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Abstract There are still many open questions regarding the nature of Uranus and Nep-
tune, the outermost planets in the Solar System. In this review we summarize the current-
knowledge about Uranus and Neptune with a focus on their composition and internal struc-
ture, formation including potential subsequent giant impacts, and thermal evolution. We
present key open questions and discuss the uncertainty in the internal structures of the plan-
ets due to the possibility of non-adiabatic and inhomogeneous interiors. We also provide the
reasoning for improved observational constraints on their fundamental physical parameters
such as their gravitational and magnetic fields, rotation rates, and deep atmospheric compo-
sition and temperature. Only this way will we be able to improve our understating of these
planetary objects, and the many similar-sized objects orbiting other stars.

Keywords Planets and satellites: formation · Planets and satellites: interiors · Planets and
satellites: ice planets · Planets and satellites: composition · Planets and satellites:
individual: Uranus, Neptune

1 Introduction

Uranus and Neptune have masses of about 14.5 and 17 M⊕ (Earth mass), respectively. Their
sizes are about four times that of the Earth, and they are located at 20 and 30 AU from the
Sun. Uranus and Neptune represent a unique class of planets in our Solar System, and are
often referred as the “ice giants”. They are different from the terrestrial planets since they are
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significantly more massive, consist mostly of volatile materials (ice-forming elements such
as oxygen and carbon), and have much colder atmospheres. They also differ from Jupiter
and Saturn, the gas giants, since they are significantly smaller and their compositions are not
dominated by hydrogen-helium (H-He).

Despite the similar masses and radii of Uranus and Neptune, there are also noticeable dif-
ferences between these planets, such as their atmospheric enrichment, obliquity, and thermal
emission. Uranus’ radius is larger than Neptune’s but its mass is smaller, making Neptune
denser than Uranus by ∼30%. Their inferred moment of inertia (MoI) values from interior
models suggest that Uranus is more centrally condensed than Neptune. A distinct feature
of Uranus is its large axial tilt and its regular satellites, suggesting they formed from a cir-
cumplanetary disk, while Neptune’s largest moon, Triton, in a retrograde orbit, and was
probably captured. In addition, Neptune’s measured heat flux implies that it is still cooling,
while Uranus is near equilibrium with solar insolation (e.g., Pearl et al. 1990; Pearl and Con-
rath 1991), suggesting that Uranus’ interior is not fully convective, and/or that it contains
compositional gradients or thermal boundary layers that hinder convection (e.g., Nettelmann
et al. 2016; Podolak et al. 2019).

The available measurements of the fundamental physical properties of Uranus and Nep-
tune such as mass, radius, and gravitational field can be used to constrain their interiors.
However, there are still substantial uncertainties regarding their bulk compositions and in-
ternal structures, since the planets’ interiors are complex and at the same time the available
data are somewhat limited (e.g., Podolak et al. 1991, 1995; Guillot 2005; Podolak and Helled
2012; Fortney and Nettelmann 2010; Nettelmann et al. 2013; Helled and Guillot 2018). In
addition, the formation process of these planets remains a great challenge for planet forma-
tion theories, as well as their subsequent evolution. Structure models suggest that Uranus
and Neptune possess H-He atmospheres. Their atmospheres are expected to be accreted
from the protoplanetary disk gas as suggested by standard planet formation models (see be-
low for details). However, it is very challenging to explain their exact atmospheric masses
and why they have not grown further to become gas giants. The thermal evolution of the
planets is complex due to the potential existence of sophisticated chemical and physical
processes such as mixing, settling, phase separation, inhibited convection, development of
composition gradients and boundary layers.

Uranus and Neptune have not been explored from space in detail apart from the single
Voyager 2 flybys, and many key questions regarding the planets’ regarding their origin, evo-
lution, and internal structure remain unsolved. At the same time, we now know that exoplan-
ets in the mass/radius-regime of Uranus and Neptune are common, as well as their smaller
versions (often referred as “mini-Neptunes”). But we do not know their bulk compositions
and internal structures, neither how heat is transferred in these planets, thus limiting our
ability to determine their composition and the mechanisms of planet formation. Although
these discovered exoplanets are significantly hotter than Uranus and Neptune, and are also
likely to have suffered migration, they reveal the diversity of planets in this mass-range. It
is therefore highly important to better understand Uranus and Neptune, which are clear pri-
orities of the international planetary science community, and are also crucial to understand
exoplanets.

2 Basic Properties of Uranus and Neptune

Gravitational Coefficients (Jn) The measured gravitational field of a planet is used to
constrain its internal structure. For giant planets in hydrostatic equilibrium and no hemi-
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sphere asymmetries only the even gravitational harmonics (J2n) are expected to exist. Typ-
ically, the gravitational moments are inferred from analysing the trajectories of spacecraft
during flyby, especially when they approach the planet, and preferably in a polar orbit. The
gravitational coefficients of Uranus and Neptune were measured during the Voyager 2 fly-
bys. More accurate determinations of the gravitational coefficients were then inferred from
the precession of Uranus rings and the orbits of the satellites of the planets (e.g., Elliot and
Nicholson 1984; Jacobson 2009, 2014). The error bars associated with the measurements are
rather large (compared to Jupiter and Saturn), and the harmonics are known only to fourth
order (i.e., J2, J4). Jacobson and collaborators (Jacobson et al. 2006; Jacobson 2009, 2014)
re-determined the gravitational harmonics of the planets using Earth-based astrometry and
observations acquired mostly with the Voyager spacecraft; and provided more accurate es-
timates for the gravitational harmonics with smaller error bars. The density profile of the
planet in interior models is set to reproduce the measured gravitational field. While the ex-
act composition is unknown, the constraints introduced by the gravitational harmonics can
be used to narrow down the possible planetary composition and internal structure (see re-
view by Helled 2018 and references therein for details).

Rotation Periods The rotation periods of giant planets in the Solar System are typically
determined from radio and magnetic field data. However, the periodicities inferred from
these data might not represent the planetary bulk rotation. Voyager 2 measurements of peri-
odic variations in the radio signals and of fits to the magnetic fields of Uranus and Neptune
imply rotation periods of 17.24 h and 16.11 h, respectively. The periods inferred from the
radio signals and magnetic fields might be equal if the radiation emanates from charged
particles that are attached to the magnetic field lines, but the periods could also differ if the
radiation originates from a local concentration of ions in a centrifugally loaded magneto-
sphere. In addition, it is unclear which parts of the planetary interiors are tied to the mag-
netic field lines, in particular in the case of Uranus and Neptune, which have multi-polar
magnetic fields that are expected to originate from relatively shallow depths (e.g., Stanley
and Bloxham 2004, 2006).

It was then suggested by Helled et al. (2010) that the Voyager 2 radio and magnetic
periods do not represent the deep interior rotation periods, and they proposed modified
rotation periods for the planets by searching for the periods that minimise the dynamical
heights and wind velocities. Rotation periods of 16.58 h for Uranus and 17.46 h for Nep-
tune were derived. Although there is no underlying principle to strictly enforce dynamical
height minimization, the principle provides very good results when applied to Jupiter and
Saturn. For Jupiter, it leads to a rotation period in agreement with that of its system III
(Helled et al. 2009), and in Saturn, the rotation period inferred is in excellent agreement
with the ones inferred from atmospheric vorticity arguments (Read et al. 2009), ring seis-
mology (Mankovich et al. 2019) and the measured gravitational field (Helled et al. 2015;
Militzer et al. 2019). The different rotation periods of Uranus and Neptune as inferred from
Helled et al. (2010) can lead to significant differences in the inferred composition and inter-
nal structure of the planets, as shown by Nettelmann et al. (2013). In addition, it was shown
by Kaspi et al. (2013), based on a thermal wind model and interior models, that in both
planets the observed winds are not expected to penetrate very deep: for a penetration depth
above ∼1000 km, the influence on J4 would have been larger and incompatible with any of
the structure models that fit J2.

Physical Shapes The mean radius and flattening are used as constraints for interior
models. While knowledge of the continuous shape of a planet (i.e., radius vs. latitude)
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Fig. 1 The physical shapes of Uranus and Neptune. The dashed-gray and curves correspond to the Voyager
rotation periods (U: 17.24 hrs, N: 16.11 hrs) while the solid blue are the shape corresponding to rotation
periods that minimizes the planets’ winds and dynamical heights as found by Helled et al. (2011) (U: 16.58
hrs, N: 17.46 hrs)

is also desirable and available, typically, structure models use only the flattening (f =
(Req − Rp)/Req where Req and Rp are the equatorial and polar radii, respectively), which
is derived for given polar and equatorial radii. The shapes of Uranus and Neptune have been
studied through stellar and ring occultations, and Voyager measurements. Stellar and ring
occultations (e.g., French et al. 1983, 1987, 1998; Hubbard et al. 1987; Elliot and Nicholson
1984) provide very good determinations of the planetary shape, however, the data are limited
to low pressure-levels from several to 103 mbar, and therefore do not necessarily apply to
the typical 1-bar pressure-level that is used by interior modelers, in particular, because atmo-
sphere dynamics can change the isobaric shape between the microbars and 1 bar pressure-
levels. Therefore an uncertainty of up to ∼100 km in radius should be considered when
modeling the interiors of these planets. Clearly, a determination of the continuous planetary
shape can be used to further constrain structure models. Figure 1 shows the inferred shapes
of Uranus and Neptune assuming the Voyager 2 and modified solid-body rotation periods
for the planets as derived by Helled et al. (2010).

It is important to note that the atmospheric winds (and dynamics in general) can signif-
icantly modify the planetary shape, and this effect can be larger than the harmonic coeffi-
cients. As a result, knowledge of the planetary shape has only a limited effect on internal
structure models. Nevertheless, the atmospheric shape is important for understanding the
dynamics of the planetary atmospheres.

Atmospheres Uranus is typically seen as a planet with a bland, featureless atmosphere
while Neptune is seen as more active, with vortexes comparable to those seen on Jupiter.
This suggests that Uranus, which has a ten times lower heat flux is less convectively active
than Neptune. This view must however be taken with caution because it is largely based
on the high-resolution but short visits from the Voyager 2 spacecraft in 1985 and 1989,
respectively (Allison et al. 1991; West et al. 1991; Ingersoll et al. 1995; Baines et al. 1995).
Ground based observations with large telescopes have since shown that both planets have
dynamic atmospheres, with features appearing and disappearing regularly (e.g., Karkoschka
2011; Sromovsky et al. 2012; de Pater et al. 2015; Molter et al. 2019). Unfortunately, the
lack of a high spatial resolution achievable from an Earth-based observatory combined to the
limited amount of time over which these facilities can be pointed to these targets strongly
limits our ability to understand these planets globally.

The visible atmospheres of Uranus and Neptune are dominated by three species: hy-
drogen, helium and methane. While the helium to hydrogen ratio seems consistent with a
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protosolar abundance, methane is very abundant, reaching a volume mixing ratio of around
2% corresponding to an enrichment of 50 to 100 over the solar value (Guillot and Gautier
2014 and references therein). Methane condenses at pressures below 1.5 bar in both plan-
ets (Lindal 1992), and probably form the haze and some of the clouds that are observed.
Most other key species condense at higher pressures (and temperatures) and are thus mostly
hidden from sight. Radio-observations capable of probing the deep atmospheres of Uranus
and Neptune have provided some constraints on the presence of H2S, and a lack of NH3

(de Pater et al. 1991). This lack of NH3 has been confirmed indirectly by the detection of
H2S in the atmosphere or Uranus (Irwin et al. 2018) and with a high likelihood, Neptune
(Irwin et al. 2019). Water cannot be in solution in the gas phase until pressures of at least
90 bars, far from direct detection. Recently, using ALMA, Tollefson et al. (2019) were able
to show that both H2S and CH4 are not distributed uniformly across latitudes on Neptune,
which has implications to understand the atmospheric dynamics of the planet.

The temperature profiles derived from Voyager 2 radio occultations (Lindal 1992) are
characterized by a minimum (tropopause) near 0.1 bar with 53.0 K for Uranus and 51.7 K
for Neptune. The temperature is increasing with depth (higher pressures) to reach 76.4 K
and 71.5 K at 1 bar, and deeper 101 K at 2.3 bar and 135 K at 6.3 bar for Uranus and
Neptune, respectively. This increase is consistent with a dry adiabat but the degeneracy be-
tween temperature and methane abundance implies that many solutions are possible, with
possible super- or sub-adiabatic gradients (Guillot 1995). The uncertainty on the assumed
temperature profile (or equivalently, deep entropy) is significant and adds to the uncertainty
on possible interior structures and compositions (see Leconte et al. 2017; Friedson and Gon-
zales 2017).

Unfortunately, water is mostly in condensed form and therefore in extremely small abun-
dances until pressures of at least 90 bars, too deep to be detectable. Constraints on the
water abundance can be obtained indirectly, from the detection of CO in the atmosphere:
CO is out of equilibrium and must be supplied from deeper region where the reaction
H2O + CH4 ↔ CO + 3H2 can take place. The constraint depends on a diffusion coefficient
to account for the transport of CO and on a temperature profile. Using an eddy diffusion co-
efficient from mixing length theory and superadiabatic temperature profiles obtained from
Leconte et al. (2017), Cavalié et al. (2017) determine that, nominally, O/H should be <160
times solar in Uranus and about 540 times solar in Neptune. Varying the diffusion coefficient
and the assumed temperature profile results in considerable variations in those values. The
fact that they differ significantly between the two planets is puzzling: it may be due to real
composition differences or to differences in the mixing—since Uranus is indeed much less
active than Neptune this seems to be a more plausible explanation. More data are needed to
understand the deep atmospheric structures of these planets in order to make progress on this
important issue. More information on the atmospheric composition of Uranus and Neptune
is inferred from measurements of their deuterium to hydrogen D/H ratios. The measure-
ment D/H from observations by the Herschel spacecraft in the far infrared yields a value
that is similar for both planets, i.e. (4.4 ± 0.5) × 10−5 for Uranus and (4.1 ± 0.1) × 10−5

for Neptune (Feuchtgruber et al. 2013). This value is intermediate between the one found
in Jupiter (2.25 ± 0.35) × 10−5 (e.g., Lellouch et al. 2001) and values obtained from Oort
cloud comets, i.e., 2 − 3 × 10−4 (Bockelée-Morvan et al. 2012). Assuming the planets were
once fully mixed, the rather low atmospheric D/H enrichment led Feuchtgruber et al. (2013)
to propose, based on interior models from Helled et al. (2011) and Nettelmann et al. (2013),
that Uranus and Neptune should be made of 68% to 86% of rocks instead of being mostly
icy. It should be noted, however, that it is rather unlikely that the planets were once fully
mixed (see below for further details). Further studies of comets have shown that the D/H



38 Page 6 of 26 R. Helled et al.

ratio can be as low as 1.5 × 10−4 (Lis et al. 2019), the relatively low observed D/H ratio it
likely to be the outcome of partial mixing of the volatile materials in the planets. There is a
clear need for more atmospheric measurements and for a better knowledge of how to con-
nect the atmosphere but clearly such measurements can be used as an additional constraint
for future interior models.

Magnetic Fields A key observable property is the planetary magnetic field. Structure
models must be consistent with the observed multi-polar magnetic fields, implying that a
convective and electrically conductive region of a width of ∼20% of the planetary radius
exist underneath the outer H-He-rich envelope (e.g., Stanley and Bloxham 2004, 2006; Red-
mer et al. 2011). The latter is insulating and transitions into the observable atmosphere.
Dynamo models that fit the Voyager magnetic field data suggest that the deep interior below
the dynamo region is stably stratified (Stanley and Bloxham 2004, 2006) or, alternatively,
in a state of thermal-buoyancy driven turbulent convection (Soderlund et al. 2013). Since
Voyager’s observations have not been confirmed by another spacecraft, it is unclear whether
the Voyager rotation rate reflects the rotation of the layer in which the magnetic field is gen-
erated and of the entire deep interior below that region (Helled et al. 2010). This uncertainty
has major consequences on the inferred planetary structure and the question of similar or
dissimilar interiors (Nettelmann et al. 2013). Improved measurements of the magnetic fields
of Uranus and Neptune will also help to constrain the planetary rotation rate and internal
structure. The available physical parameters of the planets are summarized in Table 1.

3 The Compositions and Internal Structures of Uranus & Neptune

3.1 Constraints from Structure Models

The composition of the planets cannot be measured directly (besides in the very upper atmo-
sphere) but has to be inferred indirectly from interior models fitting all available constraints.
Structure models are designed to fit the measured physical parameters of the planets (mass,
radius, gravitational field, rotation rate, atmospheric temperature), and have a density pro-
file that reproduces the measured gravitational coefficients. Traditional interior models of
Uranus and Neptune assume an “adiabatic” structure all the way to the interior, i.e., a tem-
perature profile set by the specific entropy of hydrogen and helium measured in the at-
mosphere (typically at 1 bar). The idea is that, as for Jupiter, convection should dominate
and the super-adiabaticity required to transport the internal heat flux is small. It is impor-
tant to realize however that in the presence of compositional gradients (or boundary lay-
ers), this definition is no longer correct. It requires heat transport to proceed efficiently (so
that the temperature is continuous across composition interfaces) while chemical elements
are not transported at all, an unlikely situation. Departures from the “adiabatic” hypothesis
may explain the differences in densities and luminosities of Uranus and Neptune: their in-
ner temperature may be higher than traditional models predict, and their luminosity could
be controlled by the location and characteristics of the regions with changing composition
(e.g., Podolak et al. 1995, Vazan and Helled 2018). The thermal evolution and profiles of
the planets are discussed in detail in Sect. 6.

A first approach uses physical equations of state (EoSs) of the assumed materials to
derive the density and the associated pressure and temperature (Hubbard et al. 1991; Podolak
et al. 1995; Nettelmann et al. 2013). The second approach uses empirical (mathematical)
density profiles without making a priori assumptions regarding the planetary structure and
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Table 1 Physical data of Uranus & Neptune

Parameter Uranus Neptune

Mass (1024 kg) 86.8127 ± 0.0040a 102.4126 ± 0.0048b

Mean Radius∗ (km) 25362 ± 7c 24622 ± 19c

Mean Density (g cm−3) 1.270 ± 0.001d 1.638 ± 0.004d

Rref (km) 26,200a 25,225b

J2 (×106) 3510.68 ± 0.70a 3408.43 ± 4.50b

J4 (×106) −34.17 ± 1.30a −33.40 ± 2.90b

PVoy (rotation period) 17.24he 16.11hf

Req,Voy (km) 25,559 ± 4c 24,764 ± 15c

Rp,Voy (km) 24,973 ± 20g 24,341 ± 30 g

PHAS (rotation period) 16.58hg 17.46hg

Req,HAS (km) 25,559 ± 4g 24,787 ± 4g

Rp,HAS (km) 25,023 ± 4g 24,383 ± 4g

1-bar temperature (K) 76 ± 2h 76 ± 2h

Effective temperature (K) 59.1 ± 0.3i 59.3 ± 0.8i

Intrinsic flux (J s−1 m−2) 0.042i ± 0.045 0.433 ± 0.046i

Bond Albedo A 0.30 ± 0.049i 0.29 ± 0.067i

Magnetic dipole moment (Tm3) 3.9 × 1017j 2.2 × 1017j

aJacobson 2014; bJacobson 2009; cArchinal et al. 2018; dCalculated values and associated uncertainty
derived from other referenced values and uncertainties in this table. The average density is computed using a
volume of a sphere with the listed mean radius; eDesch et al. 1986; fWarwick et al. 1989; gHelled et al.

2010; hLindal 1992; iPearl and Conrath 1991; jRussell and Dougherty 2010
∗Note that the listed uncertainties in mean radius are the formal measured ones, and they do not account for
the uncertainty in shape and rotation periods, which leads to a higher uncertainty as discussed in the text. Rref
is the reference equatorial radius in respect to the measured gravitational harmonics J2 and J4, Req and Rp

are the equatorial and polar radii at the 1-bar pressure level, respectively

composition and are not linked to specific EoSs and yet fits all the measurements (Marley
et al. 1995; Podolak et al. 2000; Helled et al. 2011). These “empirical” models provide a
density-pressure profile of the planet. This can then be interpreted using physical EoS for
different materials, and assuming various temperature profiles, in order to infer the planetary
composition.

Adiabatic interior models of Uranus and Neptune that are based on physical EoSs, in
which the rocks are confined to the core predict small core masses and large ice mass frac-
tions, leading to highly super-solar ice:rock ratios of at least 4× the solar value for Nep-
tune (Nettelmann et al. 2013) and about 15× the solar value for Uranus (e.g., Podolak and
Reynolds 1987; Nettelmann et al. 2013), suggesting that some additional fraction of rocky
materials are also mixed into the icy envelope.

In the mid-90s it was found that in order to fit Uranus’ gravity field, the density in the
ice shell must be 10% lower than the one given by the EoSs used at that time (Podolak et al.
1995). In addition, the inferred ice-to-rock ratio in this model was 30 by mass, roughly 10
times the proto-solar ratio. Recent interior models for Uranus (Bethkenhagen et al. 2017) us-
ing the updated gravity data (Table 1) confirm the earlier obtained possibility (Podolak and
Reynolds 1987) of a nearly pure-ice shell. The high resulting ice-to-rock ratio of the deep
interior for this class of models can be reduced if there is a super-adiabatic transition be-
tween the H/He-rich outer and heavy-element rich interior. The deep interior then becomes
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Fig. 2 Possible structure model for Uranus and Neptune based on Helled et al. (2011), Nettelmann et al.
(2013)

significantly hotter than in the adiabatic case, and the water is in a plasma phase where the
EoS is sensitive to temperature, and the increase in volume must be compensated for by a
significant amount of rocks, allowing even for solar ice-to rocky ratios (Nettelmann et al.
2016).

A range of density profiles of Uranus and Neptune that fit their measured gravitational
fields were derived using Monte Carlo searches by Marley et al. (1995) and Podolak et al.
(2000). These random models imply that both planets consist of small cores and outer en-
velopes enriched with heavy elements, and that both planets consist of a density disconti-
nuity at a radius of ∼0.6–0.7. Helled et al. (2011) represented the density profile (ρ(r)) of
Uranus and Neptune by a 6th-order polynomial, and have found the coefficients required
to fit all of the observed properties. It was shown that a density profile with non-distinct
layering (i.e., a density profile without discontinuities) can also satisfy the observational
constraints. The “empirical” EoS generated by these models was then interpreted as requir-
ing a continuous increase in the H-He mass fraction towards the planetary center. It was
shown that the gravity data can be fit as well with silicates as with water. When comparing
the inferred density-pressure profile from these models to physical EoSs, it was shown that
the planets do not need to contain large fractions of water to fit their observed properties
(e.g., Helled et al. 2011). It was then concluded that the interior structures of Uranus and
Neptune are poorly understood, that they could be rock-dominated, and that their interiors
may differ from the “standard 3-layer models”. Figure 2 shows sketches of the possible in-
ternal structure solutions for the planets, and Fig. 3 shows possible density profiles for the
planets as inferred by these studies.

Water-rich 3-layer adiabatic models predict a metallicity of ∼85–87% for Uranus and
of 81–84% for Neptune (Nettelmann et al. 2013). Interior models that are based on empiri-
cal density profiles, suggest a metallicity of ∼ 76% to ∼ 90% for Uranus and 77% to 90%
for Neptune, when the heavy elements are being represented by SiO2 and water (Helled
et al. 2011). Non-adiabatic interior models for Uranus and Neptune were recently presented
by Podolak et al. (2019) who explored how the assumption of non-adiabatic temperature
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Fig. 3 Density as a function of
radius for Neptune (black) and
Uranus (blue). The solid curves
are the density profiles presented
in Helled et al. (2011). The
dashed curves are for the
three-layer models of Nettelmann
et al. (2013)

profiles in the planets affects their internal structures and compositions. Various plausible
temperature profiles were used together with density profiles that match the measured grav-
itational fields to derive the planetary compositions.

It was found that the inferred compositions of both Uranus and Neptune are quite sen-
sitive to the assumed thermal profile in the outer layers, but relatively insensitive to the
thermal profile in the central, high-pressure region. The heavy-element mass fraction for
both planets was found to be between 0.8 and 0.9, in agreement with other structure models
of the planets (e.g., Helled et al. 2011; Nettelmann et al. 2013). This result is linked to the
behaviour of hydrogen as hydrogen gas has a very large adiabatic lapse rate due to its low
molecular weight. As a result, even a very small (in mass) H-He atmosphere can imply high
interior temperatures, if an adiabatic temperature profile is assumed. The inferred global
ice-to-rock-ratio in Uranus and Neptune is in fact unknown, and depends on the model as-
sumptions and the materials that are chosen to represent the heavy elements. In addition,
Uranus and Neptune could have complex deep interiors that are dominated by composition
gradients and/or phase boundaries. At the moment, it is fair to say that our understanding
of the compositions and internal structures of the planets is incomplete. These may be a
result of demixing in the cool, mature planet (e.g., Wilson and Militzer 2012) and/or from
the formation process (e.g., Helled and Stevenson 2017).

A better understanding of the interior could arrive from EoS calculations and phase dia-
grams. Internal structure models must be consistent with the phase diagram of the assumed
materials and their mixtures. Detailed information on EoS calculations and the connection to
planetary interiors can be found in Helled (2018) and references therein. Calculating the EoS
of different materials for the conditions existing in the interiors of Uranus and Neptune is
very challenging because molecules, atoms, ions and electrons coexist and interact, and the
pressure and temperature cover several orders of magnitude, with the pressures going up to
several mega-bars (Mbar), i.e., 100 GPa and the temperature can reach up to 104 Kelvins. As
a result, a deep understanding of the planetary interiors requires to perform high-pressure ex-
periments and solve the many-body quantum mechanical problem of the system. Therefore
there is a clear connection between modeling planetary interiors and high-pressure physics.
For example, it is possible that Uranus and Neptune have deep water oceans that begin where
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Fig. 4 Sketches of the possible internal structures of an ice giant. It is unclear whether Uranus and Neptune
are differentiated and whether the transition between the different layers are distinct or gradual: (a) separation
between the ices and rocks and the ice and H-He atmosphere (b) separation (phase boundary) between the
H-He atmosphere and ices and a gradual transition between ice and rock, (c) gradual transition between the
H-He atmosphere and ice layer, and a distinct separation between the ice and rock layers, and (d) gradual
transition both between the H-He atmosphere and ice and the ice and rocks suggesting a global composition
gradient with the planets (see text for discussion)

H2 and H2O become insoluble (e.g., Bailey and Stevenson 2015; Bali et al. 2013) or that
some of the materials become miscibile in planetary conditions (e.g., Soubiran and Militzer
2015). Figure 4 presents sketches of four possible internal structures of the ice giants where
the transitions between layers distinct (via phase/thermal boundary) and/or gradual.

3.2 Are Uranus & Neptune Really “Icy” Planets?

Uranus and Neptune are often referred as the “ice giants”. While some internal structure
models predict that the planets are highly enriched with water, as discussed above it is not
a unique solution, and in fact, there are reasons to question whether they are truly “icy”
worlds. There are several arguments as to why the planets are expected to be water-rich:
(1) Uranus and Neptune are located at large radial distances of about 20 and 30 AU, where
the temperatures in the solar nebula are expected to be low enough to create water-rich solids
(pebbles/planetesimals) that are accreted by the planets; (2) Oxygen is very abundant in our
Sun and the ice (water and volatile materials condensing at temperatures of order 100 to
300 K) to rock ratio is expected to be between 2 and 3 (Lodders 2003). (3) Uranus and
Neptune have magnetic fields, implying the existence of conductive material, which was
suggested to be ionic water (e.g., Nellis et al. 1997; Redmer et al. 2011).

However, these arguments may be challenged. As discussed above, all the observed pa-
rameters can be reproduced if the innermost regions of the planets consist of ∼82% rock by
mass with the rest being a mixture of hydrogen and helium in proto-solar ratio (Helled et al.
2011). Of course this is an extreme case, which is rather implausible, as water is also ex-
pected to be present, but it clearly demonstrates that the available data do not directly imply
that Uranus and Neptune have high water-to-rock ratios. Also, we cannot exclude the exis-
tence of other materials that can result in high enough conductivity to generate a magnetic
field such as compressed silicates, especially when mixed with hydrogen (e.g., Soubiran and
Militzer 2018). In addition, the oxygen-to-hydrogen ratios in the atmospheres of Uranus and
Neptune are not well-determined, although despite the large uncertainties, the existing mea-
surements do indicate high oxygen-to-hydrogen ratios in their atmospheres, as inferred from
the observed CO abundance, ranging between a few and a few hundred times the proto-solar
ratio (Luszcz-Cook and de Pater 2013). Finally, we cannot exclude that formation models
yield an ice to rock ratio in the protosolar disk that differs from that in the Sun (e.g., Ida and
Guillot 2016). After all, Pluto, which is located even farther out in the solar system, contains
about 70% rocks (e.g., McKinnon et al. 2017).
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Fig. 5 Possible temperature and water abundance profiles in the region of water condensation in Neptune.
Left: Temperature vs. pressure. Right: Water vapor abundance vs. pressure. The different lines correspond to
different assumed bulk mass mixing ratios of H2O, from 0.05 to 0.9. Blue curves correspond to the usually
assumed moist convective profile. The red curves correspond to a situation in which heat transport is done by
radiation where moist convection is inhibited. Figure from Leconte et al. (2017)

3.3 The Connection Between Atmosphere and Interior

A proper characterization of the atmosphere is crucial for modeling the planetary interior
structure and evolution and constrain the planet’s composition. Because giant planets are
fluid and have no obvious surfaces (except perhaps very deep down), atmospheric and inte-
rior composition are intimately linked. The thermal structure of the atmosphere, including
possible latitudinal variations, impacts directly modeling of the deep interior and constraints
on bulk composition and core mass that may be derived. Last but not least, the atmosphere
is the lid governing the planet cooling (e.g., Guillot 2005).

One major unknown concerning the atmospheres of Uranus and Neptune is the way
their internal heat flux is transported. The large molecular weight of condensible species
compared to the background gas, hydrogen and helium, implies that moist convection can
be inhibited past an abundance of the condensing species over about 6 to 10% in mass
(Guillot 1995). This critical abundance is in fact reached by methane in both Uranus and
Neptune, and by water, if the C/O ratio is less than about four times solar. Furthermore, the
criterion is not affected by double-diffusion (Leconte et al. 2017; Friedson and Gonzales
2017). This implies that there is considerable uncertainty on the inner temperature profile
for both planets as illustrated for the water-condensation region in Fig. 5.

At the moment, we are still at a stage that there is no match between the observed atmo-
spheric abundances of the planets and the ones derived with chemical models (e.g., Cavalié
et al. 2017) with the rather low values predicted from structure models. As discussed above,
structure models suffer from degeneracies, and in terms of atmospheric composition, it is
still unclear whether the atmospheric composition represents the planetary bulk.

4 The Formation of Uranus & Neptune

The formation of Uranus and Neptune has been a long-standing problem for planet
formation theory (e.g., Pollack et al., 1996, Dodson-Robinson and Bodenheimer 2010;
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Helled and Bodenheimer 2014; Frelikh and Murray-Clay 2017). At the same time, the large
number of detected exoplanets with sizes comparable (or smaller) to that of Uranus and Nep-
tune suggests that such planetary objects are very common, at least at short orbital distances
(e.g., Batalha et al. 2013; Petigura et al. 2018).

In the standard planet formation model, core accretion (see Helled et al., 2014 for re-
view and the references therein), a slow planetary growth is expected to occur at large radial
distances where the solid surface density is lower, and the accretion rate of planetesimals
is significantly smaller (e.g., Helled and Bodenheimer 2014). For the current locations of
Uranus and Neptune, the formation timescale can be comparable to the lifetimes of proto-
planetary disks. In addition, forming the planets in situ requires extremely high solid surface
densities, which has led to the idea that the planets formed closer to the sun and reached their
current locations at later stages (e.g., Thommes et al. 1999). Due to the long accretion times
at large radial distances, the formation process is too slow to reach rapid gas accretion (run-
away), before the gas disk disappears, leaving behind an intermediate-mass planet, which
consists mostly of heavy elements and a small fraction of H-He gas. However, since the
mass of H-He in both Uranus and Neptune inferred from structure models is estimated to
be a couple of M⊕, it implies that gas accretion has already begun, and this requires that the
gas disk disappears at a very specific time, to prevent further gas accretion onto the planets.
This is known as the fine-tuning problem in Uranus/Neptune formation.

Helled and Bodenheimer (2014) investigated the formation of Uranus and Neptune in the
core accretion model accounting for different formation locations ranging from 12 to 30 AU,
and with various disk solid-surface densities and core accretion rates. This systematic study
confirmed that in order to form Uranus and Neptune with the correct final planetary mass
and solid-to-gas ratio, very specific conditions (fine-tuning) are needed. It was also shown
that the potential high-accretion rates associated with pebble accretion (e.g., Lambrechts and
Johansen 2012) and dynamically cold planetesimal disks (e.g., Rafikov 2011) at large radial
distances (several AU) can result in much shorter formation timescales for the planets. At the
same time, a recent N-body calculation by Levison et al. (2015) that accounts for viscously
stirred pebble accretion suggests that Uranus and Neptune formed at shorter radial distances
(5–15 AU). It is still unclear what are the favourable formation locations for Uranus and
Neptune and at the moment it is not possible to discriminate among the different models. In
any case, dynamical models focus on the growth rate of the heavy-elements and the main
challenge in formation models of Uranus and Neptune is to reproduce the final mass and
composition of the planets, accounting for the accretion of both the solids and gas, and find
mechanisms that prevent the planets from becoming gas giants. The challenge in forming
Uranus and Neptune is demonstrated in Fig. 6 which shows various formation scenarios
that lead to the formation of planets similar to Uranus and Neptune in terms of mass and
composition. Shown are the planetary mass the H-He mass and the mass of heavy elements.

As can be seen from the figure there are several challenges: First, the forming planets
should not become gas giants, second, the planets should have accreted some H-He gas,
but not in amounts that exceed the upper bounds inferred from structure models, i.e., the
planetary metallicity should be of the order of 80–90%. It can be seen that even for these
preferred models, which assume high accretion rates and/or smaller radial distances for the
planets as suggested by the Nice model (e.g., Thommes et al. 1999; Tsiganis et al. 2005),
it is hard to reproduce the right masses and MH-He to MZ . On the other hand, the study of
Helled and Bodenheimer (2014) demonstrated how small changes in the properties of the
protoplanetary disks and the birth environment of the planetary embryos can lead to the
formation of very different planets in terms of final masses and compositions (solid-to-gas
ratios), which naturally explains the large diversity of intermediate-mass exoplanets.
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Fig. 6 Formation paths of Uranus and Neptune. The dashed black curves correspond to the masses of Uranus
and Neptune, and the red dashed llines to the inner and upper bound of the H-He mass. The vertical black
lines show when the planet reaches Uranus/Neptune mass and the Mcore (heavy-element mass, blue curve)
and Menv (hydrogen-helium mass MH-He), and the total planetary mass (black curve Mpl ) in that time.
Acceptable models are ones in which the black horizontal lines are within the gray and red area. Figure
modified from Helled and Bodenheimer (2014)

Recently it was shown that when enrichment of the H-He envelope with heavy elements
is included, gas accretion is expected to take place faster making the formation of Neptunes
even more challenging (Venturini et al. 2016; Venturini and Helled 2017). A mechanism
that prevents rapid gas accretion onto intermediate-mass protoplanets is required to explain
the formation of Uranus and Neptune as well as Neptune-like planets and mini-Neptunes
(e.g., Alibert et al. 2018). Another possible formation path as suggested by Lambrechts
et al. (2014) is that Uranus and Neptune grew by pebble accretion. In this case the planets
can form in situ within a few Mys. This is because in that scenario, the core growth is more
efficient than in the planetesimal accretion case, and at the same time, at the current locations
of the planets the pebble isolation mass is above M⊕. As a result, the planets could be heavy-
element dominated with H-He envelopes that are metal-rich due to the sublimation of icy
pebbles (see Lambrechts et al. 2014 for further details). While forming Uranus and Neptune
via pebble accretion might seem appealing, it should be noted that until the growing planet
reaches the pebble-isolation mass the H-He mass fraction is assumed to be 10% of the total
mass (e.g., Bitsch et al. 2015). This assumed 10% H-He mass fraction of the pebble accretion
model was found to be unrealistically low, suggesting that this formation scenario would
lead to too high masses of H-He (Venturini and Helled 2017). Currently, the pebble accretion
model has not yet shown a self-consistent formation path for these planets. Finally, another
formation path for Uranus and Neptune is formation by collision and merging of a few low-
mass planets which accreted from a population of planetary embryos, which significantly
decreases their formation timescale (e.g., Izidoro et al. 2015). Each model seems to have
weaknesses and strengths, and yet, there is not satisfactory formation model for Uranus and
Neptune.



38 Page 14 of 26 R. Helled et al.

Measuring the elemental abundances in the atmospheres of Uranus and Neptune can pro-
vide information on the formation history of the planets, by setting limits on their formation
locations and/or the type of solids (pebbles/planetesimals) that were accreted by the planets
as discussed above. For example, it was shown by Kurosaki and Ikoma (2017) that the pol-
lution of the protoplanetary atmospheres with heavy elements (in particular water, ammonia
and methane) can significantly affect the cooling of the growing planet and therefore its
formation history as well as final internal structure. In addition, a determination of the atmo-
spheric metallicity will provide valuable constraints for structure models, that at the moment
allow a large variation of this value as described above. Therefore, in order to understand
the formation of these planets direct measurements of their atmospheric composition are
required.

5 Giant Impacts on Uranus and Neptune

Uranus and Neptune are similar in terms of masses and radii but also have signifi-
cant differences such as their heat fluxes, their satellite systems, and possibly also their
internal structures. Giant impacts by large embryos occurring shortly after the forma-
tion of the planets could explain the dichotomy between the ice giants (Safronov 1966;
Stevenson 1986). An oblique impact with a massive impactor could change Uranus’ spin
(Safronov 1966), and at the same time eject enough material that will result in the forming
of a disk where the regular satellites could form. An oblique impact is expected to mostly af-
fect the angular momentum of the planet, but not its internal structure. Therefore, if Uranus
was differentiated and/or consisting of boundary layers, such an event is unlikely to affect
the deep interior. For Neptune, it is suggested that the collision was head-on, which could
reach the planetary deep interior, “erasing” the distinct layers, possibly also eroding the core,
and lead to a “more convective & mixed” interior, which is consistent with its measured heat
flux and inferred MoI value. Figure 7 presents a sketch of this scenario.

Podolak and Helled (2012) performed a simple analysis of this scenario, and estimated
the energy and angular momentum exchange of large impactors, and showed that head-on
collisions, which add relatively little angular momentum to the planet can have sufficient

Fig. 7 A sketch presenting the
idea of the role of giant impacts
in explaining the dichotomy
between Uranus and Neptune
(not to scale). An oblique giant
impact on Uranus could tilt its
spin axis significantly and eject
enough material to form a disk
and the regular satellites while
keeping the body stratified. For
Neptune, an almost head-on
collision might deposit energy
deep inside, mixing its interior
resulting in a thermal profile that
is close to adiabatic explaining
the fast cooling. From Jaumann
et al. (2018), adapted from
R. Helled, based on Podolak and
Helled (2012)
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Fig. 8 The planetary interior after a head-on (b = 0.2, left) and a grazing (b = 0.7, right) col-
lisions on an ice giant. Shown are the results for a differentiated 2M⊕ projectile colliding with
proto-Uranus using 5 × 106 particles at vinf = 5 km/s 71 h after the impact. The panels shows the
origin of the material (top) and the specific internal energy (bottom) as indicated by the colorbar.
For the head-on collision the impactor penetrates into the planetary deep interior, and the planet
is substantially heated. In case of the grazing collision the impactor interacts with the planet’s
outer regions, survives the first encounter (not shown) and is substantially tidally eroded before
the second impact. Therefore much less material and energy are deposited in the planet. Figure
adapted from Reinhardt et al. (2020)

energy to mix large fractions of the core, while oblique collisions can add large amounts
of angular momentum without affecting the core. These results are in agreement with the
original idea proposed by Stevenson (1986).

Recently several studies investigating giant impacts on Uranus and Neptune using
Smoothed Particles Hydrodynamics (SPH) have been presented (Kegerreis et al. 2018;
Kurosaki and Inutsuka 2018; Reinhardt et al. 2020). A large parameter space (impact ge-
ometry, impactor’s mass and composition, and numerical parameters) was considered to
identify the collisions that can reproduce the observed properties of Neptune and Uranus
(Reinhardt et al. 2020). Studies of Uranus confirmed that an oblique impact can alter its ro-
tation period, tilt the spin axis, and eject enough material to create a disk where the regular
satellites are formed. For Neptune, it was confirmed that massive and dense projectiles can
penetrate towards the center and affect its interior. This could lead to an adiabatic temper-
ature profile, which explains its larger flux and higher moment of inertia value. For both
planets the rotation axes and periods can be reproduced based on these simulations.

Figure 8 compares the outcome of a head-on collision and a grazing collision on a
Uranus-like planet consisting of a small rocky core, a water envelope, and a H-He atmo-
sphere as presented by Reinhardt et al. (2020). Shown are the materials and internal energy.
While a head-on collision affects the internal structure by depositing mass and energy in the
deep interior, a grazing collision does not significantly affect the internal structure. The pre-
and post- angular momentum distributions are listed in Table 2.

While further investigations of the topic and modeling the long-term thermal evolution
of the post-impact planets are required, the following conclusions can already be made:
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Table 2 Angular momentum L for the head-on (b = 0.2) and grazing (b = 0.7) impacts shown in Fig. 8.
Listed are the initial (Linitial) and final (Lfinal) angular momenta for the planets and the surrounding material
(“envelope”). The angular momentum is evaluated at the centre of mass which does not always correspond to
the planet’s center

Impact parameter
b

Linitial [erg s]
target+impactor

Lfinal [erg s]
planet+envelope

Lfinal [erg s]
planet

Linitial/Lfinal
planet+envelope

Linitial/Lfinal
planet

0.2 1.295×1043 1.116 × 1043 5.087 × 1042 0.86 0.39

0.7 4.535×1043 1.613 × 1043 7.567 × 1042 0.36 0.17

(i) Giant impacts can explain some of the observed differences between Uranus and Nep-
tune. (ii) Giant impacts on Uranus and Neptune can substantially alter their rotation axis
and internal structure. (iii) A giant impact on Uranus can lead to the formation of an ex-
tended disk providing enough material for the formation of its regular satellites after the
collision. (iv) Head-on collisions for Neptune result in accretion of more mass and energy,
and substantially affect the planetary interior.

These studies represent only the beginning of a long-term exploration of the role of giant
impacts in understanding Uranus and Neptune. While these studies are encouraging, they
do not prove that the observed differences between the planets are indeed caused by giant
impacts, and alternative explanations are still possible such as orbital migration (e.g., Boué
and Laskar 2010). Nevertheless, the recent giant impact studies strengthen the idea that giant
impacts play an important role in determining the planetary properties not only in the inner
part of the Solar System (Mercury, Earth’s moon) but also in the outer part.

Finally, it is interesting to note that giant impacts on Uranus and Neptune could also
assist formation models. For example, if Neptune suffered a head-on collision leading to an
accretion of most of the impactor’s mass, it would naturally increase Neptune’s mass by the
impactor’s mass, for which massed between 1–3 M⊕ have been considered, and therefore
would also increase the MZ to MH-He ratio. Indeed, the Nice model suggests the formation
of two ∼15 M⊕ planets at radial distances of 12 and 15 AU, where Uranus and Neptune are
indistinguishable (e.g., Thommes et al. 1999; Tsiganis et al. 2005).

6 Long-Term Thermal Evolution of Uranus and Neptune

In this section we address the thermal evolution of Uranus and Neptune, shortly after their
formation until today. The duration it takes to cool from the luminous, hot, and extended
initial state to their observed luminosity and radius is denoted the cooling time τ , and should
be consistent with the age of the solar system.

Under the assumption of an adiabatic interior after the run-away phase of core accre-
tion (see Sect. 3), Marley et al. (2007) showed that the memory of the initial state is lost
after only 10 Myrs for a 1 MJup H-He planet, and that this timescale decreases the lower
the mass of the planet. However, this study corresponded to gaseous planets which are ho-
mogeneously mixed and adiabatic, and therefore might not apply for Uranus and Neptune.
In a non-adiabatic interior, as expected for the ice giants, the memory of the initial state in-
cluding giant impacts can be preserved over Gyr timescales. The fact that adiabatic models
loose rapidly the memory of their initial conditions whereas this is not necessarily the case
for non-adiabatic ones can be understood as follows: For adiabatic models, the temperature
gradient within the planet follows the adiabatic gradient and is entirely defined by its at-
mospheric boundary condition. Therefore the contraction and cooling of the entire planet
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goes approximately as 1/T 3
eff (Hubbard 1977) with the exact relation depending on the at-

mospheric opacities. Therefore the cooling time (i.e., the long-term evolution timescale) for
the adiabatic case does not depend on the initial condition: primordial hotter interiors cool
faster than colder ones and reach a similar internal state relatively fast. This is not the case
for a non-adiabatic structure where the temperature gradient differs from the adiabatic one.
In non-adiabatic models, the temperature profile in different parts of the interior can dif-
fer significantly from the adiabatic one and are decoupled from the atmosphere through the
presence of radiative, conductive or semi-conductive zones (see Guillot et al. 1995; Leconte
and Chabrier 2012; Vazan et al. 2016). As we discuss below, composition gradients and
boundary layers within the ice giants result in planetary cooling timescales significantly
longer than that planet’s current age and the planet is still relaxing from the initial condition.
Cooling times of adiabatic models of Uranus and Neptune are reviewed in Sect. 6.2, models
with stable stratification are discussed in Sect. 6.3, and models with a non-adiabatic deep
interior are discussed in Sect. 6.4.

6.1 Luminosity and Effective Temperature

The cooling of fluid planets is largely governed by their composition in terms of H-He,
ices (water, ammonia, methane), and refractory materials (metals, silicates), by the internal
distribution of these components, and by external and internal heat sources. Cooling times
of adiabatic models of Uranus and Neptune are found to be rather insensitive to the com-
position distribution as long as the mass fractions are chosen to reproduce the measured
gravity field (Fortney et al. 2011; Nettelmann et al. 2013), or even only their mass and ra-
dius (Hubbard 1978; Linder et al. 2019). Adiabatic evolution models have therefore been
computed assuming a structure with silicates and iron confined to the core, a middle layer
of ices, and an outer H-He envelope (Hubbard and MacFarlane 1980; Fortney et al. 2011;
Linder et al. 2019), or with a middle layer of ices enriched in H-He and an outer H-He-layer
enriched in ices (e.g., Hubbard et al. 1995; Fortney and Nettelmann 2010; Nettelmann et al.
2013).

The long-term evolution of (weakly irradiated) planets can be calculated by integrating
over time the energy balance equation

Leff − Leq = Lint = Lsec + Lradio, (1)

where Leff = 4πR2
p σB T 4

eff is the observable luminosity and Lint = 4πR2
p σB T 4

int is the heat
loss from the interior. Its major contribution results from cooling and contraction described
by Lsec = −4πR2

p

∫ M

Mcore
dmT �s/�t + Lcore, where dmT (m)�s is the heat lost by the en-

velope mass shell dm at m. Other luminosity sources could be added, but the ones mentioned
are the dominating ones in the case of Uranus and Neptune.

As discussed in Sect. 3, if the planets have rock-dominated interiors, radiogenic heating
from the rocky component, Lradio, can prolong the cooling time of adiabatic Neptune by up
to 0.4 Gyr while for adiabatic Uranus by a several Gyrs (Nettelmann et al. 2016). The core
contribution Lcore is rather small and therefore it matters little whether it is assumed to be
adiabatic or isothermal (e.g., Linder et al. 2019). Finally, Leq = 4πR2

p σB T 4
eq is the absorbed

and re-emitted irradiation. Its value depends on the Bond albedo A, which is estimated from
Voyager (see Table 1). As with the rock mass fraction, its value is of weaker influence on
τNep while its 1σ uncertainty changes τUra by a significant amount of ±0.5 Gyrs (Scheibe
et al. 2019).

The generally stronger response of τUra than of τNep in adiabatic models is because the
effective temperature Teff = 59.1 ± 0.3 K of Uranus is close to its equilibrium value Teq =
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58.1 ± 1.1 K. Since T 4
int = T 4

eff − T 4
eq and Lint ∼ T 4

int, the observations based finding of Teff �
Teq for Uranus implies that little to no heat escapes from the present planet (Lint ∼ 0). Small
changes in external (Albedo) or internal (radiogenic) heat sources therefore have a relatively
large effect on Tint and Uranus’ cooling time.

6.2 Adiabatic Models

The adiabatic assumption is probably inappropriate for modeling the evolution and internal
structures of Uranus and Neptune. Nevertheless, such simple models can reveal the uncer-
tainties in our knowledge and guide the development of more complex models. In adiabatic
models, the specific entropy s is assumed to be constant within layers of homogeneous
composition. Between the layers, the entropy may change as a result of the change in com-
position.

Adiabatic models of Uranus take longer to cool to the present luminosity than adiabatic
models of Neptune and longer than the age of the Solar system of τ� = 4.56 Gyr. This
general finding is illustrated in Fig. 9. How much τUra exceeds τ� depends on the equations
of state used and on the assumed temporal behavior of Teq, which is often assumed to be
constant although its value increases over time due to the evolution of the Sun. The property
Tint � 0 of Uranus together with τU � τ� is known as the faintness problem of Uranus (e.g.,
Podolak et al. 1991).

Cooling times of an adiabatic Neptune have been found longer, equal, or shorter than
the age of the solar system. In particular, results obtained over the past decade agree about
τNep ≤ τ�, see Fig. 9. By fine-tuning the ice-to-rock ratio and the Albedo within its 2σ

uncertainty it is possible to find evolution models that yield τNep = τ� for a wide range of
considered H-He and water equations of state, suggesting that Neptune’s interior is largely
convective and adiabatic. At present it remains an open question whether models with τNep <

τ� indicate an excess luminosity of Neptune, or a rock-rich interior and low Bond Albedo.

Fig. 9 Cooling times to reach the present luminosity of Uranus (red) and Neptune (blue). Assuming an adia-
batic interior except for the model labeled TBL. Refs.: [H78]: Hubbard (1978) assuming Jupiter model scaled
in radius, specific heat Cv , and Gruneisen γ , [HMf80]: Hubbard and MacFarlane (1980) using zero-T EOS
fitted to exp. data for different ices, [F11a]: Fortney et al. (2011) using Sesame water EOS, fully differentiated
layers, constant Teq, [F11b]: using H2O-REOS and mixed layers, constant Teq, [N/S16]: Nettelmann et al.
(2016) for Uranus and L. Scheibe (Master Thesis 2016, U Rostock) using Teq(t) and assuming super-adia-
batic TBL, [L19]: Linder et al. (2019) using solid state EOSs and constant Teq, [S19]: Scheibe et al. (2019)
using Teq(t)
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6.3 Models with a Thermal Boundary Layer

Uranus’ luminosity can be brought into agreement with the age of the solar system if one
assumes that some fraction of the interior is shut off from efficient cooling due to stable
stratification (Podolak et al. 1991; Hubbard et al. 1995), in which case a thermal boundary
layer (TBL) would develop at the transition to the convectively cooling, adiabatic outer
region. However, the location and behavior of a thermal boundary layer inside Uranus, if
there is any, is not well-known. Nettelmann et al. (2016) assumed that the TBL occurs due
to a composition gradient between the H-He envelope and the “icy” interior at about 80%
of its radius, and that the super-adiabatic temperature gradient across grows monotonously
over time. This yields the solution labeled [N/S16] in Fig. 9 for Uranus.

Within the wide range of structure models that are possible for Neptune due to the larger
uncertainty in the measured gravitational harmonics (see Table 1), similar internal structures
of Uranus and Neptune are not excluded.1 Moreover, the most different (adiabatic) internal
structures, which may be considered as a sign of dichotomy (Nettelmann et al. 2013), would
still require a strong composition gradient between the H-He-rich outer envelope and the
ice-rich interior in Neptune, and therefore the same argument of a TBL, if caused by the
composition gradient, should also apply to Neptune. Its deeper possible location at 60%RNep

is insufficient to explain Neptune’s strong heat flow and the heat flow difference to Uranus.
Under the same assumption of a monotonously growing TBL in Neptune, its cooling time
would fall short as shown by the solution labeled [N/S16] in Fig. 9.

If Uranus and Neptune have similar internal structures, how can the different heat flows
be explained? If Neptune is not excessively rock-rich and its atmospheric Albedo is not
much lower than that of Uranus, recent evolution models find the planet to be excessively
bright (Scheibe et al. 2019). Another excessively bright planet is Saturn. One possibility to
explain the brightness of Saturn is a thick thermal boundary layer that has retarded the loss
of the intrinsic heat from the time of formation but allows it to slowly escape at present
along a superadiabatic gradient (Leconte and Chabrier 2013; Vazan et al. 2016). Transfer-
ring this idea to Neptune implies that the temperature gradient across the TBL, if there is
any, has already surpassed its maximum and is now decaying, releasing the primordial heat
from the deep interior. In Fig. 10 we show the cooling times of Uranus and Neptune with
a slowly oscillating temperature gradient �T/dr across the TBL of width dr 
 Rp . The
TBL is assumed to adopt a maximum of �T = 1000 K before decaying. This process of a
growing and decaying TBL may occur repeatedly, leading to cycles in the temperature jump
at the TBL. As a result, the cooling time of Uranus and Neptune may shorten or prolong,
depending on the state of the cycle. A significant shortening of the cooling time is found
when the temperature jump reaches its maximum, while faster cooling times than the adi-
abatic case (cycle number k = 0) are found when the TBL has decayed again. The current
state of Saturn is shown by a yellow circle though in that case the TBL is proposed to un-
dergo only one cycle, which extends to infinity (Leconte and Chabrier 2013). While this is
clearly a toy model, it illustrates the power of stably stratified layers and the importance of
understanding their heat transport efficiency and temporal evolution for understanding the
internal structure and evolution of Uranus and Neptune. This toy model can explain the heat
flow of both Uranus and Neptune.

1although the likely different giant impact histories suggest dissimilar interiors even if they shared the same
formation history (see Sect. 4).
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Fig. 10 Cooling times of Uranus (red) and Neptune (blue) under the assumption of a slowly oscillating
thermal boundary layer that builds up to maximum temperature difference of �T = 1000 K (cycle number
k = n + 1/2) and completely decays again (cycle number k = n, n natural number). The suggested current
state of Saturn (Leconte and Chabrier 2013) is marked by a yellow circle. Thus after n cycles, the thermal
boundary layer (TBL) has been build up and decayed n times

6.4 Non-Adiabatic Evolution Models

As discussed above, both Uranus and Neptune are likely to have non-adiabatic deep interi-
ors. It is therefore required to model the evolution (and internal structure) of the planets in
a more realistic way in which the heat transport is calculated by the local conditions as time
progresses. The reason for a non-adiabatic planetary structure can be primordial composi-
tion gradients. Such gradients can surpass convection and slow down the planetary cooling.
In this case the internal structure can change in time by mixing of composition in convec-
tive regions. The change in the interior structure affects the planetary thermal evolution, and
therefore should be considered self-consistently with the thermal evolution.

Recently, Vazan and Helled (2018) calculated Uranus’ evolution for various initial com-
position distribution profiles. It was found that there are several types of composition gra-
dients that fit Uranus low luminosity, as presented in Fig. 11. The deep interior of these
models can be very hot, in spite of the planet’s low luminosity. The existence of a stable
composition gradient in Uranus also indicates that Uranus’ current-state internal structure is
not very different from its primordial one. Such a gradual structure also constrains the initial
energy budget of the planet, and suggests that the initial energy content cannot be greater
than 20% of Uranus formation (accretion) energy, in order to fit the measurements.

It was concluded that a composition gradient in Uranus’ interior naturally explains its low
luminosity, without the need of artificial thermal boundaries. Different types of composition
gradients are stable during the evolution and are sufficient to slow down the cooling and
fit the observed radius, moment of inertia, and luminosity. Interestingly, the total heavy-
element mass fraction in Uranus is affected by the non-adiabatic evolution, and the hot
gradual models result high metallicity for the planet (up to 95%). Such an evolution-interior
path could also be relevant for Neptune. The fact that Neptune’s luminosity seems to be
consistent with adiabatic cooling does not necessarily mean that it is indeed adiabatic. This
topic, which also reflects on our understanding of intermediate-size exoplanets, should be
further investigated in future studies.
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Fig. 11 Representative non-adiabatic models of Uranus evolution vs. radius (y-axis) and time (x-axis). Top:
the heavy-element mass fraction Z(r). Bottom: the temperature profile T (r). All the models are consistent
with Uranus’ observed parameters despite their different internal structures: 2–3 layer model (U-1), steep
gradient model (U-2), a shallow composition gradient model (U-3), and a rock-rich composition gradient
(U-4). Figure from Vazan and Helled (2020)

7 Summary and Future

Uranus and Neptune represent a unique class of planets in the Solar System, and yet, we
know very little about them. As discussed in this review, Uranus and Neptune are mysterious
planets in terms of their formation and evolution paths, and internal structures. While Uranus
and Neptune clearly represent a distinct population of planets as they differ from heavy-
element dominated terrestrial planets and the H-He dominated gas giants, it is still unclear
how different the two planets are from each other.

Some key open questions are summarized below:

– How and where did Uranus and Neptune form?
– What is the bulk composition of the planets? Are the ice giants really water-rich?
– Are the planets mostly convective? Do they consist of boundary-layers/composition gra-

dients?
– Where and how are the magnetic field generated?
– Do the planets have water oceans?
– What are the atmospheric compositions of Uranus and Neptune and how are they linked

to the deep interior?
– What are the causes for the observed differences between the two planets? Did the planets

suffer from giant impacts?

Since the flybys of Voyager 2 near these planets, only more questions have been raised,
putting Uranus and Neptune in the focus of planetary science studies. The goal to understand
these planet became even more profound with current statistics of exoplanets suggesting that
planets in Uranus/Neptune masses and sizes are very common in our galaxy. It is therefore
clear that a dedicated mission to these planets is highly desirable. Both NASA and ESA
recognized the importance of Uranus and Neptune, and there are currently several mission
proposals dedicated to the ice giants exploration.
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We hope that these efforts will be successful and that a mission(s) to Uranus and Neptune
will become reality. In particular, we suggest to measure their gravitational and magnetic
fields, shapes, as well as their atmospheric properties, and the abundance of key elements
and molecules. A better understanding of Uranus and Neptune will not only advance the
fields of planetary science and astrophysics, but will also impact other fields such as space
science, high-pressure physics, and geoscience.

Acknowledgements We thank W. B. Hubbard and an anonymous referee for their valuable comments
and careful reading of the manuscript. We also acknowledge some inspiring discussions within the ISSI
“Formation of the Ice Giants” team meeting (Bern, 2019).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are in-
cluded in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Y. Alibert, J. Venturini, R. Helled, S. Ataiee, R. Burn, L. Senecal, W. Benz, L. Mayer, C. Mordasini, S.P.
Quanz, M. Schönbächler, The formation of Jupiter by hybrid pebble–planetesimal accretion. Nat. As-
tron. 2, 873 (2018)

M. Allison, R.F. Beebe, B.J. Conrath, D.P. Hinson, A.P. Ingersoll, Uranus atmospheric dynamics and circu-
lation in Uranus, ed. by J.T. Bergstralh, E.D. Miner, M.S. Matthews (1991), pp. 253–295

B.A. Archinal et al., Report of the IAU/IAG Working Group on cartographic coordinates and rotational ele-
ments: 2015. Celest. Mech. Dyn. Astron. 130, 22 (2018)

E. Bailey, D.J. Stevenson, Modeling Ice Giant Interiors Using Constraints on the H2-H2O Critical Curve,
AGU Fall Meeting Abstracts, 2015, P31G-03 (2015)

K.H. Baines, H.B. Hammel, K.A. Rages, P.N. Romani, R.E. Samuelson, Clouds and hazes in the atmosphere
of Neptune, in Neptune and Triton (1995), pp. 489–546

E. Bali, A. Audétat, H. Keppler, Water and hydrogen are immiscible in Earth’s mantle. Nature 495, 220
(2013)

N.M. Batalha, J.F. Rowe, S.T. Bryson et al., Planetary candidates observed by Kepler. III. Analysis of the first
16 months of data. Astrophys. J. Suppl. Ser. 204, 24 (2013)

M. Bethkenhagen, E.R. Meyer, S. Hamel, N. Nettelmann, M. French, L. Scheibe, C. Ticknor, L.A. Collins,
J.D. Kress, J.J. Fortney, R. Redmer, Planetary ices and the linear mixing approximation. Astrophys. J.
848(1), 67 (2017)

B. Bitsch, M. Lambrechts, A. Johansen, The growth of planets by pebble accretion in evolving protoplanetary
discs. Astron. Astrophys. 582, A112 (2015)

D. Bockelée-Morvan, N. Biver, B. Swinyard et al., Herschel measurements of the D/H and 16O/18O ratios in
water in the Oort-cloud comet C/2009 P1 (Garradd). Astron. Astrophys. 544, L15 (2012)

G. Boué, J. Laskar, A collisionless scenario for Uranus tilting. Astrophys. J. Lett. 712(1), L44–L47 (2010)
T. Cavalié, O. Venot, F. Selsis, F. Hersant, P. Hartogh, J. Leconte, Thermochemistry and vertical mixing in

the tropospheres of Uranus and Neptune: how convection inhibition can affect the derivation of deep
oxygen abundances. Icarus 291, 1–16 (2017)

I. de Pater, P.N. Romani, S.K. Atreya, Possible microwave absorption by H2S gas in Uranus’ and Neptune’s
atmospheres. Icarus 91(2), 220–233 (1991)

I. de Pater, L.A. Sromovsky, P.M. Fry, H.B. Hammel, C. Baranec, K.M. Sayanagi, Record-breaking storm
activity on Uranus in 2014. Icarus 252, 121–128 (2015)



Uranus and Neptune: Origin, Evolution and Internal Structure Page 23 of 26 38

M.D. Desch, J.E.P. Connerney, M.L. Kaiser, The rotation period of Uranus. Nature 322(6074), 42–43 (1986)
S.E. Dodson-Robinson, P. Bodenheimer, The formation of Uranus and Neptune in solid-rich feeding zones:

connecting chemistry and dynamics. Icarus 207, 491 (2010)
J.L. Elliot, P.D. Nicholson, Planetary Rings (A85-34401 15-88) (University of Arizona Press, Tucson, 1984),

pp. 25–72
H. Feuchtgruber, E. Lellouch, G. Orton, T. de Graauw, B. Vandenbussche, B. Swinyard, R. Moreno, C.

Jarchow, F. Billebaud, T. Cavalié, S. Sidher, P. Hartogh, The D/H ratio in the atmospheres of Uranus
and Neptune from Herschel-PACS observations. Astron. Astrophys. 551, A126 (2013)

J.J. Fortney, N. Nettelmann, The interior structure, composition, and evolution of giant planets. Space Sci.
Rev. 152, 423–447 (2010)

J.J. Fortney, M. Ikoma, N. Nettelmann, T. Guillot, M.S. Marley, Self-consistent model atmospheres and the
cooling of the Solar System giant planets. Astrophys. J. 729, 32 (2011)

R. Frelikh, R. Murray-Clay, The formation of Uranus and Neptune: fine-tuning in core accretion. Astrophys.
J. 154, 3 (2017)

R.G. French, J.H. Elias, D.J. Mink, J.L. Elliot, The structure of Neptune’s upper atmosphere: the stellar
occultation of 24 May 1981. Icarus 55, 332 (1983)

R.G. French, T.J. Jones, A.R. Hyland, The 1 May 1982 stellar occultation by Uranus and the rings observa-
tions from Mount Stromlo observatory. Icarus 69, 499–505 (1987)

R.G. French, C.A. McGhee, B. Sicardy, Neptune’s stratospheric winds from three central flash occultations.
Icarus 136, 27–49 (1998)

A.J. Friedson, E.J. Gonzales, Inhibition of ordinary and diffusive convection in the water condensation zone
of the ice giants and implications for their thermal evolution. Icarus 297, 160–178 (2017)

T. Guillot, Condensation of methane, ammonia, and water and the inhibition of convection in giant planets.
Science 269(5231), 1697–1699 (1995)

T. Guillot, The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33,
493–530 (2005)

T. Guillot, D. Gautier, Giant Planets (2014). ArXiv e-prints, arXiv:1405.3752
T. Guillot, G. Chabrier, D. Gautier, P. Morel, Effect of radiative transport on the evolution of Jupiter and

Saturn. Astrophys. J. 450, 463 (1995)
R. Helled, P. Bodenheimer, The formation of Uranus and Neptune: challenges and implications for

intermediate-mass exoplanets. Astrophys. J. 789, 69 (2014)
R. Helled, T. Guillot, Internal Structure of Giant and Icy Planets: Importance of Heavy Elements and Mixing.

Handbook of Exoplanets (Springer, Berlin, 2018). 978-3-319-55332-0. id. 44
R. Helled, D.J. Stevenson, The fuzziness of giant planets’ cores. Astrophys. J. Lett. 840, 4 (2017)
R. Helled, J.D. Anderson, G. Schubert, Jupiter and Saturn rotation periods. Planet. Space Sci. 57, 1467–1473

(2009)
R. Helled, J.D. Anderson, G. Schubert, Uranus and Neptune: shape and rotation. Icarus 210, 446 (2010)
R. Helled, J.D. Anderson, M. Podolak, G. Schubert, Interior models of Uranus and Neptune. Astrophys. J.

726, 15 (2011)
R. Helled, E. Galanti, Y. Kaspi, Saturn’s fast spin determined from its gravitational field and oblateness.

Nature 520, 202 (2015)
R. Helled, The interiors of Jupiter and Saturn, in Oxford Research Encyclopedia of Planetary Science, ed. by

P. Read et al. (Oxford University Press, London, 2018). 978-0-190-64792-6. id. 175
W.B. Hubbard, The Jovian surface condition and cooling rate. Icarus 30, 305 (1977)
W.B. Hubbard, Comparative thermal evolution of Uranus and Neptune. Icarus 35, 177 (1978)
W.B. Hubbard, J.J. MacFarlane, Structure and evolution of Uranus and Neptune. J. Geophys. Res. 88, 225

(1980)
W.B. Hubbard, P.D. Nicholson, E. Lellouch et al., Oblateness, radius, and mean stratospheric temperature of

Neptune from the 1985 August 20 occultation. Icarus 72, 635 (1987)
W.B. Hubbard, W.J. Nellis, A.C. Mitchell, N.C. Holmes, P.C. McCandless, S.S. Limaye, Interior structure of

Neptune – comparison with Uranus. Science 253, 648–651 (1991)
W.B. Hubbard, M. Podolak, D.J. Stevenson, The interior of Neptune, in Neptune and Triton, ed. by D.P.

Cruishank (University of Arizona, Tucson, 1995), pp. 109–138
S. Ida, T. Guillot, Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line.

Astron. Astrophys. 596, L3 (2016)
A.P. Ingersoll, C.D. Barnet, R.F. Beebe, F.M. Flasar, D.P. Hinson, S.S. Limaye, L.A. Sromovsky, V.E. Suomi,

Dynamic meteorology of Neptune, in Neptune and Triton (1995), pp. 613–682
P.G.J. Irwin, D. Toledo, R. Garland, N.A. Teanby, L.N. Fletcher, G.A. Orton, B. Bezard, Detection of hydro-

gen sulfide above the clouds in Uranus’s atmosphere. Nat. Astron. 2, 420–427 (2018)
P.G.J. Irwin, D. Toledo, R. Garland, N.A. Teanby, L.N. Fletcher, G.A. Orton, B. Bezard, Probable detection

of hydrogen sulphide (H2S) in Neptune’s atmosphere. Icarus 321, 550–563 (2019)

http://arxiv.org/abs/arXiv:1405.3752


38 Page 24 of 26 R. Helled et al.

A. Izidoro, A. Morbidelli, S.N. Raymond, F. Hersant, A. Pierens, Accretion of Uranus and Neptune from
inward-migrating planetary embryos blocked by Jupiter and Saturn. Astron. Astrophys. 582, A99
(2015)

R.A. Jacobson, The orbits of the Neptunian satellites and the orientation of the pole of Neptune. Astron. J.
137, 4322 (2009)

R.A. Jacobson, The orbits of the Uranian satellites and rings, the gravity field of the Uranian system, and the
orientation of the pole of Uranus. Astrophys. J. 148, 76 (2014)

R.A. Jacobson et al., The gravity field of the Saturnian system from satellite observations and spacecraft
tracking data. Astrophys. J. 132, 2520–2526 (2006)

R. Jaumann, U. Köhler, F. Sohl, D. Tirsch, S. Pieth, in Expedition zu fremden Welten (2018)
E. Karkoschka, Neptune’s cloud and haze variations 1994–2008 from 500 HST-WFPC2 images. Icarus

215(2), 759–773 (2011)
Y. Kaspi, A.P. Showman, W.B. Hubbard, O. Aharonson, R. Helled, Atmospheric confinement of jet streams

on Uranus and Neptune. Nature 497, 344 (2013)
J.A. Kegerreis et al., Consequences of giant impacts on early Uranus for rotation, internal structure, debris,

and atmospheric erosion. Astrophys. J. 861, 52 (2018)
K. Kurosaki, M. Ikoma, Acceleration of cooling of ice giants by condensation in early atmospheres. Astron.

J. 153(6), 260 (2017)
K. Kurosaki, S. Inutsuka, The Exchange of Mass and Angular Momentum in the Impact Event of Ice Giant

Planets: Implications for the Origin of Uranus. Astron. J. 157 (2018). 13 pp
M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544,

A32 (2012)
M. Lambrechts, A. Johansen, A. Morbidelli, Separating gas-giant and ice-giant planets by halting pebble

accretion. Astron. Astrophys. 572, A35 (2014)
J. Leconte, G. Chabrier, A new vision of giant planet interiors: impact of double diffusive convection. Astron.

Astrophys. 540, A20 (2012)
J. Leconte, G. Chabrier, Layered convection as the origin of Saturn’s luminosity anomaly. Nat. Geosci. 6, 347

(2013)
J. Leconte, F. Selsis, F. Hersant, T. Guillot, Condensation-inhibited convection in hydrogen-rich atmospheres.

Stability against double-diffusive processes and thermal profiles for Jupiter, Saturn, Uranus, and Nep-
tune. Astron. Astrophys. 598, 98 (2017)

E. Lellouch, B. Bézard, T. Fouchet, H. Feuchtgruber, T. Encrenaz, T. de Graauw, The deuterium abundance
in Jupiter and Saturn from ISO-SWS observations. Astron. Astrophys. 370, 610–622 (2001)

H.F. Levison, K.A. Kretke, M.J. Duncan, Growing the gas-giant planets by the gradual accumulation of
pebbles. Nature 524, 322 (2015)

G.F. Lindal, The atmosphere of Neptune: an analysis of radio occultation data acquired with Voyager 2.
Astron. J. 103, 967 (1992)

E.F. Linder, C. Mordasini, P. Molli’ere, G. Dominik-Marleau, M. Malik, S.P. Quanz, M.R. Meyer, Evolu-
tionary models of cold and low-mass planets: cooling curves, magnitudes, and detectability. Astron.
Astrophys. 623, A85 (2019)

D.C. Lis, D. Bockelée-Morvan, R. Güsten, N. Biver, J. Stutzki, Y. Delorme, C. Durán, H. Wiesemeyer, Y.
Okada, Terrestrial deuterium-to-hydrogen ratio in water in hyperactive comets. Astron. Astrophys. 625,
L5 (2019)

S.H. Luszcz-Cook, I. de Pater, Constraining the origins of Neptune’s carbon monoxide abundance with
CARMA millimeter-wave observations. Icarus 222, 379 (2013)

C. Mankovich, M.S. Marley, J.J. Fortney, N. Movshovitz, Cassini ring seismology as a probe of Saturn’s
interior. I. Rigid rotation. Astrophys. J. 871(1), 1 (2019)

M.S. Marley, P. Gómez, M. Podolak, Monte Carlo interior models for Uranus and Neptune. J. Geophys. Res.
100(E11), 23349–23354 (1995)

W.B. McKinnon, S.A. Stern, H.A. Weaver, F. Nimmo, C.J. Bierson, W.M. Grundy, J.C. Cook, D.P. Cruik-
shank, A.H. Parker, J.M. Moore, J.R. Spencer, L.A. Young, C.B. Olkin, K. Ennico Smith (New Horizons
Geology, Geophysics and Imaging and Composition Theme Teams), Origin of the Pluto-Charon system:
constraints from the New Horizons flyby. Icarus 287, 2–11 (2017)

B. Militzer, S. Wahl, W.B. Hubbard, Models of Saturn’s interior constructed with an accelerated concentric
Maclaurin Spheroid Method. Astrophys. J. 879(2), 78 (2019)

E. Molter, I. de Pater, S. Luszcz-Cook, R. Hueso, J. Tollefson et al., Analysis of Neptune’s 2017 bright
equatorial storm. Icarus 321, 324–345 (2019)

W.J. Nellis, N.C. Holmes, A.C. Mitchell, D.C. Hamilton, M. Nicol, Equation of state and electrical conduc-
tivity of “synthetic Uranus,” a mixture of water, ammonia, and isopropanol, at shock pressure up to
200 GPa (2 Mbar). J. Chem. Phys. 107, 909–9100 (1997)



Uranus and Neptune: Origin, Evolution and Internal Structure Page 25 of 26 38

N. Nettelmann, R. Helled, J.J. Fortney, R. Redmer, New indication for a dichotomy in the interior structure
of Uranus and Neptune from the application of modified shape and rotation data. Planet. Space Sci. 77,
143–151 (2013)

N. Nettelmann, K. Wang, J.J. Fortney, S. Hamel, S. Yellamilli, R. Redmer, M. Bethkenhagen, Uranus evolu-
tion models with simple thermal boundary layers. Icarus 275, 107 (2016)

J.C. Pearl, B.J. Conrath, The albedo, effective temperature, and energy balance of Neptune, as determined
from Voyager data. J. Geophys. Res. 96, 18921–18930 (1991)

J.C. Pearl, B.J. Conrath, R.A. Hanel, J.A. Pirraglia, A. Coustenis, Icarus 84, 12 (1990)
E.A. Petigura, G.W. Marcy, J.N. Winn, L.M. Weiss, B.J. Fulton, A.W. Howard, E. Sinukoff, H. Isaacson,

T.D. Morton, J.A. Johnson, The California-Kepler survey. IV. Metal-rich stars host a greater diversity of
planets. Astrophys. J. 155, 89 (2018)

M. Podolak, R. Helled, What do we really know about Uranus and Neptune? Astrophys. J. Lett. 759, 7 (2012)
M. Podolak, R.T. Reynolds, The rotation rate of Uranus, its internal structure, and the process of planetary

accretion. Icarus 70, 31–36 (1987)
M. Podolak, W.B. Hubbard, D.J. Stevenson, Models of Uranus’ interior and magnetic field, in Uranus, ed. by

J.T. Bergstrahl, E.D. Miner, M.S. Matthews (University of Arizona Press, Tucson, 1991), p. 29
M. Podolak, A. Weizman, M. Marley, Comparative models of Uranus and Neptune. Planet. Space Sci. 43,

1517 (1995)
M. Podolak, J.I. Podolak, M.S. Marley, Further investigations of random models of Uranus and Neptune.

Planet. Space Sci. 48(2–3), 143–151 (2000)
M. Podolak, R. Helled, G. Schubert, Effect of non-adiabatic thermal profiles on the inferred compositions of

Uranus and Neptune. Mon. Not. R. Astron. Soc. 487, 2653–2664 (2019)
R.R. Rafikov, Constraint on the giant planet production by core accretion. Astrophys. J. 727(2), 86 (2011)
P.L. Read, T.E. Dowling, G. Schubert, Saturn’s rotation period from its atmospheric planetary-wave configu-

ration. Nature 460, 608–610 (2009)
R. Redmer, T.R. Mattsson, N. Nettelmann et al., The phase diagram of water and the magnetic fields of

Uranus and Neptune. Icarus 211, 798 (2011)
C. Reinhardt, A. Chau, J. Stadel, R. Helled, Bifurcation in the history of Uranus and Neptune: the role of

giant impacts. Mon. Not. R. Astron. Soc. 492, 5336–5353 (2020)
C.T. Russell, M.K. Dougherty, Magnetic fields of the outer planets. Space Sci. Rev. 152, 251–269 (2010)
V.S. Safronov, Sizes of the largest bodies falling onto the planets during their formation. Sov. Astron. 9,

987–991 (1966)
L. Scheibe, N. Nettelmann, R. Redmer, Thermal evolution of Uranus and Neptune I: adiabatic models. Astron.

Astrophys. 632, A70 (2019)
K.M. Soderlund, M.H. Heimpel, E.M. King et al., Turbulent models of ice giant internal dynamics: dynamos,

heat transfer, and zonal flows. Icarus 224, 97 (2013)
F. Soubiran, B. Militzer, Miscibility calculations for water and hydrogen in giant planets. Astrophys. J. 806,

228 (2015)
F. Soubiran, B. Militzer, Electrical conductivity and magnetic dynamos in magma oceans of Super-Earths.

Nat. Commun. 9, 3883 (2018)
L.A. Sromovsky, H.B. Hammel, I. de Pater, P.M. Fry, K.A. Rages, M.R. Showalter, W.J. Merline, P. Tamblyn,

C. Neyman, J.-L. Margot, Episodic bright and dark spots on Uranus. Icarus 220, 6 (2012)
S. Stanley, J. Bloxham, Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic

fields. Nature 428, 151 (2004)
S. Stanley, J. Bloxham, Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus 184,

556 (2006)
D.J. Stevenson, The Uranus-Neptune dichotomy: the role of giant impacts, in Lunar and Planetary Science

Conference, vol. 17 (1986), pp. 1011–1012
E.W. Thommes, M.J. Duncan, H.F. Levison, The formation of Uranus and Neptune in the Jupiter-Saturn

region of the Solar System. Nature 402(6762), 635–638 (1999)
J. Tollefson, I. de Pater, S. Luszcz-Cook, D. DeBoer, Neptune’s latitudinal variations as viewed with ALMA.

Astrophys. J. 6, 251 (2019)
K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of

the Solar System. Nature 435(7041), 459–461 (2005)
A. Vazan, R. Helled, Explaining the low luminosity of Uranus: a self-consistent thermal and structural evo-

lution. Astron. Astrophys. 633, A50 (2020)
A. Vazan, R. Helled, M. Podolak, A. Kovetz, The evolution and internal structure of Jupiter and Saturn with

compositional gradients. Astrophys. J. 829, 118 (2016)
J. Venturini, R. Helled, The formation of mini-Neptunes. Astrophys. J. 848, 95 (2017)
J. Venturini, Y. Alibert, W. Benz, Planet formation with envelope enrichment: new insights on planetary

diversity. Astron. Astrophys. 596, A90 (2016)



38 Page 26 of 26 R. Helled et al.

J.W. Warwick, D.R. Evans, G.R. Peltzer, R.G. Peltzer, J.H. Romig, C.B. Sawyer, A.C. Riddle, A.E.
Schweitzer, M.D. Desch, M.L. Kaiser, W.M. Farrell, T.D. Carr, I. de Pater, D.H. Staelin, S. Gulkis,
R.L. Poynter, A. Boischot, F. Genova, Y. Leblanc, A. Lecacheux, B.M. Pedersen, P. Zarka, Voyager
planetary radio astronomy at Neptune. Science 246(4936), 1498–1501 (1989)

R.A. West, K.H. Baines, J.B. Pollack, Clouds and aerosols in the Uranian atmosphere, in Uranus, ed. by J.T.
Bergstralh, E.D. Miner, M.S. Matthews (1991), pp. 296–324

H.F. Wilson, B. Militzer, Solubility of water ice in metallic hydrogen: consequences for core erosion in gas
giant planets. Astrophys. J. 745, 54 (2012)


	Uranus and Neptune: Origin, Evolution and Internal Structure
	Introduction
	Basic Properties of Uranus and Neptune
	Gravitational Coefﬁcients (Jn)
	Rotation Periods
	Physical Shapes
	Atmospheres
	Magnetic Fields

	The Compositions and Internal Structures of Uranus & Neptune
	Constraints from Structure Models
	Are Uranus & Neptune Really "Icy" Planets?
	The Connection Between Atmosphere and Interior

	The Formation of Uranus & Neptune
	Giant Impacts on Uranus and Neptune
	Long-Term Thermal Evolution of Uranus and Neptune
	Luminosity and Effective Temperature
	Adiabatic Models
	Models with a Thermal Boundary Layer
	Non-Adiabatic Evolution Models

	Summary and Future
	Acknowledgements
	References


