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ABSTRACT
A simple yet physically comprehensive and accurate method for the estimation of the cruise
fuel burn rate of turbofan powered transport aircraft operating in a general atmosphere was
developed in part 1. The method is built on previously published work showing that suitable
normalisation reduces the governing relations to a set of near-universal curves. However, to
apply the method to a specific aircraft, values must be assigned to six independent parameters
and the more accurate these values are the more accurate the estimates will be. Unfortunately,
some of these parameters rarely appear in the public domain. Consequently, a scheme for
their estimation is developed herein using basic aerodynamic theory and data correlations.
In addition, the basic method is extended to provide estimates for cruise lift-to-drag ratio,
engine thrust and engine overall efficiency. This step requires the introduction of two more
independent parameters, increasing the total number from six to eight. An error estimate
and sensitivity analysis indicates that, in the aircraft’s normal operating range and using the
present results, estimates of fuel burn rate are expected to be in error by no more than 5% in
the majority of cases. Initial estimates of the characteristic parameters have been generated
for 53 aircraft types and engine combinations and a table is provided.
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NOMENCLATURE
A coefficient – Equations (A-5) and (A-6)

Ae core and bypass jet exit cross-sectional areas summed over all engines

AR wing aspect ratio

a constant in the skin friction law (= 0.0269) - Equation (7)

a∞ speed of sound = (γ�T∞)1/2

B coefficient – Equations (A-5) and (A-7)

BPR engine nominal bypass ratio

b exponent in skin friction law (= 0.14) – Equation (7)

bf fuselage width

Cd airframe drag coefficient = D/(0.5γ p∞ (M∞)2Sref )

Cdo zero-lift drag coefficient

Cdw wave drag coefficient

CL overall lift coefficient = L/(0.5γ p∞ (M∞)2Sref )

Cl local lift coefficient – Equation (30)

CF mean skin friction coefficient

Ct engine net thrust coefficient = Fn/(0.5γ p∞ (M∞)2 Ae)

c local wing chord measured in the streamwise direction

D total drag force

E coefficient – Equation (8)

e aircraft Oswald efficiency factor

FCOM flight crew operating manual

FL flight level

FM fuel mass

FF , FI , Fo, FS component form, interference, overall and secondary drag factors -

Equation (23) and Appendix B

Fn net thrust, summed over all engines

Fwv aircraft weight variant factor – Equation (63)

f 1-7 functions – Appendix A and Equations (32) to (34)

G2-7 functions – Appendix A and Equation (87)

g acceleration due to gravity (9.80665m/s at sea level)

g1-3 functions – Equations (97) to (99)

k1 miscellaneous lift-dependent drag factor – Equation (26)

L lift force

LCV lower calorific value of fuel (≈ 43×106J/kg for kerosene)

L/D lift-to-drag ratio

LM landing mass

l characteristic streamwise length = S1/2
ref

M∞ flight Mach number = V∞/a∞
MPM maximum payload (passengers + cargo) mass (=MZFM-OEM)

MTOM maximum permitted take-off mass
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MZFM maximum zero fuel mass (maximum permitted aircraft mass without fuel)

m instantaneous total aircraft mass

n ratio of (ηoL/D)avg to (ηoL/D)o

OEM aircraft operational empty mass (mass of aircraft without payload and

without fuel)

PM payload mass (passengers + cargo)

p static pressure

Rac characteristic Reynolds number – Equation (3)

Rt ground distance measured along the great circle containing the departure

and destination points

� gas constant for air (287.05J/(kg K))

S distance travelled through the air

Sref aerodynamic reference wing area (Airbus definition)

s wing span

T static temperature

To total temperature =T(1+((γ -1)/2)M∞2)

TFM mass of the trip fuel (fuel burned between ‘brakes off ’ at take-off and

‘brakes on’ at the end of the landing run)

TOM total aircraft mass at the start of the take-off run

t/c wing streamwise thickness-to-chord ratio

V∞ true air speed

X t non-dimensional great circle distance – Equation (67)

y spanwise coordinate - drawn normal to fuselage centre line with origin on

centre line.

ZFM zero-fuel mass (mass of aircraft, including payload, but without any fuel)

αt ratio of trip fuel mass to aircraft take-off mass - Equation (66)

βmin ratio of the minimum reserve fuel mass to aircraft take-off mass –

Equation (70)

γ ratio of specific heats for air (= 1.4)

δ1 induced drag imperfection factor

δ2 induced drag wing-fuselage interference factor

δ3 lift-dependent wave drag factor

ε function – Equations (17) and (A-19)

εcd ‘lost’ fuel index for both climb and descent phases

εt overall ‘lost’ fuel index

ηo propulsion system overall efficiency - Equation (2)

η1, η2 constants in Equation (35)

ι atmospheric coefficient

κ coefficient - Equation (A-21)

λ reserve fuel factor – Equation (74)

λf fuselage slenderness ratio

μ dynamic viscosity

ν coefficient – Equation (A-27)
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ρ air density = p/(�T)

τ coefficient - Equation (8)

ψ0-8 parameters defined in Equations (23), (9), (10), (11), (12), (14), (15), (18)

and (79)

Λw wing quarter-chord sweep angle

Superscripts
ac whole aircraft value

i sub-component value

FP flat-plate value

R evaluated at constant Reynolds number

Subscripts
ad additional

alt alternate

avg average

B best, or local maximum, value

cont contingency

ext extra

da to alternate airport

fc final cruise

fr final reserve

HS high speed

ic initial cruise

LS low speed

LRC long range cruise

max maximum value

MRC maximum range cruise

MO maximum permitted operational value

min minimum value

nc not consumed on flight

o when (ηoL/D) has its absolute maximum value

res reserve

ref reference

TE at the entry to the turbine

TP at the tropopause

∞ flight, or freestream, value

1.0 INTRODUCTION
The majority of global aviation emissions come from civil air transport, which is dominated
by large, turbofan-powered aircraft. Recently, Poll(1) and Poll and Schumann(2) demonstrated
that, by suitable normalisation, the cruise fuel burn performance of this class of aircraft can
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be described by a system of simple equations, provided that values are assigned to a set of
three independent parameters. The first is the absolute maximum, or optimum, value of the
product of the engine overall efficiency and the airframe lift-to-drag ratio, whilst the second
and third parameters are the flight Mach number and aircraft lift coefficient at which this
optimum occurs. To simplify the analysis, Poll(1) assumed that the Reynolds number was con-
stant everywhere. However, Poll and Schumann(2) extended the analysis to allow the Reynolds
number to vary with both speed and altitude in a general atmosphere. This extension resulted
in the number of independent aircraft parameters increasing from three to six. Nevertheless,
the basic simplicity of the original method was retained.

In this paper, schemes for the estimation of all the independent parameters are developed
and the basic method is extended to include cruise lift-to-drag ratio, engine thrust and engine
overall efficiency. These latter two quantities are particularly important since they influence
contrail formation, as demonstrated by Schumann, Busen and Plohr(3). Where possible, the
problem of estimating these parameters is approached using classical aerodynamic theory
and, where necessary, empirical correlations based upon data that are available in the open
literature. Initial results are obtained for a range of narrow-body and wide-body transport
aircraft and some business jets.

The complete method is self-contained, transparent, open source and independently verifi-
able. Users need no specialist knowledge and it is intended, primarily, for the environmental
science community to improve the understanding of aviation’s impact upon the environment
and to assess the likely efficacy of mitigation strategies. It is also suitable for use in economic
analyses, studies to support policy-making and for teaching aircraft performance.

2.0 THE METHOD
The complete method, together with the underpinning arguments, is described in detail in Poll
and Schumann(2). Therefore, only a brief summary covering the relevant parameters and the
key governing relations is presented here.

During cruise, the fuel consumption per unit distance travelled through the air is

dmf

dS
= −dm

dS
= mg

(ηoL/D) LCV
, · · · (1)

where mf is the instantaneous fuel mass, m is the instantaneous total mass of the aircraft, S is
the distance travelled through the air, L is the lift, D is the drag, g is the acceleration due to
gravity, LCV is the lower calorific value of the fuel and ηo is the overall propulsion efficiency
of the engines, defined as

ηo = FnV∞
ṁf LCV

= DV∞
ṁf LCV

, · · · (2)

where Fn is the total net thrust and V∞ is the true airspeed. Therefore, the aircraft character-
istic that governs fuel efficiency is (ηoL/D). The application of dimensional analysis shows
that (ηoL/D) depends upon the atmospheric variation of temperature with pressure, the flight
Mach number, M∞, and an aircraft Reynolds number, Rac, which is defined as

Rac = lρ∞V∞
μ∞

= S1/2
ref

(
ρ∞a∞
μ∞

)
M∞ = S1/2

ref

(
γ p∞
μ∞a∞

)
M∞. · · · (3)
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Here, air is taken to be an ideal gas, l is a ‘typical’ aircraft reference length, taken to be the
square root of the reference wing area, Sref , p∞ is the atmospheric static pressure, ρ∞ is the
density, a∞ is the local speed of sound, μ∞ is the dynamic viscosity and γ is the ratio of
specific heats.

As described in Poll and Schumann(2), for flight at Mach numbers in excess of 0.5 and
values of lift coefficient, CL, in the cruise range, i.e. 0.4 to 0.7, the drag polar may be
approximated by a relation of the form

Cd ≈ Cd0 +
(

1

π.AR.eLS

)
C2

L + Cdw, · · · (4)

where CL is defined as

CL = mg

(γ /2) p∞M2∞Sref
, · · · (5)

Cd0 is the zero-lift, profile drag coefficient
1
, eLS is the ‘low-speed’ Oswald efficiency factor,

AR is the wing aspect ratio, defined as

AR = s2

Sref
, · · · (6)

where s is the wingspan and Cdw is the ‘wave drag’ coefficient.
The standard approximation is that Cd0 is directly proportional to the aircraft’s mean

skin-friction coefficient, Cac
F , and, for M∞ greater than 0.5, Cd0 depends upon Reynolds

number but not Mach number; see e.g. Shevell(4) (chapter 12). This is because, as M∞
increases beyond 0.5, a near balance is struck between the increase in form drag due to
Mach number-induced changes to the surface pressure distribution and the reduction in skin
friction due to the surface temperature rise. As Poll and Schumann(2) show, the relationship
between skin friction and Reynolds number, at a Mach number of 0.5, can be approximated
by a power law, i.e.

(
CFP

F

)
M=0.5

= Cac
F ≈ a

(Rac)b
, · · · (7)

where a and b are constants having values of 0.0269 and 0.14, respectively.
The Oswald factor captures all the lift-dependent drag effects, of which vortex drag on

the wings is the primary source. However, the tailplane and the fuselage also generate vortex
drag. In addition, there are non-vortex, lift-dependent drag contributions arising because a
change in lift alters the pressure distributions over the various components, which, in turn,
alters their profile drag. Therefore, the Oswald factor is a complex parameter and, as shown
by Shevell(4), it is primarily a function of aircraft geometry and Cd0. It may also be represented
approximately, but nevertheless accurately, by a power law, see Poll and Schumann(2), i.e.

e ≈ E(
Cac

F

)τ where τ = −
(

Cac
F

e

)
de

dCac
F

, · · · (8)

1Strictly speaking, Cd0 is not necessarily the true drag coefficient when the lift force is zero but
rather a quantity that is derived by fitting Equation (4) to the actual drag polar over the limited CL range.
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where the coefficients E and τ depend only upon the aircraft geometry and a representative
value of Cd0.

Similarly, the ‘wave drag’ coefficient, Cdw, is a complex quantity that captures all the drag
resulting from compressibility, the development of regions of supersonic flow at the wing sur-
face and, eventually, the formation of shockwaves. In general, it depends upon Mach number,
lift coefficient and, to a lesser extent, Reynolds number. A detailed description of wave drag
can be found in Shevell(4).

As shown in Ref. 1, (ηoL/D) exhibits an absolute maximum, or optimum, value at a particu-
lar combination of Mach number and lift coefficient, i.e. Mo and (CL)o. In addition, as demon-
strated by Poll and Schumann(2), at the optimum condition, the values of (ηoL/D)o, (CL)o,
(L/D)o and Mo are related to the skin friction coefficient by a series of parameters that are
constant, non-dimensional and characteristic of the aircraft. These parameters are given by

ψ1 = (ηoL/D)Ro
(
Cac

F

)( 1+τ
2

)
, · · · (9)

ψ2 = (CL)
R
o

(
1

Cac
F

)( 1−τ
2

)
, · · · (10)

ψ3 =
(

L

D

)R

o

(
Cac

F

)( 1+τ
2

)
· · · (11)

and

ψ4 = MR
o . · · · (12)

Here, the superscript R indicates that the relationship between the variables is that for the
situation in which the Reynolds number and, hence, Cac

F are constant
2
, whilst the subscript o

indicates that the relationships apply at the conditions for which (ηoL/D) has its optimum
value. Since the analysis will be extended to include the variation of (L/D) with CL and M∞
in a later section, the coefficient ψ3 has been included here for completeness.

From Equation (8), τ is given by

τ = −
(

Cac
F

eo

)(
deo

dCac
F

)
, · · · (13)

whilst the last two coefficients are defined as

ψ5 =
(

S1/2
ref ψ4γ pTP

μTPaTP

)
ISA

· · · (14)

and

ψ6 =
(

MTOM .g

(γ /2) pTPψ
2
4 Sref

)
ISA

· · · (15)

2For an aircraft of fixed weight, when CL varies at fixed Mach number, the Reynolds number
changes. Therefore, in general, CF and, hence, Cd0 vary with CL. However, if the Reynolds number
is constant, dCd0/dCL is equal to zero.
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The analysis was extended to include Reynolds number variation in Ref. 2. In this gen-
eral case, dimensional analysis shows that, in a given atmosphere, the optimum condition
is uniquely determined by a Mach number and Reynolds number pair, Mo and Ro

ac, where
both Mo and (CL)o depend upon Rac. The relations governing these quantities are

Rac
o ≈ G2ψ5

(
1

ψ7

(
m

MTOM

))ιoκo

· · · (16)

and

Mo ≈ (1 + ε) ψ4 · · · (17)

where the constants ιo, κo and ε and the function G2 are defined and described in Appendix A,
MTOM is the aircraft’s maximum take-off mass and ψ7 is defined as

ψ7 = ψ2

ψ6

(
a

ψb
5

)( 1−τ
2

)
· · · (18)

Hence,

(
Cac

F

)
o
≈ a(

Rac
o

)b
= G3

(
a

ψb
5

)(
ψ7

(
MTOM

m

))bιoκo

, · · · (19)

(CL)o ≈ G4ψ2

((
a

ψb
5

)(
ψ7

(
MTOM

m

))bιoκo
)( 1−τ

2

)
· · · (20)

and

(ηoL/D)o ≈ G5ψ1

((
ψb

5

a

)(
1

ψ7

(
m

MTOM

))bιoκo
)( 1+τ

2

)
· · · (21)

The variation of (ηoL/D) with lift coefficient and Mach number is then given by

(ηoL/D)

(ηoL/D)o
≈ f3

(
(CL)o

CL

)ib
(

1+τ
2

)(
1 + A

2

((
f4

(
CL

(CL)o

)υ)
− 1

)2

+ B

6

((
f4

(
CL

(CL)o

)υ)
− 1

)3
)

,

· · · (22)
where the functions G3 to G5, A, B, f 3, f 4, ι and υ are also given in Appendix A.

Therefore, to determine (ηoL/D)o, (CL)o and Mo for a given aircraft, in addition to the quan-
tities listed in Appendix A, values must be assigned to five non-dimensional, ψ coefficients
and to τ .

3.0 SOURCES OF DATA
The number of sources of whole aircraft information available in the public domain is limited.
The first, and most reliable, is the aircraft Type Certificate Data Sheet (TCDS), e.g. Ref. 5. This
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is issued by the regulating authority and lists, amongst other things, the maximum operational
Mach number, MMO, the maximum permitted flight level, (FL)MO and the maximum permitted
values of take-off mass, MTOM , landing mass, MLM , and zero-fuel mass, MZFM . The second
source is the series of Airport Planning Reports (APRs) produced by the manufacturers, e.g.
Ref. 6. These contain detailed mass breakdowns and external geometry information, together
with payload range diagrams and some take-off and landing performance data. However,
unlike the TCDS information, the accuracy of APR data is not guaranteed and there may
be inconsistencies, or even errors, in these documents. Thirdly, aircraft external geometry
and some performance data, e.g. long-range cruise Mach numbers, can be found in com-
mercial reference sources such as Jane’s(7). Engine characteristics and some performance
data are also available from Jane’s(8) and regulator databases, e.g. ICAO(9). Finally, a limited
amount of aerodynamic data appears in standard aircraft design texts, e.g. Jenkinson et al.(10)

and Torenbeek(11,12), with a particularly useful collection being given in Obert(13). Again, the
accuracy of these sources is not guaranteed, and cross-checking of data is always advisable.
In this study, 53 aircraft have been considered, and these are listed in Table 1.

4.0 THE EVALUATION OF THE ZERO-LIFT, PROFILE
DRAG COEFFICIENT

In standard texts on conceptual design, e.g. Shevell(4), the low-speed, zero-lift drag coeffi-
cient is usually determined by first estimating the profile drag of the wing, the fuselage, the
empennage and the engine nacelles (outer surface only) in isolation.

Component profile drag is separated into two elements, surface shear, or ‘skin friction’,
and pressure, or ‘form’, drag. The traditional process involves multiplying the component’s
exposed, or ‘wetted’, surface area by the mean skin friction occurring on a flat plate of the
same area, at zero incidence to the flight direction and with the same streamwise Reynolds
number. A ‘form factor’ multiplier is then applied to account for the pressure drag and the
element of surface shear, over and above the flat-plate value, caused by the component’s
thickness distribution, its curvature and the effect of the pressure distribution on the bound-
ary layer development. The component drags are then summed and corrections are applied to
allow for the interference effects between components and secondary effects, such as excres-
cences associated with system installation, gaps and other surface imperfections. This process
is captured by the expression

Cd0(
Cac

F

)
M=0.5

= Fo

i∑
0

(
FFFI FS

(
CF

(CF)ac

)(
Swet

Sref

))
i

=ψ0, · · · (23)

where FF is the component form factor, FI is the interference factor, FS is the secondary drag
factor, CF is the flat-plate skin-friction coefficient for the component, Swet is the component
wetted area and Fo is an overall factor intended to capture any other effects. The ratio of the
component CF to (CF)ac is a function of the ratio of the component Reynolds number, Ri, to
the aircraft characteristic Reynolds number, Rac, only and this depends upon the ratio of the
component streamwise characteristic length, l, to the aircraft characteristic length (= Sref

1/2).
Approximate values for FF , FS and FI are given, in some form, in most aircraft concept design
texts. For consistency, it is important that the factors are clearly defined and, ideally, they
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Table 1

Basic information for a range of turbofan powered civil transport aircraft

Weight
ICAO Manufacturer Type Engine BPR(nom) variant MTOM(kg) Sref (m2) s(m) Λw(deg) MMO FLMO

A30B Airbus A300B4-200 GE CF6-50C 4.3 6 165,000 260.0 44.83 28 0.82 390
A306 Airbus A300B4-600R GE CF6-80C2A1 5.1 0 170,500 260.0 44.84 28 0.82 410
A310 Airbus A310-200 GE CF6-80C2A2 5.1 8 138,600 219.0 43.89 28 0.84 410
A313 Airbus A310-300 PW JT9D-7R4 5.0 0 150,000 219.0 43.89 28 0.84 410
A318 Airbus A318-100 CFM56-5B9_P 5.9 5 68,000 122.4 34.10 25 0.82 410
A319 Airbus A319-100 CFM56-5A5 6.0 6 73,500 122.4 34.10 25 0.82 410
A320 Airbus A320-200 CFM56-5B4_P 5.9 0 73,500 122.4 34.10 25 0.82 410
A321 Airbus A321-100 CFM56-5B1 5.7 8 89,000 122.4 34.15 25 0.82 391
A332 Airbus A330-200 RR Trent772 5.0 52 233,000 361.6 60.30 30 0.86 410
A333 Airbus A330-300 PW4164 5.2 52 233,000 361.6 60.30 30 0.86 410
A342 Airbus A340-200 CFM56-5C4 6.6 1 257,000 361.6 60.30 30 0.86 415
A343 Airbus A340-300 CFM56-5C4 6.6 1 257,000 361.6 60.30 30 0.86 415
A345 Airbus A340-500 RR Trent553-61 7.5 1 372,000 437.3 63.45 31 0.86 415
A346 Airbus A340-600 RR Trent556-61 7.5 1 368,000 437.3 63.45 31 0.86 415
A359 Airbus A350-900 RR TrentXWB-84 9.0 9 275,000 445.0 64.75 32 0.89 431
A388 Airbus A380-800 EA GP7270 8.7 2 569,000 845.0 79.80 30 0.89 431
B712 Boeing B717-200 RR BR700-715C1-30 4.6 HGW 54,884 92.8 28.40 25 0.82 371
B732 Boeing B737-200 PW JT8D-15 1.0 5 52,390 99.0 28.35 25 0.84 370
B733 Boeing B737-300 CFM56-3-B1 5.1 3 61,236 102.0 28.90 25 0.82 390
B734 Boeing B737-400 CFM56-3C-1 5.1 6 68,039 102.5 28.90 25 0.82 370
B735 Boeing B737-500 CFM56-3-B1 5.1 3 60,555 103.7 28.90 25 0.82 370
B736 Boeing B737-600 CFM56-7B22 5.3 3 65,544 124.6 34.30 25 0.82 410
B737 Boeing B737-700 CFM56-7B24 5.2 3 70,080 124.6 34.30 25 0.82 410
B738 Boeing B737-800 CFM56-7B26 5.1 3 79,016 124.6 34.30 25 0.82 410
B739 Boeing B737-900ER CFM56-7B26 5.1 2 85,139 124.6 34.32 25 0.82 410
B742 Boeing B747-200B RB211-524C2 4.5 4 371,900 511.0 59.64 38 0.92 450
B743 Boeing B747-300 PW JT9D-7R4 5.0 0 377,800 511.0 59.64 39 0.90 450
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Table 1
Continued

Weight
ICAO Manufacturer Type Engine BPR(nom) variant MTOM(kg) Sref (m2) s(m) Λw(deg) MMO FLMO

B744 Boeing B747-400 GE CF6-80C2B1F 5.1 5 396,894 547.0 64.44 38 0.92 450
B748 Boeing B747-8F GEnx-2B67 8.0 1 442,253 594.0 68.40 38 0.90 421
B752 Boeing B757-200 RR RB211-535C 4.5 4 113,400 189.0 38.06 25 0.86 420
B753 Boeing B757-300 RR RB211-535E4B 4.1 2 122,470 189.0 38.06 25 0.86 430
B762 Boeing B767-200ER PW4056 4.7 6 179,169 283.3 47.57 32 0.86 430
B763 Boeing B767-300 PW4060 4.5 2 158,758 283.3 47.57 32 0.86 431
B764 Boeing B767-400ER GE CF6-80C2B8F 5.1 1 204,116 283.3 51.92 32 0.86 450
B77L Boeing B777-200LR GE90-110B1 7.3 1 347,450 427.8 64.80 32 0.89 431
B772 Boeing B777-200 RR Trent892 5.7 6 286,900 427.8 60.93 32 0.89 431
B77W Boeing B777-300ER GE90-115B 7.1 1 351,530 427.8 64.80 32 0.89 431
B773 Boeing B777-300 RR Trent892 5.7 4 299,370 427.8 60.93 32 0.89 431
B788 Boeing B787-8 GEnx-1B64 9.0 1 227,930 360.0 60.12 32 0.90 431
B789 Boeing B787-9 RR Trent1000-AE3 9.2 1 254,011 360.0 60.12 32 0.90 431
E135 Embraer EMB-135LR RR AE3007A 5.2 0 20,000 51.2 20.04 23 0.78 370
E145 Embraer EMB-145LR RR AE3007A1 4.8 0 22,000 51.2 20.04 23 0.78 370
E170 Embraer EMB-170LR GE CF34-8E5A1 5.1 0 37,200 72.7 25.30 23 0.82 410
E195 Embraer EMB-195STD GE CF34-10E5A1 5.1 0 48,790 92.5 27.73 23 0.82 410
MD82 Boeing MD-82 PW JT8D-217A 1.7 0 67,812 112.3 32.85 23 0.84 370
MD83 Boeing MD-83 PW JT8D-219 1.7 0 72,575 112.3 32.85 23 0.84 370
GLF5 Gulfstream G-550 RR BR700-710C4-11 4.1 0 41,277 105.6 28.50 25 0.89 510
CRJ9 Bombardier CRJ-9 GE CF34-8C5 5.1 0 38,329 76.2 23.25 26 0.85 410
DC93 Boeing DC-9-32 PW JT8D-7series 1.1 0 48,988 93.0 28.44 24 0.84 370
RJ1H BAESystems RJ-100 LF507-1F-1H 5.1 0 44,225 77.3 26.34 15 0.73 350
B722 Boeing 727-200 PW JT8D-15 1.0 0 83,820 157.9 32.92 32 0.90 420
A20N Airbus A320-NEO PW1127G 12.2 54 79,000 122.4 35.10 25 0.82 410
A21N Airbus A321-NEO CFM LEAP-1A32 10.5 52 93,500 122.4 35.27 25 0.82 391



12 THE AERONAUTICAL JOURNAL

should all come from the same source. Unfortunately, there appears to be no single reference
that provides all the elements and the present calculation scheme, summarised in Appendix
B, is based upon relations proposed by Jenkinson et al.(10) and Torenbeek(11,12). The term Fo

is not specified ‘a priori’; rather, it is used for the final calibration of the Cdo estimates against
wind-tunnel or flight-test data. As can be seen from Equation (23), ψ0 depends only upon the
aircraft geometry.

The estimation is completed by the specification of a relation linking the skin-friction coef-
ficient and the Reynolds number, i.e. Equation (7). It should be noted that the use of this
relation implies that the boundary layers on the aircraft are turbulent everywhere. For large
aircraft, this is almost always the case; see Poll(14). However, for smaller aircraft such as busi-
ness jets, there may be significant areas of laminar flow on the wings and the empennage. In
addition, in recent times, attempts have been made to establish small areas of laminar flow
on the engine nacelles and empennage of the Boeing 787 and on the winglets of the Boeing
737 Max series. Therefore, if an aircraft is known to have significant regions of laminar flow
during cruise, a correction should be applied on a component-by-component basis.

Ideally, the estimation method should be calibrated against flight-test data, but such infor-
mation rarely appears in the public domain. However, Obert(13) (figure 40.17) gives a graph
of ‘high-speed’ subsonic Cdo, derived from trimmed, flight-test drag polars of the form given
in Equation (4), versus aircraft total wetted area for 26 civil transport aircraft. Twelve of these
aircraft are amongst those listed in Table 1 and the maximum scatter relative to the mean line
is about ±10%. To generate comparative values for those 39 aircraft for which Obert does
not provide a specific data point, functions linking Obert’s Cdo values to the aircraft’s total
wetted area were produced by simple curve fitting of the mean line. Each aircraft’s total wet-
ted area was then estimated using the relations given in Appendix B and the curve fit was
used to generate an ‘Obert’ value for Cdo. These interpolated values are subject to the same
uncertainty as the data upon which they are based, i.e. ±10%.

Unfortunately, Obert specifies neither the test Mach number nor the Reynolds number for
his data. However, the test conditions are described as ‘average CG (centre of gravity) posi-
tion’, ‘Mach numbers greater than 0.4’ and no ‘compressibility effects’. This last statement is
taken to mean that the Mach numbers are below those at which wave drag is significant, i.e.
Cdw is effectively zero. Therefore, when producing the present Cd0 estimates from Equations
(7) and (23), in the absence of specific information to the contrary, cruise Mach numbers are
taken to be 65% of the maximum permitted operational value, MMO, giving values between
0.5 and 0.6, whilst the cruise altitude is set to 85% of the maximum permitted operating
height, giving values in the range of 30,000 to 40,000ft. International Standard Atmosphere
conditions(15) are assumed. Maximum permitted Mach numbers and altitudes are both listed in
the TCDS. The maximum deviation in Cdo resulting from any mismatch between the assumed
and actual Reynolds number is estimated to be less than 3%.

Figure 1 shows a comparison between the Obert data and the estimates for Cdo for all the
aircraft listed in Table 1 with the overall factor, Fo, set to 0.98. All the Cdo values lie within the
scatter exhibited by the original Obert data, with the maximum deviation for any individual
point being about 10%. Given the intrinsic uncertainties in the approach, these differences are
not considered to be significant. The estimated values of Ψ 0 for the 53 aircraft types are given
in Table 2.
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Table 2
Estimates of the characteristic parameters of a range of turbofan-powered

civil transport aircraft

ICAO η2 ψ0 τ ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 η1

A30B 0.565 7.312 0.120 0.146 8.07 0.552 0.753 9.17E+07 0.693 0.310
A306 0.539 7.307 0.120 0.156 8.08 0.553 0.753 9.17E+07 0.716 0.329
A310 0.539 7.813 0.146 0.162 8.12 0.520 0.772 8.63E+07 0.657 0.360
A313 0.543 7.661 0.142 0.151 8.15 0.532 0.772 8.63E+07 0.711 0.327
A318 0.514 7.532 0.157 0.159 8.02 0.533 0.753 6.29E+07 0.607 0.346
A319 0.511 7.550 0.156 0.162 8.06 0.534 0.753 6.29E+07 0.656 0.352
A320 0.514 7.846 0.162 0.156 8.05 0.513 0.753 6.29E+07 0.656 0.351
A321 0.520 8.396 0.168 0.150 8.13 0.484 0.753 6.29E+07 0.794 0.359
A332 0.542 6.484 0.138 0.206 8.17 0.630 0.786 1.13E+08 0.645 0.373
A333 0.536 6.686 0.142 0.194 8.18 0.612 0.786 1.13E+08 0.645 0.360
A342 0.492 7.007 0.147 0.195 8.23 0.588 0.786 1.13E+08 0.711 0.374
A343 0.492 7.127 0.150 0.186 8.24 0.578 0.786 1.13E+08 0.711 0.362
A345 0.464 6.785 0.131 0.208 8.25 0.608 0.796 1.26E+08 0.831 0.380
A346 0.464 7.085 0.136 0.208 8.26 0.583 0.796 1.26E+08 0.822 0.396
A359 0.416 6.477 0.134 0.244 8.09 0.625 0.820 1.31E+08 0.569 0.423
A388 0.426 6.257 0.098 0.242 8.08 0.645 0.820 1.80E+08 0.620 0.407
B712 0.557 8.653 0.164 0.121 8.00 0.462 0.724 5.26E+07 0.699 0.315
B732 0.668 8.083 0.143 0.107 7.99 0.494 0.685 5.15E+07 0.698 0.277
B733 0.539 8.215 0.147 0.128 8.03 0.489 0.729 5.56E+07 0.700 0.310
B734 0.539 8.491 0.150 0.125 8.07 0.475 0.729 5.57E+07 0.774 0.313
B735 0.539 7.983 0.142 0.128 8.01 0.502 0.729 5.60E+07 0.681 0.302
B736 0.533 7.337 0.154 0.152 8.00 0.545 0.758 6.39E+07 0.567 0.323
B737 0.536 7.520 0.156 0.152 8.03 0.534 0.758 6.39E+07 0.607 0.331
B738 0.539 7.943 0.161 0.146 8.08 0.509 0.758 6.39E+07 0.684 0.334
B739 0.539 8.123 0.163 0.145 8.12 0.500 0.758 6.39E+07 0.737 0.338
B742 0.558 6.381 0.099 0.174 7.73 0.606 0.830 1.42E+08 0.654 0.319
B743 0.543 6.372 0.100 0.176 7.71 0.605 0.830 1.42E+08 0.664 0.321
B744 0.539 6.310 0.107 0.193 7.84 0.621 0.830 1.47E+08 0.652 0.344
B748 0.448 6.509 0.114 0.217 7.93 0.609 0.830 1.53E+08 0.669 0.387
B752 0.558 7.174 0.120 0.177 8.05 0.561 0.772 8.02E+07 0.623 0.365
B753 0.571 7.533 0.124 0.163 8.11 0.538 0.772 8.02E+07 0.673 0.351
B762 0.552 6.544 0.116 0.199 7.93 0.606 0.772 9.81E+07 0.657 0.379
B763 0.558 6.844 0.122 0.191 7.93 0.579 0.772 9.81E+07 0.582 0.382
B764 0.539 7.173 0.146 0.182 8.12 0.566 0.772 9.81E+07 0.748 0.370
B77L 0.469 6.636 0.137 0.217 8.23 0.620 0.811 1.27E+08 0.765 0.387
B772 0.520 6.594 0.123 0.211 8.09 0.614 0.811 1.27E+08 0.632 0.384
B77W 0.477 6.991 0.143 0.219 8.25 0.590 0.811 1.27E+08 0.774 0.410
B773 0.520 6.986 0.129 0.203 8.15 0.583 0.811 1.27E+08 0.659 0.388
B788 0.417 6.621 0.146 0.238 8.07 0.610 0.815 1.17E+08 0.589 0.424
B789 0.410 6.833 0.149 0.233 8.13 0.595 0.815 1.17E+08 0.657 0.426
E135 0.535 7.861 0.148 0.109 7.75 0.493 0.704 3.81E+07 0.487 0.266
E145 0.550 8.215 0.152 0.115 7.80 0.475 0.704 3.81E+07 0.536 0.294
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Table 2
Continued

ICAO η2 ψ0 τ ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 η1

E170 0.538 8.210 0.162 0.126 7.94 0.483 0.733 4.72E+07 0.589 0.308
E195 0.540 8.165 0.152 0.137 8.00 0.490 0.758 5.50E+07 0.569 0.324
MD82 0.646 8.323 0.169 0.116 8.10 0.487 0.753 6.03E+07 0.660 0.287
MD83 0.646 8.323 0.167 0.122 8.13 0.489 0.753 6.03E+07 0.706 0.299
GLF5 0.572 6.571 0.122 0.188 7.71 0.587 0.772 5.99E+07 0.406 0.371
CRJ9 0.538 7.322 0.123 0.147 7.75 0.529 0.753 4.96E+07 0.550 0.323
DC93 0.667 8.114 0.155 0.100 7.98 0.492 0.733 5.34E+07 0.606 0.250
RJ1H 0.539 9.286 0.172 0.094 8.20 0.441 0.676 4.49E+07 0.776 0.263
B722 0.668 7.055 0.114 0.127 7.66 0.543 0.830 7.88E+07 0.477 0.264
A20N 0.316 7.978 0.189 0.175 8.00 0.502 0.753 6.29E+07 0.705 0.382
A21N 0.369 8.584 0.197 0.152 8.04 0.468 0.753 6.29E+07 0.835 0.360

Figure 1. A comparison between the zero-lift drag coefficient (Cd0) estimates from Equations (7) and (23)
and the high-speed, flight-test values from Obert(13). Solid symbols are comparisons with an Obert data
point. Open symbols indicate a comparison with an estimated ‘Obert’ value based upon the aircraft total

wetted area. The dashed lines indicate a ±10% variation.

5.0 THE ESTIMATION OF THE LIFT-DEPENDENT
DRAG COEFFICIENT

The low-speed, lift-dependent drag coefficient appearing in Equation (4) can be broken down
into four elements, (

1

π.AR.eLS

)
=
(

1

π.AR

)
+
(
δ1

π.AR

)
+
(
δ2

π.AR

)
+ k1 · · · (24)
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The first is the incompressible induced, or vortex, drag for an isolated wing having the same
aspect ratio as the reference wing and an elliptic spanwise load distribution; see, for example,
Shevell(4) (chapter 9). This is the absolute minimum drag that the configuration can have.
However, in practice, wing designs never quite achieve an elliptic load distribution and the
second term, δ1, captures the additional drag resulting from deviations from the ideal due to
the effects of Mach number, taper ratio and sweep, plus those of the spanwise variations in
camber and twist. This term can be determined to a high level of accuracy by standard the-
oretical methods, e.g. ESDU(16) or Computational Fluid Dynamics (CFD). However, despite
the dependence upon a great many variables, for a civil transport aircraft its value is found to
be very small compared with unity. References (4) and (9) to (13) suggest that typical values
of δ1 lie in the range 0.01 to 0.05, with a reasonable average being about 0.03.

When a wing is combined with a fuselage, there is mutual interference between the two
components. The fuselage generates some lift and the wing experiences both additional down-
wash and an increase in streamwise velocity, both of which vary across the span. The net result
is that the induced drag of the wing is increased by an amount that depends, principally, upon
the ratio of the fuselage diameter, bf , to the wingspan and this is captured by the coefficient δ2.
For a more detailed discussion of this effect see, for example, McLean(17)and Shevell(4). Using
unpublished data, believed to be from the Douglas Aircraft Company, Shevell(4) gives a graph
of δ2 versus bf /s (figure 11.7). This graph suggests that this small effect is well represented
by the relation

δ2 ≈ 2

(
bf

s

)2

· · · (25)

Finally, k1 accounts for additional vortex drag due to any aerodynamic loading on the tailplane
and all the non-vortex, lift-dependent drag of the wing, fuselage and tailplane. This factor
also depends upon many variables, including the location of the aircraft’s centre of gravity.
However, it is determined, primarily, by the lift-dependent form drag of the wing. Therefore,
whilst, in principle, it can be obtained from theory, or CFD, arguably, this quantity is best
obtained from either flight-test data, or from empirical relations derived from flight-test data.

In Ref. 13 (figure 40.36), Obert provides a flight-test dataset that is consistent with, and
applicable to, the same flight conditions as the ‘high-speed’ subsonic Cdo values given in his
figure 40.17. Obert gives the induced drag factor for 12 of the aircraft listed in Table 1 as
a function of aspect ratio and, by taking δ1 to be 0.03 and δ2 to be given by Equation (25),
these data can be used to provide estimates for k1. Moreover, in cases where derivative aircraft
are based upon the same wing design, or one with only minor modifications, e.g. the Airbus
A318 to A321 family, the basic values can be attributed, without modification, to more of the
aircraft in Table 1.

When no empirical data are available, an estimation relation is needed. Such relations
have been proposed, e.g. by Shevell(4) (figure 11.8), and, as noted by Poll and Schumann(2),
Shevell’s values are well represented by the relation

k1 ≈ 0.80 (1 − 0.53cos (Λw)) (Cdo)M=0.5, · · · (26)

where Λw is the wing’s quarter-chord sweep angle. Shevell does not give any indication of
accuracy. However, whilst Obert’s results exhibit large type-to-type variation, with k1 ranging
from 0.004 to 0.012, a ‘least squares’ fit suggests that Obert’s values follow the general trend
proposed by Shevell, but with slightly different values for the coefficients, i.e.
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Figure 2. A comparison between the estimated lift-dependent drag coefficient and flight test values from
the Obert(13). Test conditions are described as ‘average centre of gravity position’ and ‘Mach numbers
greater than 0.4’ but with no ‘compressibility effects’. Solid symbols are comparisons with actual Obert
values. Open symbols indicate a comparison with values from Obert’s mean line based upon aspect ratio.

The dashed lines indicate a ±8% variation.

k1 ≈ 0.83 (1 − 0.55cos (Λw)) (Cdo)M=0.5 · · · (27)

This relation is subject to a maximum spread of about ±50%. However, for the range of sweep
angles of practical interest, i.e. 0–40◦, Equations (26) and (27) differ by less than 1%. This
is taken as confirmation that Equation (26) is valid. The large uncertainty swamps any small
variations in Cdo due to changes in Reynolds number.

Estimates for the low-speed Oswald factor, eLS , have been obtained from Equation (24),
taking δ1 to be 0.03, δ2 from Equation (25) and k1 from Equation (26). These have then been
used to generate the lift-dependent, drag coefficient for each aircraft. A comparison between
the present values and either Obert’s data points, where possible, or estimates generated from
Obert’s own mean line through his data is given in Fig. 2. Obert assumes that k1 has a constant
value of 0.007, with the sum of δ1 and δ2 being 0.05. However, since the deviations are less
than ±8%, it may be concluded that eLS is not particularly sensitive to the large uncertainties
implicit in the estimate of k1.

Therefore, there are two ways to approach the problem of estimating the low-speed Oswald
factor. The first is to use the values of k1 derived from Obert’s figure 40.36 for those aircraft
to which they apply and to their derivative types. However, the absolute accuracy of the Obert
values is not known. The alternative is to use Equation (26) in all cases. However, this equation
is known to have a maximum uncertainty of about ±50%. At this stage in the development of
the method, Equation (26) has been used for all the aircraft. Further work is required if this
uncertainty is to be reduced.

Finally, many modern aircraft have wing tip devices to reduce cruise drag and some designs
can be retrofitted to older aircraft. Whilst the detailed characteristics of these devices vary
considerably and a full analysis of their aerodynamic effects is a complex task, their overall
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effect is to increase the value of the Oswald factor. According to Torenbeek(12), practical
devices increase the Oswald factor by between 5% and 10%. Therefore, noting the basic level
of uncertainty in the estimation method and in the interests of simplicity, if an aircraft has
wing tip devices of any kind, the Oswald factor, based upon the wing without the devices
fitted, should be increased by 7.5%.

6.0 THE ESTIMATION OF THE WAVE-DRAG
COEFFICIENT

As the flight Mach number increases from an initial low value, sonic conditions will even-
tually be reached at the point on the aerofoil surface where the local static pressure has its
lowest value. Usually, this lies close to the leading edge on the wing’s upper surface. Further
increases in speed result in the formation of a region of supersonic flow that is bounded by the
wing surface, a ‘sonic interface’

3
and, if the Mach number is sufficiently high, a terminating

shockwave. Once such a ‘supersonic zone’ is established, when either M∞ or CL is increased,
the aircraft drag rises and the terminating shockwave moves rearwards. Whilst this zone is
confined to the front portion of the wing, the drag increases are modest, being typically less
than 10 drag counts

4
, and the variation is known as ‘drag creep’. However, when the terminat-

ing shockwave moves onto the rear part of the wing, the rate of drag rise with increasing Mach
number, or increasing CL, becomes very large and this is usually referred to as ‘drag rise’.
Since both the creep and rise regimes are linked to the formation and subsequent development
of shockwaves, the resulting drag increments are collectively known as ‘wave’ drag.

Wave drag is a complex phenomenon. However, Shevell(4,18) has developed an approximate
method, albeit in fragmented form, for the estimation of wave drag in two-dimensional flow as
a function of lift coefficient and the wing thickness-to-chord ratio. No indication of accuracy
is provided. However, once again it is highly likely that the method was developed using data
from the Douglas Aircraft aerodynamics section. Curve fitting Shevell’s graphs and applying
streamwise shear to extend the relations to cover the infinite-swept wing

5
case gives a simple,

first order method for the estimation of the element of wave drag, δDw, acting on a thin
streamwise strip of wing with length c and width δy. Here, c is the streamwise wing chord
and y is the spanwise distance measured along the normal to the fuselage centre line. The
model suggests that the element of wave drag is a function of Mach number, wing geometry
and the element of lift, δL, also acting on the strip, i.e.

δDw

(γ /2) p∞M2∞cδy
≈ cos3 (Λw)

(
0.016

(
M∞cos (Λw)

Mref
− 0.75

)2

+ 6.5

(
M∞cos (Λw)

Mref
− 0.92

)4)
, · · · (28)

3The surface formed by all the points in the flow field where the local Mach number is unity.
41 drag count is equal to a change of 0.0001 in Cd.
5An infinite-swept wing is one in which there are no variations in geometry, or flow properties, in

the direction parallel to the leading edge.
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Figure 3. The typical variation of the ratio of the local lift coefficient, Cl, to the overall lift coefficient, CL, with
spanwise location for two civil transport aircraft wings having different sweep angles (data from Obert(13),

chapter 24).

where

Mref = 0.90 − 0.10

(
Cl

cos2(Λw

)
− 0.96

(
t/c

cos(Λw)

)
, · · · (29)

t is the maximum wing thickness and the local lift coefficient, Cl, is given by

Cl = δL

(γ /2) p∞M2∞cδy · · · (30)

To estimate the total wave drag for a finite wing, it is necessary to know the spanwise distribu-
tion of both Cl and the thickness-to-chord ratio. However, modern civil transport wings tend to
have similar spanwise variations of chord, t/c and lift; see, for example, Obert(13) (chapter 24).
Exploiting this observation, typical normalised lift distributions for sweep angles of 25◦ and
32◦ have been generated from the wing case studies presented by Obert and these are shown
in Fig. 3. The effect of sweep angle is found to be small, but not insignificant.

In addition, on the inner part of the wing, where (2y/s) is less than about 0.35, the typical
thickness-to-chord ratio distribution is given by

t

c
≈ 0.174 − 0.24

(2y

s

)
, · · · (31)

whilst on the outer part of the wing ((2y/s) >0.35), t/c is constant with a value of about 0.09.
Combining these approximate variations with Equations (28) to (30) allows an estimate of the
distribution of the wave drag across the wing to be made. Finally, integration of the elemental
wave drag acting on the strips over the span yields the wing’s total wave drag.

Whilst this is undeniably a crude estimate, in practical operations, the wave drag compo-
nent is always small, being typically less than 10% of the zero-lift, profile drag component.
Consequently, any errors introduced by inaccurate modelling of the wave drag will be small.
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Figure 4. The variation of the engine overall efficiency,ηo, with thrust coefficient M∞ = 0.9, Ct and Mach
number for a typical turbo-fan engine with a bypass ratio of about 4.5 – derived from data presented in

figure 8.2 of Cumpsty and Heyes(19).

7.0 THE VARIATION OF ENGINE OVERALL
PROPULSION EFFICIENCY

As discussed in detail by Poll(1) and also by Cumpsty and Heyes(19), dimensional analysis can
be used to show that ηo depends only upon the ratio of the total temperature at the turbine
entry, (To)TE, to the atmospheric freestream total temperature, (To)∞ and the Mach number,
whilst the precise form of the function depends upon the engine type, i.e.

ηo = f5

(
(To)TE

(To)∞
, M∞

)
· · · (32)

The thrust coefficient, Ct, also depends upon the same parameters, i.e.

Ct = Fn

(γ /2) p∞M2∞Ae
= f6

(
(To)TE

(To)∞
, M∞

)
, · · · (33)

where Fn is the total net thrust generated and Ae is the sum of the engine core and bypass jet
exit cross-sectional areas of all the engines. Hence,

ηo = f7 (Ct, M∞) · · · (34)

The typical form of the function f 7 is given in Fig. 4. These are for a turbofan engine with a
bypass ratio of about 4.5 and are taken from Appendix B of Poll(1).

At fixed Mach number, ηo exhibits a maximum at a particular value of the thrust coefficient.
Consequently, in the vicinity of the maximum, ηo is only weakly dependent upon Ct. The loci
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of these maximum values follow the dashed line and the variation of the maximum ηo with
Mach number may be represented, to a good approximation, by the relation

(ηo)B = η1(M∞)η2 · · · (35)

The coefficients η1 and η2 depend only upon the engine type and for the engine given in Fig. 4,
the values are 0.36 and 0.65, respectively. This expression can be extended to a more general
form by noting that η2 depends primarily on the engine’s nominal

6
bypass ratio, BPR. This

is demonstrated in ESDU(20), section B3.2, figure B1, where real, though anonymised, engine
data are used to show the approximate form of the relationship. Based upon these data, the
expression

η2 = M∞
(ηo)B

d(ηo)B

dM∞
≈ 0.70 (1 − 0.045 (BPR)) · · · (36)

is believed to be accurate to ±15%. Values for the nominal bypass ratio for the engines con-
sidered in this study are obtained from the ICAO engine emissions data bank(9) and are listed
in Table 1.

For the engine shown in Fig. 4, the variation of overall efficiency with thrust coefficient is
approximately

ηo

(ηo)B
≈ 1 − 0.53

(
1 − 0.84M2

∞
) ( Ct

(Ct)B
− 1

)2

+ 0.25

(
Ct

(Ct)B
− 1

)3

, · · · (37)

where the (ηo)B and (Ct)B pairs lie on the dashed line (maximum efficiency line) given in
Fig. 4. Once again, in general, the coefficients in this relation will be engine type specific.
However, deviations from the values given by this expression are likely to be small.

8.0 THE EFFECT OF MACH NUMBER ON THE DRAG
POLAR WHEN THE REYNOLDS NUMBER IS
CONSTANT

Equations (4), (24)–(28) and (35)–(37) can be combined to give an approximate, but physi-
cally complete, model of the variation of (ηoL/D) with the overall lift coefficient and the Mach
number when the Reynolds number is constant. An example calculation, based upon a typical
aircraft configuration, is presented in Fig. 5. As already noted, for any given aircraft, there
is a Mach number and lift coefficient pair at which (ηo.L/D)R has its optimum value. In the
example provided, this value is 5.86 and it occurs when MR

o is 0.835 and (CL)
R
o is 0.578.

At the optimum condition,

d(ηoL/D)R = ∂(ηoL/D)R

∂(CL)
R d(CL)

R + ∂(ηoL/D)R

∂MR
dMR = 0 · · · (38)

6The term ‘nominal’ is necessary since the bypass ratio depends upon the engine operating
condition.
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Figure 5. A typical variation of (ηo L/D) with lift coefficient and Mach number at constant Reynolds number,
for an aircraft with aspect ratio of 9, sweep of 32◦, eLS of 0.8 and Cdo of 0.016. The engine characteristics

are taken from Fig. 4.

This equation is satisfied when the partial derivatives with respect to lift coefficient and Mach
number are both zero.

When both the Reynolds number and the Mach number are constant, the engine efficiency
is approximately constant and there is a value of lift coefficient at which the lift-to-drag ratio
has a local maximum (or best) value and both quantities depend upon the Mach number. The
condition is given by

∂(ηoL/D)R

∂(CL)
R ≈ (ηoL/D)R

(CL)
R

(
1 − (CL)

R

Cd

∂Cd

∂(CL)
R

)
= 0 · · · (39)

Hence, from Equation (4), the best value of lift-to-drag ratio is

(
L

D

)R

B

≈ 1

2

(
1 − Cdw

Cd0

(
1 − 1

2

(
CL

Cdw

∂Cdw

∂CL

)))

×
(

1 + Cdw

Cd0

(
1 − CL

Cdw

∂Cdw

∂CL

))1/2(
π.AR.eLS

Cdo

)1/2

· · · (40)

and it occurs when

(CL)
R
B ≈

(
1 + Cdw

Cd0

(
1 − CL

Cdw

∂Cdw

∂CL

))1/2

(π.AR.eLSCd0)
1/2 · · · (41)

Therefore, the best (ηo.L/D)R at a given Mach number is approximately equal to the product
of ηo, from Equation (35) and the corresponding best (L/D)R from Equation (40).
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Figure 6. A comparison between the high-speed drag polar at the Mach number for optimum (ηoL/D)R

and low-speed drag polar for the aircraft used in Fig. 5.

The value of the Mach number at which the optimum condition occurs comes from a
solution of

∂(ηoL/D)R

∂MR
= (ηoL/D)R

MR

(
MR

ηo

dηo

dMR
− MR

Cd

∂Cd

∂MR

)
= 0, · · · (42)

i.e. when there is a balance between the rate of wave drag rise with increasing Mach number,
driving (L/D) down, and the rate of engine overall efficiency increase with increasing Mach
number, driving ηo up. This is achieved when

MR

Cd

∂Cdw

∂MR
= η2 · · · (43)

Therefore, from Equation (36), in addition to the aspect ratio, sweep angle, eLS and Cdo, the
engine bypass ratio, BPR, is also a factor determining the optimum condition.

Continuing with the example, the variation of Cd with CL
2 when the Mach number has the

optimum value is shown in Fig. 6. Despite the complexity of the calculation, Cd still exhibits
an almost linear variation with CL

2 and a ‘least-squares’ fit gives

Cd ≈ 0.0159 + 0.0470C2
L · · · (44)

However, in the absence of wave drag, the polar Equation (4) is

Cd = (Cd0)M=0.5 +
(

1

π.AR.eLS

)
C2

L = 0.0160 + 0.0437C2
L · · · (45)

Therefore, when the lift coefficient is also at its optimum value (CL = 0.578), relative to
Equation (45), Cd has risen by 10 drag counts (≈3.3% increase) and the gradient of the
polar has grown by about 0.0033 (≈7.5% increase). However, the values of Cd0 are almost
the same. This suggests that the zero-lift, profile drag coefficient is essentially unchanged by
the development of wave drag (<1%). This insensitivity, whilst perhaps surprising, is con-
sistent with the assumption made in Equation (4) and with the Obert data given in Fig. 1.



POLL AND SCHUMANN AN ESTIMATION METHOD FOR THE FUEL BURN... 23

Therefore, according to the Shevell model, the principal effect of wave drag at the conditions
for optimum (ηoL/D)R is to decrease the value of the Oswald factor relative to its low-speed
value.

When the Mach number is equal to MR
o , Equation (4) becomes

Cd ≈ Cd0 +
(

eLS

eo

)(
1

π.AR.eLS

)
C2

L · · · (46)

Using this relation in Equation (39) to obtain (L/D)o and also using Equation (35) gives

(ηoL/D)Ro ≈ (ηo)
R
o

2

(
π.AR.eLS

(
eo

eLS

))1/2( 1

Cd0

)1/2

, · · · (47)

(
L

D

)R

o

≈ 1

2

(
π.AR.eLS

(
eo

eLS

))1/2( 1

Cd0

)1/2

· · · (48)

and

(CL)
R
o ≈

(
π.AR.eLS .

(
eo

eLS

))1/2

Cd0
1/2 · · · (49)

For consistency between Equations (40) and (41) and (48) and (49), at the optimum condition,

(
CL

Cdw

dCdw

dCL

)R

o

= 2 · · · (50)

and, hence, from Equations (41) and (49)

eo

eLS
≈ 1 −

(
Cdw

Cd0

)R

o
· · · (51)

Whilst this is a very simple result, it is a consequence of the definition of ‘wave drag’ as used
in the Shevell model, i.e. according to Equations (4), and Equation (51) may not hold if the
wave drag is defined in a different way.

Calculations have been carried out for the two loading distributions shown in Fig. 3 for
aircraft with aspect ratios in the range of 7.5–10 and Cdo lying between 0.014 and 0.02. The
results show that, when the Mach number is at MR

o , Cd0 varies by a maximum of 2%. In
addition, the increase in the lift-dependent drag coefficient due to wave drag is given, to an
accuracy of ±10%, by the expression

(
dCdw

dC2
L

)R

o

= δ3

π.AR
≈ 0.167 (η2eLS) · · · (52)

Hence, the total lift-dependent drag coefficient may be written as

(
1

π.AR.eo

)
≈
((

1 + δ1 + δ2 + δ3

π.AR

)
+ k1

)
· · · (53)
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Figure 7. The variation of the ratio of the high-speed and low-speed Oswald factors, eo/eLS, with the
product of η2 and the low-speed Oswald factor, eLS.

Taking typical values, the contributions of the various elements to the total lift-dependent
drag coefficient are approximately 80% from the wing vortex system, 15% from the profile
and trim drags and 5% from the wave drag. Since the contribution from wave drag is so
small, a relatively crude estimate does not introduce any significant inaccuracy into the overall
estimation process. Therefore, using more sophisticated methods to determine wave drag,
e.g. CFD, would greatly increase the complexity of the calculation, but would have little
impact upon the result. The largest uncertainty in the estimate is still that associated with the
value of k1.

Furthermore, curve fitting the data suggests that the relation

eo

eLS
≈ 0.992 − 0.11(η2eLS) · · · (54)

is accurate to ±0.5%. This relation is shown in Fig. 7.
Finally, by combining Equations (51) and (54), the wave drag coefficient at the optimum

condition is

(Cdw)
R
o ≈ 0.11(η2eLS)Cd0, · · · (55)

whilst, to within ±2%, the total drag coefficient is given by

(Cd)Ro ≈ 1.99Cd0 · · · (56)

The calculations also show that the Mach number at which the optimum occurs, MR
o , exhibits

a very weak dependence upon Cd0. This is consistent with the assumption made in Ref. 2
that MR

o is independent of Cd0 and, hence, Reynolds number. However, MR
o does have some

dependence on η2, i.e.

∂MR
o

∂η2
≈ 0.06 · · · (57)
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Therefore, if an aircraft’s engines are replaced with ones having a different bypass ratio, the
optimum Mach number for the new combination will be slightly different.

9.0 THE CHARACTERISTIC PARAMETERS
It is now possible to write down expressions for all the ψ parameters. As already shown,
ψ0 comes from Equation (23) and depends only upon aircraft geometry. In principle, ψ1 can
be obtained from Equation (47). However, since there is no simple, accurate method available
for the estimation of ηo, at this stage in the development of the method Ψ 1 is best obtained
from empirical data. This process is described in detail in the next section.

The value of τ comes from Equations (8), (23)–(26) and (54), i.e.

τ = −
(

Cac
F

eo

)(
deo

dCac
F

)
≈ (0.992 − 0.22 (η2(eLS)o))

(0.992 − 0.11 (η2(eLS)o))
(π.AR.k1.(eLS)o) · · · (58)

In this analysis, τ is a constant. Therefore, in Equation (58), eLS should be evaluated at the
optimum Reynolds number for a value of the aircraft mass that is near the middle of the
operating range. Sample estimates for the aircraft listed in Table 1 show that this requirement
is satisfied if m/MTOM is taken to be 0.8, see Equation (16). The corresponding value of Eo

is given by

Eo = (0.992 − 0.11η2(eLS)o) (eLS)o
((

Cac
F

)
o

)τ · · · (59)

The parameterψ2 can now be determined by combining Equations (8), (10), (23) and (49), i.e.

ψ2 ≈ (π.AR.ψ0.Eo)
1/2 · · · (60)

Similarly, ψ3 comes from Equations (8), (11), (23) and (48), i.e.

ψ3 ≈ 1

2

(
π.AR.Eo

ψ0

)1/2

· · · (61)

As shown in Poll(1), estimates of (ηoL/D) are sensitive to ψ4 and therefore this quantity needs
to be determined as accurately as possible. As indicated above, in principle,ψ4, which is equal
to MR

o – see Equation (12), can be calculated directly from the wave drag model. However,
since the Shevell method is highly simplified, the absolute accuracy of such an estimate is
unknown. Therefore, in the first instance, an alternative approach is required.

The most accurately known speed is the maximum operational Mach number, MMO, since
this is specified in the TCDS. In addition, the long-range cruise Mach number, MLRC , is often
to be found in either the aircraft APR, or other standard reference sources, e.g. Jane’s(7).
Figure 8 shows the variation of MLRC with MMO for those aircraft in Table 1 for which MLRC

is known. There is a strong correlation between the two quantities and taking MLRC to be
0.935(MMO) gives a maximum error of about 4%. This relation can then be extended to pro-
vide an estimate of the maximum range cruise Mach number, MMRC , (= Mo) by noting that,
from equation (24) of Poll(1), MLRC is approximately 1.035 times MMRC . Hence,
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Figure 8. The relationship between the long-range cruise Mach number, MLRC, and the maximum oper-
ational Mach number, MMO. The solid line is given by MLRC equal to 0.940MMO, and the dashed lines

represent ±4% variation.

ψ4 = Mo = MMRC ≈ MLRC

1.035
≈ 0.910MMO · · · (62)

To minimise the error, if the long range cruise Mach number is accurately known, ψ4 is taken
to be MLRC divided by 1.035. However, If MLRC is not available, then Equation (62) should
be used. Estimated values of ψ4 are given in Table 2.

The parameter ψ5 in Equation (14) is the non-dimensional, wing reference area. Unlike the
plan area of the exposed, or ‘wetted’, part of the wing, which is easily and unambiguously
obtained from a general arrangement drawing, the aerodynamic reference area, Sref , must be
given a clear definition. This is because the ‘reference’ area includes part of the wing that
is covered by the fuselage. In this analysis, Sref is defined as the plan area of the exposed
wing plus the area of the rectangle inside the fuselage whose vertices are the points where the
leading and trailing edges meet the fuselage side

7
. The values of Sref are listed in Table 1, and

the corresponding values of ψ5 are given in Table 2.
Finally, the parameter ψ6 in Equation (15) is the non-dimensional, maximum take-off

mass. However, whilst a given aircraft type will have a fixed external geometry and specified
engines, its MTOM is not necessarily fixed. This is because the manufacturer usually offers a
number of ‘weight variants’ to satisfy different airline requirements

8
. Therefore, the MTOM

may have a range of values, with the largest being as much as 25% greater than the small-
est. For a particular aircraft, the weight variant can usually be found from the tail number.
Table 1 contains a reference MTOM and the corresponding weight variant number for each

7This is the Airbus definition. However, there are a number of other definitions in use.
8This is because several of the operational costs levied upon the airlines are determined by the

aircraft maximum take-off weight.
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aircraft, and the corresponding values of (ψ6)ref are given in Table 2. The reference value can
be converted to cover other aircraft by introducing a weight variant factor, Fwv, i.e.

ψ6 = Fwv(ψ6)ref , · · · (63)

where Fwv is the ratio of the actual MTOM , as given either in the type certificate, or the
relevant APR, to the MTOM of the reference aircraft.

10.0 THE ESTIMATION OF ψ1 FROM THE
PAYLOAD–RANGE DIAGRAM

APRs usually contain a number of payload–range diagrams whose construction requires a
knowledge of (ηoL/D). Consequently, with suitable interpretation, these diagrams can be used
to provide estimates of (ηoL/D)o under specified conditions and, hence, values of Ψ 1 can be
established.

At the beginning of the take-off run (brakes-off point), the take-off mass, TOM , can be
broken down into a number of components, i.e.

TOM = OEM + PM + FMnc + TFM = ZFM + FMnc + TFM · · · (64)

Here PM is the payload mass, TFM is the mass of the fuel that will be used during the trip,
FMnc is the mass of the fuel that is not consumed during the flight and OEM is the operational
empty mass. The OEM is the mass of the aircraft before any payload and fuel are loaded and
is given by

OEM = MZFM − MPM , · · · (65)

where MZFM is the maximum permitted zero-fuel mass (given in the aircraft type certificate)
and MPM is the maximum payload. The MZFM and typical values of the MPM are usually
given in the aircraft’s APR.

As described by Poll(1), the trip fuel mass is related to the take-off mass by

TFM

TOM
= αt ≈ 1 − EXP (− (Xt + εt)), · · · (66)

where X t is the non-dimensional trip distance, given by

Xt = gRt

(ηoL/D)oLCV
, · · · (67)

with Rt being the great circle distance between the departure and destination points, εt the
total ‘lost fuel’ index and LCV the lower calorific value of the fuel. The total lost fuel index
captures the additional fuel used in the climb and descent phases, any fuel wasted by not
cruising at the optimum speed and height, any fuel used to fly extra distance due to route
deviations and fuel lost, or saved, because of the wind. However, for a maximum range cruise
in still air

εt = (εcd)min +
(

1 − n

n

)
Xt, · · · (68)
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where εcd is the sum of the lost fuel indices for the climb and descent phases and n is given
by

n = (ηoL/D)avg

(ηoL/D)o
· · · (69)

In general, the parameter n depends upon the flight trajectory, i.e. the profile of Mach number
versus altitude, and the aircraft’s mass at the beginning of the cruise.

The non-consumed fuel, some of which may be used on subsequent flights, must be greater
than, or equal to, the minimum reserve fuel, FMres, as required by the regulatory authority,
plus any extra fuel, FMext, specified by the operator, or the aircraft captain. However, for a
maximum range flight with a given amount of trip fuel, the non-consumed fuel must also have
its minimum possible value and so

(FMnc)min = (FMres)min = βminTOM · · · (70)

Hence, from Equations (64), (66) and (70),

αt = 1 − βmin − ZFM

TOM · · · (71)

and, on the payload–range diagram, the variation of zero-fuel mass with range for a given
take-off mass is given by

ZFM

TOM
= EXP

(
−
(
(εcd)min + Xt

n

))
− βmin · · · (72)

In Appendix C, it is shown that, under EU Ops rules (see Airbus(23)), the reserve fuel
requirement can always be expressed in the form

βmin ≈ 0.05αt + λ (1 − αt)= (0.05 + (λ− 0.05) (ZFM/TOM))

(1.05 − λ)
, · · · (73)

where

λ=
(
(εcd)min +

(
Xad + Xda + Xfr

)
n

)
· · · (74)

Here, X ad , X da and X fr are the non-dimensional, additional cruise distances that can be flown
using the ‘additional’, ‘diversionary airport’ and ‘final reserve’ elements of the reserve fuel.
Combining Equations (72) and (73) gives

ZFM

TOM
=
(

1.05 − λ

EXP(εcd)min

)
EXP

(
−Xt

n

)
− 0.05 · · · (75)

This equation is the tool that is used to extract data from the payload range diagram and, to
check the accuracy of the results, two implementation techniques have been used.
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10.1 Method 1
On the payload–range diagram, each point represents a complete flight. If the aircraft is always
operating at optimum (ηoL/D), the appropriate cruise altitude and, hence, the Reynolds num-
ber is determined by the aircraft mass, m – see Equation (20). This being the case, (ηoL/D)o

also varies with m – see Equation (21). The value of (ηoL/D)o at the beginning of the cruise
is determined, primarily, by the take-off mass and, as the aircraft consumes fuel, both m and
(ηoL/D)o decrease. However, since the variation is usually small, to a good approximation, a
complete flight may be characterised by the average value of the mass in cruise.

As noted in Ref. 1, at the start of cruise, the mass is about 97.5% of TOM and, at the end, it
is roughly 101% of the landing mass, LM

9
. Therefore, using Equations (66)–(68) and taking

(εcd)min to be 0.0067 – see Poll(1),

mavg

TOM
=
(
mic + mfc

)
2(TOM)

≈ 1

2

(
1.985 − 1.01

TFM

TOM

)
≈ 0.99

(
1.0 − 0.51

Xt

n

)
· · · (76)

and, from Equations (21), (67) and (69), for flight in the International Standard Atmosphere,

Xt

n
= gRt

(nψ1) LCV

((
a

ψb
5

)(
ψ7

(MTOM

TOM

) (TOM

mavg

))bιoκo
)( 1+τ

2

)
· · · (77)

Substituting the results from Equation (76) into Equation (77), neglecting terms that are small
in comparison with unity and rearranging gives

Xt

n
≈
(
ψ8gRt

nψ1LCV

)(
1 + 0.51 (bιoκo)

(
1 + τ

2

)(
ψ8gRt

nψ1LCV

))
, · · · (78)

where

ψ8 = 1

G5

⎛
⎝( a

ψb
5

)(
ψ7

0.99

(
MTOM

TOM

))bιoκo
⎞
⎠
(

1+τ
2

)

· · · (79)

Hence, by substituting the result from Equation (78) into Equation (75) and expanding the
exponential function as a power series gives

ZFM

TOM
+ 0.05 =

(
1.05 − λ

EXP ((εcd)min)

)(
1 −

(
ψ8gRt

nψ1LCV

)

+ 1

2

(
1 − 1.01 (bιoκo)

(
1 + τ

2

))(
ψ8gRt

nψ1LCV

)2

− . . .

)
· · · (80)

For a given aircraft, (εcd)min is fixed and, as argued in Ref. 1, its value is expected to be
approximately 0.0067 ± 0.0026. Therefore, for any particular value of TOM , if the reserve

9Since the trip fuel includes the fuel used in climb and descent, the smallest value that TFM /TOM
can have is 0.0348. In this case, since there is no cruise phase, no fuel is consumed in the cruise.
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Figure 9. The payload–range diagram for the Boeing 777-300ER. Lines of constant take-off mass are
constructed using the estimates, based upon method 1, for (nΨ 1) and λ and the circles are the digitised
values taken from the manufacture’s payload–range diagram. The values of (nΨ 1) and are 0.320 ± 0.001

and 0.030 ± 0.003 respectively.

fuel coefficient, λ, the distance flown, Rt, ψ8 and the zero-fuel mass, ZFM , are known, the
value of (nΨ 1) can be deduced. However, whilst Rt and ZFM may be read directly from
the payload–range diagram, λ is usually not known ‘a priori’. Consequently, a calculation
scheme is required to determine the combined values of (nΨ 1) and τ that best describe the
given variation of ZFM with Rt at fixed TOM .

To test the robustness of the results, two independent numerical schemes have been used.
Method 1 involved the inversion of Equation (80) and, with λ fixed, using known values of
ZFM and Rt taken along a line of constant TOM to determine (nΨ 1) directly. The value of
λ was then varied until the ‘least squares’ linear fit of (nΨ 1) against Rt had a zero slope, i.e.
both (nΨ 1) and λ had single values for the whole dataset. An example showing the success of
the fitting process is given in Fig. 9.

It was found that each payload–range diagram only yielded a single value of (nΨ 1) and the
variations in the values of both (nΨ 1) and for different values of TOM /MTOM were generally
small. The values of (nΨ 1) were not sensitive to the choice of (εcd)min. However, when the
range parameter was small, (nΨ 1) was found to be very sensitive to errors in ZFM /TOM .
These observations are all consistent with the behaviour implicit in Equation (80). The accu-
racy demonstrated in Fig. 9 was not achieved in all cases. However, the larger discrepancies
were found to be due, primarily, to inaccuracies and inconsistencies in the payload–range
diagrams given in some APRs.

10.2 Method 2
For method 2, it was assumed that the Reynolds number effects were small and, using the same
values of ZFM versus Rt at fixed TOM , Equation (75) was solved numerically to determine
pairs of values of (ηoL/D)avg and λ for which the data fit had the minimum least square root of
the sum of deviations (Appendix D). The values of (ηoL/D)avg were then converted to (nΨ 1)
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Figure 10. A comparison between the values of (nΨ 1) as determined by analysis methods 1 and 2. The
solid line has unit slope and the dashed lines indicate a ±5% variation.

by using Equations (21) and (67), with the mid-range value being taken for Rt. The results
from the two methods for all the aircraft considered in this study are compared in Fig. 10. The
values obtained from the two methods were found to have a maximum difference of 5% and
a mean difference of 1.5%. The ‘best estimate’ for (nΨ 1) was taken to be the average of the
two values.

The (ηoL/D)avg values obtained by method 2 can also be compared directly with those
given in other references, e.g. Martinez-Val et al.(21) and Randle et al.(22). In both of those
studies, the authors sought to estimate (ηoL/D)avg either from payload–range diagrams or
from flight data recorder information, and results are provided for 20 of the aircraft listed
in Table 1. These are compared with the method 2 values in Fig. 11. The Martinez-Val et al.
results exhibit greater scatter than those of Randle et al. and, whilst some of this is attributable
to reading errors due to the small size of the figures in both references, the general level of
agreement is reasonable and reflects the sensitivity of the estimates to small errors in the input
data.

Finally, to obtain Ψ 1, it is necessary to estimate the value of n; see Equation (69). This
quantity may be expressed as

n =
(
(ηoL/D)IC
(ηoL/D)o

)(
(ηoL/D)avg

(ηoL/D)IC

)
, · · · (81)

where all the terms are evaluated at the same Reynolds number. The first bracketed term is
given by Equation (22) and depends upon M∞/Mo and the ratio of the lift coefficient at the
beginning of cruise, (CL)IC , to the optimum value, (CL)o. Payload–range diagrams are usually
based on a fixed take-off mass, a fixed Mach number and either a fixed altitude or a step-climb
profile. In all the cases considered in this analysis, the diagram was based upon the long-range
cruise Mach number. Therefore, by definition, at the start of the cruise

(ηoL/D)IC
(ηoL/D)o

≈ 0.99 · · · (82)
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Figure 11. A comparison between the estimated values of (ηoL/D)avg and the previously published results
of Martinez-Val et al.(21) and Randle et al.(22). The solid line has unit slope, and the dashed lines indicate

a ±10% variation.

If the aircraft were then to follow a cruise–climb trajectory, the ratio of (ηoL/D) to its optimum
value would stay at this value. However, at present, to guarantee safe separation, aircraft are
not allowed to cruise climb, although, if circumstances permit, an occasional step change to
a higher cruise altitude may be possible. Therefore, the second bracketed term provides a
further correction to allow for the additional fuel required when following constant-altitude
or step-climb trajectories. As shown in Ref. 1, if the flight trajectory is known, this term can
be evaluated exactly. However, examination of the complete solution suggests that, in current
operating conditions, this term is likely to have a value in the region of 0.985. Hence,

n ≈ 0.975 · · · (83)

With the value of n determined, Ψ 1 can be estimated and the values are listed in Table 2.

11.0 THE ESTIMATION OF ηO, (L/D) AND TOTAL THRUST
From Equations (12) and (35),

(ηo)
R
B

(ηo)
R
o

=
(

M∞
ψ4

)η2

. · · · (84)

Since ηo depends only upon Mach number, this result can be combined with the function f 1

from Equations (A-14), or (A-15) to give

(L/D)RB
(L/D)Ro

= (ηoL/D)RB
(ηoL/D)Ro

(
(ηo)

R
o

(ηo)
R
B

)
= f1

(
ψ4

M∞

)η2

· · · (85)
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Hence, at the optimum condition, using Equations (11), (17) and (19) and ignoring products
of small quantities,

(L/D)o ≈ G7ψ3

((
ψb

5

a

)(
1

ψ7

( m

MTOM

))bιoκo
)( 1+τ

2

)
, · · · (86)

where

G7 = ( f1)o

(
1

1 + ε

)η2
(

1

G3

)( 1+τ
2

)
=
(

1

1 + ε

)η2

G5 · · · (87)

It follows immediately from Equations (21) and (86) that

(ηo)o = (ηoL/D)o
(L/D)o

=
(
ψ1

ψ3

)
(1 + ε)η2 =

(
ψ1

ψ3

)(
Mo

ψ4

)η2

· · · (88)

Hence, from Equation (35), the engine constant η1 is given by

η1 =
(
ψ1

ψ3

)(
1

ψ4

)η2

· · · (89)

The values of η1 are included in Table 2.
As shown in Poll(1), provided the engines are sized such that L/D and ηo both reach

maximum values at the same conditions in straight and level flight, then

Ct

(Ct)B
≈ CL

(CL)B
· · · (90)

and, assuming that Equation (37) is approximately the same for all engine types,

ηo

(ηo)B
≈ 1 − 0.53

(
1 − 0.84M2

∞
) ( CL

(CL)B
− 1

)2

+ 0.25

(
CL

(CL)B
− 1

)3

· · · (91)

In addition, Poll and Schumann(2) have shown that, when the mass is fixed,

CL

(CL)B
≈
(

CL

(CL)o

)
(CL)o

(CL)B
= f4

(
CL

(CL)o

)υ
, · · · (92)

where f 4 and ν are given in Appendix A. Therefore, the overall engine efficiency for any
combination of Mach number and lift coefficient within the range of validity of the basic
relations set out in Appendix A, is given by

ηo

(ηo)o
≈
(

M∞
Mo

)η2
(

1 − 0.53
(
1 − 0.84M2

∞
) ((

f4

(
CL

(CL)o

)υ)
− 1

)2

+ 0.25

((
f4

(
CL

(CL)o

)υ)
− 1

)3)
. · · · (93)
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Furthermore, the combination of Equations (22), (86) and (93) allows the estimation of (L/D)
for an aircraft of given mass to be determined for any combination of Mach number and lift
coefficient, i.e.

(L/D)≈ (ηoL/D)

(ηoL/D)o

(ηo)o

(ηo)
(L/D)o · · · (94)

In straight and level flight, the thrust is equal to the drag and the lift is equal to the aircraft
weight and so the total engine thrust, Fn, is given by

Fn ≈ mg

(L/D) · · · (95)

12.0 SENSITIVITY TO UNCERTAINTY IN THE INPUT
VALUES

The overall accuracy of the method may be judged by examining the sensitivity of (ηoL/D) to
uncertainty in the values of (ηoL/D)o, Mo and (CL)o. This can be expressed as

d(ηoL/D)

(ηoL/D)
= g1

d(ηoL/D)o
(ηoL/D)o

+ g2
dMo

Mo
+ g3

d(CL)o

(CL)o
, · · · (96)

where

g1 = (ηoL/D)o
(ηoL/D)

∂(ηoL/D)

∂(ηoL/D)o
, · · · (97)

g2 = Mo

(ηoL/D)

∂(ηoL/D)

∂Mo
· · · (98)

and

g3 = (CL)o

(ηoL/D)

∂(ηoL/D)

∂(CL)o
· · · (99)

To simplify the analysis, the functions g1, g2 and g3 are derived using the constant Reynolds
number functions developed by Poll(1).

For any combination of Mach number and lift coefficient, it can be seen that (ηoL/D) is
always directly proportional to (ηoL/D)o and so g1 is constant and equal to unity. However, g2

and g3 each vary with both M∞/Mo and CL/(CL)o and the forms of the relationships are given
in Figs 12 and 13.

These graphs show that, in general, (ηoL/D) exhibits a greater sensitivity to errors in Mo

than to errors in (CL)o and that, in the region around the optimum point, the values of g2 and g3

increase as both M /Mo and CL/(CL)o increase. In practice, for reasons of fuel economy, air-
craft tend to operate at Mach numbers between the optimum and the long-range cruise value,
MLRC; see, for example, Airbus(23), where MLRC is approximately 3.5% greater than Mo; see
Poll(1). Hence, for normal operating conditions, (M∞/Mo) lies between 1 and 1.035. However,
if there is a need to make up lost time, speeds up to about 1.05 times Mo may be used. In addi-
tion, all engines have an upper limit on cruise thrust and this imposes upper limits on CL/(CL)o



POLL AND SCHUMANN AN ESTIMATION METHOD FOR THE FUEL BURN... 35

Figure 12. The variation of the function g2 with CL/(CL)o and M∞/(M)o.

Figure 13. The variation of the function g3 with CL/(CL)o and M∞/(M)o.

for each value of M /Mo. For a given speed and aircraft weight, the maximum thrust available
determines the maximum altitude that can be reached and, under ISA conditions, this is usu-
ally about 2,000 to 3,000ft higher than the altitude for minimum fuel burn. In addition, Poll(1)

has shown that altitude is linked directly to the term CL.M∞2 and, when the altitude is 2,000ft
higher than the optimum for fuel burn, CL.M∞2 is about 1.08 times (CL)o.Mo

2. This limiting
line has been evaluated for flight in the ISA(15) and is included in the figures

10
.

10As shown in Ref. 1, this limiting condition varies with the ambient atmospheric temperature. The
colder the air relative to ISA conditions, the greater the attainable lift coefficient at a given Mach number.
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It is clear from the figures that g2 only exceeds unity at ‘catch up’ speeds, whilst g3 never
exceeds 0.7 at any condition. Therefore, the method has the potential to provide reason-
able fuel burn rate estimates. In general, estimates of (ηoL/D) exhibit the highest sensitivity
to errors in (ηoL/D)o, since these quantities are directly proportional to one another. Next
comes Mo, where, in general, there is some alleviation of errors, whilst (ηoL/D) exhibits least
sensitivity to errors in (CL)o.

13.0 PARAMETER ACCURACY
Values ofΨ 0 have been obtained from Equation (23) using the relations set out in Appendix B.
Comparisons with a limited amount of flight-test data indicate that the values are accurate to
about ±10%. Estimates of Ψ 1 have been derived from payload–range diagrams contained in
the manufactures’ APRs. Two independent schemes have been used and the results compared
with the limited amount of data available from other sources. Provided that the payload–range
diagrams are based upon reliable information, Ψ 1 is expected to be accurate to approximately
±5%. The Mach number at the optimum condition, Mo, has been linked to either the long-
range cruise Mach number (Mo equal to 1.035(MLRC)) or the MMO (Mo equal to 0.910(MMO)).
When MLRC is obtained from either the APR, or the FCOM , the resulting values of Mo are
expected to be accurate to ±1%. However, if they are estimated from the MMO given in the
TCDS, the available data suggest that the accuracy drops to about ±4%. Estimates of eo

are obtained by first using Equations (24)–(26) to obtain eLS , which is converted to eo by
using Equation (54) with Cdo being set to (Cdo)avg. Overall the values of eLS are accurate to
±8%, with the greatest uncertainty being associated with the parameter k1. Similarly, given
the observed maximum uncertainty on (Cdo)o (±10%) and η2 (±15%), (eo/eLS) is expected
to be accurate to better than ±5%. Based upon the uncertainty in the component parts, Ψ 2

(Equation (60)) and, hence, (CL)o (Equation (20)) are believed to be accurate to better than
±10%. Therefore, given the levels of attenuation indicated in Figs 12 and 13, in the aircraft’s
normal operating range, estimates of (ηoL/D) are expected to be in error by no more than 5%
in the majority of cases, with the worst cases being about 10%.

The overall propulsive efficiency of the engine at the optimum condition, (ηo)o, is esti-
mated from a combination of Ψ 1, Ψ 3 and Ψ 4. Since Ψ 3 Equation (61) has the same level of
uncertainty as Ψ 2, i.e. ±10%, (ηo)o is expected to have errors of no more than ±10%. Finally,
the thrust at the optimum condition is obtained from the aircraft weight and Ψ 3. Therefore,
assuming that the weight is known, the thrust estimate will have an error of less than ±10%.
It is also important to note that the thrust obtained in this way is the ‘installed’ value; That
is to say, it includes the effects of thrust loss due to airframe engine interaction and all the
operational power off-take requirements for electrical power generation, air conditioning and
de-icing.

14.0 CONCLUSIONS
The normalisation scheme proposed by Poll(1) has been developed into a simple, self-
contained, physically complete method for the determination of the cruise fuel burn rate,
thrust and engine overall efficiency of a turbofan transport aircraft. However, to determine
these quantities for a specific aircraft, values must be attributed to eight constants, which are
characteristic of the aircraft and engine combination. In the notation used in this paper, these
constants are ψ1 to ψ6, τ and η2. Some of these constants are simple and the data required
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are readily obtained from information sources that are in the public domain. However, others
are complex and require information that is not easily found.

Simple, reliable methods have been developed for the estimation of all the parameters.
Where possible, well-established aerodynamic theory has been used. However, for those cases
where this has not been possible, empirical methods have been proposed. A table giving a
complete set of parameters for some 53 aircraft has been presented. These are the aircraft that
are currently responsible for over 85% of aviation’s global greenhouse-gas emissions.

At the present stage of development, it is believed that the estimates of cruise fuel burn
rate will be in error by no more than 5% in the majority of cases and about 10% in the
worst case for the aircraft in the tables. However, this needs to be tested by comparison with
other methods currently being used by the environmental science community and this will be
addressed in future work.

Finally, an important characteristic of the method is its modular construction. This
means that, should more accurate sub-models be developed or better empirical data become
available, these can be easily incorporated.
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APPENDIX A. A SUMMARY OF THE PRINCIPAL
EQUATIONS FROM POLL(1) AND POLL AND
SCHUMANN(2).
At a given Mach number and Reynolds number, i.e. at any specified combination of speed
and height,

(ηoL/D)R

(ηoL/D)Ro
= (ηoL/D)RB
(ηoL/D)Ro

(
(ηoL/D)R

(ηoL/D)RB

)
= Function

(
CL

(CL)
R
o

,
M∞
MR

o

)
, · · · (A-1)

where subscript B (= best) refers to the maximum value of (ηoL/D) at a given Mach number,
whilst the subscript o refers to the optimum value.

The first term on the right-hand side of the equation is a function of Mach number only, and
it was shown in Ref. 1 that this could be adequately approximated by two simple relations.
The original relations were found to give problems when used in numerical analyses and so
improved versions were developed in Ref. 2 and are used here, i.e. if 0.80 < M∞/MR

o < 0.99,

(ηoL/D)RB
(ηoL/D)Ro

= f1 ≈ 1 − 6.00

(
M∞
MR

o

− 1

)2

− 15.0

(
M∞
MR

o

− 1

)3

· · · (A-2)

whilst, if 0.99≤M∞/MR
o <1.08,

f1 ≈ 1 − 5.8965

(
M∞
MR

o

− 1

)2

+ 0.36024

(
M∞
MR

o

− 1

)3

− 31.684

(
M∞
MR

o

− 1

)4

− 53313

(
M∞
MR

o

− 1

)5

· · · (A-3)
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As shown in Ref. 1, the second term on the right-hand side of (A-1) may be approximated by
the function

(ηoL/D)R

(ηoL/D)RB
≈ 1 + A

2

(
CL

(CL)
R
B

− 1

)2

+ B

6

(
CL

(CL)
R
B

− 1

)3

, · · · (A-4)

where the coefficients A and B also depend only upon M∞/MR
o , i.e. if (M∞ /MR

o ) < 0.975,

A = B ≈ −2.6, · · · (A-5)

otherwise

A ≈ −
(

2.6 + 120

(
M∞
MR

o

− 0.975

)2
)

· · · (A-6)

and

B ≈ −
(

2.6 + 270

(
M∞
MR

o

− 0.975

)2
)

· · · (A-7).

Furthermore,

(CL)
R

(CL)
R
B

=
(
(CL)

R

(CL)
R
o

)/(
(CL)

R
B

(CL)
R
o

)
, · · · (A-8)

where, as shown in Ref. 2, for 0.80 < M∞/MR
o < 1.08,

(CL)
R
B

(CL)
R
o

= f2 ≈ 1.05 − 14.80

(
M∞
MR

o

− 0.80

)3

+ 116.75

(
M∞
MR

o

− 0.80

)4

− 370

(
M∞
MR

o

− 0.80

)5

.

· · · (A-9)
Finally, since, as argued in Ref. 2,

(ηoL/D)RB ≈ f1 (ηoL/D)Ro = f1.ψ1

(
1

Cac
F

)( 1+τ
2

)
, · · · (A-10)

(CL)
R
B ≈ f2 (CL)

R
o = f2.ψ2

(
Cac

F

)( 1−τ
2

)
· · · (A-11)

and

MR
o ≈ψ4 · · · (A-12).

where ψ1, ψ2 and ψ4 are known constants for a given aircraft and CF depends only upon
Reynolds number – see Equation (7), Equations (A-1) to (A-12) can be used to estimate the
value of (ηoL/D) at any combination of speed and altitude.

In Ref. 2, this model was used to find the Reynolds number and the Mach number at which
(ηoL/D) reaches the optimum value for an aircraft of specified mass operating in a completely
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general atmosphere. This requires the introduction of two additional quantities, Γ and ι, that
capture the effect of temperature variation in the vertical direction. If

χ = (pTP)ISA

p∞
and φ = μ∞a∞

(μTPaTP)ISA
, · · · (A-13)

Γ = χ

φ

dφ

dχ
≈ 277

(
1 −�T

)
LR, · · · (A-14)

where

�T = �T

(TTP)ISA
= T∞
(TTP)ISA

−
(

T∞
TTP

)
ISA

· · · (A-15)

and

LR = 1

(TTP)ISA

dT∞
dFL · · · (A-16)

The coefficient ι is defined as

ι= 1 + 278.8(LR)ISA · · · (A-17)

Therefore, if the aircraft is flying at an altitude such that χ is less than or equal to unity, ι is
equal to 0.74505 and, if χ is greater than unity, it is equal to 1.0.

The analysis leads to the specification of a number of atmospheric functions, labelled the
‘G’ functions. Those relevant to the optimum conditions are

G2 ≈ ((
1 + 1.34�To

)
((1 +�o) (1 − ε))io(1 + ε)(2io−1)

)−κo , · · · (A-18)

where

ε≈ −0.000260 (1 + 2.825τ )
(
1 + 30.18 (1 − 0.66τ) �o+10.27 (1 − 0.57τ) Γ 2

o

+ 1.91 (1 − 1.78τ) Γ 3
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)
, · · · (A-19)

�o ≈ −0.02946 (1 + 0.956τ)
(
1 + 1.14Γo + 0.14Γ 2

o

)
· · · (A-20)

and

κo =
(

2

2 − iob (1 − τ)

)
· · · (A-21).

From which it follows that

G3 = (G2)
−b, · · · (A-22)

G4 = ( f2)o(1 +�o)(G3)

(
1−τ

2

)
· · · (A-23)
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and

G5 = ( f1)o

(
1 + Ao

2
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o + Bo
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)(
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)( 1+τ
2

)
. · · · (A-24)

Finally, two additional ‘f ’ functions are introduced as

f3 ≈ f1
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and
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where

υ = 1 − ib

(
1 − τ

2

)
. · · · (A-27)

APPENDIX B. ESTIMATION OF (CdO/CF) FROM THE
AIRCRAFT EXTERNAL GEOMETRY

a. Fuselage

The fuselage slenderness ratio, λf , is the ratio of the fuselage total length, lf , to the fuselage
mean diameter, df . Since civil transport aircraft usually have a passenger cabin with a constant
width, bf , and a constant height, hf , the mean diameter is defined, on the basis of bodies of
equal cross-sectional area, as

df = bf

(
hf

bf

)1/2

. · · · (B-1)

According to Torenbeek(11,12), a good estimate of the fuselage wetted area is given by

(
Sf

)
wet

Sref
≈ π

(
1 − 2

λf

)2/3
(

1 + 1

λ2
f

)
lf df

Sref
· · · (B-2)

and, to maintain consistency, the Torenbeek value of the fuselage form factor, (FF)f is used,
where

(FF)f ≈
(

1 + 2.2

λ1.5
f

+ 3.8

λ3
f

)
. · · · (B-3)
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However, since Torenbeek does not provide values for the interference and secondary drag
factors, (FI )f and (FS)f , the values proposed by Jenkinson el al.(13) are used, i.e.

(FI FS)f ≈ 1.1. · · · (B-4)

From Equation (7) of the main text, the ratio of the mean skin friction coefficient for the
fuselage to the reference mean skin friction coefficient is

(CF)f

(CF)ac
≈
(

lac

lf

)0.14

. · · · (B-5)

b. Wing, horizontal tail, vertical tail and engine nacelles

The wetted areas of the wing, horizontal tail, vertical tail and nacelles are measured directly
from the three-view, general arrangement drawings given in the airport planning document,
whilst the various form factors, interference factors and secondary drag factors are again
taken from Jenkinson el al.(13).

For the wing

(FF)w ≈ (
1 + 2.9(t/c)wcos2 (Λw)

)
, (FI FS)w ≈ 1.06 · · · (B-6)

and

(CF)w

(CF)ac
≈
(

lac

lw

)0.14

, · · · (B-7)

where lw is the mean wing chord, defined as the wing reference area, Sref , divided by the
wingspan. For the horizontal tail (tailplane),

(FF)ht ≈ 1 + 3.5(t/c)ht ≈ 1.20, (FI FS)ht ≈ 1.20 · · · (B-8)

and

(CF)ht

(CF)ac
≈
(

lac

lht

)0.14

, · · · (B-9)

where lht is the mean chord length, defined as the horizontal-tail plan area divided by its span.
Similarly, for the vertical tail,

(FF)vt ≈ 1 + 3.5(t/c)vt ≈ 1.18, (FI FS)vt ≈ 1.20 · · · (B-10)

and

(CF)vt

(CF)ac
≈
(

lac

lvt

)0.14

, · · · (B-11)

where lvt is the mean chord length, defined as the vertical-tail (fin) plan area divided by the
fin height.
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For the nacelles,

(FFFI FS)nac ≈ 1.44 · · · (B-12)

and

(CF)nac

(CF)ac
≈
(

lac

lnac

)0.14

, · · · (B-13)

where lnac is the length of the nacelle. Finally, for best agreement with the flight data from
Ref. 13,

Fo = 0.98 · · · (B-14)

APPENDIX C. ESTIMATION OF THE RESERVE FUEL
REQUIREMENT
Under the European Joint Aviation Regulations, formerly the JAR-OPS 1 and now the EU Air
OPS regulatory requirements (see Airbus(23)), the minimum reserve fuel has five elements:

a) ‘contingency fuel’, MFcont, at 5% of the trip fuel mass, TFM

b) ‘additional fuel’, MFad , sufficient to fly for 15min at the holding speed at a height of

1,500ft above the destination airport

c) ‘alternate fuel’, MFalt, enough to fly about 200nm (≈370km) from the original destination

to an alternate airport

d) ‘final reserve fuel’, MFfr, sufficient to fly for 30min at the holding speed at a height of

1,500ft above the alternate airport and

e) ‘extra fuel’, MFext,

The US Federal Aviation Regulations (FARs) are similar.
Elements (a) and (b) apply to the basic journey from departure to the intended destina-

tion. The contingency fuel is a straight 5% increase in fuel load, whilst the ‘additional’ fuel
requirement is based upon a fixed time spent in a holding pattern near the destination airport.
However, for a given aircraft, this holding fuel can always be equated to the amount required
for an equivalent, additional cruise distance, Rad , in which case

(MF)cont

TOM
+ (MF)ad

TOM
≈ 0.05 +

(
0.95 − EXP

(
−Xad

n

))
(1 − αt). · · · (C-1)

The diversion to the alternate airport begins with a missed approach at the destination.
Therefore, to a good approximation, the diversion is the same as a normal trip from the desti-
nation to the alternate, taking-off at the planned landing mass, LM . Hence, if the distance to
the alternate airport is Rda,

(MF)alt

TOM
≈ αalt

LM

TOM
≈
(

1 − EXP

(
−
(
(εcd)min + Xda

n

)))
(1 − αt). · · · (C-2)
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The final reserve fuel requirement is based upon a fixed time spent in a holding pattern near
the alternate airport. However, once again, for a given aircraft, this holding fuel can be equated
to an equivalent, extra diversion distance, Rfr, in which case,

(MF)alt

TOM
+ (MF)fr

TOM
≈
(

1 − EXP

(
−
(
(εcd)min +

(
Xda + Xfr

)
n

)))
(1 − αt). · · · (C-3)

Finally, the ‘extra’ fuel component is specified either by the operator, or the captain. This is a
matter of judgement and this element is not subject to any regulatory rules. However, as with
the other elements, this ‘extra’ fuel can always be expressed as an additional distance flown.

The total minimum reserve fuel is obtained by combining Equations (C-1), (C-2) and
(C-3). Moreover, since (εcd)min, X ad , X da and X fr are always very small compared with
unity,

(MFres)min

TOM
= βmin ≈ 0.05αt +

(
(εcd)min +

(
Xad + Xda + Xfr

)
n

)
(1 − αt). · · · (C-4)

For any given aircraft, if the rules governing the reserve fuel and the ‘extra’ fuel are known,
the ‘distances’ Rad , Rda and Rfr can be computed. However, whatever the rules and whatever
‘extra’ fuel is carried, it follows from Equation (54) that

βmin ≈ 0.05αt + λ(1 − αt) = (0.05 + (λ− 0.05) (ZFM/TOM))

(1.05 − λ)
, · · · (C-5)

where λ is a constant.

APPENDIX D. METHOD 2 FOR THE DETERMINATION
OF (ηOL/D)avg
In order to find the (ηoL/D)avg and λ solution pairs, Equation (75) is re-written as

(ηoL/D)avg = (−gRt/LCV)

LN(EXP((εcd)min)(0.05 + ZFM/TOM)/(1.05 − λ))
, · · · (D-1)

where (εcd)min has been taken to be 0.0067. Equation (D-1) has to be solved numerically for
a number of range and zero-fuel mass data pairs, i = 1, . . . , N .

When N equals 2, there are two equations for the two unknowns, and provided that the data
represent two clearly separated payload cases, there is a unique solution. This can be obtained
by a Newton iteration based on the linearised version of

f

(
(ηoL/D)avg, λ,

gRt

LCV
,

ZFM

TOM

)
= (ηoL/D)avg + gRt/LCV

LN

⎛
⎝1.0067

(0.05 + ZFM/TOM)(
1.05 − λ

)
⎞
⎠

= 0.

· · · (D-2)
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Starting with the initial estimates λ0 = 0 and

(
(ηoL/D)avg

)
0
= − ((

(gRt/LCV)1 + (gRt/LCV)2
)
/2
)

LN
(

1.0067
((0.05 + ((

(ZFM/TOM)1 + (ZFM/TOM)2
)
/2
))

1.05

)) ,

· · · (D-3)
the following functions are computed for i = 1 and 2

f i
0 = f

((
(ηoL/D)avg

)
0
, λ0,

(
gRt

LCV

)
i

,

(
ZFM

TOM

)
i

)
, · · · (D-4)

∂f i
0

∂(ηoL/D)avg
= 1 · · · (D-5)

and

∂f i
0

∂λ
= (gRt/LCV )i(

LN
(

1.0067
(
(0.05+(ZFM/TOM)i)

1.05−λ0

)))2
(λ0 − 1.05)

. · · · (D-6)

Improved solutions are then obtained with the help of a determinate, D, of the linear system
of equations, namely

D = ∂f 2
0

∂λ
− ∂f 1

0

∂λ
, · · · (D-7)

(ηoL/D)avg = (
(ηoL/D)avg

)
0
+ f 2

0
∂f 1

0
∂λ

− f 1
0
∂f 2

0
∂λ

D · · · (D-8)

and

λ= λ0 + f 1
0 − f 2

0

D
. · · · (D-9)

After replacing ((ηoL/D)avg)0, λ0) by ((ηoL/D)avg, λ), the computation can be refined
iteratively to obtain the final values.

When N exceeds 2, the system of equations is overdetermined and the ‘solution’ is obtained
from a standard least-squares fit. Since, (ηoL/D)avg can be determined from Equation (D-1),
λ is varied systematically until the results provide an optimal fit in a suitable quadratic error
norm. First estimates are obtained by assuming that λ equals 0.05, and subsequently, the
results are refined using either the simplex method of Nelder and Mead(24) or a robust sys-
tematic search algorithm, e.g. Schumann et al.(25). A solution with a precision better than
1.0E-5 is obtained typically after 30 evaluations of (D-1).
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