

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Grupo de Ciencias Planetarias

Patterns in textured dust storms in Mars North Pole

A.Sánchez-Lavega¹, J. García-Morales², J. Hernández-Bernal ^{1,2}, T. del Río-Gaztelurrutia¹, R. Hueso¹, E. Ravanis³, A. Cardesín-Moinelo³, D. Titov⁴, S. Wood⁵, D. Tirsch⁶, E. Hauber⁶, K.-D. Matz⁶

(1) Universidad del País Vasco, Bilbao, Spain; (2) Aula EspaZio Gela, Universidad del País Vasco UPV/EHU, Bilbao, Spain, (3) European Space Agency, ESAC, Madrid, Spain (4) European Space Agency, ESTEC, Noordwijk, Netherland; (5) European Space Agency, ESOC, Darmstadt, Germany; (6) German Aeroespace Center (DLR), Institute of Planetary Research, Berlin, Germany

EPSC 2020 – Virtual Meeting – 2 October 2020

Observations & Data from Mars Express

Mars Express (ESA) Polar orbit: Pericenter ~ 300 km Apocenter ~ 10,000 km Period ~ 7.5 hr

Visual Monitoring Camera VMC

FOV: 40° x 31° Bayer RGB (COLOR) Wavelength: 400-650 nm

See E. Ravanis et al. presentation

High Resolution Stereo Camera HRSC

2 stereo channels (S1, S2) 2 photometry channels (P1, P2) 1 nadir channel (ND) BL (blue channel 440 nm) GR (green channel 530 nm) RE (red channel 750 nm) IR (near infrared channel 970 nm) Maximum resolution = 10 m/pixel

Dynamical activity in Mars North Polar region in spring time

Period this study: 3 March – 17 July 2019 Ls = 350° (MY 34) - 54° (MY 35) Aphelion is at Ls = 71° Latitudes: 45°N - 90°N

Features: clouds and Hazes and a variety of local dust storms* (shapeless, arcs, fronts, spirals)

* Types of features in: Wang & Fisher (2009)

Shapeless dust areas over North Pole (HRSC)

HRSC 6 June Ls=35.4°

Dust patches No texture Dust total area: 7.92x10⁵ km²

Long Filaments and Spirals (VMC)

25 May

VMC Ls=30-31°

27 May

27 May

Arc shaped and "Flushing" dust storms (VMC)

5 July

9 July

Flushing storms: Wang & Fisher (2009); Guzewhich+ (2015); Sánchez-Lavega+ (2018)

Textured Dust Storms (TDS)


```
Local dust storms (*) showing texture at the top-surface (TDS)
Longitude range: 140°E - 240°E
Acidalia, Arcadia and Amazonis Planitias
Local dust storm (*): area < 1.6 x 10<sup>6</sup> km<sup>2</sup>
```

TDS1: 28 – 29 May 2019 (VMC)

Local storm in Arcadia Planitia Area = 1.36 x10⁶ km² Ls = 32°

TDS1: 28 – 29 May 2019 (VMC)

Texture type: pebbled-like Cluster of cells ~ 20 - 40 Cells oriented by wind direction: $\langle V \rangle = 28 \text{ ms}^{-1} (20-40 \text{ ms}^{-1})$ Single cells: Length = 140 ± 45 km Width = 61 ± 15 km length/with ~ 2.3Separation = 180 ± 60 km

TDS2: 3 – 10 June 2019 (VMC)

June 4 – 00:21:53

June 4 – 00:26:41

TDS2: 3 – 10 June 2019 (VMC)

Local storm in Arcadia Planitia Area = $1.6-2.1 \times 10^5 \text{ km}^2$ Ls = 34°

Texture type: pebbled-puffy Cells oriented by wind direction: $\langle V \rangle = 38 \text{ ms}^{-1} (25-45 \text{ ms}^{-1})$

Single cells: Length = 70 \pm 18 km Width = 42 \pm 8 km length/with ~ 1.6 Separation = 119 \pm 32 km

TDS3: 22 May 2019 (HRSC)

TDS3: 22 May 2019 (HRSC)

Local storm

Frontal shape Three fronts: Length = 950 km Width = 85 km

Area = $4.3 \times 10^5 \text{ km}^2$ Ls = 28°

Cells clustered in the fronts Cells oriented transversal to front direction Single cells: Length = 45 km Width = 19 km length/with ~ 1.5 -3.0 Separation = 35 - 40 km

TDS4: 26 May 2019 (HRSC)

TDS4: 26 May 2019 (HRSC)

Local storm Spiral shape Area = 2.6 x10⁵ km² Ls = 30°

Mixture of dust and water ice clouds

Cells oriented and concentrated mainly along the spiral arm

Spiral resulting from dynamical instability (baroclinic nature?)

Single cells: Length = 52 ± 13 km Width = 21 ± 5 km length/with ~ 2.5Separation = 56 ± 15 km

Conclusions

Four textured **local dust storms** North Pole edge in springtime ($Ls = 30^{\circ} - 40^{\circ}$) Formed by clusters of 20-50 cells structured in oriented patterns Single cell: length = 50 - 140 km, width = 20 - 60 km Cells tops show anisotropy (length/width ~1.5 - 3) Cells show pebbled and puffy-like textures (Kulowski et al., 2017)

Dust updrafts mechanisms:

- Mean horizontal winds (V \sim 30 ms⁻¹) and high surface wind stresses
- Vertical wind shear due to dynamical instabilities (baroclinic)
- Dry convection driven dust heating (Spiga+, 2013; Heavens+, 2019)

Future work:

- Increase the number of cases studied
- Establish a relationship between wind speed and cell sizes
- Explore dust updraft models