SciGRID_gas: The raw NO data set

Release 1.0

J. Dasenbrock, J.C. Diettrich & A. Pluta & W. Medjroubi

Sep 07, 2020
How to cite

J.C. Diettrich, A. Pluta, W. Medrjoubi
SciGRID_gas: The raw NO data set
DLR Institute for Networked Energy Systems
Germany
doi: 10.5281/zenodo.3981039

Impressum

DLR Institute for Networked Energy Systems
Carl-von-Ossietzky-Str. 15
26129 Oldenburg
Germany
Tel.: +49 (441) 999 060

CONTENTS
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Data structure for the SciGRID_gas data set</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview of the Norway data set</td>
<td>24</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Frozen Delights!</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Frozen Delights!</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>Component element summary</td>
<td>24</td>
</tr>
<tr>
<td>5.1</td>
<td>Dataset abbreviations</td>
<td>29</td>
</tr>
<tr>
<td>5.2</td>
<td>Glossary (A)</td>
<td>30</td>
</tr>
<tr>
<td>5.3</td>
<td>Glossary (B)</td>
<td>31</td>
</tr>
<tr>
<td>5.4</td>
<td>Unit conversions</td>
<td>31</td>
</tr>
<tr>
<td>5.5</td>
<td>Country codes</td>
<td>32</td>
</tr>
</tbody>
</table>
Summary

The goal of SciGRID_gas is to develop methods to create an automated process that can generate a gas transmission network data set for Europe. Gas transmission networks are fundamental for simulations by the gas transmission modelling community, to derive major dynamic characteristics. Such simulations have a large scope of application, for example, they can be used to perform case scenarios, to model the gas consumption, to minimize leakages and to optimize overall gas distribution strategies. The focus of SciGRID_gas will be on the European transmission gas network, but the principal methods will also be applicable to other geographic regions.

Data required for such models are the gas facilities, such as compressor stations, LNG terminals, pipelines, etc. One needs to know their locations, in addition to a large range of attributes, such as pipeline diameter and capacity, compressor capacity, configuration, etc. Most of this data is not freely available. However throughout the SciGRID_gas project it was determined, that data can be found and grouped into two fundamental different groups: a) OSM data, and b) non-OSM data. The OSM data consists of geo-referenced facility data that is stored in the OpenStreetMap (OSM) data base, and is freely available. However, the OSM data set currently contains hardly any other information than the location of the facilities. The Non-OSM data set can fill some of those gaps, by supplying information such as pipeline diameter, compressor capacity and more. Part of the SciGRID_gas project is to mine and collate such data, and combine it with the OSM data set.

Here, this document describes one of the non-OSM data set, called the “NO” data set, which originated from the norwegian “Gassco” entity [Gassco20b]. This document explains the origin and structure of this single data sets.

In this document, the chapter “Introduction” will supply some background information on the SciGRID_gas project, followed by the chapter “Data structure”, that gives a detailed description of the data structure that is being used in the SciGRID_gas project. Chapter “Data sources” describes the NO data set.

The appendix contains a glossary, references, location name alterations convention and finishes with the table of country abbreviation.
SciGRID_gas is a three-year project funded by the German Federal Ministry for Economic Affairs and Energy [BMWi20] within the funding of the 6. Energieforschungsprogramm der Bundesregierung [BMWi11].

The goal of SciGRID_gas is to develop methods to generate and provide an open-source gas network data set and code. Gas transmission network data sets are fundamental for the simulations of the gas transmission within a network. Such simulations have a large scope of application, for example, they can be used to preform case scenarios, to model the gas consumption, to detect leaks and to optimize overall gas distribution strategies. The focus of SciGRID_gas will be the generation of a data set for the European Gas Transmission Network, but the principal methods will also be applicable to other geographic regions.

Both the resulting method code and the derived data will be published free of charge under appropriate open-source licenses in the course of the project. This transparent data policy shall also help new potential actors in gas transmission modelling, which currently do not possess reliable data of the European Gas Transmission Network. It is further planned to create an interface to [MMK16] or heat transmission networks. Simulations on coupled networks are of major importance to the realization of the German Energiewende. They will help to understand mutual influences between energy networks, increase their general performance and minimize possible outages to name just a few applications.

This project was initiated, and is managed and conducted by DLR Institute for Networked Energy Systems.

1.1 Project information

- **Project title**: Open Source Reference Model of European Gas Transport Networks for Scientific Studies on Sector Coupling (Offenes Referenzmodell europäischer Gastransportnetze für wissenschaftliche Untersuchungen zur Sektorkopplung)
- **Acronym**: SciGRID_gas (Scientific GRID gas)
- **Funding period**: January 2018 - December 2020
- **Funding agency**: Federal Ministry for Economic Affairs and Energy (Bundesministerium für Wirtschaft und Energie), Germany
- **Funding code**: Funding Code: 03ET4063
- **Project partner**: DLR Institute for Networked Energy Systems
1.2 Background

As of today, only limited data of the facilities of the European Gas Transmission Networks is publicly available, even for non-commercial research and related purposes. The lack of such data renders attempts to verify, compare and validate high resolution energy system models difficult, if not impossible. The main reason for such sparse gas facility data is often the unwillingness of transmission system operators (TSOs) to release such commercially sensitive data. Regulations by EU and other lawmakers are forcing the TSOs to release some data. However, such data is sparse, and too often not clearly understandable for non-commercial operators, such as scientists.

Hence, details of the gas transmission network facilities and their properties are currently only integrated in in-house gas transmission models which are not publicly available. Thus, assumptions, simplifications and the degree of abstraction involved in such models are unknown and often undocumented. However, for scientific research those data sets and assumptions are needed, and consequently the learning curve in the construction of public available network models is rather low. In addition, the commercially sensitivity also hampers any (scientific) discussion on the underlying modelling approaches, procedures and simulation optimization results. At the same time, the outputs of energy system models take an important role in the decision making process concerning future sustainable technologies and energy strategies. Recent examples of such strategies are the ones under debate and discussion for the Energiewende [BundesregierungDeutschland20] in Germany.

In this framework, the SciGRID_gas project initiated by the research centre DLR Institute of Networked Energy Systems in Oldenburg aims at building an open source model of the European Gas Transmission network. Releasing SciGRID_gas as open-source is an attempt to make reliable data on the gas transmission network available. Appropriate (open) licenses attached to gas transmission network data ensures that established models and their assumptions can be published, discussed and validated in a well-defined and self-consistent manner. In addition to the gas transmission network data, the Python software developed for building the model SciGRID_gas are published under the GPLv3 license.

The main purpose of the SciGRID_gas project is therefore to open the door to new gas transmission network models and innovative ideas in energy system modelling by providing freely available and well-documented data on the European gas transmission network.

The input data itself is based on data available from openstreetmap.org (OSM) under the Open Database License (ODbL) as well as Non-OSM data gathered from different sources, such as Wikipedia pages, fact sheets from TSOs or even newspaper articles.

The main workload of this project is to:

- retrieve the OSM and Non-OSM data sets for the gas infrastructure
- merge all available data sets
• build a gas transmission component data set
• generate missing data using heuristic methods
• remove all gas facilities, that are not connected to pipelines.
A well designed and documented data structure is fundamental in any large scale project. Good data structure in combination with tools, based on algorithms, improve the performance of any project output.

This structure needs to represent the gas flow facilities as good as possible, Hence, it needs to include components, such as pipelines, compressors, etc. A finite number of components have been identified, that are required as building blocks of a gas network. In addition each component will contain attributes, such as pipeline diameter, maximal operating pressure, maximal capacity, number of turbines etc.

It is anticipated, that the adopted data structure can be implemented in different types of gas flow models and will be used by the research community for topics, such as sector coupling or identifying gas transmission bottlenecks.

Within the SciGRID_gas project, the structure of the data model is part of classes defined within the Python code. Alterations may occur over the duration of the project, but it is envisaged, that those will be small, and that compatibility will be assured.

The goal of this section is to describe in details the data structure that has been adopted and implemented into the Python code. This will be important in understanding other aspects of this document, such as exporting the data into CSV files or generating missing values.

Prior to the description of the data structure, the overall pathway of the data flow within the SciGRID_gas project will be explained, as it is believed, that such overview will help the reader.

2.1 Data structure description

This section contains information about the SciGRID_gas data structure, the format, and the code that can be used to import publicly available data into the project, so that it can be used in subsequent steps. Paramount for an understanding of the data structure is a good understanding of the terminology used throughout this section and the document in general. Hence, terminology will be introduced in the following sub-section.

2.1.1 Terminology

Throughout this document certain terms will be used, which will be described below and summarized as a picture in Figure 2.1.
Figure 2.1: Data structure for the SciGRID_gas data set
Gas transmission network

The term “gas transmission network” describes the physical gas transmission grid. This does not include the distribution of gas through gas distribution companies, but includes the long distance transmission of gas from producer countries to consumer countries, as carried out by the Transmission System Operators (TSO) [Wik20g].

Gas component data set

The term “gas component data set” is used for all raw data of objects/facilities that have been loaded using SciGRID_gas tools into a Python environment. Gas component data sets are used as input into our SciGRID project. Several data sources can be loaded as gas component data sets, and then combined into a single gas component data set. However, not all elements (e.g. compressors) must be connected to pipelines, Hence, such a data set is referred to as a “gas component data set”, and the emphasis is on the term component.

Gas network data set

A “gas component data set” can be converted into a “gas network data set”, by connecting all non-pipeline elements to nodes and all nodes are connected to pipelines, and as part of the process all network islands have been connected or removed, resulting in a single network. Therefore the network contains nodes and edges which are coherently connected, and all objects with the exception of pipelines are associated with nodes in this network, whereas pipelines are associated with edges. Hence, the emphasis here is on the term network.

Component

There are several component types in a gas transmission network, such as compressors, LNG terminals, or pipelines. In Figure 2.1 they are coloured red. Hence, whenever the word “component” is mentioned, it refers to one of these components. There are roughly a dozen different components that will form a gas network data set. They will be briefly explained below.

Element

The term “element” refers to individual facilities, e.g. the LNG Terminal in Rotterdam, or the compressor in Radeland. In Figure 2.1 they are coloured blue. The first one is an element of the component LNG terminals, whereas the second one is an element of the component compressors. Hence, many elements make up a component. However, all elements are referring to different facilities by default. This means in a single network, one cannot have two elements of a component describing the same facility. The structure of elements is described below.

Attribute

“Attribute” is a term that is being used for the individual labels of the values that are associated with the elements. Examples for this term are gas "pipeline diameter", “maximum capacity”, “max gas pipeline pressure”, to name just a few and in Figure 2.1 they are coloured yellow. Overall there will be several hundred attributes in the SciGRID_gas project. However, the same attributes can occur in more than one component, e.g. “max flow capacity” exist for pipelines and also for compressors. Throughout the project, we have tried to keep the units of such attributes the same, so that there is no unit conversion required.
Attribute value

Each attribute has a value, most likely a number or a string. In Figure 2.1 they are coloured black. While boolean (True/False) is also allowed, more likely a “1” will stand for True and “0” for False. However, some attribute values might not be given in the data source, therefore a no value attribute value does exist. In the Python code it is termed None.

The Figure 2.1 depicts the relationships between the terms “gas data set”, “component”, “element”, “attribute”, and “attribute value”. As can be seen, a single gas data set consists of several components, where each component contains several elements, and each element has several attributes, which each come with a value, where “None” stands for unknown value. The heuristic processes described in this document at a later stage will fill those “None” values with generated values.

Gas component types

A gas transmission network consists of different components, such as pipelines, compressors, etc. For the SciGRID_gas project a hand-full of components have been implemented, and will be described here briefly:

- **Nodes**: In a gas network, gas flows from one point to another point, which are given through their coordinates. All elements of all other components (such as compressor stations and power plants) have an associated node, which allows for the geo-referencing of each element. Overall the term “nodes” will be used throughout this document, as it aligns with graph theory aspects.

- **PipeLines**: PipeLines are one of the main components of the gas pipeline network. PipeLines allow for the transmission of the gas from one node to another. However, each pipe is unique. They might have different diameter, capacity or max pressure. In addition, a single PipeLines element can connect several nodes. Therefore it could go from “Radeland” to “Bottrub” and then follow on to “Frankfurt”. However, PipeLines do not need to connect more than 2 nodes, but can. The order of those nodes is important, and indicates the flow direction.

- **PipeSegments**: PipeSegments are almost identical to PipeLines, However, are only allowed to connect two nodes. Thus they have one start node and one end node, and are not passing via other nodes or other component elements in between, such as compressors or LNG terminals. Hence, any pipeline can easily be converted to multiple pipe-segments.

- **Compressors**: Compressor represent compressor stations, which are important. Gas travelling through the gas pipeline loses pressure due to friction on the pipeline walls and other factors. This will reduce the throughput of the gas amount. Hence, every so often (~ every 150 km), a compressor station is required, which increases the pressure of the gas, and Hence, allows the gas to flow through the gas pipeline. A gas compressor station contains several gas compressors units (turbines). Knowing the individual gas turbines is of an advantage, as those turbines can be combined in different ways, such as in series, or parallel, or combinations of those two options.

- **LNGs**: (LNG terminals and LNG storages) Some of the gas, which is being used throughout Europe, is supplied via ships to LNG terminals and LNG storage facilities. (From here onwards the acronym “LNGs” will be used instead “LNG terminals and LNG storage facilities”. As the transmission of gas would be extremely inefficient due to its volume, the gas state is changed to the liquid form (LNG gas), and then shipped. Ships arriving in Europe need special LNG terminals that can store LNG gas and subsequently re-gasify it. The storage and re-gasification of the gas are combined in the LNGs component and need to be part of any gas network for Europe.

- **Storages**: Part of the gas network will be gas storages. Gas storages are being used as gas pipeline capacities or gas production capacities might not be able to cover high demand periods, such as during the winter. Hence, large gas storage units are being filled during the summer periods while the overall demand is low, and if capacities of net supply allow it. This gas is then used during the winter period, and can compensate for shortcomings of the gas network or gas supply. Almost every country has their own gas storage units, ranging from smaller units to compensate for daily fluctuations to larger units, which compensate seasonal fluctuations. For the SciGRID_gas model the larger seasonal storage units are of more importance than the smaller ones,
as we are interested in the transmission gas pipeline network. However, any gas storage can be added and implemented into the gas network data set.

- **Consumers**: Part of the gas pipeline network is the knowledge of gas demand. Gas is added to the network at LNG terminals and European boundary cross border points. One type of users is the gas power plants. These can be added to the SciGRID_gas model, as this will specify local gas demand. In addition other consumers, such as city gas providers and large industries can also be added to the network data set.

- **Production**: These can be wells inside a country where gas is pumped out of the ground. Most of the gas used in Europe comes from outside of the EU. However, there are several smaller gas production sites scattered through Europe.

- **BorderPoints**: BorderPoints are cross border points (between different countries), which are mostly for the purpose of accounting the gas flow. Most large gas pipelines have cross border stations, e.g. Ellund (lat/long: 54.80181, 9.289079) at the border between Germany and Denmark, with gas facilities on both sides of the border.

- **EntryPoints**: These are special border points, as they are at the borders of the European Union and will be the gas entry points for the SciGRID_gas model data set.

- **InterConnectionPoints**: These are points between gas transmission operators, and will be found mainly within Europe, in particular at country borders. However, they can also be found within a single country, if there is more than one gas transmission operator.

Element structure

As described above, elements are describing individual facilities, such as compressors or LNG terminals. However, the overall structure of those elements is the same for all elements of all components. The overall structure of those elements is described in the following part:

- **id**: A string, that is the ID of the element, and must be unique.

- **name**: A string that is the name of the element, such as “Compressor Radeland”.

- **source_id**: A list of strings that are the sources of the element. As several elements from different sources could have been combined in a single element, one might need to know which are the original ids of the original sources.

- **node_id**: This is the ID of a geo-referenced point to which an element of the network is associated to. For a compressor, this will be just a single node_id, however, for a gas pipeline, that starts at one point and finishes at a different point, this entry would be a list of at least two node_id values.

- **lat**: This is the latitude value of an element. For pipelines, *lat* is a list of latitude values if known. The geo-referenced projection of the element that is being used in the SciGRID_gas project is: World Geodetic system 1984 (epsg:4326).

- **long**: The longitude, analogue to lat.

- **country_code**: This is a string indicating the official 2-digit country code (Alpha-2 code, see Chapter 5.4 for list of countries and their code). It represents the location of the element. As pipelines can pass through more than one country, the country code for pipes is the list of country codes of the countries the pipeline is passing through.

- **comment**: This is an arbitrary comment that is associated with the element.

- **tags**: This dictionary is reserved for OpenStreetmap data. It contains all associated key:value-pairs of an OpenStreetMap item.

In addition, there are three further groups of attributes to each element. Throughout the SciGRID_gas project, they have been coded as “dictionaries”. They are called:
• param
• method
• uncertainty.

The structure within each dictionary is the same, However, their meaning is different. First of all the dictionary param (short for “parameter”) contains a list of attributes and their values. This list of attributes will be different for each component. For the component PipeLines they might be pipeline diameter, max pipeline pressure, and max pipeline capacity. For the component Compressors they might be, such as number of turbines, overall turbine power, energy source of turbine and more.

So the other two attribute dictionaries are method and uncertainty. Each of those two dictionaries contains exactly the same list of attributes as the param dictionary. However, their attribute values reflect the name of the dictionary. E.g. the attributes in the dictionary method contain the information on the method used to derive the attribute value that is stored in the param dictionary. Here methods of value generation can include heuristic methods names (in form of strings) that have been implemented in the SciGRID_gas project. However, if attribute values are not being generated by the SciGRID_gas project, but originate from one of the input data sources, then the attribute values in the method dictionary is set to “raw”.

Similar is the content of the uncertainty dictionary. It contains information on the uncertainty of the attributes from the param dictionary of that component. Again all attributes listed in the param dictionary are also present in the uncertainty dictionary. The attribute values here reflect the uncertainty of the attribute. Here, it is assumed, that attributes with a method of “raw” have an uncertainty of zero. Only for those attributes, which were generated during heuristic SciGRID_gas methods an uncertainty larger than zero will be specified.

2.2 Summary

The SciGRID_gas software is designed to construct a gas transmission network data set form different open source gas component data sets. The gas transmission data set needs to be available and stored in a precise and predefined way, which was described in this section. We have identified several component-types of a gas transmission network grid, like pipelines, compressor stations, LNG-terminals, etc. Each specific facility that falls under such a component is considered an element of that component. Each element is described by a list of attributes and correspondent attribute values.
Two thirds of the gas used in Europe is imported from non-EU states, and all gas required for the consumption needs to be distributed through the existing gas transmission pipelines in Europe. In the future gas consumption might rise, leading to additional pressure on the current infrastructure. In addition, gas facilities could play a vital role in reducing CO\textsubscript{2} emission, as excess electricity could be converted to gas, that could be stored and transmitted throughout Europe with the existing gas network. Hence, a reliable network data set for the European transmission network is essential. The data required for such models ranges from pipeline diameter, gas pressure within the pipeline, actual pipeline length, pipeline capacity, and underground storage volume to name just a few.

However, such data is the property of the transmission system operators (TSOs) and is therefore generally not freely available in the form and depth that is required for modelling purposes. The major reason for the difficulty of obtaining such data is that most of the gas network infrastructure, namely pipelines, is buried underground. Thus a pipeline diameter is hard to estimate locally. In addition, almost all of the data is commercially sensitive.

However, there is a public drive to gather such data and subsequently make it available. The major platform through which this is occurring is the Open Street Map database [Hel18]. OSM is a geo-referenced database through which people can supply geo-referenced information on all man-made and natural structures, ranging from mountains to buildings. To achieve this, people throughout the world wander the globe and geo-reference everything that they can find. This also includes gas-pipeline markers, compressor stations or LNG terminals. However, the major problem remains that one cannot measure or estimate the diameter of the underground pipelines, or the number and size of the compressor turbines, as compressors are within buildings, which are fenced off. Hence, such information is hardly supplied to the OSM platform.

Nevertheless, some data is made available by gas transmission network operators, through different channels. E.g. information on the size and number of compressors could be made public through a press release, as part of a refurbishment. An example is given below (https://www.maz-online.de/Lokales/Teltow-Flaeming/Neue-Verdichterstation-entsteht-in-Radeland):

"Die Eugal-Pipeline dient dazu, Gas aus der neuen Ostseepipeline Nord Stream 2 bis zur tschechischen Grenze zu leiten. 275 Kilometer von ihr verlaufen in Brandenburg. Grundsätzlich soll die neue Leitung parallel zur bestehenden Opal-Pipeline gebaut werden."

In addition some information can be found on company web pages, (https://www.open-grid-europe.com/cps/rde/SID-752BB6B5-E0A975F2/oge-internet-preview/hs.xsl/NewsDetail.htm?rdeLocaleAttr=en&newsId=50190C3B-E14F-4685-9E64-E40EEAB57A28):

Open Grid Europe (OGE) is investing roughly EUR 150 million at its compressor station in Werne to improve the security and flexibility of energy supply for North Rhine-Westphalia and Germany. The upgrade of the station, which is one of the hubs of the pipeline network, will allow gas flows to be switched (reversed) from north to south and south to north. In addition, OGE is preparing the station for the upcoming transition from L- to H-gas. Through this fitness programme, the station’s transmission capacity will increase by about 500,000 to 6.5 million m3/h, which is equivalent to the annual consumption of more than 2,100 single-family homes. The project, which is due for completion at the end of 2018, is fully on track."
The data available can be separated into two different groups:

- **OSM data**: Data can be found in the OSM database. OSM data is well geo-referenced, but contains little meta-information (information on the facility attributes, such as pipeline diameter or pipeline capacity). OSM data is very helpful to obtain accurate routes of pipelines.

- **Non-OSM data**: Non-OSM data have in general lower geographical accuracy but contain a lot of meta-information. Unfortunately, such information is only known for a few facilities. One exception to this rule are shapefiles from TSOs. They are rare, but well geo-referenced. However, the resolution of the meta-information can vary from TSO to TSO.

One of the main challenges for SciGRID_gas is that, gas transmission data is incomplete and accumulated from different sources. Also such different sources can have different properties for one and the same facility. Hence, it is important to know, which data set supplies which information. Hence, this chapter here will introduce the relevant data sets (e.g. INET), starting off with the components, the elements for each component and then the attributes for each element.

3.1 Non-OSM data

Non-OSM data includes data from internet research, TSO press releases, TSO transparency platform, TSO public data, national open-source gas network data sets1, etc.

Some of the TSO information had to be made available due to EU-regulations. Other information has been made public as part of a company’s self presentation and advertisement. The information used by the SciGRID_gas project focuses on:

- the quality of the data
- the format of the data
- the level of representation of the data
- and the copyright restrictions on the data.

In addition, each data source is unique. Source specific tools need to be developed, so that all data sources can be made accessible for the SciGRID_gas project in the format as described in later chapter releases.

A significant portion of the project was spent on finding non-OSM data sets. Further data sources might be available, but unknown to the authors. If the authors are made aware of additional sources, the project will try to incorporate those, as this would only increase the depth of the data available and increase the applicability of the gas network data set and model.

Non-OSM data sources are very specific, addressing only certain aspects of the entire gas infrastructure. E.g. the GIE [GasIEurop20] data set supplies information on the daily gas flow in and out of gas storages in LNG terminals. However, they fall short on specifying the fundamental information of the actual physical location. Other data sets, such as the LKD [FMWP+17] data set is quite detailed in respect of pipelines, compressors and consumptions, however, only available for Germany.

Hence, the main task is to look closely at each data source, distil which data attribute values can be used, how it can be downloaded and incorporated into our SciGRID_gas model, and identify the copyright restrictions on the data source.

Due to copyright regulations, there are roughly two groups of data:

- Non copyright restrictive data (N-CRRD): here the copyright does not restrict the download, use and distribution of the data.

- Copyright restrictive data (CRRD): here the data can be downloaded and used internally, but not re-distributed to others.

The following is a list of the data sources that will be used throughout the project and an indication into which group of copyright restriction they fall:

- **OSM** (https://www.openstreetmap.org) (N-CRRD)
- **ENTSOG** (https://transparency.entsog.eu/) (CRRD)
- **GIE** (https://www.gie.eu/) (N-CRRD)
- **IGU** (https://www.igu.org/) (CRRD)
- **GasLib** (http://gaslib.zib.de/) (N-CRRD)
- **INET** ([see Refs_InternetData](https://www.igu.org/)) (N-CRRD).

Each data set and source comes with a different copyright regulation. The copyright can be rather non-restrictive (e.g. INET) or can be restrictive (IGU). It is attempted to use only freely available data, so that such data can be re-distributed. In more restrictive data cases (IGU, GB), it is not allowed to download the data and distribute it to others. However, it is allowed to let other potential users know of the location of such data and supply them with tools, that allow them to carry out the same data download and subsequent incorporation of the data into a gas network data set.

Note:

In case that other users are aware of other data sources, that might be useful to this project, please get in touch and supply us with a brief description of the data and the location of such data, so that additional tools can be developed to incorporate the data in this project. Please use the following email address: developers.gas(at)scigrid.de
3.2 The Norway (NO) data set

For Norway one has one main national lines operator, being Gassco [Gassco20a][Gassco20b]. It covers the Norwegian continental shelf for the energy sources of gas and oil to Continental Europe and Great Britain. The project SciGRID_gas is very fortunate, that Gassco allows for the download of the geo-referenced non-infield gas and oil facilities data through the Norwegian Petroleum Directorate. The facility data can be found under: https://www.npd.no/en/about-us/information-services/available-data/map-services/. The file to download from the table with all those links is the entry for “TUF” (“Main pipelines. The dataset contains not infield pipelines.”). The data covers the territorial waters of Norway, France, Great Britain, Germany, Denmark, the Netherlands and Belgium.

The facilities data set comes in form of a shapefile, and consists of poly-lines with some attributes, such as pipe diameter. Overall the topological quality of the data set is very high. Due to its “power”, the entire spatial data set is being loaded by tools, and has been incorporated into the SciGRID_gas gas data project.

In addition, a further meta data set for pipe lines exists in form a an Excel book. The additional information that this document contains is the capacity for those pipelines. Hence, this Excel data set needs to be merged with the Shape pipelines data set. The Excel data set can be found under the following URL:

(there is a “Download data” button above the “Gas pipelines on the Norwegian continental shelf” table, which will get the user the additional meta data file. This Excel table needs downloading and needs to be converted to a CSV file, by saving the main sheet from that XLSX file. The location of this file shall be the same as where the shapefiles have been stored, and shall have the file name “NorwayMetaInfo_01.CSV”.

3.2.1 Norway data manipulation

The gas facilities data set for the Norway came in form of shapefiles. It contains a table, which was read in with SciGRID_gas tools and dissected to fit into the SciGRID_gas data structure. The components that were read in are:

- Pipelines
- Nodes.

Subsequent to reading the data from the shapefiles, it was necessary to process the data so that it adheres to the SciGRID_gas data structure. As the data for Norway was supplied in a different spatial projection, all lat/long values had to be converted from “epsg:4230” to “epsg:4326”. Pipelines were converted to gas pipe-segments. Further for each pipe-segment, additional attributes “lat_mean” and “long_mean” were calculated and added.

All these changes made the Norway data set compatible with the SciGRID_gas data structure.

Below specific steps taken for individual components are given.

In addition, the meta data CSV file (“NorwayMetaInfo_01.CSV”) was also read in, and linked via the location names that were present in both data sets. This allowed for the pipe segments to also contain information on the gas flow capacity.
Pipeline data processing

There are 70 polylines in the shapefile “pipLine.shp”, However, there are a lot more pipelines to be seen on the corresponding map, with a tool like ArcGIS. This is because an individual polyline can contain several parts, such as T-junctions and several pipe-segments. Hence, part of the Python loading process was the task of converting all polyline parts into individual PipeLines elements. Hence, the following steps were carried out:

- Reading in a polyline
- Determine if polyline is part of gas * PipeSegments * element
- Determine number of parts to the polyline
- If a polyline consisted of only one part, then entire polyline was converted into a single * PipeSegments * element
- If a polyline consisted of more than one part, then the following steps were carried out:
 - Information where new parts of a * PipeSegments * element started within a poly-line was given through the variable parts.
 - New * PipeSegments * elements start at integer values supplied through parts.
 - Polyline parts are converted into * PipeSegments * elements.

This process generated 49 PipeSegments elements.

Nodes data

It was also possible to generate Nodes data from the above information. Nodes are the locations for start and end points of *PipeSegments * elements.

After all, there are about 58 Nodes elements throughout the territorial waters of Norway, France, Great Britain, Germany, Denmark, the Netherlands and Belgium.

3.2.2 NO data density

The data of the Norway data set contains the following components:

- Pipe-segments
- Nodes.

Each component is derived from a shapefile table. Below you will find a summary of the information as it will appear after the conversion into SciGRID_gas data format.

Pipe-segments

Pipe-segments were derived from pipeline information which was read in from the “pipLine.shp” shapefile. The only additional metadata that was available for PipeLines element was their diameter. After the conversion of PipeLines element to PipeSegments element, the length was calculate for each pipe-segment, based on the polyline values for each pipe-segment. In addition, a mean latitude and longitude value (lat_mean, long_mean) was calculated and added as an attribute value to the pipe-segments.

Overall there are 49 pipe-segments in the Norway data set. The PipeSegments elements have the following mandatory attributes:

- id: unique identifier
- name: name of the pipe-segment
SciGRID_gas: The raw NO data set, Release 1.0

- **source_id**: a source id
- **node_id**: the id of the start and the end node of the pipe-segment
- **lat**: a list of latitude values
- **long**: a list of longitude values
- **country_code**: a string pair indicating the country code of the start and end points
- **comment**: a user comment.

In addition, the following non-standard attributes are supplied (see Table 3.1) and are also given in respect of their data density (see Chapter 5.1 for a definition of ‘data density’):

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
<th>Units</th>
<th>data density [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>diameter_mm</td>
<td>a pipe diameter</td>
<td>mm</td>
<td>100</td>
</tr>
<tr>
<td>max_cap_M_m3_per_d</td>
<td>daily gas flow capacity</td>
<td>Mm³d⁻¹</td>
<td>100</td>
</tr>
<tr>
<td>waterDepth_m</td>
<td>depth of pipeline</td>
<td>m</td>
<td>100</td>
</tr>
<tr>
<td>is_H_gas</td>
<td>boolean if gas is high calorific</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Nodes

Nodes were derived from all other Norway data components. Here it was assured, that the same locations (same latitude and longitude) did not appear more than ones in the data set. In addition, they have the attribute of “country_code” which is set to “NO” for all of them. In addition, each node received an attribute “exact” with a value of one. Overall there were 58 found in the Norwegian data set.

Overall there are 84 node elements in the Norway data set. The node elements have the following mandatory attributes:

- **id**: unique identifier
- **name**: name of the pipe-segment
- **source_id**: a source id
- **node_id**: the node id of the location of the compressor
- **lat**: a latitude value
- **long**: a longitude value
- **country_code**: a string indicating the country code of the compressor location
- **comment**: a user comment.

In addition, the following non-standard attributes are supplied (see Table 3.2) and partially populated for **Nodes**:

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
<th>Units</th>
<th>Data density [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>value indicating the accuracy in geo-referencing</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>elevation_m</td>
<td>elevation of the node</td>
<td>m</td>
<td>0</td>
</tr>
</tbody>
</table>
3.2.3 Copyright for the Norway data set

Data availability and data usage

The data is provided by the “nationalgrid” operator of Norway for the Norwegian Petroleum Directorate (NPD). Here, we only use the shapefile that contains the geo-referenced gasPipeLines element. However, further information regarding the Norwegian data can be found under:

Copyright

The copyright regulations of this data can be found under (https://data.norge.no/nlod/en/) and is given as:

“The licensee, subject to the limitations that follow from this licence, may use the information for any purpose and in all contexts, by:

• copying the information and distributing the information to others,
• modifying the information and/or combining the information with other information, and
• copying and distributing such changed or combined information.

This is a non-exclusive, free, perpetual and worldwide licence. The information may be used in any medium and format known today and/or which will become known in the future. The Licensee shall not sub-license or transfer this licence. © Norwegian Petroleum Directorate.”

However, if you use this data or any data set which incorporates this data, you are also obliged to cite the original authors of the NO data as follows:

Data disclaimer

As can be found under the following link, the data disclaimer is given by the Norwegian Petroleum Directorate as the follow:

“Positional data accuracy is, unless otherwise stated, within approx. +/- 300 m. NPD is not responsible for accuracy on data reported by third parties. Content shall not be used for navigational purposes.”

3.2.4 Summary Norway data

The data set was available through the internet and was downloadable from the Norwegian “nationalgrid” operator. Tools have been created to load the Norway shapefiles and make them accessible throughout the SciGRID_gas project.

The Table 3.3 summarises the number of elements for each component found:
Table 3.3: Component element summary

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>BorderPoints</td>
<td>0</td>
</tr>
<tr>
<td>Compressors</td>
<td>0</td>
</tr>
<tr>
<td>ConnectionPoints</td>
<td>0</td>
</tr>
<tr>
<td>Consumers</td>
<td>0</td>
</tr>
<tr>
<td>EntryPoints</td>
<td>0</td>
</tr>
<tr>
<td>InterConnectionPoints</td>
<td>0</td>
</tr>
<tr>
<td>LNGs</td>
<td>0</td>
</tr>
<tr>
<td>Nodes</td>
<td>58</td>
</tr>
<tr>
<td>PipeSegments</td>
<td>49</td>
</tr>
<tr>
<td>Production</td>
<td>0</td>
</tr>
<tr>
<td>Storages</td>
<td>0</td>
</tr>
</tbody>
</table>

In addition, the map in Figure 3.1 visualizes the data for Norway.

Figure 3.1: Overview of the Norway data set.
3.3 Data summary

SciGRID_gas is based on open source data. To generate a gas pipeline network data set, one needs to access different data sets that were found throughout the project and presented here. Emphasis was given to depict the number of elements per component and the data density for each data set.

3.4 Summary

Gas component data sets come in different forms, licenses, formats and detail. The SciGRID_gas project can process such data and combine them to a consistent and reliable network data set.

The underlying gas component data sets were categorized into two different groups:

- OSM data: This is data originating from the OSM data base, containing well geo-referenced locations of gas facilities, such as pipe locations or gas storage facilities. However, it comes with very few meta information.

- Non-OSM data: These are all other data sources, which can “supply” detailed information on some of the gas facilities attributes. However, this information is sparse, as published only for a few facilities. Here, the INET data set was introduced as an example of the non-OSM data set, and the pathway of converting the raw data from the www into SciGRID_gas project component structure.

Here detailed information on one or several data sources have been given, and should be used as a reference for later data processes.
CONCLUSION

This document here is the documentation of one of the data sets that is part of the SciGRID_gas project. This document here started off with the introduction of the SciGRID_gas project, such as funding, duration and goals. In a subsequent chapter the data structure within the SciGRID_gas project was described, such as components, elements, attributes and attribute values, so that the transmission data set could be an input to certain gas flow model. The third chapter introduced the NO data set, which is a data set that was generated by converting the raw norwegian “Gassco” information into SciGRID_gas data structure.

The conversion resulted in a containing 48 pipelines throughout the north sea, with attributes, such as diameter_mm, max_cap_M_m3_per_d and waterDepth.
Chapter 4. Conclusion
5.1 Glossary

Dataset abbreviations can be found in Table 5.1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw InternetDaten data set</td>
<td>INET</td>
<td>This is the label/name for the raw InternetDaten data set</td>
</tr>
<tr>
<td>Raw Gas Infrastructure Europe data set</td>
<td>GIE</td>
<td>This is the label/name for the raw Gas Infrastructure Europe data set</td>
</tr>
<tr>
<td>Raw Gas Storage Europe data set</td>
<td>GSE</td>
<td>This is the label/name of the raw Gas Storage Europe data set</td>
</tr>
<tr>
<td>Raw Norwegian data set</td>
<td>NO</td>
<td>This is the label/name for the raw Norwegian data set</td>
</tr>
<tr>
<td>Raw Long-term planning and short-term optimization data set</td>
<td>LKD</td>
<td>This is the label/name for the raw Long-term planning and short-term optimization data set</td>
</tr>
<tr>
<td>Raw International Gas Union data set</td>
<td>IGU</td>
<td>This is the label/name for the raw International Gas Union data set</td>
</tr>
<tr>
<td>Raw EntsoG-Map data set</td>
<td>EMAP</td>
<td>This is the label/name for the raw EntsoG-Map data set</td>
</tr>
<tr>
<td>Merged and filled IGG data set</td>
<td>IGG</td>
<td>This is the filled data sets, for which the INET, GIE and GSE data sets were merged</td>
</tr>
<tr>
<td>Merged and filled IGGI data set</td>
<td>IGGI</td>
<td>This is the filled data sets, for which the INET, GIE, GSE and IGU data sets were merged</td>
</tr>
<tr>
<td>Merged and filled IGGIG data set</td>
<td>IGGIG</td>
<td>This is the filled data sets, for which the INET, GIE, GSE, IGU and GB data sets were merged</td>
</tr>
</tbody>
</table>

The glossary terms can be found in Table 5.2.
Table 5.2: Glossary (A)

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>component</td>
<td></td>
<td>A gas network consists of different components, such as pipelines, compressors LNG terminals and more. However, for a gas transmission network, there is a handful of components only: pipeline, compressor, LNG terminal, storage, entry point, border point, connection point, consumer, node, and production</td>
</tr>
<tr>
<td>element</td>
<td></td>
<td>Elements are instances of component. Hence, we speak of 10 compressor elements, if we have a data set that has 10 compressors. Here then we can refer to the first or the last or any element of such component</td>
</tr>
<tr>
<td>attribute</td>
<td></td>
<td>Gas facilities, such as pipelines or compressors, can be described with a large number of parameters, such as pipeline diameter, or compressor capacity. Those parameters are referred to as attributes. Hence, each component has a list of properties, which are different from one component to another component</td>
</tr>
<tr>
<td>facility</td>
<td></td>
<td>General term used for a gas appliance, such as compressor element, or LNG terminal</td>
</tr>
<tr>
<td>PipeLine</td>
<td></td>
<td>This is a gas pipeline entity, which has one start and one end point, however can run via many nodes, compressors and other gas network elements</td>
</tr>
<tr>
<td>PipeSegment</td>
<td></td>
<td>This is a gas pipeline, that has only one start and one end point, but no nodes in-between, Hence, only goes from one node to another node</td>
</tr>
<tr>
<td>LNG</td>
<td>LNG</td>
<td>Liquefied natural gas</td>
</tr>
<tr>
<td>CNG</td>
<td>CNG</td>
<td>Compressed natural gas</td>
</tr>
<tr>
<td>flow duration curve</td>
<td>FDC</td>
<td>It is the cumulative frequency curve that shows the percent of time specified flow were equal or exceeded during a given period. The information on occurrence of events is lost</td>
</tr>
<tr>
<td>Energiewende</td>
<td></td>
<td>German term for the change in using primary energies, the move away from coal to renewable energies, such as wind or solar</td>
</tr>
<tr>
<td>gas component data set</td>
<td></td>
<td>Raw input data, associated with components of the gas transmission grid</td>
</tr>
<tr>
<td>gas network data set</td>
<td></td>
<td>Output data, a coherent network of gas transmission components</td>
</tr>
<tr>
<td>OSM</td>
<td>OSM</td>
<td>Data that is available from the openstreetmap.org</td>
</tr>
<tr>
<td>non-OSM</td>
<td>Non-OSM</td>
<td>Data that is not part of the OSM data set</td>
</tr>
<tr>
<td>gas type</td>
<td></td>
<td>There are two types of gas High (H) and Low (L) calorific gas</td>
</tr>
<tr>
<td>mean absolute error</td>
<td>MAE</td>
<td>mean difference between input values and estimated values</td>
</tr>
<tr>
<td>data density</td>
<td></td>
<td>This is the ratio of the number of usable (not missing) attribute values over number elements of the component, in units of [%]</td>
</tr>
<tr>
<td>Transmission System Operators</td>
<td>TSO</td>
<td>This is an entity entrusted with the transportation of natural gas/electricity, as defined by the European Union</td>
</tr>
<tr>
<td>gas transmission network</td>
<td></td>
<td>This describes the physical gas transmission grid, however excludes any facilities/components that would be part of a distribution network and their facilities. This projects goal is to create an open source gas network data set that can be used to describe the European gas transmission network</td>
</tr>
</tbody>
</table>
Table 5.3: Glossary (B)

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas component data set</td>
<td></td>
<td>The term “gas component data set” is used for all raw data of objects/facilities that have been loaded using SciGRID_gas tools into a Python environment. However, not all elements (e.g. compressors) must be connected to pipelines. Hence, such a data set is referred to as a “gas component data set”, and the emphasis is on the term component.</td>
</tr>
<tr>
<td>gas network data set</td>
<td></td>
<td>A “gas component data set” can be converted into a “gas network data set”, by connecting all non-pipeline elements to nodes and all nodes are connected to pipelines, and as part of the process all network islands have been removed, resulting in a single network. Therefore the network contains nodes and edges which are connected, and all objects with the exception of pipelines are associated with nodes in this network, whereas pipelines are associated with edges. Hence, the emphasis here is on the term network.</td>
</tr>
</tbody>
</table>

5.2 Unit conversions

Table 5.4: Unit conversions

<table>
<thead>
<tr>
<th>From Unit</th>
<th>To Unit</th>
<th>MultiVal</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNG Mt</td>
<td>LNG Mm³</td>
<td>2.47</td>
</tr>
<tr>
<td>gas t/m³/h</td>
<td>gas Mm³/d</td>
<td>24/1000</td>
</tr>
<tr>
<td>LNG Mm³</td>
<td>gas Mm³</td>
<td>584</td>
</tr>
<tr>
<td>LNG t</td>
<td>gas Mm³</td>
<td>1442.48</td>
</tr>
</tbody>
</table>

5.3 Location name alterations

Location names should be changed into the 26 letters used in the English language.

For names from the individual countries please follow the suggested approach:

- Germany/Austria: *Umlaute* to be replaced with the letter followed by an ‘e’, e.g.: ü = ue.
- France/Belgium: Omit accent de gues and accent de graphs, e.g.: ó = o.
- Sweden: Please change the last three letters of the Swedish alphabet and replace e.g.: ä = a.
- Poland: Please change any letter, that cannot be found in the English alphabet, knowing that for some letters, that one can only use a single letter instead of the three different letters used in the Polish alphabet, e.g.: z = z.
- Spain/Portugal: Please change any letter, that cannot be found in the English alphabet, e.g.: ñ = n.
- Greece: Please do not use Greek letters. Please try to write the Greek words with Latin letters.
- Denmark: Please change any letter that contains non-English letters, e.g.: “å” with ”aa”.
- Slovakia, Czech Republic, Hungary, Rumania, Latvia, Lithuania, Estonia, Bulgaria, Slovenia, Croatia: PLEASE use your common sense, based on the examples from the other countries above.
5.4 Country name abbreviations

For convenience we provide a short list of names and two-digit codes (see Table 5.5) for the probably most important countries associated with the European Transmission Grid.

Table 5.5: Country codes

<table>
<thead>
<tr>
<th>Country name</th>
<th>Country code</th>
<th>Country name</th>
<th>Country code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>AL</td>
<td>Kosovo</td>
<td>XK</td>
</tr>
<tr>
<td>Armenia</td>
<td>AM</td>
<td>Latvia</td>
<td>LV</td>
</tr>
<tr>
<td>Austria</td>
<td>AT</td>
<td>Liechtenstein</td>
<td>LI</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>AZ</td>
<td>Lithuania</td>
<td>LT</td>
</tr>
<tr>
<td>Belarus</td>
<td>BY</td>
<td>Luxembourg</td>
<td>LU</td>
</tr>
<tr>
<td>Belgium</td>
<td>BE</td>
<td>Malta</td>
<td>MT</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>BA</td>
<td>Moldova</td>
<td>MD</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>BG</td>
<td>Montenegro</td>
<td>ME</td>
</tr>
<tr>
<td>Croatia</td>
<td>HR</td>
<td>Netherlands</td>
<td>NL</td>
</tr>
<tr>
<td>Cyprus</td>
<td>CY</td>
<td>Norway</td>
<td>NO</td>
</tr>
<tr>
<td>Czech</td>
<td>CZ</td>
<td>Poland</td>
<td>PL</td>
</tr>
<tr>
<td>Denmark</td>
<td>DK</td>
<td>Portugal</td>
<td>PT</td>
</tr>
<tr>
<td>Estonia</td>
<td>EE</td>
<td>Romania</td>
<td>RO</td>
</tr>
<tr>
<td>Finland</td>
<td>FI</td>
<td>Serbia</td>
<td>RS</td>
</tr>
<tr>
<td>France</td>
<td>FR</td>
<td>Slovakia</td>
<td>SK</td>
</tr>
<tr>
<td>Georgia</td>
<td>GE</td>
<td>Slovenia</td>
<td>SI</td>
</tr>
<tr>
<td>Germany</td>
<td>DE</td>
<td>Spain</td>
<td>ES</td>
</tr>
<tr>
<td>Greece</td>
<td>GR</td>
<td>Sweden</td>
<td>SE</td>
</tr>
<tr>
<td>Hungary</td>
<td>HU</td>
<td>Switzerland</td>
<td>CH</td>
</tr>
<tr>
<td>Iceland</td>
<td>IS</td>
<td>Turkey</td>
<td>TR</td>
</tr>
<tr>
<td>Ireland and Northern Ireland</td>
<td>IE</td>
<td>Belarus</td>
<td>UA</td>
</tr>
<tr>
<td>Italy</td>
<td>IT</td>
<td>Great Britain</td>
<td>GB</td>
</tr>
<tr>
<td>Russia Federation</td>
<td>RU</td>
<td>Europe</td>
<td>EU</td>
</tr>
</tbody>
</table>

5.5 Acknowledgement

We acknowledge the contribution of Dr. Ontje Luensdorf from the DLR Institute of Networked Energy System to the SciGRID_gas project.

SciGRID_gas: The raw NO data set, Release 1.0

