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ARTICLE INFO ABSTRACT

Handling editor: Pinar Menguc In this paper we provide an analysis of the convergence and numerical stability of the null-field method with discrete
sources. We show that (i) if the null-field scheme is numerically stable then we can decide whether or not
convergence can be achieved; (ii) if the null-field scheme is numerically unstable then we cannot draw any
conclusion about the convergence issue; and (iii) the numerical stability is closely related to the property of a
tangential system of radiating discrete sources to form a Riesz basis. Our numerical analysis indicates that for prolate
spheroids and localized vector spherical wave functions, the null-field scheme is numerically unstable (this system of
vector functions does not form a Riesz basis), while for distributed vector spherical wave functions, the numerical
instability is not so pronounced (this system of discrete sources almost possesses the property of being a Riesz basis).
We also describe an analytical method for computing the surface integrals in the framework of the conventional null-
field method with localized vector spherical wave functions which increases the stability of the numerical scheme.

1. Introduction dipoles; the significance of the multi-index a for each system of discrete
sources is explained in Ref. [1]. In terms of discrete sources, the infinite
In the first part of this series [1], we formulated the null-field scheme set of null-field equations for the (total) tangential fields e and h, reads as.
with discrete sources, as an approach aiming at constructing an r
approximate solution to the transmission boundary-value problem in / (e —eo) Mz (ks ) +j &(h — hy) - 0 (k, ~)} ds =0, (€Y)
electromagnetic scattering. In this paper we analyze the convergence and s L o
numerical stability of the method. Before proceeding we summarize _
some results of Ref. [1] that are relevant in our analysis. 3 ., 3
Let D; be a bounded three-dimensional domain with a smooth closed / (e —eo) Rz (k) +] \/;:‘_(h = ho) - Mz (k; )| dS =0, @

boundary S, and simply connected exterior D,. Furthermore, let n be the st
outward pointing unit normal vector to S, and ¢; and y, the (constant)
electric permittivity and magnetic permeability in the domain Dy, t = s.i,

/ e M (k) + &h-‘lla'(kf-)] ds =0, 3)
&
respectively. The wavenumber in D, is k; = ko./€; , where kg is the s
N

wavenumber in free space. In the null-field method with discrete sources
we consider the vector functions MY (k,r) and 9t!(k.r), for ¢ = 1,3 and
t = s,i, with the properties (i) V x M = kN and V x NI = kINI; (ii)
! and N! are finite at the origin; and (iii) M> and N3 satisfy the radi-

e 9N (k- +j\/’§h.mzﬁl(k,.)] ds =0, 4)

for @ = 1,2, .... The entire formalism is based on the completeness and

ation condition. The vector functions 9 (kr) and 9] (k.r) stand for the linear independence of the systems of tangential vector functions
localized, multiple, and distributed vector spherical wave functions,
distributed vector Mie potentials, and distributed magnetic and electric . ' . | 0
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in the product space I(S) = T2(S) x T%(S), where T%(S) is the Hilbert
space of all square integrable tangential vector functions, 0 is the zero
vector, and the superscripts 3 and 1 correspond to the subscripts s and i.
Once the surface fields e and h are determined, the scattered field as well
as the (electric) far-field pattern are computed outside a sphere enclosing
the particle by means of the expansions

Z[/{,M,,(k r) + 8N, (kr)], ™
o1 .
Ei(F)= k—x;[fuma(r) +jgana(T)], ®
where
Ja _ 2 X Nﬂl(k-\")
|:gu] _JkS./{e Mal(kx'):|
. & . Mﬁl(k.\") —
+j Exh [Nal(k,--) :|}dS. a=1,2,..., ()]
and
(l‘) mmn(r)_( )'”' Hlll(F)‘ (10)

ﬁu(F) =1, (?) = ( - j)m ln,,,,,(F), an
with mpn(T) and ng(T) being the normalized spherical harmonic vec-
tors.

For a numerical implementation, the infinite set of null-field equa-
tions (1)-(4) is truncated at some order N, and the tangential fields e and
h are approximated by the system of tangential vector functions (5).
Using the orthogonality relation

S W' ki) | [ g || 9 K)
/{ [n x JJi,,(kp)} '[9ta‘(k,-~) } + {n x Ny (k; )] [BJR,—,‘(k,-)] }dS
0
-[s)

(12)
for any a,p = 1,2,..., we found that the approximants
n x SJE};(ki )
ey N
hy = —j\/;n x Ry (ki)
13)

n xRk )
+dy
. €~
—J\/l%n x M) (k; )

satisfy the truncated systems of null-field equations (1) and (2). Inserting
the above representation into the truncated systems of null-field equa-
tions, and taking into account the expansion of the incident field in terms
of regular vector spherical wave functions
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E(}(r) = Z [[lu

a=1

o (ksr) + baN,, (k;r) ] (14)

we obtained the following matrix equation for the expansion coefficients

{c) . d)}}

p-1

CAN (Aa)q
Qll:v(ks-ki) NN nN(knk ) . (15)
(d/; )/;:1 (b,,)i:/:,

The approximate scattered field and far-field pattern are then given by

Eu(1) = 3 [ Ma ) + 2N, ). (16)
O
E.eon(T) =E;U,7m,(r) +ig i (7)), (17)
with
1 Na' (k)
= jk? / ey
gy s Mz (k, -)
(18)
Mg' (k)

ﬂ-\/’zh,v. ' s, a=1,2,...
o N (k)

while, for computational reasons, the series (16) and (17) are approxi-
mated by their partial sums. i.e.,

E v ( Z[f:M +gu (k )} (19)

woNM(r) = Z a mu

.« a=1

+.]g« nu( )] (20)

The null-field scheme corresponds to the choice M = N, in which case,
the above development enabled us to introduce the T matrix of the
particle

(f’:v ) 2/:1 (aq )2’:1
=Ty
&)y (ba)g-r
by

TN:QlIN(kxvki)[Q}lN(kX*kl)] : HN(k k)

The explicit expressions of the matrices Qgy, QY y» and Q;1y are given in
Ref. [1]. When localized vector spherical wave functions are used as
discrete sources, the null-field scheme coincides with the T-matrix
scheme of Waterman.

2. Convergence and numerical stability

Almost all of the studies published on the null-field method are of
practical (numerical) nature, and little progress has been made on
answering the fundamental questions concerning the convergence of the

algorithm. Till now it is not known.

1. to which particle shapes and sizes the method is applicable;
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2. which field quantities are convergently approximated, i.e., the far-
field pattern, the field outside a circumscribing sphere, the surface
fields and

3. what type of convergence can be expected, i.e., pointwise, uniform, or
in the least-squares sense.

Denoting by u = [e,h]” the solution to the infinite set of null-field
equations (1)-(3))-(4), where T denotes transpose, and by uy =
[en, hy]" its approximation given by Eq. (13), a justification of the null-
field method requires positive answers to the following questions.

Viability. Is the matrix Qs nonsingular?

Convergence. Does the sequence uy converge to u as N — co?

Numerical stability. Does the condition number of the matrix Q3,5 have a
“sufficiently small’’ upper bound?

The numerical stability of the null-field method is a more stringent
requirement than the viability of the method. The reason is that a non-
singular matrix with a large condition number is difficult to invert
numerically, and in this case, the numerical results will strongly depend
on the roundoff errors and the errors in the data. The convergence of the
surface fields is a very strong result because, in view of the estimates (38)
and (39) in Ref. [1], it implies the uniform convergence of the approxi-
mate far-field patterns Esony on the unit sphere Q. Actually, the
convergence issue is related to the following decision question.

Decision. For particles for which unstable results are obtained, does the
algorithm diverge for those shapes or are the numerical instabilities so strong
that an approximate solution cannot be accurately computed?

For proving the convergence, it is not sufficient to know that one or
more systems of functions are complete and linearly independent; we
need to know that such a system possesses the much stronger property of
being a basis. It should be pointed out that, as mentioned in Ref. [1], we
have to distinguish between the “completeness property’’ and the “basis
property’’, i.e., between a (convergent) infinite-series expansion and a
finite sum of a complete system intended as an approximation.

Only in a few papers dealing with acoustic scattering, some funda-
mental results about the viability, convergence, and numerical stability
have been established.

1. Kristensson et al. [2] (see also, the reorganization of Ramm in
Ref. [3]), presented a convergence proof of the surface field through a
more general formulation than that of Waterman. Specifically, they
considered the general exterior Dirichlet and Neumann radiation
problems (not just the scattering problems) and allowed more flexi-
bility in the choices of the trial and test functions. This formulation
does specialize to cover the (first) Waterman algorithm when the trial
and test functions are constructed from the spherical wave functions.
However, the convergence theorem established in Ref. [2] does not
apply to this case. The reason is that the hypotheses require at least
that the test-function sequence form a basis (in fact, a Riesz basis) for
L%(S) (the Hilbert space of all square integrable scalar functions on S),
whereas the spherical wave functions form a basis for L?(S) only when
S is a sphere centered at the pole of the spherical solutions.

2. Dallas [4,5] identified a weaker sense in which the radiating spherical
wave functions do form bases, namely, with respect to an inner
product that is intimately connected with the far-field patterns of the
radiating solutions to the Helmholtz equation. For the exterior Neu-
mann radiation problem, Dallas provided an operator condition that
guarantees (i) the viability of the algorithm, (ii) the mean-square
convergence of the far-field patterns of the approximations gener-
ated from the (second) Waterman scheme on the unit sphere, and (iii)
the boundedness of the sequence of matrix condition numbers.
Furthermore, he proved that the operator condition holds at least
when the scattering obstacle is ellipsoidal.

In Appendix 1 we extend the convergence analysis of Kristensson
et al. [2] to the electromagnetic scattering by a dielectric particle. The
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strategy that we follow consists in assuming a basis property, proving the
desired convergence result, and then attempting to identify particle ge-
ometries (surfaces) for which the basis property (and so, the convergence
proof) holds. The conclusions of this analysis can be summarized as
follows.

1. If for a given particle geometry, the null-field scheme is numerically
stable, then by means of the condition (57) we can decide whether or
not the sequence uy converges to u as N — oo.

2. If for a given particle geometry, the null-field scheme is numerically
unstable we cannot say anything about the convergence of the null-
field method; the decision question cannot answered. This situation
is typical of Fredholm integral equations of the first kind when the
operator corresponding to the null-field equations is bounded and
injective, but has an unbounded inverse.

3. The null-field scheme is numerically stable if and only if the
tangential system of radiating discrete sources forms a Riesz basis.

In practice, the stability and the convergence can be checked
numerically.

1. A simple test of the numerical stability involves the computation of
the condition number x(Qsy) of the matrix Qziy. If x(Qs1y) is
bounded with respect to N (the degree of approximation), the null-
field method is numerically stable; otherwise, the scheme is numer-
ically unstable. It should be pointed out that, because the calculation
of the condition number x(A) of a matrix A is an expensive compu-
tational process, we may calculate an upper bound for x(A) as [6]

2 (1R’
*A) < Ga) < N ) ’

where A is a 2N x 2N complex matrix,

[|A[l=

is the Frobenius norm of A = (a;), and the determinant det(A) can be
computed, for example, by means of the LU factorization (when the in-
verse of Qs;1y is also computed by means of the LU factorization).

2. As the convergence of the tangential fields appears to be a too strong
result, we may define the convergence criterion of the null-field
method in terms of the far-field pattern, i.e., the question about the
convergence of the null-field method is formulated as

Convergence. Does Es,ny converge to E,, as N — oo uniformly on Q?
The far-field pattern is delivered by all T-matrix codes, and so, the
convergence of this quantity can be easily checked. If convergence is
achieved, then from the result limy_ 2y =2 = limN_,m,|zN|2 = |z|2
for zy,z € C, we obtain the convergence of the differential scattering
cross section, i.e.,

ON (?) = EmNN(F) |2

—

Em(?)|2:o'(?) as N — oo uniformly on (21)

which in turn implies the convergence of the scattering cross section, i.e.,

1
Coew :_1/|EwoNN
‘ [Eo|”
Q

A simpler and more pragmatic criterion is to claim that the null-field
method converges if the differential scattering cross section converges,
i.e., the question about the convergence of the null-field method is

2 ~
&t -

1 2 o~
5 | |Eso| d'T=Cse as N — oo.
B )
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formulated as

Convergence. Does oy (T) converge to o(T) as N — oo uniformly on Q?

A convergence test of the differential scattering cross section is
considered in the T-matrix code developed by Barber and Hill [7], i.e.,
the differential scattering cross section is assumed to converge if it con-
verges within a prescribed tolerance at 10 scattering angles uniformly
chosen in [0, 7.

A comment regarding the convergence of the conventional null-field
method can be made here. All numerical experiments performed with the
null-field method with localized vector spherical wave functions sug-
gested that for spheroidal particles, the method is numerically unstable,
but the far-field pattern converges as long as the numerical instability
does not considerably influence the results. In this context, it seems that
the conclusion reached by Dallas in the acoustic case is also valid in the
electromagnetic case, i.e., the null-field method with localized vector
spherical wave functions converges for spheroidal particles. Thus,
denoting by Ny the truncation index for which the far-field pattern
converges within a prescribed tolerance and by Nipgap the truncation

index after which the numerical instability worsens the results, a reliable
approximate solution can be obtained when Niopy < Ninstap; Otherwise,
erratic results are obtained. At this time, our efforts to extend the
approach of Dallas to the electromagnetic scattering by a dielectric par-
ticle have failed, and more work is required to solve this problem. A first
step toward this goal is to consider the simpler problem of electromag-
netic scattering by a perfectly conducting particle, i.e., the direct elec-
tromagnetic scattering boundary-value problem.

In Figs. 1-3 we illustrate the variation of the condition number
k(Qz1n) of the matrix Qs;y and the relative error in the differential
scattering cross section oy with respect to the truncation index N. As
discrete sources we consider localized and distributed vector spherical
wave functions. The localized vector spherical wave functions are given
by

M (kr) = MY, (kr) = m

mn

V x [uf, (ke)r], (22)

mn
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Fig. 2. The same as in Fig. 1, but the results corresponding to localized vector spherical wave functions are computed in extended precision.

1
9 (kr) =N, (kr) =2V x M}, (kr), ¢=1,3, (23)
where @ = (m,n) and @ = (—m,n) forn=1,2,...and m = — n,...,n,
while the distributed vector spherical wave functions are given by
Wy (k) = M, k(e = 2,2) ], 24
N (k) =N, [k(r = 2,2)], q=1,3, (25)

where {z,}’ , is a dense set of points situated on a segment I',C D; of the
z-axis, Z is the unit vector in the direction of the z-axis, [ = 1 if m = 0 and

[=0ifm#0,a=(mn)anda = (—m,n)forn=1,2,...andm = — n,

...,n. The particle is a prolate spheroid with refractive index m, = 1.5,
size parameter ksa = 20, and eccentricity a/b, where a and b are the
semi-major and the semi-minor axis of the spheroid, respectively. Two

values for the eccentricity are considered, namely a/b = 2 and a/b = 4.
The results are computed with (i) localized vector spherical wave func-
tions in double precision, (ii) localized vector spherical wave functions in
extended precision, and (iii) distributed vector spherical wave functions
in double precision. We identify N,o,, with the first value of the trun-
cation index N for which the convergence criterion of Barber and Hill [7]
is satisfied, and N, with the first value of the truncation index N for
which this convergence criterion ceases to be satisfied. For prolate
spheroids, the following conclusions can be drawn.

1. In the case of localized vector spherical wave functions, the condition
number «(Qs;y) grows without bound, regardless of the precision
used. We conclude that this null-field scheme is numerically unstable,
and so, that this system of vector functions does not form a Riesz
basis. Convergence is achieved whenever Niony < Ninstap, that is, as
long as the numerical instability does not have a significant impact on
the results. Observe that for double precision calculation and a/b =4,
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Fig. 3. The same as in Fig. 1, but the results correspond to distributed vector spherical wave functions and are computed in double precision.

no reliable approximate solution can be computed; presumably, the
situation Njpgap > Neony OCCUTS.

2. In the case of distributed vector spherical wave functions, the con-
dition number x(Qs;y) is significantly smaller than that correspond-
ing to localized sources and increases very slowly with respect to N
(especially when the particle eccentricity increases). The numerical
instability is not so pronounced, and it seems that from a numerical
point of view, this system of discrete sources almost possesses the
property of being a Riesz basis. Convergence is achieved even for
double precision calculation.

Thus, for this type of scatterers, the superiority of distributed over
localized vector spherical wave functions is evident.

As a final comment we mention that the numerical problems associ-
ated with the conventional null-field method are due to (i) the numerical
instability of the inversion process and (ii) a loss of precision in
computing the Q3 y-matrix elements. Several results in overcoming these
problems deserve to be mentioned.

1. To increase the numerical stability of the matrix inversion, the

orthogonalization approach which exploits the unitarity property of
the T matrix [8,9], a special form of the LU-factorization method
[10], the Gauss elimination method with backsubstitution [11], the
block matrix inversion method [12], and the perturbation approach
for the Q3;y-matrix inversion [13] have been proposed.

. Somerville et al. [14], following the results established by Waterman

in the acoustic case [15], showed that in the case of spheroids, the
numerical computation of the integrals of the Qs;y-matrix elements
may suffer a significant loss of precision due to exact cancellations of
large parts of the integrands. The sources of this problematic behavior
are some particular terms in the Laurent series expansions of the
integrand. Later on, Somerville et al. [16] reformulated the integrals
such that these problematic terms are removed, and designed a
numerically stable implementation of the null-field method for
T-matrix calculation.

. Petrov et al. [17] developed the so called shape matrix (or Sh-matrix)

method as an effective approach for averaging particle ensembles
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over their size parameter and refractive index. The Qs;y-matrix ele-
ments are expressed through analytical relations in terms of the
Sh-matrix elements, which depend only on the particle shape. On the
other hand, the Sh-matrix elements are determined analytically for
many types of particle [18-21], and the resulting analytical solutions
speed up the calculations and make them more stable.

4. An increase of the accuracy in computing and inverting the matrix
Q3;y can be achieved by using extended- and multiple-precision
floating-point variables [14,22].

Relying on an ingenious and simplified representation of the
Q31ny-matrix elements due to Somerville et al. [23], we designed an
analytical method for computing these matrix elements. The technical
details of this approach are given in Appendix 2. As in the case of the
shape matrix method, we found that the stability of the resulting
analytical solutions is substantially increased.

3. Discussion

Waterman had an extraordinary practical intuition and always
preferred physical instead of mathematical arguments. Here are two
examples.

1. As a consequence of the completeness of the radiating spherical wave
functions, the infinite system of null-field equations is uniquely
solvable for all values of the wavenumber. In fact, this was one of the
aims in Ref. [24], i.e., to formulate a moment problem which is free of
interior-eigenvalue type of instability. However, in order to approx-
imate the total field, Waterman selected sequences of trial functions
constructed from the regular spherical wave functions which fail to be
complete at the wavenumbers corresponding to the pertinent interior
eigenvalues (see for example, Eq. (5)). While the Appendix of
Ref. [24] indicates that Waterman was aware of this lack of
completeness, he nevertheless retained this choice because the nu-
merical results seemed to indicate that the defect produced no
instabilities.

2. The null-field scheme of Waterman can be regarded as Galer-
kin-Petrov projection scheme, in which the trial and test functions are
different. Consider now the infinite set of null-field equations (1)-(4),
written in an equivalent form as

/ [0 x (e —eg)] -[A x Mz (k, -)]
5 (26)

ﬂ%@ﬁxm—mﬂﬁxmﬂ&ﬂ}mza

/ [ x (e — e0)] -[7 x R (K, -]
4 @7)

E.\'

+jy /2[00 (h = h)] - [0 x Mg (k -)}} ds=0

/{(ﬁxe)[ﬁx‘l‘iﬁ'(k,»-)] +j\/"§(ﬁ><h)'[ﬁ thﬁl(kj')]} ds =0,

(28)

/{(ﬁxe){ﬁx‘)tﬁ'(k,‘)] +j\//§(ﬁ><h)~[ﬁ><9.llﬁ‘(k,~)]} ds=0

(29)
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2 fora =1,2,..., and approximate e and h by the system of tangential
vector functions (6), i.e.,

i x O (k, ) }

~ N
n x eN} "
~ = C
Eis %\ L,/’ﬁﬁ x 9k )
&

- A xRk )
+dY }
[ by ~ k
i, /%n X M3 (k, )

0 M (k)

+&
L I TN
_Jﬁn X (ki)

r nx gli‘(k, ) }

~N

+cp
IR
_J\/;in X 9]2/1,(k,- )

The resulting null-field scheme, in which the trial and test functions are
the same, is the Galerkin projection scheme, and according to the discrete
approximation theorem [25], the sequence uy = [ey, hy]” converges to

u=[e,h)" as N - oo. It deserves mention that in this case, the approx-
imants ey and hy have no physical meaning; they cannot be interpreted
as the tangential components of the internal electromagnetic field.
Moreover, although the scheme is convergent, it is severely numerically
unstable. As a result, even for simple particle geometries, an approximate
solution cannot be accurately computed (we are in the case
Neonv > Ningtab)- On the other hand, the numerical performance of the
Waterman scheme, for which we cannot prove convergence, but in which
the approximants have a physical meaning, are much better.

In conclusion, Waterman gave us a power tool for analyzing the
acoustic and electromagnetic scattering by nonspherical particles, but,
unfortunately, after more than 50 years we are still not able to explain
mathematically why this method works so well in practice.
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Appendix 1

In this appendix we extend the convergence analysis of Kristensson et al. [2] to electromagnetic scattering by a dielectric particle. The definitions of
the function spaces that are relevant in our analysis are given in Appendix 1 of Ref. [1], while some basic results from functional analysis are sum-
marized in Appendix 4 of Ref. [1].

Setting u = [e, h)”, we express the infinite set of null-field equations (1)-(2) and (3)-(4) in an operator form as
: f
llo] a0

Here, the operators A, : T2(S) — 1% and A; : T*(S) — 12, where I? = [2 x [2 and [2 is the Hilbert space of square-summable sequences, are given by

noxn x N (k) ®
] . ]
[ (/ {e.*ﬁ;"(k,.-)—k j\/lgh-ﬂ.‘ig“(k,\.-)} dS) ] < wl | K >:.s
S ’ a=1 & a=1
e
A u= [ € TX(S) — jk? = —jk? er (31)
h
i ” noxnox My (k, -) "
/[ewﬁ(k.f) ¥ j\thﬂk\.-)} as e
& J
) k a=1 < ) >
U L B xowt ) [T
s a=1
and
nxnxN (k- °
_ < . > ]
(/[ema‘(k,--)+j\/’§h.wz;'(ki-)] dS) I Y 7P [
S a=1 ‘i a=1
e
Au= { € TX(S) - jK = —jK? er, (32)
h
m ® fxnx M (k) ®
/[e-‘lli;'(k,--)+j\/:h-‘Jl;‘(k,--)] ds e
& i
) S a=1 < s >
h .M 2.8

a=1

respectively, and

(/ [e()“)l;’*(k_f-) + j\/?ho~9)i;3(kx~)} dS)
) a=1

N

f=ikl ; (33)

(/ [eo‘lll;z(k, ) + _| %h() ‘]lﬁx(k\):| ds)
N * =

a=1

where the bar notation means complete conjugate. Note that the last relations in Egs. (31) and (32) follow from the identity a= —ni x i x a for a €
T2(S).
Consider the null-space of the operator A, i.e.,

TS) =N(A)={veTS) | Av=0},

which, under the assumption that .4; is bounded, is a closed subspace of T*(S), and so, a Hilbert space with the induced scalar product.

Assertion 1 The system of tangential vector functions
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noxnox M (k) noxnox 9 (k)

m , (34)
j\/zﬁ x A x W (k) | |§/=0xnx M (k)

A £,

is complete in T (S).

Proof. The second relation in Eq. (32) shows that for all v = [e,h]” ¢ iz(S), we have

- onoxn x (k)

J Y (35)
<[h] _j\/gﬁ X 1 % 9Jz;(k,.-)} >,S_

€l =0, a=1,2,.... (36)
<M _j\/‘zﬁxﬁx‘]l,,'(kp)]> ‘

These equations and the fact the system of tangential vector functions (6) is complete in T(S), imply that the system of tangential vector functions (34)

is complete in iz(S). Indeed, for v € iZ(S), Egs. (35) and (36) and the closure relations for the system of tangential vector functions (34) coincide with
the closure relations for the system of tangential vector functions (6); hence v = 0. []
Consider now the subspace.

T3(S) =TR(S) x T3(S)

= span n x “Jﬁ/lx(k.’ ) ‘ n x ‘]l/l;(ki ) .
0 0

0 0 N
. €~ ’ . €~ . (37)
[—J\/;’n x My (k; -) :I [—J\/;n x Ny (k; -) } }/”

The completeness of the system of tangential vector functions (5) implies that the sequence of subspaces If, (S) is limit dense in T2(S), that is,

||v —PNV||2.S -0 as N = oo, (38)
where Pyv € T3 (S) is the orthogonal projection of v € T*(S) onto I (S). Defining

i x Mk, ) i x Y (k) N
I,(8) = span{ [ CE 1 }, |: e | ] } (39)
_J\/;;n X R (k) —j\/;n X M, (k)

1 MY (k) Ao 0 (k) N
i;v(S) = span e , e , (40)
j\/gﬁ x Ry (k) j\/gﬁ x My (ki -)

p=1

. . . . 32 32 . o . .
and taking into account that the tangential vector functions generating ¥(S) and T (S) are linear combinations of the tangential vector functions
generating I%(S), i.e.,

- A XMk ) T 0
_ l:n xMy(k) | .
_ij\/gﬁ x 9 (k; ) 0 | —j\/;"_ﬁ x Ry (ki <)

xR (k) |

- xRNk - 0
e = [ + . & ~ 1 )
j:j\/zﬁ x My (k; -) 0 | Ty mx M (ki )
L l‘i - i
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we find

”

=2 ~2
T(8) =Ty(S) @ Ty(9)- (41)
The subspace 1,2,(8) can be characterized as follows.

1. From the orthogonality relation (12) and the definition of the operator A; as given by the first relation in Eq. (32), we see that

1 x MY (k)

n X (ki)
A o } =0 and A } =0
—'\/En X 91},(k,< - )

. € ~
- \/’%n X O (k; -

for any f = 1,2, .... Therefore, ii,(S)ciz(S), ie., forany vy € i,%, (S), we have Ajvy = 0.

2. Let Qy be the orthogonal projection operator in I?, defined by the formula

Onf=fy = [a,....ay,by,....by]" €13,

where 12, = QuI? and

~ ~ o~ = - = T
f:[a1 ..... aN,aN..,...,bl,...,bN.bN.],...] .

Obviously, the equation A;vy = 0 implies Qn.A;Vny = O for any vy € ii, (S). Thus, iIZ\] (S) is the null-space of the operator Qn A;, i.e.,

ii,(S) = N(QvA) = {Wy € T}(S) | Qv AWy = 0}

The next result states that the sequence of subspaces ii, (S) is limit dense in iz(s).
Assertion 2 Assume that

(1) the operator A; is bounded in T*(S), and
(2) there exists cy; > 0 such that

OvAVN, > Clil |VN ‘ |2.S -

for all ¥y € Toy(S) and all N.
Then, the sequence of subspaces i,zv (8) is limit dense in iz(S).
Proof. By assumption, the operator 4; is bounded in T%(S), and therefore, there exists cy; > 0 such that

||A,v||2§c,2|’v||2_s for all ve T(S). (43)

Take some v € T~ (S)cT%(S) and let Py be the orthogonal projection operator from I?(S) onto I,zv (S). Because Ii,(S) is limit dense in T*(S), we have

||€'—PNV||2_S—>O as N = co. (44)

From Eq. (41), we see that Pyv € I%,(S) can be written as

PN;' = ;’N + /\TN (45)

with vy € ii, (S) =N (QnA;) and Vy € i,zv(s). Then, using the relations
OnAivy =0, (46)

Av =0, (47)

10



A. Doicu, M.1. Mishchenko Physics Open 3 (2020) 100019

we get

. (42) 1 .
[Vnllos < C_HQNA:'VNHz
1i

(as) 1 .
= —||QN-A.(PNV - VN)H:

Cii

(46)

1 -
= —||QnAiPNV||,
Ci

1 -
< THAprVH:
li

1
‘2>;||Af(PNv -9,

L T
< 7||PNV =Vl (48)
i

Finally, letting Py be the orthogonal projection operator from - (S) onto ilz\, (), and taking into account that

. . R - <2
[[V=PyV||,5 < [IV—Wyll,g for any wy € T (S), (49)
we obtain
|[v = Pavl,

<19 =l

§ ||€’ - (‘7/\’ +VN) 2.8 + ||"7NH25

= H{I_PN;'HZ.S + ||VNH2.S

“8 Cai S
(12 lipvs sl
Cli

44
(—30 as N — oo,

and the assertion is proved. []

Let A; be the restriction of 4 to iz(S), regarded as

A=Al

P T(S) = R(A,),

where

R(A) = {feP|f=AF for some VeI ()}

is the range of A;. In this case, the solution of the operator equation (30) is equivalent with the solution of the operator equation

A =f. (50)

According to Hadamard, the operator equation (50) is called well-posed provided that.

—

. for any f € R(.;ts), a solution u exists, i.e., the operator A is surjective;

N

. the solution u is unique, i.e., the operator Ay is injective; and
3. the solution is stable with respect to perturbations in f, in the sense that if Asiig = fo and At = f, then u — up whenever f — fy, i.e., the inverse

~-1
operator A, is bounded.

If one of the Hadamard conditions is violated, the problem is said to be ill-posed. In our case, we know from the second relation in Eq. (31) and the

~2 ~
completeness of the system of tangential vector functions (34) in T (S) that the operator A is injective.

In practice, the third Hadamard condition has a significant importance; the violation of this condition creates serious numerical problems because
small errors in the data can be dramatically amplified in the solution. The stability of the solution can be verified by using the Bounded Inverse Theorem,

11
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. . - . ~-1 . ~ N\ . . . .
according to which, the bounded operator A has a bounded inverse A,  on its range R(A;) if and only one of the following assumptions is satisfied:

1. .;ls is bijective;
2. Aq is injective and has a closed range R(.4;); and
3. A, is bounded from below, i.e., there exists ¢;; > 0 such that

cil[Vlos < |JAV]], for all ¥ TX(S) (51)
More precisely, we have the following result.

Assertion 3 The operators A; and A, ! are both bounded if and only if the complete system of tangential vector functions (34) is a Riesz basis of iz(S).

Proof. Before proceeding we note that by Assertion 1, the system of tangential vector functions (34) is complete in i (S). According to the Bounded
Inverse Theorem, the operators A, and ,le_ ! are both bounded if and only there exist ¢y, ¢as > 0 such that (cf. Eq. (51))

9| ,<H.;1_j V||, for all Veiz(S). (52)

28—

, S

Taking into account that for v = [e, h]T, we have (for real k)

Axn xR (k) ’ o n x M (k)
© e e 2
st 550 ] RN ) *
R h j\/’zﬁ <A ox Mk, |28 h j\/Eﬁ X ox Nk ) |2

£ £

the conditions (52) become
2
noxn x N (k) noxn x Mg (k)
(54)

BN N
ot ][] AR
28 T 4+ h j\/’gﬁxﬁxﬁﬁa"(k\.-) 28 h j\//:;‘ﬁxﬁxﬂl,;"(k_\.-) 25

for all ved’ (s)

where C/1.2s =C12 /kf. These inequalities hold if and only if the system of tangential vector functions (34) is a Riesz basis of iz(S). O

Thus, if the system of tangential vector functions (34) is a Riesz basis of 3 (S) then the operators A and ]l; " are both bounded, and so, in view of the
Bounded Inverse Theorem, A; is bijective. As a result, the Hadamard conditions are satisfied, and the operator equation (50) is well-posed. If this is not

-1
the case, A, is unbounded, and the solution to the operator equation (50) is not stable.

We come now to the null-field scheme for the operator equation (50). This consists in the computation of the coefficients {c;}’ , d}}’ }2’71 from the

projection equation

O A,y = Oxf, (55)

where iy € ii,(S) is given by

nx My (ki -) nx Ny(ki-)
c. —[eN]—i o v (56)
N - B 3

e N >
hy] = —j\/gﬁ X 9 (k) —j\/gﬁ X W (k; )

The explicit representation of Eq. (55) is (cf. Eq. (15))

~ \N
(CN N_ (aa)u=l
Qle(k-wk")|: I;v /'i’_] -
(d/f )/}:| (i’u)::]

where

12



A. Doicu, M.1. Mishchenko Physics Open 3 (2020) 100019

(au)([:lzl (au)ﬁzl
= Q) (ks k) el
- \
(ba)aer (bu))y_,

A justification of the null-field method requires positive answers to the following questions.

Viability. Is the matrix Qs nonsingular?

Convergence. Does the sequence uy converge to u as N — o0?

Numerical stability. Does the condition number of the matrix Qg,y have a “sufficiently small’’ upper bound?

Because a nonsingular matrix with a large condition number is difficult to invert numerically, it is apparent that the numerical stability of the null-
field method is a more stringent requirement than the viability of the method. With respect to the numerical stability we note that if the solution to the

. . . ~-1. . . . . e .
operator equation (50) is not stable, i.e., A,  is unbounded, then the null-field scheme is not numerically stable, i.e., the condition number of the matrix
Qs increases without bound when N increases.

In the following we consider the convergence issue, and in order to simplify the analysis, we assume that the matrix Qs;y is nonsingular and that

Assertion 2 is satisfied, i.e., the sequence of subspaces i,zv (8) is limit dense in 32(8). The next result gives sufficient conditions for the convergence of the
null-field method.

Assertion 4 Let u and uy be the unique solutions of Egs. (50) and (55), respectively. Assume that

(1) the operator Aq is bounded in iz(S),and
(2) there exists c1s > 0 such that

llOn A1, > e[, 50 (57)

for all vy € To(S) and dll N.
Then,

||ﬁ_ﬁNHz.s_’0 as N — oo. (58)

If moreover.

(3) the condition

A/lli_l:(goEmNM(?):EmN(F) is uniformly in N and T € Q (59)
satisfied

then

Al/l_[l;lo E,ony (T) = E, (F) uniformly on £, (60)

and

,Jifgﬂv =fa, Al/l_{t;g{f = g, uniformly in a, (61)

where Eg (T), Eson (T), and Esony (T) are given by Eq. (8), (17), and (20), respectively.

Proof. Letu = [e,h]” ¢ 3 (S)anday = [en, hy]" € ii, (S) be the unique solutions of the equations (50) and (55), respectively. The proof is organized
as follows.

1. First, we prove the convergence result (58). The boundedness of the operator .le, ie.,

A, en|[¥]], . for all ¥eT(S), (62)
2 2.8

implies

|lov A, < ||ATF|], < e [7][25 for all €T () (63)

Hence, from Egs. (57) and (63), we obtain

cill¥ulls < 1OvATN||, < eafl[Vllys for all vy € T (64)

13
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Because by assumption, the sequence of subspaces i,zv (S) is limit dense in iZ(S), we have, for any v € 3 (S),

v—Pyv||,,—0 as N — oo, (65)
||V = Py¥5

where Pyv € ii,(S) is the orthogonal projection of v € iZ(S) onto i;‘:, (S). The projection of Eq. (50) onto I2, i.e.,

QN-Axﬁ = QNf- (66)
yields
OnA [Py + (I — Py)ii] = Ouf. (67)

From Egs. (55) and (67), we obtain

QN-A,\-[PNﬁ +(I- PN)ﬁ] = QN-/~4.\-ﬁN~ (68)
and further,
OnA; (il — Pyit) = Oy A (I - Py)a. (69)

P ~ = .2
Then, taking into account that uy — Pyu € Ty (S), we get

- P 1 ~ P
[lay — Pya||, S;||QNA.v(“lv — Pyu]|,

69) 1 ~ ~
= C—I_HQNA»-(I - Py)ul|,
Cu~ 3 ~
SC_“ “_PN“”z.s
(6—5.)0 as N — oo, (70)

and consequently,

(o —ayl], < [[a—Pyal], +[|ay = Pyaf],
0 as N = o0. (71)

2. We prove now the uniform convergence of Esnn (T) to Es, (T) as N — co. Employing the same arguments as in the derivation of the estimate (130) in
Appendix 3 of Ref. [1], we find

B () ~ Eu ()] < Co [l — el + [y — ], ). 72)

for all T € Q, where E;(T) and E,n(T), are given by Eq. (8) and

Eux(F) =ff_; / {F x en(r') + \/iz? x [y (F') x ?]}e KEE gs(r), 73)
s s

respectively. From the convergence result (cf. Eq. (71))

.2 2 2

|6 —ay[[, = ey —e[[,s +[[hy —h[[,; >0 as N - co,

we then get

Jim E;oon (T) = E;(T) uniformly on Q. (74)

14
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Since E,n(T) possesses the series representation (17) and E,yy(T), given by Eq. (20), is the partial sum of this series, it follows that

A}im E vy (T) = E;n(T) uniformly on Q. (75)

Now, for T € Q, the assumption (59), which is stronger than the convergence result (75), implies that for ¢ > 0, there exists Mo = Mo (¢) such that for
M > M,, we have

Eyconn (F) — Eyon ()] <§ for all N.

For the same ¢ > 0, there exists Ny = Ny (¢) such that for N > Ny, we have (cf. Eq. (74))

~ ~ €
|E.\’coz\/(r) - E.\’co(r)l < 5

Hence, for N > max(Ny, M) and M > max(Ny, M), we find.

Esoonn (F) = Evoo ()| < [Esconr (F) — Esoon ()|

+|Egoy (F) — Eyo (7))

Il
™

This means that the double sequence Esonm(T) converges to Eso(T), i.e.,

Nlﬁi/lm E,conm (T) = E;o(T) uniformly on Q, (76)

and in particular, in the case N = M, that Eq. (60) is satisfied.

3. Coming to the last result of the assertion, we first note that Eq. (74) gives

[\lll—l:?o‘ |E3'ooN —Eio I |2.Q =0. (77)

From Egs. (8) and (17), and the orthogonality of the normalized spherical harmonic vectors on the unit sphere Q, we find that the expansion coefficients
of the scattered field are given by

Ja=Fon=(=1)""k (B, M)

8= 8m = (= 1)"jk:(Eueo, B )y s

and

L2 == (= )" ke (B, M) g,

S =8mn=(~ 1)"jk.\'<E.\‘OON' fl—mn)lm

respectively. The result (77) together with the Cauchy-Schwarz inequality |(a,b), | < |[a[|, [[b[|,, then yields
NmpY =i, lim gl = g

uniformly with respect to a, provided that

||mﬂ||2n < Cms ”“"”2,9 < e

This finishes the proof of the assertion. []
The converse result can be formulated as follows.

Assertion 5 Assume that the operator AS_ ! is bounded. Then the convergence result (58) implies the condition (57).

Proof. From || — iiy||,; = 0 as N — oo, we get

15
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||~;1' = (OvA,) IQ/\/f||2<_“—>() as N — oo 78)

for any f € R(A). This result together with the boundedness of .;1; " onits range, i.e.,

A;Isz_s < CHfH2 for some C > 0, yield.

(v A) " Onfl ], o < |4, F = (OvA) " Oxf ]y + |14, Fl1, 5

< |4 = (v A) ot + ClIt

2 (79

hence, in view of Eq. (34), the operator (Qu.As) ' Qu is bounded. As a consequence, we obtain.

||ﬁN||2..9: ||(QNA') I(QNA-“)']NHz.s
= |[(QvA) ' OvOv Ay |,
< C||ov Ay, (80)

showing that the condition (57) is satisfied. [J

From Assertion 4 we see that the boundedness of A, and the condition (57) imply the (strong) convergence of the tangential fields, which in turn,
implies the uniform convergence of the far-field pattern on the unit sphere and of the scattered field coefficients. These assumptions are also sufficient
conditions for the stability of the solution to Eq. (50).

Assertion 6 Assume that the operator .;13 is bounded in iz (S) and the condition (57) is satisfied. Then, ]1; ! is bounded.

Proof. For any v € i (S), we have

Jim [[¥ =¥y ], = 0, (81)

where ¥y = PyV € i,z\, (S) is the orthogonal projection of v € i (S) onto ii, (S). Because A; is bounded, we also have

lim || AV — Ay

N-oo

L5 = 0. (82)

Consequently, we get

19115 < 119 = 9|5+ {9

2,8

<[v-vy

1 ~ .
|:.s + C_l\| |QNA\'VN||2
- L~ .
<[5l + 11,

1 - - 1 -
<V =Wl + A = AV[|, + —|[A¥
: Cls Cis

|2

|2 as N — oo,

1, -

< —||Av
Cis

showing that A; is bounded from below. Finally, from the Bounded Inverse Theorem we deduce that the bounded operator A has a bounded inverse

Al " on its range R(A;). (]
The above results can be summarized as follows.

Stability Case. If the operators A and .le_ ! are bounded, the operator equation (50) is well-posed. Furthermore, if the condition (57) is satisfied,
then in view of Assertion 4, the null-field method converges; otherwise, by Assertion 5, the null-field method diverges.

a1s . ~-1, . . . e
Instability Case. If the inverse operator A, is unbounded, the operator equation (50) is ill-posed. From Assertion 6 we deduce that the condition
(57) is not satisfied. At this stage of our argumentation we reach an impasse because we cannot say anything about the convergence of the null-field

method. Indeed, because }t; ! is unbounded we cannot conclude from the unrealized condition (57) in Assertion 5 that the null-field method diverges.

16
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All we can say in the case of instability is that the null-field method may or may not converge.
The main assumptions employed in the analysis can be checked numerically.

1. The null-field scheme is stable, i.e., the inverse operator A, Yis bounded, if and only if the condition number x(Q3;y) of the matrix Qs;yis bounded
when N increases.

2. According to Assertion 3, the operators A, and _:45_ ! are both bounded if and only if the complete system of tangential vector functions (34) is a Riesz

basis of T~ (S). Therefore, we may test the numerical stability by checking the Riesz basis property of this system of discrete sources. Now, the result
stated in Appendix 4 of Ref. [1] “A complete system {y;}°, forms a Riesz basis of a Hilbert space H if and only if the inequalities

N N N
C ZI: lai]™ <] Z;“ﬂlh”i: < CZZI: lai|* (83)

hold for any constants a; and for any N, where the positive constants ¢; and c, do not depend on N and a;”’ implies that the system of tangential vector

functions (34) is a Riesz basis of T (S)if and only if there exist positive constants L; and L, such that

0<Lj <Anin(Gy) < Amax (Gy) < Ly <oo for all N, (84)

where Amin(A) and Amax(A) are the minimal and the maximal eigenvalues of the matrix A, and Gf{, is the Gramm matrix of the system (34). Note that,
because the tangential vector functions (34) are linearly independent, G, is a symmetric and positive definite matrix, and so, its eigenvalues coincide
with its singular values.

3. Consider the condition (57), i.e.,

enllowllys < llOvAVyll, for all vy € Ty (S) and all N.

For
. nx My (k; ) n xRk -)
".’N - L/; . €~ + d//;l |: . €~ :| 3 (85)
= |:—J\/l%n X ‘Jl/l,(k,» ) —J\/P%n X ‘JJR/',(ki 3)
we find
~ 2 N N N N t (C;;/):::|
||QN‘A-"VN||2 = [(‘/i')/rzl (d/i')/;‘:|] Qi Qav MY | (86)
( 14 )/j—]
and
AR
-2 —N N (C/l):
||VN||2AS = [(“%)/}':1 (d}v')/r:]]cll»l |:(dv){: l :| ) (87)
P p=1

where G,{, is the Gramm matrix of the complete and linear independent system of tangential vector functions (85). The condition (57) is equivalent to the
matrix inequality

C,G), <Q},yQsy for all N and C, =¢2.. (88)

This inequality is satisfied if, for example, there exist positive constants [; and L, such that

QliyQuy =41y and Gy < Lyly (89)

for all N, meaning that

Amin (QyQaiy) >4 >0 and A (Gy) < Lo < o0 (90)

for all N. Because Ak(le ~Qa1v) = 62(Qa1n), where 6x(Qa1n), k = 1, ..., 2N are the singular values of the matrix Qs1y, and the eigenvalues of G,l, coincide
with its singular values, the above conditions can be written as
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Omin(Qsiy) =51 >0 and 6, (Gy) < 85 <0 (91)

for all N and some positive constants s; and S,. Thus, if the conditions (91) are satisfied, then the condition (57) is also satisfied.

The main conclusion of our analysis is that we can decide whether or not the null-field scheme converges only when the scheme is numerically
stable. In this regard we make a final remark.

Comment. The boundedness of the operator A, and the condition (57) imply (cf. Eq. (64))

e[ ]ys < ||Ov AT ], < ca|[in]],¢ for all ¥y € Ty(S) and all N. 92)

Employing the same arguments as above we find that the conditions (92) are equivalent to the matrix inequalities

C,Gy <QlyQyy < C,Gy for all N and Cy =c3,.. (93)

These are satisfied if the conditions

0<51 < Omin(Qav) < Omax (Qain) < 53 < 0o and (94)

0<S1 S Omin (Gfl\/) < Omax (GI]V) S S2 < 0 (95)

for all N and some positive constants s, s, S1, and S,, are fulfilled. Denoting by k(A) = 6max(A)/6min(A) the condition number of the matrix A, we end up
with

_ O (Qu) 52

k(Qsy) = o (Qay) < s and 0
”mux G/I 82

e ZW(G{C’? ) 5 97)

for all N. Therefore, the condition number of the matrix Q3,5 gives not only information about the stability of the method but also on the realization of
the conditions (92), which in view of Assertion 4, imply the convergence of the null-field scheme.

Appendix 2
In this appendix we present an analytical method for computing the Qs y-matrix elements in the framework of the null-field method with localized

vector spherical wave functions.
For an axisymmetric particle, Somerville et al. [23] showed that the block-matrix elements of the matrix Qs3;y can be expressed as

1
Ol = 2jCuck | — oLy + Loy + o (ernnk - L:mk) ) (98)
12 - mrz 1
ik = 2AC K, (99)
21 m;— 1,
Qi = Z”CrerTKn.,.b (100)
22 . 1 1 3 2 4
Oinmnke = 27JCnCx ( =L+ ;Lmnk + Lo — Lmnk) ) (101)
where m = 0,1,...Mpnk, n,k = max(1,|m|),..., Nrank, Miank and Ny, are the maximum azimuthal mode and expansion order, respectively, and
1 " ’ m| m] ox
K .=m [ &)y, (mx)P" (cosO)P; (cosé))@ de, (102)
0
2 " m| m] ox
Ko =m | &, () (mex) P (cosf)P," (cosb) =5 db, (103)
0
1 " . |m| \m| ox
L= &, (x), (m,x) [sindz!" ()] P," (cos®) % do, (104)
0
2 " H |m] |m| ox
L= | &0w(me) [sinds]" (6)] Py (cost) S ab, (105)
0

L= / y/k’(m,x)PLf"‘ (cos€){§,,’(x) [sin(}‘rl;"'(())] Z—;
0
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—n(n+ 1)&,(x)P" (cosh)sind } do (106)
Jm| m| Ox
L= .f,, (x)P"(cos0){ mey,' (m,x) [slm‘)‘r (cosf))] -
20

—k(k + 1)y/k(m,x)P""'(cos())sin(}} do (107)

In Egs. 102-107, y,, = w,,(m;x) = m,xj,(m,x) are the regular Riccati-Bessel functions, &, = &,(x) = xh,(x) are the Riccati-Hankel functions of the first
kind, m, is the relative refractive index of the particle, x =x(0) = k,r(0), where r(0) describes the generatrix in polar coordinates, y,,'(x) = dy,(x)/ dx,
fn,(x) = dfn(x)/dx’ and

= (108)
2an(n +1)

Note that for an axisymmetric particle with mirror symmetry, i.e., r(0) = r(z —6), we have

K!,.=0 for n+k= even and i=1,2,

and

L,,=0 for n+k= odd and i=1,2,3,4.

A loss of precision may occur during the computation of the integrals (102)-(107) by a numerical scheme [14]. To reveal this event we consider the
integral term K}, because the main concepts are fully represented in this case (as sinHrL’"‘ (0) can be expressed in terms of P""‘1 (cos@) and Pl"ﬂl (cos@), the
terms containing sin()r""'(()) have a similar expression). Using the decomposition &, = y,, + j)(,l and the representation &,y = ypi’ + j)(,ly/k’ , where
Xn(X) = Xyn(x) are the irregular Riccati-Bessel functions, we express K. . asK} . = Kmnk +jK mnk , where the integrands of Knmk and K k contain the
terms y,y;’ and y,y;’, respectively. Actually, only the computation of the integral term Kmnk is problematic. Therefore, we focus on the integral term

K;("ks), but in order to avoid an abundance of notation we still denote this term by K}, .
To compute K1, we use the series expansions of y,, and y,; these yield

’ 1 1 ’ 2s+n
v, (x)=25(—5) A, (109)

s=0 7"

LX) = — Z‘],( )/1 Ea (110)

=0

where ay, and f, are given, respectively, by

2s+n+1

TR TS Vil (a
Bo=(=10@2n=2s=1!" s<n—1
B = 112
P {/3;" =(-1)"/@2s—=2n—1)!t, s=n (112)
with the convention ( — 1)!! = 1. Using these results, truncating the series at the index N, and moreover, assuming the representation
x(0) = k;r(0) = X7(0), (113)

where X = kil is the size parameter, [ a characteristic length of the particle, and r(¢) a (dimensionless) representation of the particle shape in polar
coordinates, we obtain

Ko = Kot + Ko (114)
where
_ -
Kl:mk — mm, XZ ( ) an (mr) X,, k qlan ’ (1 15)
=0
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4 1 1 dr
— m| . |m| . o
ank = '/) mpll (COSI‘))Pk (COS(}) (E @) sind dl‘), (116)
V(M) => mr,, 117)
5=0
a‘l -"-k/),xn

qnks — m' (118)

and
2N 1 q
K= —mmX Y~ (—5) Ve (M) X2 (119)
g=max(0,go+1)

t . =2q+k-n [m]| |m| 1 dr\ .

L= A F (0)P)" (cos)P;" (cosO) <ind 40 sind d6, (120)
mm(q.ITl)
Y= > mXIr,, (121)
s=max(0,¢g—N)
_ kB
J _—s!(q 0 (122)
with
_ _f(n—k—-1)/2, if n—k=odd

q0 = qo(m, k) = { (n—k—2)/2, if n—k=even’ (123)

Here and in the following we omit to indicate the dependency of I, and I;nk on the azimuth mode m and use the finite-sum convention Ziﬁl"m (1) =0if

Smax < Smin-

The term K~ , which is nonzero for n > k, contains negative powers of ¥, while the term K}";k contains positive powers of 7. For large values of n —
k > 0, and in particular, for large size parameters and/or strongly deformed particles, the integrand of K., obtained by inserting Eq. (116) into Eq.
(115), i.e.,

. 1 dr
- _ K - \m| N [rm] . *
Ky = mm,XA F . (0)P)" (cosO)P," (cosd) (—sim‘) da)sm() de, (124)
Ful(0)=3 (—1)’ (m) (125)
nk — 2 yan T [XF(())]" k-2q°

oscillates around zero and its magnitude varies significantly across the range of integration. As a result, a loss of precision can occur during the
summation step of a Gauss-Legendre quadrature method. To overcome this problem we propose an analytical method for computing K}, and in fact, of
the integrals I, and I .

The method relies.

1. on the addition theorem for the associated Legendre functions

n-+k

Pl;"l(cos())p\kfnl(cos()) = Z a(m,n| —m, k|p)P,(cosf), (126)
p=ln—kl:2
where
a(m,n| —m, k|p) = / P!:”‘(cos())P}:"‘(cos())P,, (cos@)sind do 127)
0

are the Gaunt coefficients and the notation Z;I\kn—kkz means that the index p increases from |n — k| to n + k in steps of 2; and.

2. the Legendre polynomial expansions of powers of the shape function, i.e,
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1 1 dr
e\ = ., Pp(cosd), 12
71171\'—2:/(0) (smb‘ da) ;pqnl\.p I(CO§ ) ( 8)
1 dr
=2q+k-n )= + N
(o) (sinH do) ;ﬂq,,k.,,f’p(cosﬂ)- (129)

The result is

L= > pyupalm,n|—mklp), (130)
p=In—k:2

Lii =Y Papalm,n| —m,klp). (131)
p=In—k:2

Note that the Legendre expansions (128) and (129) are valid for any shape function 7 € C'([0,7]). Some peculiarities of the computational algorithm
are listed below.

1. To speed up the calculation, the expansion coefficients of the shape function

Pep= / 7{(19) (#} g—;) P,(cosf)sin@ df, s=1,2,...,N, (132)
0 s
and
T 1 dr —
Pap= / 7(0) (@ @) P,(cosf)sind d9, s=0,...5N — 1, (133)
0 N

defined through Egs. (128) and (129), respectively, are computed in extended precision in a preprocessing step, stored in a database, and used as input
parameters of the algorithm.

2. The coefficients

a1
I = q ..k/,\n
s sl(g — $)!

(=) 2(g—s)+k+1
" sl(g — ) (2k +2g — 25+ D!

(2n— 25— 1)!! (134)

in Eq. (118) are computed for s = 0, ...q by using the upward recurrence relation

20q—s)+k—12(k+qg—s)+1g—s__

r = - I 135
gnk,s+1 2(q _ .Y) +k+1 2(" _ S) -1 s+ 1 gnk.s? ( )
for s=0,...,g — 1 with
_ (2g + k+ 1)(2n — 1)!!
= 136
ko q'(2k +2q + 1)!! (136)
The coefficients I'gy s in Eq. (121) are expressed as
1"* .
o gnk.s? if s <n-— 1
ran.x - {1_,(;"‘:"‘.7 if s Z n 5 (1 37)
where.
P aq*s-kﬂm
ks T gl(g — s)!
(-1 2(q—s)+k+1 1 (138)

T slg—s)! 2k +2g—2s+ )1 (2s—2n— DI

For s = 0,...q, the coefficients I'yx s are calculated as follows.

21



A. Doicu, M.1. Mishchenko Physics Open 3 (2020) 100019

(@) If g <n-1,wehave I'yys =T - and we compute I'gyx s by using the upward recurrence (135) fors =0,...,q— 1.

(b) If ¢ > n, we compute I'gnx s Separately for the rangess = 0,...,n—1ands =n,...,q. In theranges =0,...,n— 1, we have I'gps = f;nk.s, and we
compute /gy s by using the upward recurrence (135) fors =0,...,n— 2. Intheranges =n,...,q, wehave 'y s = F;"k.s, and we compute "gn s by
using the upward recurrence

20q—s)+k—12k+qg—s)+1g—s

= rtu'.,\'v
Fantsi 2(q—s)+k+1 2(s—n)+1 s+1 7 k (139)
for s=n,...,q— 1 with
rqllle: (_l) Z(q_”) k] (140)

nl(qg —n)! 2k +2q —2n+ 1)1

3. The Gaunt coefficients a(m, n| —m, k|p) are computed by using the downward recurrence relation

2p+5
2p+1

2p+9
Vo péread(-op+4) (141)

with the starting values.

gpmal-,p)= (dm* +¢,0+6,03)al-p+2)

2020+ 1)(2k + 1)

a(m,n| = m,Kin+k) = (=1)"y | =50 0

2n— )12k = 1)1 [(n —m)!(k —m)!
(2n+2k —1)! (n+ m)!(k + m)!

(n+k—1)l(n+k)!

= m)ln = D1k —m)(k = 1)7 (142)
/T K= 3)2n+ 2%+ 1)

almt k=) = Bk - D )

x [nk —m*(2n+2k — 1)]a( -, n+k), (143)

where a(-,p) stands for a(m,n| —m, k|p) and

[P = (n+k+ 17 [p* = (n— k)]
4p2 — 1 '

= (144)

The three-term recurrence formula (141) is due to Bruning and Lo [26], and provides accurate numerical results for all low- and high-degree
coefficients.

To exemplify the loss of accuracy in computing K}, by a quadrature method in double precision, we assume that the shape function is the
superellipse (Lame curve)

7(0) = (cos™0 + sin™0) /™ (145)

where e = a/b is the eccentricity, and a and b are the semi-major and the semi-minor axis of the superellipse, respectively. The case n, = 2 corresponds
to a spheroid, the cases n, = 4 and n, = 6 correspond to a cylinder with rounded corners, and the case n, — oo corresponds to a cylinder. In Table 1 we
illustrate the values of K-, and K-, . The calculations are performed by using the analytical and the Gauss-Legendre quadrature method. Note that the
Gauss-Legendre method is applied to K}, given by Eqs. (124) and (125), while for K;;lk we use

Ldr

n
KM = —mm'X [ F(0)P" (cosd)P" (cosd
mnk mm, / llk( ) n (COS ) k (COS ) sind do

0

>sine de, (146)
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Table 1

Physics Open 3 (2020) 100019

The values of K}, and K1, computed in double and extended precision. The values of K}, are computed by using the analytical method (
(K,‘,,;,k)m,ytic) and the Gauss-Legendre quadrature method ((K)quadrar)- The values of K} calculated by means of the analytical and the
Gauss-Legendre quadrature method are the same, and therefore, they are not listed separately. The parameters of the calculation are m, =

1.5, ka = 20, kb =5,i.e,e =4,m =1, N = 60, and n = 40.

Konnk k

(Kr]n;k )analylic 1

(Krln;k )quadrat
Kr}nrtk
(K analytic
<Kr1n;k )quadral
Ko
(Krln;k )analylic
(KD quadrar
Kook
(Krln;k )analylic
(Kk) quadrat
K;r:k
(Kr‘n;k )ana]ylic
(K quadiat
Kl +

‘mnk
1-
(Kmnk )ana]y( ic

11

1-
(Kmnk )quﬂdl‘al
1+
Kmnk

Double Precision

~7.552759¢ + 15

—2.785579e + 15
6.347593e + 13

2.497338e + 16
9.000000e + 15
—2.209145e + 14

—3.957203e + 16
—3.369987e + 16
3.802838e + 14

4.557751e + 16
4.740872¢ + 16
—4.837075e + 14

—4.230531e + 16
—4.079553e + 16
4.930445e + 14

3.298516e + 16
3.226520e + 16
—4.055114e + 14

Extended Precision

~7.552759 + 15

—7.552759e + 15
6.347593e + 13

2.497338e + 16
2.497338e + 16
—2.209145e + 14

—3.957203e + 16
—3.957203e + 16
3.802838e + 14

4.557751e + 16
4.557751e + 16
—4.837075e + 14

—4.230531e + 16
—4.230531e + 16
4.930445¢ + 14

3.298516e + 16
3.298516e + 16
—4.055114e + 14

0= S () rmopror

g=max(0,go+1)

Also note that due to the mirror symmetry, KL, is zero for even values of n — k. The results show that.

(147)

1. for large (odd) values of n — k > 0, a significant loss of accuracy occurs when KL, is computed by the quadrature method in double precision;

2. no loss of accuracy occurs when KL, is computed by the analytical method in double precision; and

3. no loss of accuracy occurs when KL, is computed by either the analytical or the quadrature method in double precision.

Taking into account that the analytical method is much faster than the quadrature method, we may conclude that the analytical method is at the

same time accurate and efficient.
We conclude our analysis with some comments.

1. In Refs. [14,15] it was shown that for spheroids, some terms I ok which contribute to K,};k , according to Eq. (115), vanish. Let us extend this result to

the shape function (145). By straightforward calculation, we find

1 1 dr
7.llp(5| +1 m@

. 5 .
= (cos""ﬁ + €™ smz"H) (cos"" 20 — ™ sin™ ZH)COSH

= Puy(s+1) i(cosf) for s=0,1,... and np=2u with u>1,

(148)

where P,(x) stands for a polynomial of degree n in x. The expansion of the polynomial P, 1)1 in terms of the Legendre polynomials is

ny(s+1)—~1
Pryin-1(cosd) = Y~ g, ,P,(cos),
=0

yielding

i 1 Lodr\ . m .
A m (W @) P,‘; ‘(COS(})PL ‘(COS(})S[I’]H do

= > o, pa(m,n| —m, k|p).

p:min(n',(.ﬂ 1)~1,|n k\):Z
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Therefore, for values of s > 0 satisfying n,(s + 1) — 1 < |n — k|, that is,

ny(s+1)+1<|n—k[+ 1, (151)

the contribution of the term corresponding to
1 1 dr
T"I’("l 1)+1 m@

is zero. In other words, the terms with powers —e of the form

e=np(s+1)+1, s>0, (152)

and satisfying
ny+1<e<|n—kl+1 (153)
will not contribute to K1, . This theoretical result should be expressly used in the computation of K}, . In the favorable case of spheroids, we have n, =2

and according to Eqs. (152) and (153), the terms (-) /7>, (+)/°, (+)/7, ..., will not contribute to K., . Furthermore, since K. , = 0forn+ k = even, it

follows that all terms (-)/7*, (-)/7>, (-)/r*,..., will not contribute to K. Eliminating these terms from the series expansions, Somerville et al. [16]
implemented a numerically stable algorithm for T-matrix calculation in the case of electromagnetic scattering by spheroidal particles.

2. In order to calculate all integral terms K, and L{ ,, we have to compute and store the Legendre polynomial expansions of the functions

. B 1 dF
7(0) and 7 (H)(m d—9>

for say, s = — N,...,5N. In fact, it is sufficient to compute only the expansions of the functions
‘ 1 1 dr

(0 d —

r(6) and (sm() d6’)

because the remainder terms can be computed by using a derivative rule for Legendre polynomial expansions. This rule states that given a finite sum
representation for a function f(0), i.e.,

N
=" a,P,(cost), (154)
p=0
the result
p=1
P/(w)="Y_ @+ 1)2q+ 1)Py(n), (155)
q=po2
where
_J1, for p=2u
Po= {o, for p=2u+1 (156)

and u = cos0, yields the following finite sum representation for the derivative function:

1
0), 15
sin6 d(;’ Z; (cos (157)

where for N = 2K, the expansion coefficients are given by

by =Y ay/(4k+1)(4s = 1), s=1,....K, (158)

k=s

ba= anii\/(4k+3)ds +1), s=0,...K—1, (159)

k=s
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and for N = 2K + 1, by

by =Y ay/(4k+1)(4s = 1), s=1,...,K, (160)
k=s

by = ani/(@k+3)(ds + 1), s=0,....K. (161)

k=s

3. The integrals I ;. and I;nk which enter in the expressions of K., and K , respectively, depend only on the shape of the particle and not on the size

and refractive index. Therefore, the above method is very effective for averaging particle ensembles over their size parameter and refractive index.
From this point of view, the method seems to be similar to the shape-matrix method developed by Petrov et al. [17-21] and based on power series
representations for the spherical Bessel and Neumann functions, and the multiplication theorem

1V v2 ko
i) =x Y EEE = (0 ),

1 X2 — 1)
y,,(XF):)WZ% (%) Yui(F). (162)
k=0 :

The differences between the two approaches are that in our approach we (i) use the representations for the Q3;-matrix elements given by Somerville
et al. [23] rather than the conventional representations; and (ii) compute the integrals over 0 by using the addition theorem for the associated Legendre
functions, rather than by presumably representing the associated Legendre functions in terms of trigonometric functions (because this computational
step is not explicitly described in Refs. [17-21], we believe that this is the case).
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