also model typical challenges that emerge by the way the data is acquired and processed.
These include that important drivers may be (partially) unobserved or undersampled, and
here we model the common case of non-stationarity (5) due to such unobserved drivers,
for example, slow oceanic processes modulating fast atmospheric dynamics. Further, time-
subsampling (6) results from satellites measuring a particular quantity in a region only
every few days, while time-aggregation (7) comes from the standard procedure to average
climate variability measured at fast time resolution to a monthly time-resolution to reduce
the ‘weather noise’. On the data quality side, satellites, as well as station instruments, are
plagued by observational measurement noise (8) and also missing values (9) (notably cloud
occlusions or sensor malfunctioning). The typical computational and statistical challenges
concern sample size (10) due to the limited past availability of satellite records and high-
dimensionality (11) emerges since climate researchers face the dilemma that including more
variables make a causal discovery analysis more credible (since more potential common
drivers are included), but at the same time the increased dimensionality leads to lower
detection power and true causal links might be overlooked.
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Figure 3: The C4C challenge is available at causeme.net. The main front page (a) contains
information about the platform and describes how to use it. The data/models
page (b) overviews all available datasets tagged by challenge. The ranking page
(c) summarizes the results by user, methodology and evaluation metric.

3. The CauseMe platform

Causeme.net is a benchmark platform designed to compare the performance of causal dis-
covery methods. It contains a growing number of multivariate time series datasets, some
real and some generated from synthetic and hybrid models, but all with ground truth. These
datasets model a large number of different real world challenges, those described above, and
many more (Runge et al., 2019). In most cases, the datasets for particular challenges are
available with different numbers of variables (dimensionality) and time-length to also cover
these important challenges for causal discovery. There are two ways to contribute. Either
by downloading datasets and uploading predicted causal relations, or by contributing fur-
ther datasets with known causal ground truth. The workflow to upload estimated causal
networks on the CauseMe platform is as follows: (1) a new method is registered and de-
scribed, (2) datasets are downloaded and the method applied, and (3) results are uploaded.
To contribute new datasets the maintainers of Causeme.net can be contacted.

Causeme.net is structured as follows: The section HowTo covers the necessary informa-
tion to use the platform: explanatory videos, examples of methods implemented in Python,
R, Octave and Matlab, as well as a detailed description of performance metrics. The sec-
tion My results allows the users to register their methods and upload their results on the
experiments. The section Data and models contains a list of the available data sets with a

4



The Causality for Climate Challenge

description and tags that list the various challenges they include. In the section Methods,
one can find all the methods registered by users of the platform. By clicking on one method,
it is possible to access the information provided by the user. Providing links to description
papers and ideally code allows visitors of the platform to obtain more information and get
access to high-ranking methods. The section Ranking features an advanced ranking system
that allows ordering the method performance for different datasets by different performance
metrics, and to use various filters, including hiding those methods that have no paper or
code information. Likewise, a field ‘validated’ indicates if the maintainers of causeme.net
have been able to reproduce the results. The goal is to encourage open access to information
about the causal discovery methods.

4. Causality 4 Climate competition setup

4.1. Climate and weather data

It is difficult to obtain ground truth on causal relationships among modes of climate variabil-
ity since real world causal experiments are infeasible. To obtain realistic ground truth data
in a controlled fashion, we use climate model output from so-called pre-industrial control
runs (Eyring et al., 2016). Specifically, we construct ground truth data as follows:

1. Extract time series representing relevant subprocess components from climate models.

2. Randomly draw N component time series and fit a linear VAR model with truncated
coefficients defining the ground truth model among the N time series.

3. Create datasets by generating realizations with the ground truth models.

4. Process these datasets to add further data challenges.

5. Repeat (2-4) to obtain 400 realizations per experiment (as indicated in Table 1), 200
for the training phase and 200 for the final phase.

Table 1 provides an overview of the final experiments. In the following sections we describe
these steps in more detail.

4.1.1. Climate model data

The competition used climate simulation data from the fifth phase of The Coupled Model
Intercomparison Project fifth phase (CMIP5) for the Canadian CanESM2 and the French
IPSL-CM5A-MR models. We used the pre-industrial control simulations (piControl) which
are performed under conditions chosen to be representative of the period prior to the onset
of large-scale industrialization. The main advantage of piControl runs is that they provide
very long time series (200-500 model years) of stationary climate system data. Further,
since interdependencies are seasonally varying, we de-seasonalize the data. We used the
following climate variables: hfls, hfss, huss, rlds, rlus, rlut, ta, tas, tasmax, tasmin, uas,
va, vas, wap, zg (see descriptions in (Eyring et al., 2016)). The models from which the
original data came and the climate variables were hidden to the participants since that
would allow them to generate similar ground truth data. We extract time series representing
relevant subprocesses by applying Varimax-rotated principal component analysis to monthly
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averages of these spatio-temporal datasets. The obtained weights are then used to generate
daily component time series. Finally, these are averaged to a 5-day time resolution.

4.1.2. Statistical models and ground truth

As explained above, the time series represent different climate subprocesses in different
variables. We randomly pick N component time series and construct the ground truth by
fitting a multivariate linear vector autoregressive (VAR) model (LIN) given by

Xj
t =

τmax∑
τ=1

aτjX
j
t−τ +

N∑
i=1

τmax∑
τ=1

cτjiX
i
t−τ + ηjt (1)

Here aτj are the variable auto-dependency coefficients and cτji are the cross-variable depen-
dency coefficients. To obtain ground truth, coefficients with an absolute value smaller than
the threshold λ = .22 were set to zero. The sparsity of the model was controlled by only
keeping those random draws of models with a minimum number of L = N links. A binary
ground truth matrix of shape N ×N is then constructed as

Aij =

{
1 if |cτji| > λ for any time lag τ > 0, indicating a causality i→ j

0 else .
(2)

For each fitted model, its corresponding residual terms are stored. We create datasets by
generating realizations of length T with the ground truth models where we add random
and independent draws from the residuals at each time-step. This way, we achieve that the
noise of the synthetic data follows the same distribution as the climate model data. Since
the minimal time lag is τ = 1 day, there is no ambiguity in the direction of causality and
feedbacks between variables, i.e., Aij = Aji = 1 are still acyclic in the underlying time-
resolved dynamics. That is, our model has no contemporaneous causal dependencies at a
5-daily time scale, but contemporaneous causal relations appear due to time-aggregation,
see the data challenges below. These datasets then feature the challenges of autocorrelation,
time delays, and non-Gaussian noise for N -dimensional datasets with sample size T . To
generate nonlinear data, we also use a nonlinear generalized additive model (NONLIN) with

the linear function in model (1) replaced by a nonlinear f τji(x) = x+ 5x2e
−x2

20 . Further, we
process these datasets to add further challenges as described below.

4.1.3. Climate and weather modeling settings

Based on these two types of ground truth models (LIN and NONLIN), we construct a
number of models featuring data challenges inspired by real world application scenarios
(see Tab. 1). We model two types of application scenarios: (1) climate and (2) weather.

Climate variability is typically estimated from monthly data. The challenge for causal
discovery comes from the fact that time-aggregation leads to many causal effects being
‘contemporaneous’. This time-aggregation is here modelled by averaging all 5-day measure-
ments of a particular month to obtain T ≈ 100 − 250 monthly samples. For the climate
scenario, we only use the linear models (LIN). The challenge of high dimensionality is mod-
elled by different numbers N of climate components to which the above models are fitted.
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We select N = 5, 10, 40 to evaluate the method’s performance both in a low-dimensional
and high-dimensional regime. Climate data can also be non-stationary which we model by
adding a term modeled as an Ornstein–Uhlenbeck process to the N components. Last, we
model observational noise added to the time series after the data generation. With these
challenges, we generate three experiment types as indicated in Table 1. With two different
sample sizes T and two different N , we have 12 CLIM experiments, each with 200 dataset
realizations.

Weather variability takes place on much shorter time scales. We chose two sample sizes
of T = 1000, 2000 weekly samples. Also, non-linearity plays a bigger role on these fast time
scales (e.g., the chaotic Lorenz system as a simple weather model). Our dataset features
both linear and nonlinear dependencies. Data challenges are also slightly different in the
weather scenario were we model time sub-sampling at every three weeks. As satellites
observations and ground measurement stations also suffer from missing values, here we
randomly remove 1% of the values. Last, also observational noise plays a key role in
satellite data analysis. Modeling these challenges, we generate four types of experiments as
indicated in Table 1. With two different sample sizes T and two different N , we have 16
WEATH experiments, each with 200 dataset realizations.

4.2. Further ‘bonus’ experiments

We also included 6 further experiments from the main platform that are further described
there and listed in Table 1: Linear and nonlinear VAR models with Gaussian noise of
different N and coupled chaotic logistic maps for different dynamical noise values to mimic
nonlinear chaotic systems.

5. Setup and score metric

There are in total 28 categories of varying numbers of variables and sample sizes in the
competition. These correspond to the real world challenges listed in Tab. 1. The task of
the competition is to predict the causal connectivity matrices among the N components of
each dataset, the time lag doesn’t matter for evaluation (some methods may not yield a
causal time lag). More precisely, participants will upload matrices C of shape N ×N with
non-negative real entries between 0 and 1,

Cij =


1 indicating a causal link i→ j with high confidence

0 indicating the absence of a causal link i→ j with high confidence

a number between 0 and 1 to indicate lower confidence for the two cases .

(3)

5.1. Metrics

The evaluation of each solution will be based on the standard objective measure of the area-
under-the-curve (AUC) of the receiver operating curve (ROC) for each challenge dataset.
The AUC is calculated using the trapezoid method. The AUC is well suited for causal
discovery since it balances false and true positives. The same metric was also used in the
previous Connectomics challenge (Battaglia et al., 2017). As shown in Table 1 there are 28
different types of challenges (process and data challenges, as well as sample size and numbers
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of variables) with 200 realization datasets for each challenge. We compute one AUC from
the 200 realization datasets which provides a robust evaluation of the performance on a
particular challenge. This procedure results in an AUC score for each model, sample size,
and number of variables, e.g., CLIMnoise N-40 T-100. Participants could win in any of the
28 categories and, in addition, an overall winner was based on the average AUC score across
all 28 datasets (counting non-participation in a category as a zero AUC).

6. Competition phases

The competition had two phases: (1) a feedback/calibration phase (where we provided a
reduced number challenge datasets); and (2) the submission phase on the final, complete
datasets. The system provides AUC averages as well as a ‘Hall of Fame’ ranking (leader
board) of the best performing teams after submissions:

• The calibration phase was aimed to give participants the opportunity to familiarize
with the platform, problems/challenges and datasets.

• In the submission phase only the last submission counted towards the final evaluation.

Cheating was prevented by not disclosing which climate models were chosen, by using
different models for each realization, by not disclosing the dimensionality reduction method
used, and by shuffling the column order of datasets (i.e., the N variables).

7. Conclusions

Establishing causal relations between random variables from observational data is one of
the most important challenges in data science. The problem is of paramount relevance,
especially in the current scenario of climate change. However, causal discovery methods have
not systematically compared in our field. Here we aimed to set up the basis for a consistent
evaluation framework, and provided well-curated climate data simulations, including some
of the most important data challenges (e.g. non-stationarity, non-linearity, missing data),
and a web platform for causal model evaluation and user/methods ranking. More than a
hundred participants contributed with many innovative techniques and approaches. In a
separate article (Weichwald et al., 2020) some of the winning methods for this competition
will be discussed. It goes without saying that the platform is an open-access initiative
and a live experiment that will grow in the near future with more problems and methods.
Our far-end goal of learning what are the most suitable causal models for each causal data
challenge in climate.
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Appendix A. Table of setup of datasets

Model
Process challenges
(additionally)

Data challenges
Sample size and
number of variables

CLIM Time aggregation
T = 100, 250
N = 5, 40

CLIMnoise
Time aggregation,
observational noise

T = 100, 250
N = 5, 40

CLIMnonstat Nonstationarity Time aggregation
T = 100, 250
N = 5, 40

WEATH Nonlinearity -
T = 1000, 2000
N = 5, 10

WEATHsub Nonlinearity Time-subsampling
T = 1000, 2000
N = 5, 10

WEATHnoise Nonlinearity Observational noise
T = 1000, 2000
N = 5, 10

WEATHmiss Nonlinearity
Missing values
(1%)

T = 1000, 2000
N = 5, 10

Linear-VAR
T = 150
N = 10, 100

Nonlinear-VAR Nonlinearity
T = 600
N = 20

Logistic Chaos 3 noise levels
T = 150
N = 5

Table 1: Setup of datasets in seven model categories featuring different process and data
challenges (in addition to basis ones: autocorrelation, time delays, non-Gaussian
noise) for the climate and weather scenario. Each model is simulated for different
sample sizes T and numbers of variables N . For each such setup we simulate 200
ensemble realizations to be able to robustly estimate performance.
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