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ABSTRACT In this article, we present novel solutions to estimate the ego-motion of a multi-camera system
with a known vertical direction (e.g., from the inertial measurement unit). By assuming small camera
motion between successive video frames, we demonstrate that rotation and translation estimation can be
decoupled. This makes our methods require fewer correspondences to estimate the ego-motion and have a
good accuracy. Accordingly, we estimate the ego-motion with two steps. First, we propose a 1-point method
to estimate rotation with only a single correspondence which produces up to two solutions. Then, we adopt
a 3-point linear method and a 2-point sampling method to solve translation which produce a single solution.
We compared our algorithms with state-of-the-art algorithms on synthetic and real datasets. The experiments
demonstrate that our algorithms are accurate and efficient in road driving scenarios. We also demonstrate
that our proposed methods can efficiently find an optimal inlier set using histogram voting or exhaustive
search instead of RANSAC.

INDEX TERMS Generalized epipolar constraint, multi-camera system, relative pose estimation.

I. INTRODUCTION
The relative pose estimation problem is classical and fun-
damental in computer vision applications, such as robotics,
automotive industry, augmented reality, and visual simul-
taneous localization and mapping. This problem refers to
computing the pose of the current frame with respect to the
coordinate system related to the previous frame [1]. Different
camera configurations are used to solve the problem, such
as monocular, stereo, and multi-camera system. Monocular
attracted wide attention from researchers and a large number
of algorithms have arisen in prior work. The classical and
basic solvers are the normalized 8-point algorithm [2] and the
5-point minimal algorithm [3].

However, recently, the multi-camera system has been
extensively used for many emerging applications, such as
autonomous driving with drones and vehicles because it
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FIGURE 1. Example of a multi-camera system configuration mounted on
a car. Given the known vertical direction, we estimate the relative
rotation using the far features, and estimate the relative translation using
the near features.

covers a potentially large field-of-view [4], [5]. The larger
the field-of-view (FoV), the more information we obtain
around the environment. This allows us to detect and track
objects robustly, particularly in environments with little tex-
ture. Our work focuses on the relative pose estimation for a
multi-camera system. Amulti-camera system can bemodeled
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FIGURE 2. The ego-motion estimation problem of camera systems,
(a) central camera system; (b) generalized multi-camera system.

as a generalized camera, which was proposed by [6], [7].
If the light rays passing through the three-dimensional (3D)
world points and image points intersect at a single center
of projection, the camera system is modeled as a central
perspective projectionmodel; otherwise, the camera system is
modeled as a generalized cameramodel; that is, the difference
between the central perspective projection model and gener-
alized camera model is that the latter does not have a single
center of projection, as shown in Fig. 2. The ego-motion of the
multi-camera system can be obtained linearly using 17 points
[6]–[8] and minimally using six points [9], [10].

To deal with the outlier matches, the ego-motion estima-
tion algorithms are applied in a robust framework, such as
random sample consensus (RANSAC) [11]. To reduce the
computation cost and improve the robustness of RANSAC,
reducing the number of points required for estimating a
motion model is an efficient strategy [12]. Thus, it is neces-
sary and important to study minimal solvers for ego-motion
estimation. Researchers use additional information to reduce
the number of points required. One approach is to use some
motion constraints to simplify the problem of ego-motion
estimation. For example, planar motion [13], [14] or Acker-
mann steering motion [15], [16] in road driving scenarios.
Another approach is to obtain additional information from
other sensors, for example, the inertial measurement unit
(IMU). At the present time, as the IMU has become cheaper
and prevalent, it is increasingly often fixed on multi-camera
systems. As the accuracy of the yaw angle from the IMU
sensor is not as good as those of the roll and pitch angles,
we use the roll and pitch angles to determine the vertical
direction, which reduces the degrees of freedom (DOFs) in
the relative pose by two. Thus, this makes the ego-motion
estimation process simpler and faster. This ideal has been
applied in the monocular camera system [13], [17]–[19] and
the multi-camera system [20]–[22].

Our work aims at solving the ego-motion estimation prob-
lem for a multi-camera system when the vertical direction in
the multi-camera coordinate frame is provided by the IMU
[13], [20]. The knowledge of the vertical direction can reduce
the DOFs in the relative pose by two, and then the unknown
translation and unknown yaw angle are left for us to solve.
Additionally, we use the fact that for points that are far away,
the parallax-shift (induced by translation) between two views
is hardly noticeable [13]. Hence, we classify all points into
two sets: ‘‘far points,’’ which are far away, and ‘‘near points,’’
which are nearby in the scene. In terms of the far points, the
translation between consecutive frames is negligible while
the ego-motion is small. Thus, we can decouple rotation and
translation estimation if there are some far points in the scene.
Accordingly, we estimate the ego-motion with two steps.
First, we propose a 1-point algorithm to estimate the rotation.
This allows us to solve the rotation of the multi-camera
rig with a minimal set of one correspondence. To the end
of accurate and robust results, 1-point algorithm is finally
embedded into histogram voting and RANSAC loop. Then,
we propose two methods to estimate translation, a linear
method using three near points and a sampling method using
two near points.

The main contributions of this article are as follows:

• Our work decouples rotation and translation estimation
formulti-camera systems.We estimate rotation using the
far points, and then estimate translation using the near
points.

• We propose a 1-point method to estimate rotation for
multi-camera systems on the condition of knowing the
vertical direction. The method requires only a single
point and produces up to two candidate solutions, thus
improving the efficiency of our method in RANSAC.

• We propose two methods to estimate translation
for multi-camera systems, 3-point linear method and
2-point sampling method, which have high accuracy.

The remainder of this article is organized as follows: in
Section 2, we present an overview of related work. We briefly
establish notation and introduce the generalized epipolar con-
straint (GEC) in Section 3. In Section 4, we describe our
methods in detail. We conduct experiments on simulation and
real datasets in Section 5, where our methods are compared
with state-of-the-art methods.

II. RELATED WORK
Pless et al. [6] formulated the GEC, which is a mech-
anism that makes a net of cameras a single camera.
The linear solution of ego-motion for generalized cam-
eras requires 17 corresponding image rays because there
are 18 unknowns in the constraint. Similarly, Sturm et al. [7]
provided epipolar geometry for generalized cameras and
suggested 17 correspondences to solve the relative motion
linearly. The above methods have their merits, but do not
work on real data. Li et al. [8] found that the 17-point
approach is not applicable to certain special generalized
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camera configurations, hence, provided an extension to
17-point approach and proposed linear 16-point and
14-point approaches in certain special configurations such as
multi-camera systems where the camera centers are aligned.

A minimal solution was first proposed by Stewénius et al.
[9]. The algorithm requires only six correspondence pairs to
determine relative motion using the Gröbner basis technique
and provides up to 64 solutions. However, it is unsuitable
for a real-time system because of the high computational
complexity of the solver. Kneip et al. proposed a nonlinear
optimization algorithm over relative rotation only based on an
efficient eigenvalueminimization strategy [23], [24]. A single
solution is sought by a closed-form function using seven or
more correspondences and is susceptible to obtaining a local
optimal result. Ventura et al. [10] proposed a solver that uses
the first-order approximation to the relative pose. The approx-
imation motion model is appropriate under the assumption of
small motion between two images, so it is applied in con-
tinuous motion. Although the model simplifies the relative
pose problem, the method yields up to 20 solutions, so it is
unsuitable for inclusion in a RANSAC scheme. Moreover,
to solve a 20th-degree polynomialmakes themethod sensitive
to noise.

To reduce the DOFs of relative motion, researchers have
exploited extra information and/or assumptions from motion
models. Consequently, fewer correspondences are required to
solve the problem. By constraining the camera motion to the
Ackermann motion model, Lee et al. [15] proposed a 2-point
method that yields up to six candidate solutions. However, the
model applies the case in which a car undergoes on a planar,
which is a very strict assumption in practice. For a practical
application, Lee et al. [20] used the information of the ver-
tical direction to reduce the DOFs of relative motion by two
and then proposed minimal 4-point and linear 8-point algo-
rithms. The minimal 4-point algorithm provides up to eight
possible solutions via the hidden variable resultant method
and the linear 8-point algorithm yields up to one solution
using the standard SVD method. Sweeney et al. [21] derived
relative motion problems as quadratic eigenvalue problems
with a known axis of rotation. Similar to the algorithm
of Lee et al. [20], it provides an eight-degree polynomial.
Unlike the algorithm of Lee et al. [20], however, it yields up
to six solutions using four correspondences. Liu et al. [22]
used a first-order approximation motion model and an IMU
sensor to determine the unknown yaw angle from the roots of
a four-degree polynomial.

III. GENERALIZED EPIPOLAR CONSTRAINT
In this section, we introduce the generalized epipolar con-
straint briefly. Amulti-camera rig can be described as a gener-
alized camera that captures a set of light rays [7], [8]. We use
the Plücker vector to express a light ray. The Plücker vector
is composed of a pair of 3-vectors, u and q, which are the
direction vector and moment vector, respectively. We choose
a reference frame V arbitrarily, and then the extrinsic matrix
of the ith camera Ci in V is denoted by [RCi,TCi] and the

intrinsic matrix is denoted byKCi. The Plücker coordinate of
the light ray from the optical center of the camera Ci to the
normalized image point x̃ij = K−1Ci xij is given by

Lij =
[
uTij qTij

]T
=

[
uTij

(
TCi × uij

)T ]T
, (1)

where uij = RCix̃ij is the unit direction of the light ray in
the reference coordinate system. The transformation from
k frame to k + 1 frame is denoted by rotation matrix R
and translation vector t. Suppose

(
Lij,k Lij,k+1

)
is a pair of

Plücker line correspondences in two views. Then the Plücker
coordinate of Lij,k in the k + 1 frame is expressed as

L′ij,k =
[

Ruij,k
Rqij,k + [t]×Ruij,k

]
, (2)

where [t]× is a skew-symmetric matrix made up of translation
vector t. L′ij,k and Lij,k+1 intersect in space if and only if

qTij,k+1
(
Ruij,k

)
+ uTij,k+1

(
Rqij,k + [t]×Ruij,k

)
= 0. (3)

As a result, the generalized epipolar constraint (GEC) can be
written as

LTij,k+1

[
[t]×R R
R 0

]
Lij,k = 0. (4)

IV. METHODS
We solve the ego-motion estimation problem of multi-camera
system using three steps. First, we use the roll and pitch
angle from the IMU sensor to transform the Plücker line
correspondences, thereby aligning the vertical direction of the
multi-camera system. This step reduces the DOFs of rotation
from three to one so that we have a single unknown in rotation
to solve. Second, because the multi-camera system is greater
than or equal to 10 Hz for road vehicle application, a car
cannot run much farther within a 0.1-second time interval
or fewer time interval. It is a reasonable assumption that
the ego-motion between two successive frames is small [10],
[22]. In practice, in the case of small ego-motion, we find
that the change of the near point’s image coordinate contains
rotation and translation information, and the change of the far
point’s image coordinate only contains rotation information.
Accordingly, we propose a 1-point method to estimate the
rotation. Finally, according to the given rotation, we estimate
translation with a 3-point linear method and a 2-point sam-
pling method.

A. ALIGN THE VERTICAL DIRECTION
The vertical direction refers to the direction of gravity, that is,
the ‘‘up’’ direction of the multi-camera system. The knowl-
edge of the vertical direction can be provided by vanishing
points [25] or the IMU measurements. In this study, as the
accuracy of the yaw angle from the IMU sensor is not as good
as those of the roll and pitch angles, we use the roll and pitch
angles from IMU to align the vertical direction.We can obtain
the pitch angle (rotation around the X-axis), roll angle (rota-
tion around the Y-axis), and yaw angle (rotation around the
Z-axis) from the IMU with respect to the reference frame V ,
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where the XY plane is parallel to the ground, and the Z-axis
points down. The rotation matrices from the yaw, pitch, and
roll angles between the two consecutive generalized cam-
era frames are denoted by

(
Ry,Rp,Rr

)
↔

(
R′y,R′p,R′r

)
.

Hence, the relative rotation matrix R is written as

R = RT
r R

T
pR

T
y R
′
yR′pR′r . (5)

Coincidentally, RT
y R
′
y is the relative yaw rotation matrix,

so we denote it by 1Ry. As observed from (5), only a single
unknown 1Ry in the relative rotation remains to be solved.
We substitute (5) into the GEC in (4), and eliminate the
Plücker line and camera indices ij for brevity:

LT
[
[t]×RT

r R
T
p1RyR′pR′r RT

r R
T
p1RyR′pR′r

RT
r R

T
p1RyR′pR′r 0

]
L′ = 0.

(6)

To simplify (6), we first factor out R′pR′r to obtain

LT
[
[t]×RT

r R
T
p1Ry RT

r R
T
p1Ry

RT
r R

T
p1Ry 0

]
L̂′ = 0, (7)

where L̂′ =
[
R′pR′r 0

0 R′pR′r

]
L′. To factor out RT

r R
T
p , t is

denoted by

t = RT
r R

T
p t̂. (8)

Hence, [t]×RT
r R

T
p can be replaced by RT

r R
T
p

[
t̂
]
×

. Then fac-

tor out RT
r R

T
p to obtain

LT
[
RT
r R

T
p 0

0 RT
r R

T
p

][ [
t̂
]
×

1Ry 1Ry

1Ry 0

]
L̂′ = 0. (9)

From (9), we can obtain a simplified GEC:

L̂T
[ [

t̂
]
×

1Ry 1Ry

1Ry 0

]
L̂′ = 0, (10)

where L̂ =
[
RpRr 0
0 RpRr

]
L. Thus, after aligning the verti-

cal direction, we have two unknowns to solve: t̂ and 1Ry.

B. ROTATION ESTIMATION METHODS
We assume that the change of the far point’s image coordinate
is only affected by the relative rotation, that is, the relative
translation is close to zero when we only use the far points
[13]. Therefore, if the Plücker lines are both formed by the
far points, a new GEC can be obtained:

L̂T
[

0 1Ry
1Ry 0

]
L̂′ = 0. (11)

We rewrite 1Ry by applying the tangent half-angle substi-
tution given by cosα =

(
1− q2

)/(
1+ q2

)
and sinα =

(2q)
/(

1+ q2
)
, where α is the relative yaw angle that makes

up 1Ry:

1Ry =
1

1+ q2

 1− q2 −2q 0
2q 1− q2 0
0 0 1+ q2

 . (12)

FIGURE 3. Geometric meaning of the reprojection errors described by
the angle α between the measured Plücker line Lmeas and the
reprojected Plücker line Lrepr .

We substitute the yaw rotation matrix 1Ry into the general-
ized epipolar constraint in (11) to obtain

Aq2 + Bq+ C = 0, (13)

where the coefficients A, B, andC are formed by the elements
of the Plücker line correspondence L̂(l̂1, l̂2, l̂3, l̂4, l̂5, l̂6) ↔
L̂′(l̂ ′1, l̂

′

2, l̂
′

3, l̂
′

4, l̂
′

5, l̂
′

6):
A = l̂3 l̂ ′6 − l̂4 l̂

′

1 − l̂2 l̂
′

5 − l̂5 l̂
′

2 − l̂1 l̂
′

4 + l̂6 l̂
′

3

B = 2l̂2 l̂ ′4 − 2l̂1 l̂ ′5 − 2l̂4 l̂ ′2 + 2l̂5 l̂ ′1
C = l̂1 l̂ ′4 + l̂4 l̂

′

1 + l̂2 l̂
′

5 + l̂5 l̂
′

2 + l̂3 l̂
′

6 + l̂6 l̂
′

3.

(14)

We obtain q by solving (13). A single Plücker line correspon-
dence provides up to two possible solutions for q. We use two
methods to generate an optimal solution in this article 1-point
RANSAC and histogram voting.

1) 1-POINT RANSAC
RANSAC is the standard process for estimating the model
to deal with the outlier matches. RANSAC randomly sam-
ples minimal data sets to generate model hypothesis. Then,
the model hypothesis are tested on the whole data set to
identify and remove outliers. Finally, only inliers are used to
estimate the model. As illustrated in Fig. 3, if the measured
transformation is perfect, the difference between the repro-
jected Plücker line Lrepr and the measured Plücker line Lmeas
is negligible. Hence, we compute the reprojection error as
1 − LTmeasLrepr in this article. It should be noted that we
consider a corresponding point pair as an inlier if the angle α
between Lmeas and Lrepr is lower than the threshold αthreshold
given by arctan

(
t
/
f
)
, where f is the focal length and t is the

threshold of the classical reprojection error in pixels [26].

2) HISTOGRAM VOTING
The possible solutions for q only use a single Plücker
line correspondence; hence, a straightforward approach that
requires no iteration is based on histogram voting method
[16]. The method is more efficient than RANSAC because
the histogram voting method avoids computing the inliers
and outliers for each possible solution. A Plücker line cor-
respondence is used to compute a hypothesis of q. Due to
our assumption that the ego-motion is small, thus leading to
q ∈ (−1, 1). Then we use these hypotheses of q to generate
histogram statistics in discrete bins (e.g., a bin size of 0.01).
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FIGURE 4. An example histogram generated using real data.

According to the number of elements in each container in
the histogram, the center of the bin corresponding to the
maximum number is considered as the best solution for q.
Finally, we substitute q into (12) to obtain the relative yaw
angle matrix. Therefore, we can obtain the relative rotation
according to (5). Fig. 4 shows an example histogram gener-
ated using real data.

C. TRANSLATIOIN ESTIMATION MENTHODS
After estimating rotation, it is easy to perform translation
estimation using near points. According to the generalized
epipolar constraint in (10), after aligning the vertical direc-
tion, we factor out 1Ry to rewrite (10) as:

L̂T
[ [

t̂
]
×

E

E 0

]
L̂′′ = 0, (15)

where L̂′′ =
[
1Ry 0
0 1Ry

]
L̂′.

1) 3-POINT LINEAR METHOD
In this subsection, we present a linear method to solve the
remaining translation parameters. We parameterize L̂′′ as
(l̂ ′′1 , l̂

′′

2 , l̂
′′

3 , l̂
′′

4 , l̂
′′

5 , l̂
′′

6 ) and expand (15) to obtain

Mt̂ = n, (16)

where M =
[
l2l ′′3 − l3l ′′2 −l1l ′′3 + l3l ′′1 l1l ′′2 − l2l ′′1

]
,

n = l4l ′′1+l5l
′′

2+l6l
′′

3+l1l
′′

4+l2l
′′

5+l3l
′′

6 , and t̂ =
[
t̂x t̂y t̂z

]T .
The constraints from the three Plücker line correspondences
can be stacked into a linear equation system. We can solve
the linear equation system to obtain t̂. Then the estimated
translation t is recovered using (8).

2) 2-POINT METHOD USING DISCRETE SAMPLING FOR THE
X-Y TRANSLATION DIRECTION
The 3-point linear method in the previous subsection requires
three Plücker line correspondences. Despite this, in this sub-
section, we adopt a sampling method so that we can reduce
the correspondences required. First, we choose an appropriate
parameter to perform discrete sampling within a suitable
bounded range. Then we search for a global optimality using
an exhaustive search method. Because the direction of the
translation in the x-y plane has the obvious value of the
discrete step bound, we sample the direction in this article.

The direction of the translation can be described as θ and
can be sampled in steps of 1◦ from 0◦ to 360◦. Consequently,
we can rewrite (16) as

[
m1 m2 m3

]
√
t̂2x+t̂2y cos θ√
t̂2x+t̂2y sin θ

t̂z

 = n. (17)

Equation (17) has two unknowns,
√
t̂2x+t̂2y and t̂z, which leads

to a 2-point method for estimating translation. We denote√
t̂2x+t̂2y by r . The constraints from two correspondences can

be stacked into an equation system, which finally leads to{
(m1 cos θ + m2 sin θ )r + m3 t̂z = n
(m′1 cos θ + m′2 sin θ )r + m′3 t̂z = n′.

(18)

For a given angle θ , the two unknowns r and t̂z can be
obtained as:

r =
m′3n− m3n′

(m1 cos θ + m2 sin θ )m′3 − (m′1 cos θ + m′2 sin θ)m3
,

(19)

t̂z =
(m1 cos θ + m2 sin θ )n′ − (m′1 cos θ + m′2 sin θ)n

(m1 cos θ + m2 sin θ )m′3 − (m′1 cos θ + m′2 sin θ)m3
.

(20)

According to the values of r and t̂z, we can recover t̂. Then,
we substitute t̂ into (8) to obtain translation t.

V. EXPERIMENTS
We performed experiments on both synthetic and real scene
data to validate the performance of the proposed methods.
The tests on the synthetic scene were used to demonstrate
the accuracy and robustness of our methods with respect to
pixel noise and IMU noise. The tests on the real scene were
used to demonstrate the feasibility of our solvers in practical
autonomous driving scenarios. We compared the root mean
square errors of the rotation and translation direction with
those of state-of-the-art solvers. The errors were defined as
follows:

ER = arccos((trace(RT
gtRest )− 1)/2), (21)

Et = arccos((tTgt test )/(
∥∥tgt∥∥ ‖test‖)), (22)

where Rgt denotes the ground truth rotation, Rest denotes
the corresponding estimated rotation, tgt denotes the ground
truth translation, test denotes the corresponding estimated
translation. The abbreviations of the solvers for comparison
are as follows:

17pt-Li: linear solver of Li et al. to determine the relative
pose problem of a multi-camera system with 17 correspon-
dences [8].

8pt-Kneip: solver of Kneip et al. to determine the relative
pose of a multi-camera system with an efficient eigenvalue
minimization strategy [24].

6pt-Stewénius: minimal solver of Stewénius et al. to deter-
mine the relative pose of a multi-camera system with the
Gröbner basis technique [9].
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TABLE 1. Average computation time comparison of multi-camera
ego-motion solvers (unit:µs).

4pt-Liu: minimal solver of Liu et al. to determine the
relative pose of a multi-camera system using a first-order
approximation motion model [22].

4pt-Lee: minimal solver of Lee et al. to determine the rela-
tive pose of a multi-camera system using the hidden variable
resultant method [20].

4pt-Our: our minimal solver to determine the relative pose
of a multi-camera system using 1-point RANSAC rotation
estimation method and 3-point linear translation estimation
method.

Histogram voting: our solver to determine the relative
rotation of a multi-camera system using the histogram voting
approach.

Histogram voting+3pt: our solver to determine the rela-
tive translation of a multi-camera system using the 3-point
linear method after solving the relative rotation using the
histogram voting approach.

Histogram voting+2pt: our solver to determine the rel-
ative translation of a multi-camera system by sampling for
the x-y translation direction after solving the relative rotation
using the histogram voting approach.

All codes were implemented in C++ and tested on a
2.81 GHz Intel Core i7 with 16 GB RAM. The implemen-
tations of 17pt-Li, 8pt-Kneip, and 6pt-Stewenius were pro-
vided in the OpenGV library [26]. We used 4pt-Liu publicly
available implementations fromGitHub.We implemented the
solver 4pt-Lee. We tested each solver on 10,000 randomly
generated problems to compute the average computation
times shown in Table 1.

A. SYNTHETIC DATA EXPERIMENTS
In the simulations, the experimental setup was as follows:
we generated two cameras. The baseline of the two cameras
was set to 0.5 m and the focal length was set to 1,000 pixels.
The two cameras had non-overlapping FoVs. For each trial,
we created two sets of 3D points: the far points were ran-
domly distributed in the cube [−10, 10] m × [5, 1000] m ×
[−10, 10] m and the near points were randomly distributed
in the cube [−5, 5] m × [0, 5] m × [−5, 5] m. The two sets
of 3D points each contained 100 points. We projected the 3D
points onto the image plane of the multi-camera system to
obtain the feature points. The motion between consecutive
frames is small in automatic driving; therefore, the relative
rotation angle rotated on each axis was set to a random
angle in the range of [−1◦,1◦] and the translation was set
from 0 to 0.5m randomly in the simulations. These conditions

FIGURE 5. Median rotation (right) and translation (left) errors from 1,000
trials per image noise level with perfect IMU data. (a) and (b): forward
motion, (c) and (d): sideways motion, (e) and (f): random motion.

were chosen to reflect realistic conditions. Each solver was
used within a RANSAC scheme.

1) IMAGE NOISE EXPERIMENT
We conducted experiments to validate how the accuracy of
the image point coordinates affected the relative pose esti-
mated by our solvers. Gaussian noise has been added to the
image point coordinates ranging from 0 to 2 pixels of standard
deviation at an interval of 0.2 pixels, while the IMU data has
been kept perfect. We compared our solvers with four solvers
(4pt-Liu [22], 4pt-Lee [20], 6pt-Stewénius [9], 8pt-Kneip
[24], and 17pt-Li [8]). For each level of image noise, 1,000
random trials were generated with perfect IMU data, and then
we used the median error as a measure of performance to
evaluate the estimated transformation.

Fig. 5 shows the accuracy of rotation and translation
computed using different solvers for three cases: forward
motion, sidewaysmotion, and randommotion. As observed in
Fig. 5(a) and (b), our twomethods were close with each other,
and slightly outperformed the other methods for forward
motion. However, in the case of sideways motion shown in
Fig. 5(c), there was no obvious tendency in terms of the
rotational error using our methods with gradually increasing
image noise. The results show that image noise had less effect
on the accuracy of rotation estimation than sideways motion.
For random motion, it is interesting to see that our methods
were slightly worse in the absence of image noise, while our
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FIGURE 6. Median rotation (right) and translation (left) errors from 1,000
trials per roll angle noise level with image noise 1 pixel standard
deviation. (a) and (b): forward motion, (c) and (d): sideways motion,
(e) and (f): random motion.

methods worked better for gradually increased image noise
levels. It seems that our assumption that far points are only
influenced by rotation led to certain errors. We observe that
results of 8pt- Kneip [24] were poor. It seems that the method
becomes numerically degenerate when the rotation matrix is
close to identity.

2) IMU NOISE EXPERIMENT
We conducted experiments to validate how the accuracy of
IMU affects the relative pose estimated by our solvers as
our solvers rely on IMUmeasurements. Hence, we compared
our solvers with 4pt-Liu [22] and 4pt-Lee [20], which work
with the known vertical direction. Gaussian noise of standard
deviation ranging from 0◦ to 1◦ was added to the IMU while
assuming image noise with a standard deviation of 1 pixel.
Figs. 6 and 7 show the median error of rotation and trans-
lation from 1,000 trials at each level of IMU noise using
our methods compared with 4pt-Liu [22] and 4pt-Lee [20].
The figures demonstrate that our methods were close to each
other in terms of the median error, and outperformed the other
methods at all levels of IMU noise in terms of both rotation
and translation estimation.

B. REAL-WORLD DATASET EXPERIMENTS
To determine the performance of our algorithms in a
practical driving scene, we compared our methods with

FIGURE 7. Median rotation (right) and translation (left) errors from 1,000
trials per pitch angle noise level with image noise 1 pixel standard
deviation. (a) and (b): forward motion, (c) and (d): sideways motion,
(e) and (f): random motion.

state-of-the-art methods on the KITTI autonomous driving
benchmarking dataset [27].We performed experiments on the
first 11 sequences (00–10) in the visual odometry benchmark
dataset, which provide the ground truth. These sequences pro-
vide left and right images, and contain approximately 46,000
images. In our experiments, we extracted feature matches
from each camera individually using the SURF algorithm and
we did not use any cross-camera matches. In the following
sections we conducted 3 sets of experiments with the KITTI
dataset. In the first experiment, we tested the effectiveness of
our strategy which removes a big part of feature points for the
rotation estimation. In the second experiment, we tested the
performance of our algorithms compared to state-of-the-art
methods. In the third experiment, we tested the quality of the
inlier detection in comparison to state-of-the-art methods.

1) SELECTION OF THE INLIER USED TO ESTIMATE
ROTATION ACCORDING TO THE Y-COORDINATE
In the study, we only use the far points to estimate rota-
tion, thus we wish to preemptively discard those near points
as early as possible. In practice, we observed that the
y-coordinate of image coordinate of point faraway changes
little in consecutive frames after aligning the vertical direc-
tion. As shown in Fig. 8, if the camera moves forward with a
distance of d , the change of the y-coordinate of image point
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FIGURE 8. The schematic of the threshold of separation of far and near
points.

can be computed as:

1y = f (
Y

D− d
−
Y
D
), (23)

where f is the focal length, D is the distance from a 3D
point P to the camera, Y is the distance from the 3D point
to the optical axis. As observed in (23), the change of the
y-coordinate of image point is approximate to 0 while the
distance from a point P to the camera D is far enough.
Consequently, for far points, the parallax-shift (induced by
translation) between two views is hardly noticeable.The yaw
rotation matrix influences the change of the x-coordinate of
the image point, and does not influence the change of the
y-coordinate of the image point. It is exactly based on this
we can decouple the rotation and translation.

We separate far from near points in two steps. First,
with the knowledge of the vertical direction, we pre-rotate
the image point to make the camera plane vertical to the
ground plane. Then, these points are partitioned to far points
and near points according to whether the change of the
y-coordinate with respect to the image coordinate system
is less than 1 pixel. This threshold value was given on the
based of simulation experiments. Fig. 9 shows an example
of the separation of far and near points using this criterion,
where the green points denote far points, and red points
denote near points. As observed in Fig. 9, the far points
were well separated from the near points using y-coordinate
of image points. Table 2 shows the number of far points in
each sequence based on the simple criterion. NumberPoints
refers to the average number of points extracted using SURF
from the right and left images in each sequence. NumberFar
refers to the average number of far points chosen using the
y-coordinate. Ratio = NumberFar/NumberPoints refers to
the average percentage of far points. As shown in Table 2,
the criterion can reject outliers with a percentage of more
than 50% for rotation estimation. This allows to significantly
remove a big part of feature points for the rotation estimation,
thus making it more efficient.

2) COMPARISON OF ROTATION AND TRANSLATION
ESTIMATION WITH THE GROUND TRUTH
We compared our algorithms with 17pt-Li [8], 8pt-Kneip
[24], 6pt-Stewénius [9], 4pt-Liu [22], and 4pt-Lee [20].
To compare our algorithms fairly, we did not apply any

FIGURE 9. The separation of far (green) and near (red) points using the
change of y-coordinate of image point. (a) and (b) are consecutive frames
from the KITTI visual odometry dataset seq-01.

TABLE 2. Effect of the y-coordinate test. Outliers with a percentage of
more than 50% are rejected for rotation estimation.

nonlinear refinement, bundle adjustment, or loop closure.
This means that we only computed the frame-to-frame
visual odometry component. We ran all algorithms within
a RANSAC framework. For all sequences, the number of
RANSAC iterations was fixed at 100 and the inlier threshold
was set to 1 pixel in the experiments.

We computed the median error of the rotation and trans-
lation estimates with respect to the ground truth. We report
the accuracy results of the rotation and translation estimation
on KITTI odometry sequences in Table 3 and Table 4. From
the tables, we observe that the performances of our methods
were comparable with or better than that of the othermethods,
particularly for translation estimation. The higher accuracy
of the translation estimation was caused by the strategy that
only used the near points to estimate the translation. Accord-
ing to Table 3, histogram voting was the best approach for
rotation estimation on most sequences. Although, it should
be noted that 4pt-Liu [22] and 4pt-Lee [20] were close to
each other and 8pt-Kneip [24] was slightly poor, which coin-
cides with the simulation experiments on image pixel noise.
Table 4 shows that our three methods, 4pt-Our, Histogram
voting+3pt, and Histogram voting+2pt, were all better than
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TABLE 3. Accuracy results of rotation estimation on KITTI odometry sequences 00–10 (unit: degrees). The median for each error measure is given.

TABLE 4. Accuracy results of translation estimation on KITTI odometry sequences 00–10 (unit: degrees). The median for each error measure is given.

FIGURE 10. Empirical cumulative error distributions for all frames in
KITTI VO-seq-00: (a) rotation error, (b) translation error.

TABLE 5. Average RANSAC runtime comparison of our method with
state-of-the-art multi-camera ego-motion methods over KITTI sequences
(unit:s).

the other methods in terms of translation estimation; in partic-
ular, the accuracy of histogram voting+2pt was the highest.

The empirical cumulative error distributions of rota-
tion and translation for KITTI VO-seq-00 are provided in
Fig. 10. The proposed solvers (Histogram voting, Histogram
voting+3pt, and Histogram voting+2pt) provided signifi-
cantly better estimations than the state-of-the-art methods.
4pt-Our was in accordance with 4pt-Liu [22] and 4pt-Lee
[20]. Average RANSAC runtime comparison of our method

FIGURE 11. Inlier set detection of the first two frames from KITTI seq-00.
Green points represent inliers. Left: frames of the left camera. Right:
frames of the right camera. (a) Ground truth inlier set (749 matches). Top
row: previous frames. Bottom row: current frames. (b) Inlier detection
results for Histogram voting+2pt method (705 matches). Top row:
previous frame. Bottom row: current frame.

with state-of-the-art multi-camera ego-motion methods over
KITTI sequences is shown in Table 5. The proposed method
was more efficiently used within RANSAC for robust esti-
mation in comparison to state-of-the-art methods with good
accuracy of the ego-motion estimation.

The scenarios of KITTI odometry dataset are diverse, such
as light changing or less of environment texture. It is interest-
ing to see that our methods had outstanding performance on
KITTI odometry datasets. Consequently, the real experiments
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TABLE 6. The mean of inlier recovery rate on KITTI odometry sequences 00-10.

demonstrate that a road driving scenario does fit our method
very well, no matter light changing or less of environment
texture.

3) COMPARISON OF THE INLIER RECOVERY RATE
Another extremely helpful application of our methods is
selecting a correct inlier set required for the next step
(e.g., accurate motion estimation and non-linear optimiza-
tion). Therefore, we conducted an experiment that tested how
many of the real inliers (calculated from the ground truth)
can be found using our methods. Table 6 shows the mean of
the inlier recovery rate on KITTI odometry sequences 00–10
using our methods and state-of-the-art methods. Histogram
voting+3pt and Histogram voting+2pt were slightly better
than the other methods. Fig. 11 shows the inlier set detection
of the first two frames from KITTI seq-00 using Histogram
voting+2pt.

VI. CONCLUSION
In this article, we proposed new methods to solve the prob-
lem of ego-motion estimation of a multi-camera system with
decoupled rotation and translation estimation, while the ver-
tical direction is known. We assumed that the far points
were not affected by the translation on the condition of
small motion, which proved to be correct in road driving
scenes using experiments on KITTI datasets. According to
the assumption, we proposed a minimal solver to estimate
rotation with only a single far point. To estimate translation,
we proposed a linearmethodwith three near points and a sam-
pling method with two near points. We verified the efficiency
and robustness of our methods in a series of experiments on
synthetic and real data. These experiments demonstrated that
our methods applied very well to automatic driving scenarios
which contain far features. In future work, we plan to try
more reliable feature extraction to improve the accuracy of
the ego-motion estimation.
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