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ABSTRACT The R-Mode system is a terrestrial navigation system currently under development, which
exploits existing means of medium frequency radio transmission. The positioning and timing performance
depends on the estimation of the signals’ phase offset, from which the ranging information is derived. For
an analogous problem such as the single-tone phase estimation, the Cramér-Rao bound (CRB) describes
the minimal achievable performance in the mean squared error sense. For R-Mode, the problem involves
the estimation of the phase offset for a beat signal, which can be described as the difference of phase
estimation for the two aiding carriers next to the signal. This estimates are not statistically independent for
finite observation, as we show in this paper. The effect becomes stronger for short observation times, which
are important for a near real time application. In this contribution, we are interested in phase offset estimation
for the signal models relevant to R-Mode: a beat signal and a beat signal combined with an MSK signal.
A closed-form lower CRB is proposed for the aforementioned signal models phase estimation, as well as
a generalization of the bound for the phase-difference estimation. Based on this derivation, optimized bit
sequences are shown to improve performance of the estimates. The validity of the proposal is verified based
on a simulation setup. Measurements acquired during a measurement campaign serve to further justify the
usefulness of the bound. Some possible applications of such a bound are R-Mode coverage prediction and
the associated phase estimators’ performance.

INDEX TERMS CRB, phase estimation, navigation, R-Mode, signal processing

. INTRODUCTION and serves as a GNSS backup [6]. Within R-Mode, two
approaches can be distinguished based on the used frequency
band. The first utilizes VHF transmission, by using either
the Automatic Identification System (AIS) system [7] or the
upcoming standard VHF Data Exchange System (VDES) [8],
[9] to provide positioning and timing. A limiting factor of
VHF-based localization relates to the line-of-sight reception
capabilities [10].

Global navigation satellite systems (GNSS) are the backbone
for today’s position, navigation and timing (PNT) infor-
mation. Previously, several positioning and navigation sys-
tems were accessible for the maritime environment, based
on different working principles, such as the LOng RAnge
Navigation (LORAN), Chayka or Decca. With the increasing
popularity of GNSS, the aforementioned systems were grad-
ually shutdown in Europe. The proliferation of radio threats
to GNSS signals has raised severe concerns regarding the
vulnerability of the timing and navigation processes [1], [2].
The importance of such vulnerabilities is especially relevant
within the maritime domain [3]-[5], making evident the need
for alternative means of navigation.

The second approach employs the transmission over
medium frequencies (MF) of maritime differential GNSS
(DGNSS) services. Such a DGNSS service transmits relevant
GNSS correction data from stations situated on shore sides.
The information is modulated as Minimum Shift Keyed
(MSK) in the band from 283.5 kHz to 325 kHz with a region-

One candidate is R(anging)-Mode, which exploits existing
maritime signals of opportunity to procure PNT information
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dependent bandwidth of 500 Hz or 1 kHz and data rates of 50
to 200 bits/s [11]. In Europe, the channel bandwidth is 500
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FIGURE 1. Spectra of the simulated measurements from the station Zeven
(Germany) for a sample rate of 1 MS/s. CW; and CW- point to the upper and
lower tone, with the MSK pointing to the signal due to modulation.

Hz and the most commonly used data rate is 100 bits/s [12].
As MF signals propagate as ground waves, their use is not
restricted to the line-of-sight, and the existing infrastructure
covers most high-density traffic areas of up to 500 km from
the shore [13]. Thus, R-Mode based on MF transmission
constitutes the focus of our work.

To obtain precise ranging, two single tones (CW) are intro-
duced, symmetrical around the carrier frequency, in the zero
crossings of the MSK spectra of the DGNSS transmitted sig-
nal [14]. The added tones are transmitted such that their zero
crossings appear at full seconds at the transmitter antenna.
Fig. 1 depicts an example of the spectrum for the resulting
signal, with an MSK-modulated signal at f. = 303.5 KHz
and single tones at f. + 225Hz. Analogously to GNSS
carrier-phase observations, the direct phase estimation for
the aforementioned two tones would lead to a precise and
ambiguous pseudorange measurement, with ambiguities of
~ 1 km. Alternatively, one can derive a beat signal from the
two tones by taking the phase difference over time, avoiding
dealing with ambiguity resolution. The resulting signal has a
frequency of 450 Hz and the phase offset at the full second
is derived by a simple subtraction of the estimates of both
single tones.

When addressing a new estimation problem, in this case
localization based on MF beat signals, it is of fundamen-
tal relevance to characterize the ultimate achievable perfor-
mance of the problem. The derivation of tight-performance
lower bounds responds to these needs. Lower bounds can be
categorized in Bayesian and deterministic. The first consider
the unknown parameters as random variables with an a priori
probability and evaluate the globally best estimator, while the
latter consider the unknown parameters as deterministic and
evaluate the locally best estimator performance [15]. In this
work, we are interested in deriving a deterministic Cramér-
Rao bound (CRB) for the amplitude and phase of a beat
signal.

This information is a precondition for the estimation if

resolving the ambiguities of the single-tones in a certain
region is possible and improves the choice of estimation
parameter in the receiver. A related lower bound is derived for
the estimation of a single-tone phase [16]. The bound is used
for coverage prediction and as an overall measure of system
performance. Currently, the beat frequency is not covered by
this bound and is subject to ongoing research [17].

In this work, we show that the estimates of the tones for the
described R-Mode signal are not statistically independent for
finite observation, so they cannot be considered as separate
sinusoids as in [18]. Based on our derivation of the bound,
we show optimized bit patterns that nearly satisfy statistical
independence of R-Mode signal components, which is a
prerequisite for an optimized navigation message, that mini-
mizes the variance of CW phase estimation.

The article is organized as follows: Section 2 introduces
the basics on Cramér-Rao lower bounds. Section 3 details
the three signal models of interest and their associated CRBs.
Section 4 and 5 present the results and discussion based on
simulated and real scenarios, respectively. Finally, Section 6
presents the conclusion and future work. .

Il. CRAMER-RAO LOWER BOUND

The CRB is the most well-known lower bound due to its
easiness of derivation and being the lowest bound on the vari-
ance of any unbiased estimator [19]. This section provides an
overview of the CRB computation for a generic discrete-time
signal model, given as

5(tn,0) with @ = [0y, Oy,...0,] T, n=0,...,N—1. (1)

Here 0 is the unknown parameter vector with a compo-
nents ©;, t,, denotes discrete time and n is the index of the
time step currently evaluated.

We represent the samples we want use for estimation in
the sampled vector & with length N. The nth element X [n]
of vector x is defined as

X[n] = s(tn, 0) +winl, )

with @ the true value of the parameters. Moreover, the noise
is described by the zero-mean Gaussian noise vector w with
variance o% and his nth element w([n]. Under this assump-
tion, we obtain the likelihood function for the signal model
according to [19].

For a multi-parameter model, the Cramér-Rao lower bound
is given by

var( ;) > J‘1(0)i¢, (3

with J~1(8);; the i th diagonal element of the inverse Fisher
Information Matrix (FIM) J~1(0) [18]. The coefficient of
the FIM J (0) can be calculated as

5‘5 tn,O 05(tn,0)
1—02;0 6 06, 4)

which is the real part of the calculation in [16]. The represen-
tation in (4) simplified the derivation for the bound [19] and
is used in the following sections.
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lll. LOWER BOUND FOR PHASE DIFFERENCE

A. ADDITIVE SIGNAL MODEL

The first signal model considered relates to the estimation of
phase difference of two tones , which describe the beat signal,
within noise for an additive signal model

Sadd(tn, ) =A1 sin(wy t, + 1)
+ Az sin(wa ty, 4 ©1 + Poear)- (5)
We add two sinusoids with only the circular frequencies wy
and wo known. While the first sinus term presents a phase
offset ¢, the second term comprises the phase difference

©Ypeat + 1. Each tone displays independent amplitudes A
and A,. Thus, the unknowns lead to the parameter vector

Sadd(tn, @) With @ = 1, A1, Ag, Ppead |- (6)
We can obtain the first derivatives of each parameter as

0 t

M :Al COS(wl tn —+ (pl) (7)

8@1
—+ A2 COS(WQ tn + ¥1 + @beat)a

05add(tn, @)

9 =Ay COS(UJQ t, + @1+ (Pbeat)y ®)
Pbeat
05044 (tn, .
% =sin(w; t, + 1), 9
af tn7 :
9saaa(tn, ) =sin(wa tn, + ©1 + Poeat)- (10)
0A,

Let us assume that the observations contain an integer
number of seconds and that our frequencies are multiples of
1 Hz. The following therefore applies for any angle ¢

| Nl
¥ > cos(wi tn + ¢) = 0. (11)
n=0
Thus, the resulting FIM is as follows
A3+ A3 0 0 A3
N 0 1 0 O
Jaaa(p) = 252 0 01 ol (12)
A2 00 A
whose inverse is the CRB for (5) under assumption (11)
1 1
xz Y TE
_ 202 0 1 0 0
1 P
Jadd (SD) N 0 0 1 0 (13)
1 0 0 1 n 1
A7 A7 A3

Applying (3), the minimum variance of the estimate of the
unknown phase parameters is obtained

202
> -
Var(‘)Dl) = NA%; (14)
202 1 1
var(Qpea) > N (A% + A%) ) (15)

The derived result for ¢; corresponds to the bound in
literature for a single tone, beside a factor of two [16]. This
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factor occurs as we evaluate real valued signal, where in
literature a complex model was chosen. Moreover, the bound
for the phase difference equals the sum of the variance, given
that each frequency is estimated independently. Therefore, in
the asymptotic regimen case for which the lower bound is
attained by an estimator, the estimation of each signal part is
statistically independent.

B. ADDITIVE SIGNAL MODEL WITH MSK SIGNAL

In our problem of interest, the additive signal previously
described is found in combination with an MSK signal that
encodes the DGNSS correction data. In a time-discrete do-
main, an MSK modulated bit sequence b, can be written as

. Tty _
smsk (tn) = sin(we ty, + bg[n] == + Pk,

5T (16)

where w, is the circular frequency of the modulated signal,
T is the bit duration, by [n] is the bit sequence and @y, is the
memory of the MSK [20]. We interpret bi[n] as a sampled
vector, that repeats minus ones or ones for a bit duration 7T'.
This leads to an overall vector length of N. The vector ¢y, is
handled in a similar way, as we satisfy again that the vector
has the length N. Furthermore, we assume that w, and 7" are
known in advance.

We include the discrete modulated MSK signal in our
existing signal model (5), which leads to

ssignal(tnv (P) =4 Sin(wl tn + (Pl)
. tn,
+ Acsin(we t, + by [n]% + 1+ o)
(17)
—+ A2 SiIl((UQ tn + 1+ @beat)a

where A, is the amplitude of the modulated signal part.
Moreover, the phase difference between signals with fre-
quency wi and w, can be described as part of . In this case,
the vector of parameters is extended to

Ssignal (tn7 ‘-P) with

80: [5017SOIWSobeatvbk[n]7A17ACaA2]T' (18)

In order to derive the bound accordingly, the partial deriva-
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tives are as follows

8351gnal (tru ‘P)

Fon = A cos(wy t, + 1) (19)
+ A cos(wg t, + bi[n ] 2T =+ o1+ o)
+ Aq COS(WQ t, + o1+ @beal)
s ignal (€ )
sgglé:@ = A, cos(wg ty + br[n ]2T + o1+ @),
(20)
a signa tna
M = As cos(wa ty + ©1 + Preat), (21)
aQDbeat
aSSignal(tna 90) Tty
Zosignal\Pny F) 4 T n
AL C2Tcos(wktn+bk[ ]2T+¢1 + ©k),
(22)
8 signe tna .
%1(‘0) =sin(wy t, + 1), (23)
855i al(ty, .
% = sin(we ty, + bk [n }ﬁ + o1+ ), (24)
OSsional (tn, .
Ossgnat(t @) _ oot + 01 + Oreat). 25)
0A,

For calculating the FIM for this signal model, let us resort
to assumption (11) again and extend it for the modulated
signal, such that

Zcoswt +bk[] +<,01+90k) 0.

n=0
(26)

Assumption (26) shall hold valid for certain bit patterns,
provided that the memory of the MSK is zero at each second,
and we sum up an integer number of wavelengths of w..
Moreover, we need to assume

13/t
Stinear = N HEZ:O <4T) @7
cos(w ty + bk[ ]ﬁ + oK — @beat) ~ 0,
and
N-1 2
1 mt
SsQuared = a7 <n) (28)
N o 2T
cos(wty, + bi[n ] =~ 4 o1+ ¢@p) &0,

2T

with w any integer frequency, to obtain a closed form for the
CRB.

In order to solve the sum over the derivations, we need to
substitute t,, = fsﬁ, - and T = i\:;“le Here, fsample is the
sample rate of the observation and an is the bit duration in
number of samples.

The resulting FIM calculated under the previous assump-

tions leads to
0423
I3CE3 ’

N <J4w4

— 29
2 02 01—13 ( )

Jsignal (QO) =

with I3, the unit matrix of size 3 and 04,3 the null matrix of
size 4 x 3. The Jy,4 is given by (31). The inverse of the FIM
in the MSK case can be found as

04z3>

I3/’

2 2 -1
J— ( ) — L (J4ac4 30)
with J 4; 4 defined in (32). We evaluate the diagonal elements

ngndl N 03I4

of J51gnal for the phase bounds and obtain
var(p1) > ]3";, (33)
i) > 2R AN B A) g
) 2 22 (4 ). (35)

The variances of the phases 1 and @pey are the same as
for the additive model. This is also justified as in (31) there
is no correlation between the modulation and the single tones
[21]. It can be concluded that assuming equations (26), (27)
and (28), the variance of the phase estimates remains equal,
regardless of whether the bit sequence by, is known.

Nonetheless, it has been shown that the sinusoidal signal
and the MSK modulation interfere with each other, and that
the influence can be mitigated if the bit sequence is known
a priori [21]. The problem is that the assumption in (26),
(27) and (28) is only an approximation, valid only if the bits
are evenly distributed. Otherwise, we would be adding over
an uncompleted wave, resulting in a large deviation from the
assumption. In reality, the data streams do not follow such
restrictions. In that case, the element Js4 in (31) is calculated
according to (4) by

N-—1
1 Ay ATt
Ju=a 2 {4T (36)
(bk[n} o7 T 201 T Phear + Pk + wa by + o n)
pAzAemtn ™ o ot
AT k oT — Pbeat Pk Wo p w(‘ n

for non-equally distributed bits. The error introduced in rela-
tion to assumption (27) depends on the bit pattern observed.
Moreover, (28) has no influence on the interference terms, as
it only appears in J44. Taken into consideration, the resulting
bound would be invalid for the estimation of the bit pattern.

To find an optimized bit pattern, one may resort to (26)
and (27). By assuming an uneven amount of 1 and -1 for
the MSK bits, a phase shift is observed. In that case, the
sum is not performed over an integer wave number, and the
associated phase error could be large. However, when an
equal number of 1s and -1s are regarded, the phase estimate
would result unbiased. For this case, another source of error
becomes recognizable, since a bit change leads to a mismatch
in the sum at the change of the bit, and yields a small
error. Such considerations will be evaluated during Section
IV, where different alternating bit patterns are studied to
minimize estimation errors.

VOLUME 4, 2016
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2 2 2 2 T AZ(N—1)
AT + A7 + A3 A3 TiNe
AZ(N-1)
A2 0 ANV
Jizs = S 4 N (3D
2 2
T AZ2(N-1) m A% (N-1) 0 72 A2 (N-1)(2N-1)
4 Npit 4 Nypip 24 N2,
1 1 1
a7 a7 a7 0
1 4AIN+AZN-—2A47442 1 _ 12Ng
-1 A2 AT A2 N+A2 A2 A2 7w AZ N+m A2
Jips = 1 ‘ A2+ A3 0 (32)
A2 Az AT A2
0 12 Nb,l 0 48 N2,
_TrA2N+7'rAg TrzAgNz—T(2Ag

To motivate (26) and (27), we evaluate the expressions for
the case of the transmitter station in Zeven. Therefore, we
use a bit pattern with four equal bits that are repeated with
alternating signs. We obtain the values Sg,;, = —7.90- 1016
and Sjipear = 7.85 - 1072, for a frequency of w = 27 225 Hz,
a bit rate of 7' = 100bit/s and N = 10° samples. So even
with a linear growing factor, the sum stays small compared
to the other values in matrix (31).

One may conclude that, for calculating the lower bound
with an unknown bit sequence, assumptions (26) and (27) can
be considered as holding true. Although the obtained bounds
for the phase estimation prove to be valid, no estimator would
ever reach this bound in reality if the bit pattern estimation is
disregarded.

C. PHASE DIFFERENCE IN A DYNAMIC SCENARIO

So far, only the lower bound for the case where the phase
offset remains constant has been considered, which is legiti-
mate for static transmitter and receiver ends during the sam-
pling time. Hereinafter, the additive model is extended for
a dynamic case, with a constant unknown radial velocity v,
normalized to the speed of light c. Thus, the time-dependent
phase offset is defined as

v
Pvelocity = Wi tn E 37
The resulting signal model is as follows

sdynamic(na (P) Al Sln(wl tn + wy t + 501) (38)

+ Ag sin(wa by, + wo tn ; + 01 + Poear)

It is now important to notice that the phase offsets ¢; and
hear describe the phase offset at start of the observation. The
phase offset change is described with the terms w, ¢,, © and

wo t, 2. The resulting parameter vector is
C

© = [©1, Poear, v, A1, Az, ] T (39)
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The partial derivatives result

6denamic(tn7 ‘P) - v
8—<pl = Aj cos (tn w1 (E+1) + gal) (40)

v
+ A2 Ccos (tn w2 (E—’_l) + 1 + SObeat) 5

asdynamic (tn ) 50)

= A, cos (tn (w1 v + wo ¢ + wo)
c c

8S0beat
+ p1 + LPbeat) 5 4D
O3dynamic (tn, tn
Sdy (tn, ) = A w1 cos (tn w1 (E +1)+ 901)
ov ¢
tﬂ
YA, w2 42)
’U
COS( C+1 —|—Q01+§0bedt)v
a*5dyndm1c n»‘p U
Bsaynamic (tn; P) _ 1) ) 43
(3'141 =sin ( C et T )
Js namic\‘n U
dy(?—‘f’ ( 2 (- +1) +<p1+s@beat)-
(44)

Again, we are interested in the sum over the tones with
angular frequency w, by interpreting % as a Doppler fre-
quency. For an integer number of % we can assume

chos(tnw—i-(%—&-l)—i-ga) ~ 0. (45)

As the shifted frequency is an integer frequency, (45) can be
addressed as in (27). In a practical scenario, this assumption
can only be hold true considering an unrealistic velocity,
where the observation time is defined in such a way that the
sum is obtained over complete wavelengths. Under such an
assumption, the FIM can be calculated as

N (Jss Os,
Jagnamic () = ( des T 2>. (46)

202 \ 02,3 Iy

As the lower bounds are now dependent on N, w; and we
the inverse FIM is quite complicated and beyond the scope
of this paper. However, if we consider v as known, we can
erase the third row and the third column of the FIM (46). As
a result, we obtain an FIM that equals (13) and receive the
same resulting bounds as in (15).
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A2 + A2
S35 = A2
(N—l)(A% UJ1+A§ UJ2)

A2 wa(N—-1)

(N—l)(A% w1+Ag UJ2)

2
A2 wa(N—-1
2 2§ ) 47)
(N-1)(2 N—1)(A] w1+A3 w2)

2

D. GENERALIZED BOUND

We have shown that the signal models (17) and (38) lead to
the same bound for the phase as the simple additive approach
(5), under the assumptions of equal bit distribution or known
velocity.

Some interesting modifications for the bound would ex-
press the number of samples N = Typs foample With T the
observation time and fsampie the sampling rate. Furthermore,
using the definition of signal-to-noise ratio SNR = A2 /o2,
the general CRB form for the phase estimation for a beat
signal is given by

2
Tobs fsample S1\IRA1 ’

var(p1) > (48)

2 1 1

V) 2 e (SNRA1 - SNRAZ) @
It is well known that the variance of an estimation scales with
ﬁ where b is the bandwidth evaluated. We see the same
relation in (48), when we interpret fampic as bandwidth with
respect to the Nyquist—Shannon theorem. Therefore, we only
reach this bound with our estimator when we evaluate the
whole bandwidth and not only a portion of it. Moreover, with
a variation of the sample rate, the total energy of the discrete
sample signal changes and so does the signal-to-noise ratio
consequently.

IV. SIMULATION

To verify the theoretical results presented above, we set up
a simulation of the signal within our Python development
environment. We want to show when the estimations of the
single tones become statistically independent, for which

var(pr) + var(pz) = var(Yoeat) (50)

must be satisfied. Here, ¢ is the phase estimate of the
second single tone.

We generate signals according to our signal models (5)
and (17). The frequencies are chosen to w, = 27w f., f. =
303500 Hz; and wy,we = 27(f. & 225 Hz) which are the
realistic frequencies of the DGNSS transmitter in Zeven.
The simulated amplitudes are 4; = 0.001, A, = 0.002
and A. = 0.004. The bit sequence b, and sample rate are
varied to show their influence. Moreover, we use additive
white Gaussian noise for the noise floor, white the same
variance o2 for both sample rates. Each simulation consists
of a 3000 s long data set, which estimates the phase offsets
of the lower frequency tone and o of the higher frequency
tone with a fast Fourier transform for an observation time
of 1s. This corresponds to a maximum likelihood estimation
[22]. Here, the bandwidth of the estimator is independent of

6

6

TABLE 1. Variance in rad? of the simulation results for the additive signal
model.

Sample

rate P1 ©2 Pbeat )
IMS/s | 461-107% | 1.13-10=% | 6.01-10"% | 5.74-10F
5MS/s | 0.89-10"% | 0.22-107% | 1.11-107°% | 1.11-10°°F

the sample rate. The phase offset of the beat frequency is
obtained as the difference between the phase ¢ and s.

A. ADDITIVE SIGNAL MODEL

The simulations with the additive model were conducted with
1 MS/s and 5 MS/s. We expected that the variance of the noise
would scale with the factor of 5, but we simulate a constant
o2. Therefore, only the amplitude scales and the variance
change by a factor of 1/5.

Moreover, the variance of the phase difference should be
the addition of the variance of the two sinusoids as shown
in Section 3. In Table 1, the results of the simulation are
presented. The first columns indicate the used sample rate
and the following two give the variance of the estimation
of ; and ,, respectively. The column @pe, expresses the
case that we calculate the phase difference and subsequently
calculate the variance. The last column is the addition of the
second and third column.

All values scale with factor 5 as expected, and we see
just a minor difference between the last two columns, as
predicted by the bound for this model. In this simulation, the
estimations are therefore statistically independent.

B. ADDITIVE SIGNAL MODEL WITH MSK SIGNAL

For the signal model (17) including the modulation, we
simulate a signal with 1 MS/s and 5 MS/s sample rate at a
bit rate of 100 bit/s. Four different bit sequences were used:
b1 repeats the sequences [-1,1], bo alternates [-1,-1,1,1] and
b alternates the sequence [-1,-1,-1,-1,1,1,1,1]. For b; to b3,
the resulting sequences contain an even number of 1s and
-1s. Thus, the energy introduced by the MSK modulation
is reduced in the evaluated bandwidth. The sequence by is
generated based on a uniformly distributed random sequence,
with an uneven number of -1, 1 bits. The energy introduced
by the modulation needs to be considered. However, the vari-
ance should scale with /5 as the noise energy is distributed
over a larger frequency space.

Fig. 2(a) shows the variance in rad’ of the different bit
sequences b for 1 MS/s sample rate as bar plot. The blue bar
represents the variance for ¢, at frequency ws; on top of this,
the orange bar marks the variance for ¢, at frequency wo. By
doing so, the sum of the results is comparable to the green

VOLUME 4, 2016
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FIGURE 2. Bar plot of simulation results for the signal model with MSK for

1 MS/s (a) and 5MS/s (b). The optimized bit sequence b4, b2 and bs, show
that the estimates of the continuous wave are statistically independent. This is
not the case for the random bit sequence by4.

bar, which shows the result of the variance when we calculate
the beat frequency out of the estimates. Inside of each bar,
the numerical value is shown. Fig. 2 (b) shows the results for
5MS/s sampling rate in the same way as in Fig. 2 (a). Here,
the numeric value for ¢, is set on top of the bar.

We can see that the variance obtained with bit sequences
b1, by and b3 scales with the sample rate as expected with
factor 5. Moreover, the variance of the Beat frequencies
equals roughly the sum of the variance for the estimated
two different tones as for the additive model. The differences
in the resulting mismatch at the sum over the MSK signal
has no significant influence. For the random distribution,
where we have to consider the MSK energy, the variance
scales with /5, as expected by summing up the power
density function of the MSK. Moreover, the estimates of the
sinusoids are no longer statistically independent, as we see
the sum of the variance now differs from the variance of the
beat frequencies’ offset. Furthermore, the resulting variance
is significantly higher than for the bit sequences with an equal
bit number.

V. MEASUREMENTS

A measurement of the entire R-Mode signal with two sinu-
soids and an MSK signal component was conducted with
the Software Defined Radio (SDR) based R-Mode receiver
platform shown in Fig. 3, which is a development of the
German Aerospace Center (DLR) [21].
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FIGURE 3. Block diagram of the DLR receiver design.

A. RECEIVER DESCRIPTION

The analog front-end uses the bandpass filter between
285kHz and 325kHz as antialiasing filter and to suppress
noise. The filter consists of two 8-pole Bessel filters installed
together with a power supply in a housing.

The SDR following the filter combines parts of the analog
front end with the digital front end. In our case, we use
the Ettus N210 SDR, which allows us to change the analog
front-end part through the use of a daughterboard, thereby
covering a huge band of use cases and a wide frequency
range. In the digital part after sampling, the SDR performs
some beneficial filtering. The so processed data are sent to a
personal computer via Ethernet.

Considering the low number of R-Mode transmitters and
for the sake of simplicity, an external timing source is added.
If more transmitters are available, the time is estimated
together with the position of the receiver. However, the
described setup uses a GPS-stabilized rubidium standard,
which outputs a one Pulse Per Second (PPS) and a 10 MHz
reference signal. Both signals are necessary for delivering
accurate measurements with the SDR, as the PPS signal syn-
chronizes the full second and the 10 MHz reference increases
the phase accuracy.

B. MEASUREMENT CAMPAIGN
To verify the obtained results in a real-world scenario, we
conducted a measurement campaign in February 2020 in
the area of Hollenstede, Germany. The receiver was placed
at a distance of 30km from the transmitter station Zeven,
Germany. The received spectrum is shown in Fig. 4. We
clearly identified the modulated signal and the continuous
waves. Due to regulations, we were not able to transmit
optimized bit sequences. However, we see that our spectrum
obtained from simulation, presented in Fig. 1, presents a good
match to the measured spectrum.

Table 2 shows the variance of measured phase for an ob-
servation length of T, = 1s. Clearly visible, the magnitude
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FIGURE 4. Spectra of real measurement from the station Zeven, for sample
rate 1 Ms/s. CW, CW> point to the upper and lower tone, with the MSK
pointing to the signal due to modulation.

TABLE 2. Variance of the measured results in rad>

Sample

rate P1 P2 Pbeat p1+ e
IMS/s | 459-107° | 4.4-107° | 5.23-107° [ 899 -10~°
5SMS/s | 3.86-10~° | 3.89-10~° | 4.57-10"° [ 7.75-10~°

of the variance is in the same range as for our simulation. Due
to the dependence of o2 on the sample rate, the result does
not scale with the sample rate as described earlier.

As expected from section III, the estimation of each con-
tinuous wave is not statistically independent anymore, as we
see in the columns @pey and ¢ + 5. It is important to notice
that we have a common clock error on our estimations, which
leads to reduced performance on the estimation of (¢ and ¢,

VI. CONCLUSION
The paper presented three signal models for the MF R-Mode
and show the Cramér-Rao lower bound to estimate the phase
offset for a single and the beat wave for each model. At
the beginning, a simple additive model of two sinusoids was
described, which showed that the lower bound depends on
the variance of noise, amplitude of the tone and number
of samples observed. The bound was obtained under the
assumption that each tone has an integer number in Hertz
as a frequency and an observation time of full seconds. We
observed that for the beat frequency, the lower bound equals
the sum of variance for two tones, therefore in the optimum
case, the single-tone estimates are statistically independent.

The second model extends the additive signal with the
addition of an MSK modulated one. We observe that in
general, the estimates for the beat phase are no longer inde-
pendent. However, we have found bit patterns that approach
the optimal performance, which equals the bound of the
model before.

When we extended the first model with a changing phase
due to the velocity of the receiver, we observed a more

8

complex bound, whose detailed presentation is beyond the
scope of this paper. However, when we assume that we
know the frequency shift, which is also an integer value, we
derive the same bounds as before. It is therefore possible to
improve the estimates through a sensor fusion approach, as
the velocity is a state in PNT systems [3].

Overall, we could generalize the lower bound for the single
and beat tone in (48), and show that the variance scales
inversely to observation time and bandwidth of the estimator.
We verified our theoretical results with simulations, which
give us a good match. Moreover, we conducted real measure-
ments, which are comparable to the presented simulation.

In general, the Cramér-Rao bound of a single tone is valid
within the system. However, due to the modulation, this
bound will never be reached in reality. For long observation
times, the influence becomes smaller, but in order to obtain
the results in near real time, they were limited in observation
length. Therefore the effect cannot be neglected. However,
we presented an optimized bit pattern that lowered this
influence. In the future, the bound of the beat phase can
be used to improve the existing coverage predictions, with
respect to the range ambiguity [13]. Moreover, as we found
a generalized lower bound including MSK, it can be used to
improve the future realization of the estimator and to mitigate
the influence of the modulation. The optimized bit pattern
can also be used to design an optimized navigation message,
where we design the waveform to mitigate the correlation
between the MSK modulated signal and the CWs.
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