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Abstract

Multi-pedestrian and -vehicle tracking in aerial imagery has several critical applications,
including event monitoring, disaster management, predictive traffic, and transport efficiency.
While some research works already studied vehicle tracking in remote sensing scenarios,
pedestrian tracking has not found the necessary attraction caused by the insufficient level
of detail in aerial imagery. Recently, the development of better camera systems and the
possibility to capture aerial imagery at low-cost paved the way for establishing novel tracking
approaches based on remote sensing. However, current state-of-the-art algorithms, including
deep learning based methods, perform especially poorly with pedestrians in aerial imagery,
incapable of handling severe challenges such as the large number and the tiny size of the
pedestrians (e.g., 4 × 4 pixels) with their similar appearances as well as different scales,
atmospheric conditions, low frame rates, and moving camera. In contrast to vehicles moving
along predetermined paths, such as highways or streets, pedestrians show more difficult
motion characteristics posing additional demands on the tracker.

Within the scope of this master thesis, we propose AerialMPTNet, a novel regression-based
deep neural network able to tackle the challenges of pedestrian and vehicle tracking in
geo-referenced aerial imagery. AerialMPTNet fuses appearance features by a Siamese Neural
Network with movement prediction of a Long Short-Term Memory and adjacent graphical
features of Graph Convolutional Neural Network. In contrast to previous works, we encode
the motion model and the adjacent neighbor modeling in an end-to-end fashion as part of the
neural network. Consequently, our network can learn motion characteristics directly from the
data and additionally learns to weight the influence of surrounding objects. Furthermore, to
the best of our knowledge, we are the first to apply Squeeze-and-Excitation layers and Online
Hard Example Mining to a regression-based deep tracker.

We evaluate AerialMPNet intensively on two aerial pedestrian datasets, AerialMPT and
KIT AIS pedestrian. Both datasets consist of multiple image sequences captured at two frames
per second on different flying altitudes, showing different crowd densities and different
terrain (e.g., open-air concerts, Munich city areas, BAUMA trade fair). Results indicate that
AerialMPTNet outperforms state-of-the-art algorithms such as Tracktor++, SMSOT-CNN or
DCFNet on pedestrian tracking in aerial imagery significantly. Compared to the SMSOT-CNN
baseline, multiple-object tracker accuracy (MOTA) improves by 18.8 points to -16.2 and by
13.8 points to -23.4 on KIT AIS pedestrian and AerialMPT, respectively.

Additionally, we evaluate our approach on the KIT AIS vehicle dataset. AerialMPTNet
achieves a competitive MOTA score of 42.0. Since we fitted our method gradually for
pedestrian tracking, other trackers achieve better scores here.
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1 Introduction

Visual Object Tracking (VOT) is a fundamental challenge in computer vision dealing with
locating objects in visual data over time. Although much progress has been made in recent
years [1, 2, 3, 4], challenging problems such as heavy occlusions, different scales, background
clutter or crowded scenes remain unsolved. VOT can be divided into single- and multiple-
object trackers (SOTs and MOTs). While SOTs track one single object within a video or
an image sequence, MOTs locate multiple objects at each frame. MOT scenarios are often
more complex than SOT scenarios since trackers must handle a larger amount of objects in a
reasonable time.

MOT methods using traditional approaches such as Kalman and particle filters [5, 6],
Discriminative Correlation Filter (DCF) [7] or silhouette tracking [8] perform poorly in
unconstrained environments. They are handicapped by handcrafted target representations
(Histogram of Gradients (HOG) [9], color, position) and nondynamic target modeling [10].
In general, most of these works consider several constraints to simplify the tracking task
significantly. Such constraints include, for example, stationary cameras, the limited amount of
occlusion as well as the number of objects, and no sudden background or object appearance
changes. The recent success of deep learning (DL) based techniques in object detection,
segmentation and classification [11, 12, 13] influenced VOT significantly, leading to the
development of better tracking methods based on Deep Neural Networks (DNN) such as
Convolutional Neural Networks (CNNs) [14, 15], Recurrent Neural Networks (RNNs) [16],
Siamese Neural Networks (SNNs) [17, 18], Generative Adversarial Networks (GANs) [19] and
custom architectures [20].

As of today, tracking algorithms play a crucial role in many fields. Critical applications
for MOT in ground imagery are, for example, in autonomous driving, where tracking of
nearby vehicles and pedestrians is required for path planning, or in visual surveillance,
where tracking of suspicious pedestrians in CCTV footage is required for security reasons.
Additionally, video-based pedestrian tracking and counting can provide unbiased information
for tourism, public transportation, security, and safety. Tracking algorithms also have use
cases in fields such as sports [21] (e.g., tracking of the ball in tennis matches), medicine [22]
(e.g., path planning in computer-aided surgery), or biology [23] (e.g., evaluation of bacteria
growth and movement).

In the field of remote sensing, VOT was previously challenging to exploit due to the limited
level of detail in aerial imagery. NASA’s first generations of the Landsat satellites provided
a resolution of 60m per pixel, for example. Such a resolution is not sufficient for VOT
approaches dealing with small objects. Nevertheless, remote sensing provides a cheap way of
collecting large-scale aerial imagery in a short amount of time. Recently, the development
of better camera systems made very high-resolution aerial imagery available, opening the
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1 Introduction

field for a various number of applications ranging from the analysis of ecological systems
to drone surveillance [24, 25]. Furthermore, aerial imagery provided by airborne platforms,
such as helicopters and aircraft, is useful in several fields. In forestry, airborne images are
useful to monitor tree yield, tree trimming, and fire. Additionally, the data allows the study
and management of coastal ecosystems and can be used by insurances to monitor flooding
[26, 27]. Current commercial satellites provide image data with resolutions of up to 30cm
per pixel and allow high acquisition speeds. However, airborne platforms can deliver image
data with even higher resolutions since the distance to the ground is lower than those of
satellites. These developments alleviate previous limitations and make it possible to develop
novel MOT methods dealing with aerial imagery and small objects such as ships, cars, and
pedestrians, offering new chances in predictive traffic, event monitoring, transport efficiency,
and security. Tracking and detection of humans also have use cases in disaster management.
A good example is the recent coronavirus crisis, where such methods are valuable by giving
authorities notice about people not following curfew rules.

Despite its practical applications, only a few research works have dealt with MOT scenarios
in aerial imagery [28, 29, 30]. The vast amount of moving objects, multiple scales, and the
small size of objects compared to standard computer vision scenarios makes tracking in
aerial imagery especially difficult. Challenges also include low frame rates, different kinds
of visibilities and weather conditions, large images, and moving cameras. Image data from
drone or ground surveillance datasets, which find usage in standard MOT benchmarks such
as MOT16 and MOT17 [31], differ significantly: Targets are bigger, placed with less spatial
density and often have unambiguous appearance features discriminating them from other
objects. Additionally, videos are recorded with higher frame rates and better quality.

In this master thesis, we aim to develop a deep learning based tracking method dealing
with multi-pedestrian and multi-vehicle tracking in geo-referenced aerial image sequences.
The image sequences were captured by an airborne platform during different flight campaigns
of the German Aerospace Center (DLR) and vary significantly in crowd density, movement
patterns, quality, and image size. The Ground Sampling Distance (GSD), which reflects the
spatial size of a pixel in cm, varies between 8 cm and 13 cm. Consequently, the images were
captured at different flight altitudes, and dependent on the altitude, similar objects can have
different relative sizes in the image plane. The total number of objects per sequence ranges
up to 609, and hence, hard memory and computational demands are placed on the tracker.
Pedestrians occur in these images just as small points, hardly exceeding more than 4 x 4 pixels.
Even for human experts, distinguishing multiple pedestrians based on their appearance is
laborious and challenging. Vehicles appear as bigger objects and are easier to distinguish.
However, different vehicle sizes, fast movements paired with low frame rates, and occlusions
(e.g., when vehicles are located under bridges or partly occluded by trees or other vehicles)
add to the complexity of this situation. Figure 1.1 illustrates the challenges of MOT in aerial
imagery clearly.

Generally, DNN-based tracking methods can be categorized into detection- and regression-
based methods. Regression-based trackers usually receive two image samples, a target crop
and a search crop, and directly regress an object’s position based on the known initial position
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1 Introduction

(a) Crop showing multiple pedestrians.
It is difficult to distinguish between
them (here with shadows) and other
similar-looking objects (here without
shadows). The low contrast also poses
severe challenges to a tracker.

(b) Crop showing multiple pedestrians
at the BAUMA trade fair. The tracking
of pedestrians in a small alley together
with occlusions, shadows, and strong
background colors is demanding.

(c) Crop showing multiple cars. The
shadow on the right hand side poses a
severe challenge to a tracker.

(d) Crop showing multiple cars. Vehi-
cles on the left hand side are party oc-
cluded by trees.

Figure 1.1: Visualizations of some major challenges in aerial multi-object tracking. The crops
are taken from the KIT AIS pedestrian (top-left), the AerialMPT (top-right) and
the KIT AIS vehicle dataset (bottom).
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1 Introduction

in the target crop [32, 33]. Detection-based trackers mostly employ object detectors and link
detections with the previous tracks to find a suitable trajectory. However, the current DL-
based trackers are not well-equipped to handle the challenges of the scenarios we are facing.
Due to the different atmospheric conditions, small objects are hardly visible in some samples,
leading to a high amount of false-negatives and -positives in tracking-by-detection based
frameworks. In contrast, regression-based trackers lack integrating essential information such
as the previous movements of the targets.

Dealing successfully with the challenges of MOT in aerial imagery, we propose AerialMPT-
Net, a regression-based neural network improving the tracking performance for pedestrians
and vehicles by a large margin compared to previous works. AerialMPTNet consists of an
SNN which takes two image crops as input, namely a target and a search crop where the
target position is known and has to be determined, respectively. The image crops contain
appearance information that AerialMPTNet uses to regress an object’s position. Furthermore,
it is designed and trained to incorporate temporal and adjacent information of the movements
of all objects in an end-to-end manner. Our method benefits from a Long Short-Term Memory
(LSTM) for movement prediction and a GraphCNN for adjacent modeling (i.e., the spatial
and temporal relationships between adjacent objects). The final output of the network is four
coordinates describing the top-left and bottom-right corner of the object’s bounding box in
search crop coordinates. Additionally, to the best of our knowledge, we are the first work
to apply Online Hard Example Mining (OHEM) and adaptive weighting of convolutional
channels by using Squeeze-and-Excitation (SE) layers to a regression-based DL tracker. We
evaluate the proposed network intensively on the KIT AIS1 pedestrian and vehicle datasets
and compare them with several state-of-the-art trackers. Additionally, we benchmark the
proposed solution to the newly introduced Aerial Multi-Pedestrian Tracking (AerialMPT)
dataset. The related paper is currently under review for the ICPR2020 conference, and hence,
we cannot give a reference here.

For pedestrian tracking, AerialMPTNet outperforms all previous methods in terms of
MOTA (-16.2 and -23.4 for KIT AIS and AerialMPT, respectively). It reaches a competitive
MOTP of 69.6 and 69.7. Adding the LSTM and GraphCNN modules bring consecutive perfor-
mance gains. For vehicle tracking, AerialMPTNet reaches a competitive MOTA and MOTP
of 42.0 and 76.3. Our methods, including the LSTM- and GraphCNN-based AerialMPTNet,
rank within the three best-performing trackers.

In the following, chapter 2 provides an overview of related work and the necessary
theoretical background. Afterwards, we introduce essential metrics and datasets in chapter 3.
In chapter 4, we describe the preliminary experiments we conducted during the progress
of this thesis. We explain our methodology in chapter 5 in detail and evaluate and discuss
our proposed methods in chapter 6. Last but not least, we conclude this master thesis with
chapter 7 and give some ideas for future work.

1https://www.ipf.kit.edu/code.php

4



2 Theoretical Background & Related Work

This chapter introduces the essential theoretical background and related works. We start by
giving an overview of computer vision and remote sensing and show the distinction between
them. Afterwards, we explain the basics of Machine and Deep Learning related to this thesis.
This chapter concludes with background and related work of visual object tracking and its
application in aerial imagery.

2.1 Computer Vision & Remote Sensing

Computer vision and remote sensing are related topics, both dealing with the processing and
computer understanding of images. The goal of traditional computer vision is to make a
computer autonomously perform some of the tasks the human visual system can perform
and to infer something about the environment in which a picture was taken [34]. In contrast
to pure image processing, the output of a computer vision algorithm gives back information
about the given image, and not of a new picture. Information can be anything such as object
detection and recognition results, camera position, 3D models, and image segmentation.
Although computer vision tasks often seem trivial for humans, they remain highly complex
for computers since visual perception is not bound to any specific environment, and since
different types and amounts of occlusions can limit the view on a target. Additionally, a
target can move, and hence, can be seen from different views and with different lighting
conditions [35]. Nevertheless, there has been much progress in the field, especially with the
rise of machine learning and deep learning, the affordable and easy access to computing
power and the availability of mobile technologies offering massive amounts of photo and
video data. Recently, computers surpassed the reported human-level-performance on the
ImageNet dataset [36] for object classification [37]. Optical Character Recognition (OCR),
medical imaging, machine inspection, facial recognition, pattern detection, surveillance,
motion capturing, and feature matching are other fields of application for computer vision
[35].

In contrast to computer vision, remote sensing deals with different scenarios: Observing
the earth and the environment from space or very high altitudes and retrieving information
from these observations. During the fast development of remote sensing, it provided us
with a better understanding of weather and climate, leading to a more precise weather
forecast, offers a cheap and effective way of collecting information of vast spatial regions,
and provides methods to monitor ground objects over time [38, 24]. Such information is
useful to analyze the development of rural and urban areas or the evolution of agricultural
processes by providing repetitive knowledge on crop status during different times of a season.
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2 Theoretical Background & Related Work

These are only few examples. Others also include atmospheric research, data collection with
different scales, resolutions, and sensors, analysis of ecological systems, mapping of wildfires
and natural resources, and coordination of emergency responses [24, 25]. In recent years,
the development of better camera systems made very high-resolution image ground data
available. The higher level of detail opened the field for new areas of application, especially
for remote sensing tracking approaches dealing with small objects such as cars, ships, or
pedestrians [28, 29, 30].

2.2 Machine Learning

This section gives an overview of machine learning and introduces deep learning. Machine
learning pursues to provide knowledge to computers through data and observations, which
allows the computer to generalize to new situations. Machine learning tasks are divided into
three categories: supervised learning, unsupervised learning, and reinforcement learning
[39].

In supervised learning, a function maps inputs to specific outputs. Such inputs are provided
as datasets D = (x1, x2, ..), where xi can be almost any kind of data, such as images, video
files, sound files, point clouds, or time-series data [40]. Each sample xi is paired with a
desired output value yi, which is called the ground truth. Afterwards, an algorithm can
learn a function by analyzing the data and map unseen samples correctly. The ground truth
can either be a discrete label or a continuous variable, dividing supervised learning into
classification and regression tasks. Common datasets for classification are the MNIST dataset
[41] containing handwritten digits, CIFAR-10 [42] which consists of more than 60,000 images
for image classification as well as MS-COCO [43] containing images for object detection and
segmentation. Popular regression datasets cover, for example, house price prediction given
the details of houses and their neighborhood as well as predicting the quality of wine given
specific attributes [44, 45].

The goal of unsupervised learning is to find previously unknown patterns or learn the
underlying distribution of data given a dataset D = (x1, x2, ..). In contrast to supervised
learning, the samples xi are not paired with an output value yi. Instead, unsupervised
learning aims to cluster similar samples within the data, perform density estimation, or solve
association problems, for example.

Reinforcement learning mainly optimizes the actions of software agents in a given environ-
ment. The agent has no knowledge of which actions to take until it has been into a specific
situation. Based on its own decisions, it receives a reward depending on the outcome of its
action. Future decisions are affected by this reward. The final goal is to maximize the reward
in order to maximize the agent’s performance.

This thesis includes approaches based on supervised learning and deep learning. Hence,
we will deepen the basics of these in the next sections.

6



2 Theoretical Background & Related Work

2.2.1 Deep Learning & Neural Networks

A neural network is a computer system that can learn and perform task-specific jobs without
being explicitly programmed [46]. It consists of an input layer, one or multiple hidden layers,
and an output layer. The input of such networks is a vector which is transformed by the
hidden layers of the network. In each of these layers operate neurons, producing an output
based on a received input. Initially, random weights are assigned to each connection between
the neurons, and bias is assigned to each neuron. These weights and biases are updated
during the training process of the network, leading to more accurate outputs. The overall
process is called backpropagation [47]. The term deep learning emerged as networks got
more and more layers, and hence got "deeper". Figure 2.1 shows an example network with
one hidden layer.

However, for computer vision tasks dealing with image or video data, networks based on
such fully connected layers do not scale well. For example, a single neuron in the first hidden
layer with an input image of size 300× 300× 3 (i.g. 300 width, 300 height, 3 color channels)
has 300× 300× 3 = 270, 000 weights. CNNs deal with this problem by using a combination
of convolutional, pooling, and fully connected layers. Convolutional layers consist of k filters
of different sizes W × H. The filters are slid across the input image and compute dot products
between the entries in the filters and the entries in the input resulting in k 2D activation maps,
which are stacked to obtain the output [48]. Pooling layers reduce the spatial size of the
output to decrease the amount of computation and parameters in the network. Networks
built upon such structures play a key role in this thesis.

Figure 2.1: Neural network with hidden layers. Retrieved January 3, 2019: http://cs231n.
github.io/neural-networks-1/

2.2.2 Layer Types

During the experiments of this thesis, we used various layer types. While explaining every
type of layer in detail is beyond the scope of this thesis, we introduce unfamiliar ones in the
following.

7
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2 Theoretical Background & Related Work

Local Response Normalization

Local Response Normalization (LRN) layers are not-trainable. They perform a lateral inhibi-
tion by applying a squared normalization over an input with multiple channels.

bc = ac

(
w +

a
n

min(N−1,c+n/2)

∑
c′=max(0,c−n/2)

a2
c′

)−β

(2.1)

, where ac and bc are the channel values before and after normalization, respectively, w
is a value to provide numeric stability, n is the amount of neighboring channels used for
normalization, a is a normalization constant and β is the exponent.

Squeeze-And-Excitation Layers

CNNs extract image information by sliding spatial filters across the input on different layer
levels. While lower layers extract information such as edges and basic shapes, higher layers
can detect more advanced structures such as cars or text. Nevertheless, each filter has a
different relevance concerning the final output of the network. Within any layer, the filter
amount is equal to the output depth. However, every output channel is weighted equally.
SE Layers [49] change this behavior by weighting each channel adaptively while adding less
than one percent of computing cost. Each channel is squeezed to a single value by using
global average pooling [50], resulting in a vector with k entries. This vector is given to a
fully connected layer reducing the size of the output vector by a certain ratio, followed by
a Rectified Linear Unit (ReLU) activation function. The result is fed into a second fully
connected layer scaling the vector back to its original size and applying a sigmoid activation
afterwards. In a final step, the idea is to weight each channel of the original convolution block
by multiplying the results of the SE block.

2.2.3 Activation Functions

The activation function calculates the output of a neuron based on its input. In order to make
neural networks capable of approximating any arbitrary function, activation functions need to
be non-linear functions [51]. Since neural networks need to be optimized during the training
process, activation functions also need to be monotonic and differentiable. Commonly used
activation functions are the sigmoid function, the hyperbolic tangent, or ReLU.

Sigmoid and tangent are recently losing popularity since they both suffer from the vanishing
gradient problem. ReLU solves the problem of vanishing gradients by using a linear function
with the positive x-axis. Nevertheless, since the output of all negative values is zero, neurons
can "die" once they have a negative value. In order to solve this issue, ReLU was extended
by Leaky ReLU, which has a predefined negative slope and PReLU, which aims to learn the
slope of the activation function [52, 37]. Other activation functions include ELU, Maxout, and
Swish, which was recently proposed by Google [53]. Figure 2.2 shows the functions and the
graphs of some of the mentioned functions.

8



2 Theoretical Background & Related Work

Figure 2.2: Activation Functions. Retrieved January 2, 2019: https://towardsdatascience.
com/complete-guide-of-activation-functions-34076e95d044

2.2.4 Loss Functions

Loss functions measure how well neural networks model the given data. They compare
the output of the network with the ground truth and calculate the cost or the error. The
loss function optimizes the network’s weights w until an error threshold is met. It is also
essential that the loss function is differentiable since neural networks update all parameters
by applying backpropagation. This subsection introduces the losses relevant to this master
thesis.

L1 & L2 Loss

The L11 and L22 losses are useful when dealing with regression problems. The L1 loss
measures the Mean Absolute Error (MAE) between the output of the network x and the
ground truth y. It is calculated as followed:

L1(x, y) = ∑
i
|xi − yi| (2.2)

The L1 loss is less affected by outliers than the L2 loss. The L2 loss calculates the error of
the squared distance between the network output and the true value:

L2(x, y) = ∑
i
(xi − yi)

2 (2.3)

Huber Loss

The Huber loss [54] is a mixture of the L1 and the L2 losses and combines their good properties.
It is given as the Mean Squared Error (MSE) when the error is small and calculated as the
MAE when the error is big.

LH(x, y) = ∑
i

zi (2.4)

1https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html#L1Loss
2https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html#MSELoss
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2 Theoretical Background & Related Work

zi =

{
0.5(xi − yi)

2, i f |xi − yi| < 1

|xi − yi| − 0.5, otherwise
(2.5)

The Huber loss is more robust to outliers than the L2 loss and improves the L1 loss
regarding missing minima at the end of the training.

2.3 Visual Object Tracking

VOT describes the process of locating one or multiple objects in video or image sequence data
over time. The traditional tracking process consists of four phases: Initialization, appearance
modeling, motion modeling, and object finding. During initialization, the targets are anno-
tated by hand or an object detector. There exist different annotation styles; hence, regions
can be annotated with points, bounding boxes, centroids, or object contours. In appearance
modeling, recognizing visual features of the region of interest for better representation and
the usage of various learning-based models to detect objects are important steps. Different
scales, rotations, shifts, and occlusions make this a challenging problem. As of today, fea-
tures have the most important role in tracking algorithms and can generally be divided into
handcrafted and deep features. However, handcrafted features such as HOG, color names, or
Scale-Invariant Feature Transform (SIFT) are outdated, and the research focus has recently
shifted towards deep features, able to incorporate multi-level information and to be more
tolerant against appearance variations [55]. Nevertheless, the use of DNNs is only possible if
enough training data is available. The motion modeling step aims to predict the motion of the
objects in future frames and gives back an estimate of the object’s location. This procedure can
effectively reduce the search space. Suitable methods for this step include Kalman filter [56],
Sequential Monte Carlo methods [57] or RNNs. The last step includes finding the objects by
linking objects close to the positions provided by the motion model with the available tracks
and creating new tracks with unmatched objects. During the whole process, changing target
and motion characteristics are integrated into the appearance and motion model. These steps
can vary greatly depending on the framework, but give a general insight into the tracking
process.

As stated previously, Trackers can be divided into SOTs [58, 59] and MOTs [60, 30]. SOTs
only track a single object throughout the video, even if there are multiple objects visible in the
frames. The object which one wants to track needs to be specified. MOTs can track multiple
objects at the same time but can suffer from exponential runtime complexity increase and are
slower compared to SOTs. Additionally, there exist detection-based [61] and detection-free
trackers [62]. Detection-based methods use object detectors to find objects in each frame.
Detection-free approaches mostly have a better runtime but are not able to detect new objects
and require manual initialization. Another distinguishing feature is the learning strategy.
Tracking algorithms trained with an online learning strategy can learn about the tracked
object during runtime, giving it the ability to track generic objects [63]. Algorithms trained
with an offline learning strategy do not learn during runtime, and hence offer a better runtime
complexity [64]. Furthermore, tracking algorithms can be divided into online and offline
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methods. Offline trackers take advantage of past and futures frames, while online trackers can
only infer about past frames. Future frames can increase the tracking performance; however,
in real-world scenarios these are not available. Most existing tracking approaches use a
two-stage tracking-by-detection paradigm [65, 66]. In the first stage, a set of target samples is
generated around the previously estimated position using region proposal, random sampling,
or similar methods. In the second stage, each target sample is either classified as background
or as a target object. In one-stage-tracking, the model receives a search sample together with a
target sample as input and directly outputs a response map or coordinates through a learned
regressor. The maximum value of the response map or the coordinates indicates the object
position.

Traditional tracking methods mostly rely on the use of Kalman and particle filters to
estimate an object’s position. These methods use velocity and position information to perform
tracking [5, 6, 67]. Tracking methods based solely on such approaches are outdated since they
perform poorly in unconstrained environments. Nevertheless, such filters can predict and
propagate object movements into the next frame, and as a result of this, minimize the search
space. Other trackers follow a tracking-by-detection paradigm using template matching
[68]. A chosen target patch models the appearance of a selected region of interest in the
first frame. Matching regions can be found in a new frame using correlation, normalized
cross-correlation, or the sum of squared distances [69, 70]. However, scale, illumination, and
rotation changes are difficult to model with these methods. More advanced methods, also
using the tracking-by-detection paradigm, rely on discriminative modeling. Discriminative
classifiers separate the target from its background within a specific search space. There exist
many different approaches, reaching from boosting methods to support vector machines
[71, 72]. Other tracking algorithms utilize correlations filters for visual tracking. Correlation
filters model the target’s appearance by using filters trained on images. A target is initially
selected based on a small crop of the first frame with the target centered in the middle. The
tracking process works by convoluting the learned filter over the search window in the next
frame. The output is a response map, the correlation output, with a peak representing the
accurate target position. Afterwards, an online update renews the appearance information of
the target. Since the correlation can be computed in the Fourier domain, such trackers achieve
high frame rates. Examples of correlation-based trackers include MOSSE and KCF [7, 73].
Recently, the focus of researchers has shifted to DL-based tracking methods. The advantage
of DL-based features over HOG, raw pixels values or grey-scale templates is enormous, and
enable the modeling of appearance changes, occlusion situations, and dynamic environments
effectively. The variety of proposed solutions is great: Methods include re-identification with
appearance modeling and deep features [60], position regression mainly based on SNNs [18,
17], path prediction based on RNN-like networks [74] and object detection with DNNs such
as YOLO [75].

In the following subsections, we aim to present an overview of VOT approaches relevant to
this thesis. In subsection 2.3.1, we introduce the methods we adopted during the scope of this
thesis. In subsection 2.3.2, we detail related work in the field of aerial object tracking.
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2.3.1 Tracking Algorithms

Kalal et al. proposed Median Flow [76], which utilizes point and optical flow tracking. The
input to the tracker is two consecutive images together with the initial bounding box of an
object. The tracker calculates a set of points from a rectangular grid within the bounding box.
Each of these points is tracked by a Lucas-Kanade tracker generating a sparse motion flow.
Afterwards, the framework evaluates the quality of the predictions and filters 50 % of the
worst. The remaining point predictions are used to calculate the new bounding box positions
based on displacement.

MOSSE [7], KFC [73] and CSRT [77] are based upon DCFs. MOSSE got introduced by
Bolme et al. in 2010. It uses a new type of correlation filter called Minimum Output Sum of
Squared Errors (MOSSE), which aims to produce stable filters when initialized using only one
frame and grey-scale templates. MOSSE is trained with a set of training images fi and training
outputs gi, where gi is generated from the ground truth as a Gaussian centered on the target.
This framework achieved state-of-the-art performance while running with high frame rates.
Henriques et al. [73] replaced the grey-scale templates with HOG features and proposed the
idea of Kernelized Correlation Filter (KCF) in 2014. KCF works with multiple channel-like
correlation filters. Additionally, the authors propose to use non-linear regression functions
more powerful compared to linear functions and obtain non-linear filters that are trained
and evaluated as fast as linear correlation filters. Similar to KCF, dual correlation filters
use multiple channels. However, they are based on a linear kernel reducing computational
complexity while maintaining almost the same performance compared to non-linear kernels.
Recently, Lukezic et al. [77] proposed to use channel and reliability concepts to improve
tracking based on DCFs. Channel-wise reliability-scores weight the influence of the learned
filters and improve localization by reflecting the quality of the filters. Furthermore, a spatial
reliability map attracts the filters mainly to the part of the object suitable for tacking, making
it possible to widen the search space and improves the tracking scores of non-rectangular
objects.

As we stated previously, the choice of appearance features plays a crucial role in object track-
ing. However, most previous work of DCF-based tracking approaches utilizes handcrafted
features such as HOG, grey-scale features, raw pixels, and ColorNames or deep features
trained independently on other tasks. Wang et al. [58] proposed an end-to-end trainable
network architecture, able to learn convolutional features and perform the correlation-based
tracking simultaneously. The authors encode the DCF as a correlation filter layer into the
network, making it possible to backpropagate the weights trough it. Since the calculations
remain in the Fourier domain, the run time complexity of the filter is preserved. The convolu-
tional layers in front of the DCF encode prior tracking knowledge learned during an offline
training process. The DCF defines the network output as the probability heatmap of object
location.

In the case of generic object tracking, the learning strategy is typically entirely online.
However, online training of neural networks is slow due to backpropagation – and this also
leads to a high run time complexity. Held et al. [18] introduce a regression-based tracker
called GOTURN based on a siamese neural network. Tracking methods able to track generic
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objects usually require online training which is slow due to backpropagation; however, Held
et al. can solve this problem by using an offline training method that makes the network
understand a relationship between appearance and motion, and hence, the tracking process
gets significantly faster. The knowledge gained during the offline training can be applied to
track new unknown objects in an online manner. Without online backpropagation, GOTURN
can track generic objects at 100 fps during test time. The input to the network consists of the
two image tiles: One crop from a previous frame centered at the known object position and
another crop from the current frame centered at the same position. The size of the crops is a
factor of the object’s bounding box size and is controllable by a hyperparameter, influencing
the amount of context the network receives around the target object. The final output is the
coordinates of the object in the current crop, which can be transformed in image coordinates.
GOTURN achieves state-of-the-art performance on common SOT benchmarks such as VOT
20143. However, all of the previously mentioned methods work with single objects only.

Bewley et al. [78] propose to use a simple multiple tracking approach based on the
Jaccard distance, the Kalman Filter, and the Hungarian algorithm [79], a method that solves
assignment problems globally in polynomial time. Bounding box position and size are the only
measures to perform motion estimation and data association; the use of appearance features is
neglected. In the first step, objects are detected using Faster R-CNN [13]. Afterwards, a linear
constant velocity model approximate the movements of objects between consecutive frames
independent of other objects. The algorithm compares detections to the predicted bounding
boxes with an Intersection over Union (IoU) score and creates a cost matrix as a result. The
Hungarian algorithm solves the assignment of detections to targets. The detections associated
with the targets are used to update the target states via a Kalman filter framework. The state
of unmatched targets is predicted without any state update. SORT runs with more than 250
Frames per Second (FPS) while achieving almost state-of-the-art accuracy. Occlusion scenarios
and re-identification issues are ignored by the authors, making it not suitable for long-time
tracking. Wojke et al. [60] extend SORT and tackle the occlusion and re-identification
challenges formerly neglected in SORT. Track handling and the Kalman filtering module are
almost identical to SORT. A significant difference lies in the assignment process. Wojke et
al. use two additional metrics: Motion information provided by calculating the Mahalanobis
distance between predicted bounding boxes and detections as well as appearance information
by calculating the smallest cosine distance between the appearance features of a detection
and the appearance features of an object already tracked. These features are calculated with
a deep neural network trained on a large person re-identification dataset [80]. A cascade
method determines object-to-track assignments - tracks which were updated recently are
matched first while older tracks are matched in later stages. The cascade strategy effectively
encodes the probability spread in the association likelihood. The framework falls back to
SORT for cases where the cascade method could not match detections and targets.

Recently, Bergmann et al. [2] introduced a new tracking paradigm based on the object
detector Faster R-CNN. Faster R-CNN uses object proposals that are given to object classifica-
tion and a bounding box regression head of the neural network. The regression head tightens

3https://www.votchallenge.net/vot2014/

13



2 Theoretical Background & Related Work

the bounding box to fit around the object. The authors train Faster R-CNN on the MOT17Det
pedestrian dataset [31]. In the first step, Faster R-CNN performs object detection. The objects
found in the first frame are afterwards initialized as tracks and tracked by regressing the
bounding box with the regression head in the next frame while the identity of the objects is
automatically preserved. Furthermore, Bergman et al. demonstrate that lost or deactivated
tracks can be re-identified in the following frames using siamese networks together with a
constant velocity motion model. Their approach called Tracktor++ can track multiple objects
and consists of an uncomplicated framework.

2.3.2 Tracking in Satellite and High Resolution Aerial Imagery

VOT, especially of pedestrians and vehicles, in satellite and aerial imagery, is a challenge only
a few previous works have tackled yet. Different scales, the vast amount of moving objects,
and the tiny size of the objects (e.g., 4 × 4 pixels for pedestrians, 30 × 15 for vehicles) increase
the difficulty and complexity of tracking in such scenarios significantly. The small object size
compared with low contrast also leads to objects sharing similar appearance features. Further
challenges include low frame rates, different kinds of visibilities, and weather conditions
as well as moving cameras and huge resolutions. Data from standard aerial or ground
surveillance datasets [81, 31] differs a lot since objects are bigger and have unique appearance
features, videos are recorded with higher frame rates and objects are placed less densely.

Most approaches dealing with this kind of scenario are based on moving object detection [28,
29, 82]. One of the earliest approaches focusing on such wide-area scenarios, concentrating
on vehicles driving on highways mainly, is made by Reilly et al. [28]. They eliminate
camera motion by a point correspondence based correction method. Afterwards, they use
a median background image modeled from ten frames and apply this median image for
motion detection by subtracting it from the original frame. The results of this operation
are the position of moving objects. All images are divided into overlapping grids. Each of
these grids defines an independent tracking problem. Objects are tracked using bipartite
graph matching between a set of label nodes and a set of target nodes, and the Hungarian
Algorithm solves the cost matrix afterwards to receive the assignments. The usage of the grids
makes it possible to track a large number of objects by reducing the runtime complexity of
the Hungarian Algorithm to O(n3). Meng et al. [29] go along the same path. Their goal is to
track objects such as ships and grounded aircraft. They detect moving objects by calculating
an Accumulative Difference Image (ADI) from frame to frame. Pixels with high values in
the ADI are likely to be moving objects. Each target is afterwards modeled by extracting its
spectral and spatial features, where spectral features refer to the target’s probability density
function and the spatial features to the target’s geometric area. Given the target model,
matching candidates are found in the following frames via regional feature matching using a
sliding window paradigm.

However, tracking methods based on moving object detection have severe disadvantages
in our scenario. For instance, Reilly et al. use a road orientation estimate to constrain the
assignment problem. Such an estimate may work for vehicles moving along predetermined
paths such as highways and streets; however, pedestrians have more diverse and complex
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movement behaviors, often resulting in crowded situations and multiple crossings. In general,
such methods perform poorly in unconstrained environments, are sensitive to changing light
and atmospheric conditions (e.g., clouds, shadows, or fog) and suffer from the parallax effect,
not working well with small or static objects. Additionally, finding the moving object requires
the usage of multiple frames, and hence these methods do not work in real-time.

Methods based on appearance-like features overcome these issues [83, 84, 85, 86, 30],
making it possible to detect small and static objects on single images. While there is a
huge amount of literature covering the topic of pedestrian and vehicle tracking in ground
surveillance scenarios [14, 87], the amount of literature covering aerial and remote sensing
scenarios is limited. Butenuth et al. [83] deal with pedestrian tracking in aerial image
sequences. They apply an iterative Bayesian tracking approach, enabling the possibility
to track many people. A pedestrian is described by position, color, and direction, and a
linear dynamic model predicts futures states. Each link between a prediction and a detection
is weighted by evaluating the state similarity and associated with the direct link method
described in [61]. Schmidt et al. [84] introduce a tracking-by-detection framework based on
Haar-like features. They use a Gentle AdaBoost classifier for object detection and an iterative
Bayesian tracking approach, similar to [83]. Additionally, they calculate the optical flow
between consecutive images to extract motion information. However, due to the difficulties
of detecting small objects in aerial imagery, the regular occurrence of false positives and
negatives influences the tracking performance negatively. Liu and Mattyus and Qui et al.
[85, 86] aim to detect cars and ships in aerial imagery, respectively. However, their work is
concentrated on object detection and not on visual tracking.

Bahmanyar et al. propose Stack of Multiple Single Object Tracking CNNs (SMSOT-CNN)
[30] and extend the work of Held et al. by stacking the SOT GOTURN architecture in order to
track multiple pedestrians and vehicles in aerial image sequences. SMSOT-CNN is the only
previous work dealing with MOT in remote sensing by using DL. Bahmanyar et al. expand
the network by three additional convolutional layers in front of the fully connected layers to
improve the tracker’s performance. In their architecture, each SOT-CNN is responsible for
tracking one object solely; achieving MOT without exponential complexity increase when the
number of objects is climbing. They evaluate their approach on the vehicle and pedestrian
sets of the KIT AIS dataset4 for object tracking in aerial image sequences. A comparison of the
GOTURN network and SMSOT-CNN showed that MOTA improved by 16.4 points to 41.1 on
the vehicle dataset and by 11.2 points to -29.8 on the pedestrian dataset. Nevertheless, SMSOT-
CNN is dealing poorly with crowded situations and objects sharing similar appearance
features, resulting in identity switches and loosing of tracks.

4https://www.ipf.kit.edu/code.php
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3.1 Datasets

In this section, we introduce the datasets used in the scope of this thesis. Both tracking
datasets, the KIT AIS1 and the Aerial Multi-Pedestrian Tracking (AerialMPT) dataset, are
provided by the German Aerospace Center (DLR) in order to reduce the lack of tracking
and object detection datasets for aerial imagery and improve the possibilities to develop
well-performing tracking methods. Additionally, we had access to the DLR’s Aerial Crowd
Dataset (DLR-ACD) [88], which consists of static aerial crowd scenes.

The capturing process for both tracking datasets was similar. All images were taken by the
DLR’s 3K camera system, containing a nadir-looking and two side-looking DSLR cameras,
mounted on an airborne platform flying at different altitudes resulting in multiple spatial
resolutions, so-called GSDs. The camera is continuously moving; hence, in a post-processing
step, all images were orthorectified with a digital elevation model, co-registered, and geo-
referenced with a GPS/IMU system. Afterwards, images taken at the same time are fused
into one single image and cropped to the region of interest. This overall process leads to small
errors visible in the frame alignment. The frame rate of all sequences is 2 Hz. The image
sequences were captured during different flight campaigns of DLR and differ significantly in
crowd density, movement patterns, quality, image size, viewing angle, and terrain, where the
number of frames per sequence is dependant on the overlap in flight direction and camera
configuration. In the following, we introduce the KIT AIS and the AerialMPT datasets in
detail. Additionally, we present the DLR-ACD shortly.

3.1.1 KIT AIS

The KIT AIS dataset is composed of two branches, vehicle tracking, and pedestrian tracking.
For both branches, researchers and students labeled all images manually, leading to a small
number of human errors. Vehicles are annotated by the smallest enclosing rectangle oriented
in the direction of travel (i.e., bounding box), individual pedestrians with point annotations
centered on the person’s head. However, for tracking purposes, we also used bounding boxes
with sizes of 4× 4 pixels and 5× 5 pixels dependant on the GSD of the pedestrian sequences.
Objects can vanish and disappear (e.g., leaving the scene, occluded by another object), and
consequently, tracks do not have to be labeled continuously. In the vehicle branch, cars, trucks,
and busses are labeled; bicycles, motorcycles, cable cars, shadows of vehicles, and vehicles,
which are partly outside of the image region or covered by more than 1

3 of their size are not.

1https://www.ipf.kit.edu/code.php
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Table 3.1: Statistics of the training and testing set of the KIT AIS pedestrian dataset. The
image sequences are from different flight campaigns over Alianz Arena forecourt
(Munich, Germany; named AA_*), OAC Open-Air Concert (Germany; named
RaR_*) and Karlsplatz (Munich, Germany; named Munich*).

Training
Seq. Resolution nFrames nPedestrian nAnno. nAnno./fr. GSD (cm)

AA_Crossing_01 309 x 487 18 164 2,618 145.44 15.0
AA_Easy_01 161 x 168 14 8 112 8.00 15.0
AA_Easy_02 338 x 507 12 16 185 15.42 15.0

AA_Easy_Entrance 165 x 125 19 83 1,105 58.16 15.0
AA_Walking_01 227 x 297 13 40 445 34.23 15.0

Munich01 509 x 579 24 100 1,308 54.5 12.0
RaR_Snack_Zone_01 443 x 535 4 237 930 232.5 15.0

Total 104 633 6,703 64.45

Testing
Seq. Resolution nFrames nPedestrian nAnno. nAnno./fr. GSD (cm)

AA_Crossing_02 322 x 537 13 94 1,135 87.31 15.0
AA_Entrance_01 835 x 798 16 973 14,031 876.94 15.0
AA_Walking_02 516 x 445 17 188 2,671 157.1 15.0

Munich02 702 x 790 31 230 6,125 197.58 12.0
RaR_Snack_Zone_02 509 x 474 4 220 865 216.25 15.0
RaR_Snack_Zone_04 669 x 542 4 311 1,230 307.50 15.0

Total 85 2016 26,057 306.55

In the pedestrian branch, only pedestrians are labeled. Due to crowded scenarios or adverse
atmospheric conditions, pedestrians can be hardly visible, and tracks are estimated as precise
as possible in these situations. The GSDs of all sequences range from 12 to 15 cm.

KIT AIS pedestrian consists of 13 sequences with a total of 32,760 pedestrian annotations,
including seven training and six testing sequences with 104 and 85 frames, respectively. The
length of all sequences differs between 4 and 31 frames, with the mean hovering at 14.5
frames. The images were recorded from Munich’s city center as well as from mass event in
front of Allianz Arena (Munich) or open-air concerts (OAC). Table 3.1 gives an overview of
the statistics of this branch.

KIT AIS vehicle composes nine tracking sequences with 239 frames. The vehicle branch
has no pre-defined training/testing sets. Hence, we split it into a training and testing set
with 5 and 4 sequences, respectively. In total, the training and testing set consist of 131 and
108 frames. The length of all sequences varies between 14 to 47 frames, with the number of
vehicles ranging from 16 to 88. Similar to KIT AIS pedestrian, we present the statistics of
this subset in Table 3.2. The dataset includes several difficult tracking challenges, such as
overtaking and turning maneuvers, lane changes as well as partial and total occlusion by big
objects such as bridges.
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Figure 3.1: Sample images from the KIT AIS vehicle dataset captured at different locations in
Munich and Stuttgart, Germany. The pictures show varying spatial densities and
give an overview of the dataset.
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Table 3.2: Statistics of the training and testing sets of the KIT AIS vehicle dataset. The
image sequences are from different flight campaigns over highways, crossroads
and streets in Munich and Stuttgart.

Training
Seq. Resolution nFrames nVehicles nAnno. nAnno./fr. GSD (cm)

MunichAutobahn1 633 x 988 16 16 161 10.06 15.0
MunichCrossroad1 684 x 547 20 30 509 25.45 12.0

MunichStreet1 1,764 x 430 25 57 1,338 53.52 12.0
MunichStreet3 1,771 x 422 47 88 3,071 65.34 12.0

StuttgartAutobahn1 767 x 669 23 43 764 33.22 17.0
Total 131 234 5,843 44.60

Testing
Seq. Resolution nFrames nVehicles nAnno. nAnno./fr. GSD (cm)

MunichCrossroad2 895 x 1,036 45 66 2,155 47.89 12.0
MunichStreet2 1,284 x 377 20 47 746 37.30 12.0
MunichStreet4 1,284 x 388 29 68 1,519 52.38 12.0

StuttgartCrossroad1 724 x 708 14 49 554 39.57 17.0
Total 108 230 4,974 46.06

3.1.2 AerialMPT

The AerialMPT (Aerial Multi-Pedestrian Tracking) dataset is a new pedestrian tracking
dataset, currently under review to be published in ICPR 2020 conference. The access to
this dataset will be public, enabling the promotion of research on aerial MOT. AerialMPT is
dealing with the limitations of the KIT AIS dataset, such as low image quality and low degree
of diversity. It consists of 14 sequences and a total of 307 frames. Images were acquired
by a newer version of the DLR 3K camera system, resulting in images with better contrast
compared to the KIT AIS dataset.

Similar to KIT AIS pedestrian, each person was manually labeled with point annotations
centered on the individual’s head by specialist staff and got assigned a unique ID over the
whole sequence. Due to the similar appearance of adjacent pedestrians as well as other small
objects, discriminating and rediscovering each person is time-consuming and difficult. The
annotations were sanity checked as a part of this thesis. In total, AerialMPT comprises 2,528
pedestrians with 44,740 annotations points. The dataset composes a training and testing
set with 8 and 6 image sequences, including 1,132 and 1,396 pedestrians on 179 and 128
frames, respectively. The length of all sequences varies between 8 and 30 frames. The image
sequences were captured from different crowd scenarios, e.g., from moving pedestrians on
mass events like OACs and fairs or from sparser scenarios in Munich’s shopping streets.
Table 3.3 details the statistics of this dataset. Additionally, we visualized the ground truth
annotations for a sample image in Figure 3.2.
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Table 3.3: Statistics of the training and testing set of the AerialMPT dataset. The image
sequences are from different flight campaigns over Bauma construction trade
fair (Munich, Germany), OAC Open-Air Concert (Germany), Witt Church day
(Wittenberg, Germany), as well as Pasing, Marienplatz, and Karlsplatz Munich
city areas (Germany).

Training
Seq. Resolution nFrames nPedestrian nAnno. nAnno./fr. GSD (cm)

Bauma1 462 x 306 19 270 4,448 234.11 11.5
Bauma2 310 x 249 29 148 3,627 125.07 11.5
Bauma4 281 x 243 22 127 2,399 109.05 11.5
Bauma5 281 x 243 17 94 1,410 82.94 11.5

Marienplatz 316 x 355 30 215 5,158 171.93 10.5
Pasing1L 614 x 366 28 100 2,327 83.11 10.5
Pasing1R 667 x 220 16 86 1,196 74.75 10.5

OAC 186 x 163 18 92 1,287 71.50 8.0
Total 179 1,132 21,852 122.08

Testing
Seq. Resolution nFrames nPedestrian nAnno. nAnno./fr. GSD (cm)

Bauma3 611 x 552 16 609 8,788 549.25 11.5
Bauma6 310 x 249 26 270 5,314 204.38 11.5

Karlsplatz 283 x 275 27 146 3,374 124.96 10.0
Pasing7 667 x 220 24 103 2,064 86.00 10.5
Pasing8 614 x 366 27 83 1,932 71.56 10.5

Witt 353 x 1,202 8 185 1,416 177.00 13.0
Total 128 1,396 22,888 178.81
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Figure 3.2: Sample aerial image with its overlaid annotations from the AerialMPT dataset
taken over the BAUMA 2016 trade fair. We annotated the pedestrians with
different colors to make them easier to distinguish.

3.1.3 Comparison of KIT AIS pedestrian and AerialMPT datasets

Previously, the KIT AIS pedestrian dataset was the only dataset available for pedestrian
tracking in aerial imagery. Besides its uniqueness, it deals with several drawbacks. The
AerialMPT dataset was published to alleviate the limitations of the KIT AIS pedestrian dataset.
It is striking that the number of minimum annotations per frame, as well as the number of
total annotations of AerialMPT, is significantly higher than in the KIT AIS dataset. Based on
visual inspection, sequences include pedestrians with more complex and realistic movement
patterns as well as denser crowds compared to the KIT AIS pedestrian dataset. Additionally,
all image sequences contain at least 50 persons, in contrast to the KIT AIS pedestrian dataset,
where more than 20 % of the sequences include less than ten pedestrian tracks. The sequences
in AerialMPT differ in weather conditions and visibility, incorporating more diverge kinds
of shadows compared to the DLR KIT pedestrian dataset. Furthermore, the sequences of
AerialMPT mostly contain a higher amount of frames: 60 % of the sequences consist of more
than 20 frames compared to less than 20 % in KIT AIS pedestrian. We visualized some
samples of both datasets in Figure 3.3. The image samples of KIT AIS have lower quality and
contrast compared to AerialMPT.

3.1.4 DLR’s Aerial Crowd Dataset

The DLR-ACD dataset [88] consists of 33 large aerial RGB images showing different mass
events and urban scenes containing crowds, such as sports events, city centers, open-air fairs,
and festivals. In contrast to KIT AIS and AerialMPT, which are tracking datasets, DLR-ACD
is a pure crowd dataset and only consists of static images. These images were recorded with
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Figure 3.3: Sample images from the KIT AIS pedestrian and the AerialMPT dataset. The sam-
ples annotated with Bauma3, OAC, Witt, and Pasing1 are included in AerialMPT,
the remaining ones in KIT AIS. The images show that the contrast of image se-
quences in the AerialMPT dataset is significantly better compared to the KIT AIS
pedestrian dataset.

a similar camera system as the previously presented dataset; however, the flying altitudes
are ranging from 500 to 1600 m, resulting in GSDs varying between 4.5 and 15 cm and an
average image size of 3619x5226 pixels.

Similar to AerialMPT, DLR-ACD was labeled manually with point-annotations resulting
in 226,291 person annotations, ranging from 285 to 24,368 per image. However, most of the
images contain a large number (>2K) of pedestrians, which is the main difference to other
crowd datasets. The crowd density can vary significantly within a single image due to the
massive field of view. We visualized some sample images in Figure 3.4.

3.2 Metrics

In this section, we introduce the most important metrics we use during the quantitative
evaluation part of this thesis. We follow the work of Milan et al. [31] and report all of the
widely used metrics in the MOT domain shown in Table 3.4.

The challenge of MOT is to find the spatial positions of p given objects given an image
sequence, resulting in trajectories consisting of bounding boxes. A bounding box is defined
by its x and y positions of the top-left and bottom-right corner in image coordinates together
with its respective frame.

The quantification of a tracker’s performance is dependant on whether predictions are
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Figure 3.4: Sample images from the DLR-ACD dataset. The images cover large spatial areas
and show different crowd densities within one single image.

23



3 Datasets & Metrics

Metric Description
IDF1 ID F1-Score
IDP ID Global Min-Cost Precision
IDR ID Global Min-Cost Recall
Rcll Recall
Prcn Precision
FAR False Acceptance Rate
GT Number of Objects in Sequence
MT Ratio of Mostly Tracked Objects
PT Ratio of Partially Tracked Objects
ML Ratio of Mostly Lost Objects
FP False Positives
FN False Negatives
ID Number of Identity Switches
FM Number of Fragmented Tracks

MOTA Multiple Object Tracker Accuracy
MOTP Multiple Object Tracker Precision

MOTAL Multiple Object Tracker Accuracy Log

Table 3.4: Description of the metrics used for quantitative evaluation.

true positives (TP), describing an annotated object, or whether they are false positives (FP),
missing the correct annotation. An annotated object that is missed by any prediction is a false
negative (FN). In our case, predictions or so-called tracklets and annotations are associated as
TPs if their intersection over union (IoU) score of their respective bounding boxes is greater
than 0.5. An identity switch (ID) occurs if an annotated object a is associated with a tracklet t,
and the previous assignment was a 6= t. The fragmentation metric shows the total number of
times a trajectory is interrupted during tracking. For all of these measures, excluding TPs,
applies that a higher number stands for a worse performance of the tracker.

However, the most crucial evaluation metrics are the multiple object tracker accuracy
(MOTA) and the multiple object tracker precision (MOTP). MOTP gives a detailed account of
a tracker’s performance in estimating precise object locations.

MOTP =
∑t,i dt,i

∑t ct
(3.1)

where dt,i is the distance between a matched object i to the ground truth annotation in frame
t, and c is the total number of matched objects. MOTA describes a tracker’s ability of keeping
trajectories independant of the precision of the predictions.

MOTA = 1− ∑t(FNt + FPt + IDt)

∑t GTt
(3.2)

The multiple object tracker accuracy log (MOTAL) is similar to MOTA, however, ID switches
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3 Datasets & Metrics

are considered on a logarithmic scale.

MOTAL = 1− ∑ FNT + FPt + log10(IDt + 1)
∑ GTt

(3.3)

Each tracklet can be assigned to mostly tracked (MT), partially tracked (PT), or mostly lost
(ML). The decision is based on how successful an object is tracked during its whole lifetime.
A tracklet is mostly lost if it is only tracked less than 20 % of its lifetime and mostly tracked
if it is recovered more than 80 % of its lifetime. Partially tracked applies to all remaining
tracklets. We give MT, PT, and ML as percentages from the total amount of tracks. The false
acceptance rate (FAR) describes the average amount of FPs per frame.

FAR =
∑ FPt

f
(3.4)

,where f is the total number of frames.
Additionally, we also provide recall and precision measures. We define them as followed:

Rcll = ∑ TPt

∑(TPt + FNt)
(3.5)

Prcn =
∑ TPt

∑(TPt + FPt)
(3.6)

Identification precision (IDP), identification recall (IDR), and IDF1 scores are related.
However, in contrast to recall or precision, IDP, IDR, and IDF1 scores take into account how
long the tracker correctly identified the targets. The definition of IDP and IDR is the ratio of
computed and ground-truth detections, respectively, that are correctly identified. The IDF1 is
calculated as the ratio of correctly identified detections over the average number of computed
and ground-truth detections, granting the possibility to rank a tracker based on a single scalar
value. For any further information on these metrics, we refer to the work of Ristani et al. [89].
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This chapter deals with different experiments we have taken in order to understand the
difficulties of our aerial tracking scenarios. We provide insights into existing tracking methods
combined with our data, show certain advantages, disadvantages, and failure cases. Finally,
we conclude this chapter with common problems of existing trackers faced with aerial object
tracking and present some ideas on how to solve them.

In the early phase of this thesis, only the KIT AIS pedestrian dataset was available to us.
Hence, this chapter focuses on experiments with this dataset. Nevertheless, the findings and
conclusion are also valid for the KIT AIS vehicle and the AerialMPT dataset since they share
similar characteristics.

High tracking scores are usually correlated with good detections, at least in tracking-by-
detection frameworks. Since this chapter deals mainly with tracking and not with detection,
we assumed perfect detections and used the ground truth data, unless indicated otherwise.
For detection-free methods, initial bounding boxes were given to the tracker, which propagates
them to the object positions in the next frames. As a consequence, for detection-based methods,
the most substantial measure is the number of ID switches. For other methods, all metrics are
essential.

In the following subsections, we describe the experiments conducted in the scope of this
thesis and provide some experimental results of trackers including KCF, MOSSE, CSRT,
Median Flow, SORT, DeepSORT, Euclidean Online Tracking, and Stacked DCFNet.

4.1 From Single- to Multi-Object Tracking

Many tracking frameworks exist that were initially designed to track single objects only.
However, most of them can easily be extended to handle multiple objects. An essential
function of MOTs is track management: The trackers have to be able to save and exploit
multiple active tracks at the same time, to delete the tracks of leaving, and to initialize the
tracks of entering objects. We developed a Python class that is responsible for these actions
and extended the SOT frameworks by multi-object compatibility. We use this class for all
SOTs utilized within the scope of this thesis. It unites memory management, including the
assignment of unique track IDs and individual object position storage, with track aging,
deleting, and initializing functions. These functions can be called from outside the class, and
hence, it is accessible to detail the explicit criteria for track creations and deletions in the
algorithm itself.
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Table 4.1: Results of MOSSE on the KIT AIS pedestrian dataset.
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

AA_Crossing_02 13 8.0 8.1 7.9 9.1 9.2 78.08 94 1.1 5.3 93.6 1015 1032 0 9 -80.4 96.9 -80.4
AA_Walking_02 17 6.6 6.4 6.7 8.0 7.6 151.76 188 1.6 10.1 88.3 2580 2458 2 20 -88.7 95.7 -88.6

Munich02 31 4.3 4.2 4.5 5.7 5.4 199.68 230 0.9 4.3 94.8 6190 5775 29 78 -95.8 61.9 -95.4
RaR_Snack_Zone_02 4 29.4 29.2 29.6 30.4 30.0 153.25 220 99.5 219 0 613 602 0 14 -40.5 94.9 -40.5
RaR_Snack_Zone_04 4 25.8 25.7 25.9 27.0 26.8 226.25 311 0.3 99.7 0 905 898 0 12 -46.6 97.5 -46.6

Total 69 9.1 8.9 9.3 10.5 10.0 163.81 1043 0.8 54.0 45.2 11303 10765 31 133 -85.8 86.7 -83.5

Table 4.2: Results of KCF on the KIT AIS pedestrian dataset.
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

AA_Crossing_02 13 8.1 8.1 8.0 9.1 9.2 78.08 94 1.1 6.4 92.5 1015 1032 0 8 -80.4 97.3 -80.4
AA_Walking_02 17 6.5 6.3 6.7 7.8 7.3 154.88 188 1.6 10.6 87.8 2633 2463 3 14 -90.9 96.9 -90.8

Munich02 31 4.3 4.1 4.4 5.6 5.2 201.74 230 0.9 3.9 95.2 6254 5781 29 75 -97.0 62.2 -96.5
RaR_Snack_Zone_02 4 29.3 29.1 29.5 29.8 29.5 154.50 220 1.8 98.2 0.0 618 607 0 8 -41.6 95.1 -41.6
RaR_Snack_Zone_04 4 25.8 25.7 25.9 26.9 26.8 226.50 311 0.3 99.7 0.0 906 899 0 11 -46.7 97.9 -46.7

Total 69 9.0 8.8 9.3 10.3 9.8 165.56 1043 1.1 53.8 45.1 11426 10782 32 116 -84.9 87.2 -84.7

4.1.1 KCF, MOSSE, CSRT & Median Flow

OpenCV provides several built-in object tracking algorithms. We experiment with the KCF
[73], MOSSE [7], CSRT [77], and Median Flow [76] tracker. Initially, these trackers are made for
SOT, but they can be easily extended to multi-object scenarios within the OpenCV framework.
Initial bounding box positions are given as ground truth to the trackers, which locate the
objects in the next frame and return their respective bounding box positions. We delete
objects if they leave the image region, and their trackage is a > 3. We report the results of
these trackers in Table 4.1, Table 4.2, Table 4.3 and Table 4.4.

However, all of these trackers perform poorly with total MOTA scores varying between
-85.8 and -55.9. KCF and MOSSE results are very similar in general, with most metrics
differing very little. The use of HOG features and non-linear kernels utilized in KCF improves
MOTA by 0.9 and MOTP by 0.5 points compared to MOSSE, resulting in a total MOTA score
of -84.9 and a MOTP score of 87.2. The ratio of mostly tracked object hovers at 1 % for both
algorithms.

CSRT, also based on a DCF, outperforms both prior methods significantly, reaching a total
MOTA and MOTP of -55.9 and 78.4. The ratio of mostly tracked objects almost reaches 10
% and proves the effectiveness of channel and reliability scores. Median Flow achieves a
comparable performance with total MOTA and MOTP scores of -63.8 and 77.7.

All algorithms perform significantly better on the RaR_Snack_Zone sequences compared to
the other ones. However, based on a visual inspection, we argue that this improvement is an
immediate result of the short sequence length consisting of four frames only. Additionally,
we argue that the low performance of these methods directly correlates with the use of
handcrafted features.

4.1.2 Stacked DCFNet

DCFNet [90] is also a SOT based on a DCF. However, the DCF is implemented as part
of a DNN and uses deep features from image crops extracted by a light-weight CNN.
Consequently, this network is a perfect choice to study whether deep features improve the
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Table 4.3: Results of CSRT on the KIT AIS pedestrian dataset.
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

AA_Crossing_02 13 12.9 13.2 12.5 15.1 15.9 69.54 94 1.1 30.9 68.0 904 964 10 29 -65.5 84.6 -64.7
AA_Walking_02 17 9.2 10.0 8.5 11 12.9 116.88 188 2.7 15.4 81.9 187 2378 12 41 -63.9 88.0 -63.5

Munich02 31 9.2 9.9 8.7 10.9 12.5 151.45 230 1.8 14.3 83.9 4696 5455 66 137 -66.8 61.2 -65.8
RaR_Snack_Zone_02 4 43.2 42.0 42.5 43.8 43.3 124.25 220 17.3 82.7 0.0 497 486 0 16 -13.6 87.9 -13.6
RaR_Snack_Zone_04 4 45.6 45.5 45.0 47.9 47.6 162.00 311 16.7 83.3 0.0 648 641 3 31 -5.0 85.2 -4.8

Total 69 16.0 16.9 15.2 17.5 19.4 126.55 1043 9.6 51.0 39.4 8732 9924 91 254 -55.9 78.4 -55.1

Table 4.4: Results of Median Flow on the KIT AIS pedestrian dataset.
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

AA_Crossing_02 13 27.3 27.3 27.4 28.5 28.3 62.85 94 1.1 68.1 30.8 817 812 4 49 -43.9 74.9 -43.6
AA_Walking_02 17 10.0 9.9 10.0 11.1 11.0 141.06 188 1.6 21.3 77.1 2398 2374 8 16 -79.0 86.3 -78.7

Munich02 31 9.2 9.0 9.4 9.9 9.5 186.39 230 1.3 8.7 90.0 5778 5517 10 53 -84.6 64.7 -84.4
RaR_Snack_Zone_02 4 51.7 51.4 52.0 52.8 52.2 104.75 220 8.6 91.4 0.0 419 408 2 14 4.2 83.7 4.3
RaR_Snack_Zone_04 4 53.1 53.0 53.3 53.9 53.6 143.5 311 17.4 82.6 0.0 574 567 6 29 6.7 83.0 7.2

Total 69 18.5 18.3 18.8 19.5 19.0 144.72 1043 7.7 55.8 36.5 9986 9678 30 161 -63.8 77.7 -63.5

tracking performance compared to the handcrafted ones or not.
We took the PyTorch implementation1 of DCFNet as a baseline and modified the network

structure, so that the network is capable of multi-object tracking. We call the multi-object
version of the network "Stacked DCFNet".

From the KIT AIS pedestrian training set, we create image crops for each pedestrian,
with each individual centered in the middle of the crop. The crop size is dependant on the
bounding box size, which is multiplied by a factor of 10 to obtain the final scene context.
Afterwards, we rescale all crops to 125 x 125 pixels and save them. This process results in
20,666 image crops. We retrain the convolutional layers of the network with these crops and
apply ADAM [91] optimizer with an initial learning rate of 0.01 and a mini-batch size of 64.
We train the network for 50 epochs with the MSE loss and set the spatial bandwidth to 0.1 for
both, online tracking and offline training. We use the previously mentioned Python class for
track management, and similar to the OpenCV methods, we remove tracks that are leaving
the image region when their age is a > 3. Multiple targets are given to the network within
one batch. For each target, the network receives two image crops with both crops centered
on the known previous position of the object. The network tracks the target by defining the
network output as the probability heatmap of object location. The highest value represents
the most likely object position in the current image crop. If this value is below a threshold t,
we consider the object as lost.

Furthermore, in contrast to the original work, we propose a simple linear motion model
and set the center point of the search crop to the position estimate of this model instead of
the position of the target crop. Based on the last movement vt(x, y) of a target, we estimate
its position as followed.

pest(x, y) = p(x, y) + k · vt(x, y) (4.1)

, where k is a hyperparameter that models the influence of the last movement.
We present the results of Stacked DCFNet in Table 4.5. The MOTA score improves

significantly compared to the previously tested methods, increasing by 18.6 points to a final

1https://github.com/foolwood/DCFNet_pytorch
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Table 4.5: Results of Stacked DCFNet on the KIT AIS pedestrian dataset.
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

AA_Crossing_02 13 41.9 42.4 41.3 42.7 43.9 47.77 94 12.8 58.5 28.7 621 650 15 71 -13.3 74.7 -12.1
AA_Walking_02 17 31.4 31.6 31.2 32.3 32.7 104.29 188 5.9 45.7 48.4 1773 1809 23 184 -35.0 74.1 -34.2

Munich02 31 21.2 20.6 21.9 25.0 23.6 160.45 230 1.7 50.0 48.3 4974 4591 97 322 -57.7 60.5 -56.2
RaR_Snack_Zone_02 4 51.8 52.3 51.3 52.4 53.4 99.00 220 22.3 74.5 3.2 396 412 4 35 6.1 84 6.5
RaR_Snack_Zone_04 4 51.8 52.6 51.0 52.1 53.7 138.00 311 21.9 74.9 3.2 552 589 0 39 7.2 83.6 7.2

Total 69 30.0 30.2 30.9 33.1 32.3 120.52 1043 13.8 62.6 23.6 8316 8051 139 651 -37.3 71.6 -36.1

total MOTA of -37.3 compared to CSRT. Stacked DCFNet achieves a competitive MOTP score
of 71.6. The ratio of mostly tracked and mostly lost tracks is also improving, only loosing 23.6
% of all tracks while tracking 13.8 % mostly. The tracker’s performance on AA_Crossing_02,
AA_Walking_02 and Munich02 increases the most compared to the remaining sequences. This
gain is important since it shows the tracker’s ability to keep tracks during longer periods
in sequences with more frames. Compared to CSRT, all metrics except IDs and FMs show
significant improvements.

All in all, the results indicate that deep features outperform handcrafted ones by a large
margin.

4.2 Multi-Object Trackers

This section deals with the MOTs we experimented with during this thesis. MOTs include
SORT, DeepSORT, and Tracktor++. Additionally, we implemented a new tracking algorithm
called Euclidean Online Tracking (EOT) based on SORT. EOT uses the Euclidean distance for
tracklet-detection matching.

4.2.1 SORT & DeepSORT

DeepSORT [60] is an MOT, that composes deep appearance features and IoU based tracking.
We took the PyTorch implementation2 of DeepSORT and adapted it to work with our dataset.
We based our experiments on the ground truth and did not use the object detector that is
part of DeepSORT.

In the first experiment, we take DeepSORT and run it on the KIT AIS pedestrian dataset
without any changes. The results in Table 4.6 show that the tracker with standard parameter
settings is not suitable to track small objects in aerial imagery. The tracker uses appearance
features to associate objects to tracklets; however, for the first l frames, objects are associated
using an IoU metric until enough appearance features are available. Hence, DeepSORT
requires objects to be successfully tracked by SORT for the first frames. The regular value
for the IoU threshold is 0.5. The standard DeepSORT uses a Kalman filter for each object
to estimate its position in the next frame. However, there is little IoU overlap between most
predictions and detections, and many tracks can not be associated with any detection, making
it also impossible to use the deep features afterwards. The tiny bounding box size especially
causes the little overlap. For example, if the Kalman filter estimate is shifted more than 2

2https://github.com/ZQPei/deep_sort_pytorch
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Table 4.6: Results of DeepSORT with default settings on the KIT AIS pedestrian dataset.
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

AA_Crossing_02 13 3.1 3.1 3.1 100.0 100.0 0.00 94 100.0 0.0 0.0 0 0 940 1 17.2 99.7 99.7
AA_Walking_02 17 7.7 7.7 7.8 100.0 98.9 1.71 188 100.0 0.0 0.0 29 0 2145 5 18.6 99.0 98.8

Munich02 31 9.1 8.8 9.4 100.0 92.8 15.42 230 100.0 0.0 0.0 478 0 4681 1 15.8 64.0 92.1
RaR_Snack_Zone_02 4 21.0 20.9 21.2 100.0 98.7 2.75 220 100.0 0.0 0.0 11 0 351 2 58.2 98.1 98.4
RaR_Snack_Zone_04 4 17.9 17.9 18.0 100.0 99.6 1.25 311 100.0 0.0 0.0 5 0 510 0 58.1 98.6 99.4

Total 69 10.0 9.8 10.2 100.0 95.8 7.58 1043 100.0 0.0 0.0 523 0 8627 9 23.9 81.1 98.6

pixels from the ground truth position, for bounding boxes with a size of 4 × 4 pixels, there is
not enough overlap to consider tracklet and object as a match. This mismatch results in high
falsely initiated new tracks, leading to a total amount of 8,627 ID switches, an average amount
of 8.271 ID switches per person, and an average amount of 0.717 ID switches per detection.
Rcll, Prcn, FAR, MT, PT, ML, FN, MOTP, and FM have low significance since the experiments
are based on the ground truth. This assumption is valid for the rest of the DeepSORT and
SORT experiments.
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Figure 4.1: Correlation between ID switches and IoU threshold with DeepSORT.

We tackle this problem by enlarging the given ground truth bounding boxes by factor
two. We assume this will increase the IoU overlap, resulting in the confirmation of tracklets
and using of appearance information. The results of this experiment are visualized in table
Table 4.7. The total amount of ID switches decreased from 8627 to 5073, which is a 41.196
% decrease. The average amount of ID switches per person decreased to 4.864, the average
amount of ID switches per detection to 0.422. In Figure 4.1, we visualized the number of
ID switches with different IoU thresholds. It is visible that increasing the threshold, thereby
minimizing the required overlap for detections and predictions to be associated as matches,
reduces the number of ID switches. Setting the IoU threshold to 0.99 reduces the ID switches
the most, resulting in a total amount of 738 switches. We visualize the results in Table 4.8.
FP rate decreases to 502, FN increased to 75. Both changes are a result of the increased track
confirmations. These experiments confirm our assumptions that the missing IoU overlap is
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Table 4.7: Results of DeepSORT with default settings and doubled bounding box sizes on the
KIT AIS pedestrian dataset.

Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA_Crossing_02 13 34.8 34.5 35.1 100.0 98.4 1.38 94 100.0 0.0 0.0 18 0 566 1 48.5 94.3 98.2
AA_Walking_02 17 46.6 46.0 47.1 100.0 98.8 3.59 188 100.0 0.0 0.0 61 0 1073 5 57.5 93.1 97.6

Munich02 31 29.5 27.6 31.5 100.0 87.7 27.71 230 100.0 0.0 0.0 859 0 2989 1 37.2 63.9 85.9
RaR_Snack_Zone_02 4 52.2 51.9 52.5 100.0 98.9 2.5 220 100.0 0.0 0.0 10 0 203 2 75.4 95.7 98.6
RaR_Snack_Zone_04 4 61.2 61.0 61.5 100.0 99.2 2.5 311 100.0 0.0 0.0 10 0 242 0 79.5 94.4 99.0

Total 69 38.4 36.9 39.9 100.0 92.6 13.88 1043 100.0 0.0 0.0 958 0 5073 9 49.9 78.7 92.0

Table 4.8: Results of DeepSORT with IoU threshold set to 0.99 and doubled bounding box
sizes on the KIT AIS pedestrian dataset.

Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA_Crossing_02 13 93.8 92.5 95.2 99.8 96.9 2.77 94 100.0 0.0 0.0 36 2 45 2 93.8 85.0 96.5
AA_Walking_02 17 88.7 84.4 93.4 99.7 90.0 17.35 188 100.0 0.0 0.0 295 8 42 12 87.0 86.4 88.6

Munich02 31 73.1 70.9 75.3 98.9 93.2 14.23 230 100.0 0.0 0.0 441 67 565 56 82.5 62.9 91.7
RaR_Snack_Zone_02 4 90.1 89.9 90.4 99.8 99.2 1.75 220 99.1 0.9 0.0 7 2 37 4 94.7 87.9 98.8
RaR_Snack_Zone_04 4 90.2 90.1 90.3 100.0 99.8 0.75 311 100.0 0.0 0.0 3 0 49 0 95.8 88.4 99.6

Total 69 82.1 80.7 83.6 99.4 96.0 7.28 1043 1041 99.8 0.2 502 75 738 70 89.1 74.7 95.2

the main issue of the standard DeepSORT tracker. To further confirm this finding, we also
test this setting on the scenario with original bounding box sizes, also achieving an ID switch
decrease by 53.530 % to 4,009 and a MOTA increase by 31.5 points to 55.4.

With the improved tracklet-to-object association, appearance features should play a more
prominent role after tracklets were successfully tracked for the first l frames. Additionally,
since appearance-based matching is the priority in DeepSORT, an important step is fine-tuning
the featuring extracting neural network with our data. Originally, the network was trained
at a large person re-identification dataset. Our scenario differs a lot, as persons are only
visible from an aerial view, and the resolution of each person in the pictures is much lower
than the resolution available in the re-identification dataset. Also, bounding boxes are much
smaller compared to the original task, where each bounding box was scaled to 128× 64 pixels,
representing a common pedestrian form. Upscaling from 4× 4 pixels, the average bounding
box size in our dataset, to 128× 64 pixels leads to heavy interpolation errors. Hence, we
decided to finetune the network with the training set of the KIT AIS pedestrian dataset. The
last re-identification layers were initialized newly, the rest of the network with the provided
weights and biases. We also changed the number of classes to 610, which represents the
number of different persons after successfully cropping the images to the bounding box size
and ignoring crops too close to the edge of the images. Instead of upscaling to 128× 64 pixels,
we only scale up to 50× 50. We trained the classifier with the provided train class, used SGD

Table 4.9: Results of DeepSORT with IoU threshold set to 0.99 and regular bounding box sizes
on the KIT AIS pedestrian dataset.

Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA_Crossing_02 13 55.0 54.4 55.6 99.0 96.9 2.77 94 100.0 0.0 0.0 36 11 347 10 65.3 83.6 95.6
AA_Walking_02 17 63.4 62.5 64.3 99.1 96.3 6.06 188 100.0 0.0 0.0 103 23 557 25 74.4 82.0 95.2

Munich02 31 24.2 22.8 25.8 97.2 85.8 31.77 230 99.6 0.4 0.0 985 170 2737 151 36.5 62.9 81.1
RaR_Snack_Zone_02 4 57.7 57.3 58.2 100.0 98.5 3.25 220 100.0 0.0 0.0 13 0 177 2 78.0 90.4 98.2
RaR_Snack_Zone_04 4 69.1 68.7 69.5 99.9 98.8 3.75 311 99.7 0.3 0.0 15 1 191 1 83.2 87.2 98.5

Total 69 43.3 40.8 44.0 98.3 91.1 16.7 1043 99.8 0.2 0.0 1152 205 4009 189 55.4 73.7 88.7
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Table 4.10: Results of DeepSORT with IoU threshold set to 0.99, doubled bounding box sizes
and finetuned network on the KIT AIS pedestrian dataset.

Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA_Crossing_02 13 93.1 92.7 93.4 100.0 99.3 0.62 94 100.0 0.0 0.0 8 0 43 1 95.5 85.1 99.2
AA_Walking_02 17 93.1 92.4 93.7 99.8 98.4 2.53 188 100.0 0.0 0.0 43 6 42 9 96.6 86.5 98.1

Munich02 31 73.3 71.2 75.5 99.0 93.3 13.94 230 100.0 0.0 0.0 432 63 563 54 82.7 62.9 91.9
RaR_Snack_Zone_02 4 90.1 89.9 90.4 99.8 99.2 1.75 220 99.1 0.9 0.0 7 2 37 4 94.7 87.9 98.8
RaR_Snack_Zone_04 4 90.2 90.1 90.3 100.0 99.8 0.75 311 100.0 0.0 0.0 3 0 49 0 95.8 88.4 99.6

Total 69 82.4 81.0 83.8 99.4 96.0 7.14 1043 99.8 0.2 0.0 493 71 734 68 89.2 74.7 95.3

Table 4.11: Results of SORT with IoU threshold set to 0.99 and doubled bounding box sizes
on the KIT AIS pedestrian dataset.

Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA_Crossing_02 13 93.1 92.7 93.4 100.0 99.3 0.62 94 100.0 0.0 0.0 8 0 45 1 95.3 85.0 99.1
AA_Walking_02 17 94.5 93.9 95.1 99.3 98.6 2.18 188 100.0 0.0 0.0 37 2 30 6 97.4 86.5 98.5

Munich02 31 80.4 79.6 81.3 99.3 97.2 5.68 230 100.0 0.0 0.0 176 42 284 37 91.8 63.0 96.4
RaR_Snack_Zone_02 4 90.5 90.2 90.8 99.8 99.2 1.75 220 99.1 0.9 0.0 7 2 34 4 95.0 87.9 98.8
RaR_Snack_Zone_04 4 90.5 90.4 90.7 100.0 99.8 0.75 311 100.0 0.0 0.0 3 0 45 0 96.1 88.4 99.6

Total 69 86.5 85.5 87.2 99.6 98.1 3.35 1043 99.8 0.2 0.0 231 46 438 48 94.1 74.7 97.7

with a mini-batch size of 128, set the initial learning rate to 0.01, and trained for 20 epochs
with Cross-Entropy-Loss. We use doubled bounding box sizes during this experiment.

In Table 4.10, we present the results of this experiment. The total amount of ID switches
decreases from 738 to 734 only. We argue that the method, which models appearance features
in DeepSORT, is not suitable for our case. For large objects, small deviations of the bounding
box positions are tolerable since most parts of the bounding box are still object-relevant. In
our scenario, small deviations can cause significant changes in object relevance. The extracted
features do not necessarily correspond to the object, but in large parts to the background.
Consequently, in the appearance matching step, historic features and current features can
differ significantly, causing high distances when comparing these for target association.
Additionally, the appearance features of different persons are often not discriminative enough
to distinguish between them.

To confirm this theory, we also test DeepSORT without any appearance information, also
known as SORT. In Table 4.12 and Table 4.11 we provide the results with normal bounding
box sizes and doubled bounding box sizes using an IoU threshold of 0.99. In this case, SORT
outperforms the finetuned DeepSORT, reaching 3805 and 438 ID switches, respectively. The
amount of FP drop to 840 and 231, the number of FNs to 151 and 46. Nevertheless, the
amount of ID switches is still high, given that we use the ground truth positions.

We conclude that the low frame rate and the sizes of the small objects make IoU an
uninformed metric, not fitting to our scenarios. Enlarging the bounding boxes was essential
to study the impact of IoU matching and object size. Nevertheless, enlarging the bounding
boxes sizes can not be a final solution, leading to a decreased localization accuracy since
objects can be placed anywhere in the enlarged bounding box. Hence, in the following, we
will only use regular bounding box sizes.
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Table 4.12: Results of SORT with IoU threshold set to 0.99 and regular bounding box sizes on
the KIT AIS pedestrian dataset.

Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA_Crossing_02 13 55.9 55.4 56.5 99.1 97.2 5.54 94 100.0 0.0 0.0 33 10 343 9 66.0 83.5 96.0
AA_Walking_02 17 64.0 63.2 64.9 99.3 96.7 5.29 188 100.0 0.0 0.0 90 19 550 21 75.3 82.0 95.8

Munich02 31 24.6 23.6 25.8 98.0 89.7 22.23 230 99.6 0.4 0.0 689 122 2544 108 45.2 62.8 86.7
RaR_Snack_Zone_02 4 57.7 57.3 58.2 100.0 98.5 3.25 220 100.0 0.0 0.0 13 0 177 2 78.0 90.4 98.2
RaR_Snack_Zone_04 4 69.1 68.7 69.5 99.9 98.8 3.75 311 99.7 0.3 0.0 15 1 191 1 83.2 87.2 98.5

Total 69 42.9 41.8 44.2 98.7 93.4 12.17 1043 99.8 0.2 0.0 840 151 3805 141 60.1 73.6 91.7

Table 4.13: Results of EOT with Euclidean distance set to 17 pixel and regular bounding box
bizes on KIT AIS edestrian dataset.

Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA_Crossing_02 13 94.4 94.4 94.4 95.3 95.2 4.15 94 91.5 8.5 0.0 54 53 4 34 90.2 73.8 90.5
AA_Walking_02 17 94.6 94.0 95.1 96.9 95.8 6.71 188 96.8 2,7 0.5 114 82 10 63 92.3 76.6 92.6

Munich02 31 76.0 75.8 76.2 77.0 76.5 46.65 230 44.3 54.8 0.9 1446 1409 15 930 53.1 60.4 53.4
RaR_Snack_Zone_02 4 95.0 94.9 95.1 96.5 96.3 8.00 220 87.7 12.3 0.0 32 30 3 16 92.5 77.6 92.8
RaR_Snack_Zone_04 4 95.2 95.1 95.2 96.3 96.3 11.50 311 76.2 23.8 0.0 46 45 5 31 92.2 78.6 92.5

Total 69 85.2 84.9 85.5 86.5 86.0 24.52 1043 80.2 19.6 0.2 1692 1619 37 1074 72.2 69.3 72.5

4.2.2 Euclidean Online Tracking

We identify two main problems with DeepSORT and SORT paired with our scenario: Appear-
ance association is used as a priority, and missing IoU overlap leads to unconfirmed tracklets.
Nevertheless, the simplicity of DeepSORT and SORT is also a key advantage.

We decide to adopt the SORT architecture to our needs. We leave the Kalman filter
untouched and use it for motion prediction similar to in SORT. Instead of using appearance
information as first matching priority, we decide to calculate the euclidean distance between
our predictions and the detections (i.g., the ground truth) and base our associations on this
measure. We calculate the distance between all predictions, and all detections normalized
w.r.t. the GSD and construct a cost matrix.

Di,j =
√
(xi − xj)2 + (yi − yj)2 · GSD (4.2)

Similar to SORT, we use the Hungarian algorithm to solve for the minimal global cost.
However, considering the distance metric, the Hungarian algorithm can lead to an error
propagation throughout all tracklet-object associations in cases where objects leave or enter
the scene. Hence, we restrict the cost matrix: All distance greater than a threshold u are
ignored and set to an infinity cost. The threshold u is found experimentally and set to
u = 17 · GSD. This method solves the error propagation problem successfully. Furthermore,
only tracks that were successfully tracked in the previous frame are allowed to be associated
with this method since the uncertainty of the Kalman filter increase when it is not updated
with a measurement. We refer to this method as EOT in the following.

We visualized the results in Table 4.13. The total MOTA score increases from 60.1 to 72.2
points, while IDs decline significantly from 3805 to 37. FPs and FNs increase to 1692 and
1619, respectively; however, the main reason for this behavior is the better keeping of tracks
leading to small deviations in the Kalman filter predictions. Furthermore, the results indicate
that the euclidean distance is a suitable associating measure in our scenario.
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4.2.3 Tracktor++

To explore another tracker that is building upon deep features, we also evaluate our dataset
with Tracktor++ [2]. We use the PyTorch implementation3 and adapt it to our needs. As
explained in subsection 2.3.1, Tracktor++ uses a Faster RCNN to perform both, object detection
and tracking via regression.

We evaluate the tracker without any changes on the KIT AIS pedestrian dataset; however,
instead of using the object detector as a detection module, we give object position as ground
truth positions. Tracktor++ is not able to detect any kind of tracks, and evaluation fails with
an error. The Faster RCNN was originally not trained to our kind of data; thus, the vast
amount of objects, the small size of the objects, and the different recording and general data
scenario requires retraining and finetuning. This process is necessary since not only the
detection part but also the tracking part depends on the regression head of the network. The
authors provide training utilities; nevertheless, we change them massively. We use Faster
RCNN with a ResNet50 backbone pretrained on the ImageNet dataset. We change the anchor
sizes to 2,3,4,5, and 6 and the aspect ratios to 0.7, 1.0, and 1.3, enabling the detection of
small objects. Additionally, we increase the maximum detections per image to 300, set the
minimum size of an image to be rescaled to 400 pixels, the region proposal non-maximum
suppression (NMS) threshold to 0.3, and the box predictor NMS threshold to 0.1. The NMS
thresholds influence the amount of overlap for region proposals and box predictions. Instead
of SGD, we decide to use ADAM with an initial learning rate of 0.0001 and a weight decay
of 0.0005. Additionally, we decrease the learning rate every 40 epochs by multiplying 0.1
and set the number of classes to two, representing background and pedestrians. We apply
substantial online data augmentation, and flip the images with a probability of 0.5 respectively
horizontally and vertically, apply color jitter and random scaling in a range of 10 %.

In Table 4.14, we show the results with Tracktor++ and the finetuned Faster RCNN. For
object detection, Faster FCNN achieves a recall of 31 % and a precision of 25 %. The bad
object detection performance is transferred into the tracking part. Tracktor++ only reaches a
total MOTA of 5.3 with object detections based on the ground truth. This result is a decline of
67 points compared to EOT, which reaches a total MOTA of 72.2. The number of ID switches
increases to 2188 compared with 37 when using EOT.

Tracktor++ has difficulties in dealing with low framerates and small objects. Targets move
too much between frames, and the regression head is not able to regress the new position
accurately.

4.2.4 Conclusion of Experiments

In the last subsections, we evaluated different tracking approaches and their applicability to
our scenario. Table 4.15 compares the tracking results for all trackers.

For all algorithms based on tracking-by-detection, we used the ground truth as given
detections. We initiated the first object positions based on the ground truth and left it
to the tracker to regress the next positions for every other approach. In the following,

3https://github.com/phil-bergmann/tracking_wo_bnw
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Table 4.14: Results of Tracktor++ and finetuned Faster RCNN on the KIT AIS pedestrian
dataset.

Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA_Crossing_02 13 12.7 19.6 9.4 48.2 100.0 x 94 20.1 51.1 28.8 0 588 432 107 10.1 0.13 –
AA_Walking_02 17 10.7 27.5 6.7 23.2 95.8 x 188 3.2 43.1 53.7 27 2050 426 154 6.3 0.13 –

Munich02 31 7.8 16.7 5.1 22.7 74.5 x 230 2.2 41.3 56.6 746 4736 965 412 -0.8 0.078 –
RaR_Snack_Zone_02 4 33.8 54.5 24.5 40.2 89.5 x 220 17.7 45.5 36.8 41 517 134 27 20. 0.091 –
RaR_Snack_Zone_04 4 32.5 50.2 24.0 42.9 89.8 x 311 22.2 44.1 33.7 60 702 231 25 19.3 0.064 –

Total 69 13.7 27.3 9.2 28.5 85.0 x 1043 13.2 44.2 42.6 604 8593 2188 725 5.3 0.095 –

Table 4.15: Performance comparison of different trackers and regular bounding box bizes
Method IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

SMSOT-CNN (Caffe) 34.0 33.2 34.9 38.2 36.4 116.40 1043 25.0 52.5 22.5 8028 7427 157 614 -29.8 71.0 -28.5
Mosse 9.1 8.9 9.3 10.5 10.0 163.81 1043 0.8 54.0 45.2 11303 10765 31 133 -85.8 86.7 -83.5
KCF 9.0 8.8 9.3 10.3 9.8 165.56 1043 1.1 53.8 45.1 11426 10782 32 116 -84.9 87.2 -84.7
CSRT 16.0 16.9 15.2 17.5 19.4 126.55 1043 9.6 51.0 39.4 8732 9924 91 254 -55.9 78.4 -55.1

Medianflow 18.5 18.3 18.8 19.5 19.0 144.72 1043 7.7 55.8 36.5 9986 9678 30 161 -63.8 77.7 -63.5
SORT 42.9 41.8 44.2 98.7 93.4 12.17 1043 99.8 0.2 0.0 840 151 3805 141 60.1 73.6 91.7

DeepSORT 43.3 40.8 44.0 98.3 91.1 16.7 1043 99.8 0.2 0.0 1152 205 4009 189 55.4 73.7 88.7
EOT 85.2 84.9 85.5 86.5 86.0 24.52 1043 80.2 19.6 0.2 1692 1619 37 1074 72.2 69.3 72.5

Tracktor++ 13.7 27.3 9.2 28.5 85.0 8.75 1043 13.2 44.2 42.6 604 8593 2188 725 5.3 0.095 –
Stacked DCFNet 30.0 30.2 30.9 33.1 32.3 120.52 1043 13.8 62.6 23.6 8316 8051 139 651 -37.3 71.6 -36.1

this subsection evaluates the most exciting trackers more intensely and shows some key
advantages and disadvantages. Afterwards, we give a conclusion to find the most promising
research direction.

EOT showed the best tracking results in our experiments; hence we start with this tracker.
We visualize the major cases of successful tracking with EOT and detections based on

ground truth and regular bounding box sizes in Figure 4.2. Tracklets are visualized in green
color, the ground truth positions in black color. We make two important observations: Almost
all objects are tracked successfully, even though the sequence is crowded and people walk in
different directions. Furthermore, the significant cases of false positives and negatives are
"wrong", e.g., EOT tracks most objects, but the overlap is less than half of the bounding box
size, which is 4 square pixels.

In Figure 4.3, we visualized a typical failure case of the stacked DCFNet architecture.
The tracker tracks most objects correctly. Nevertheless, an error is shown in the middle of
the image crop, starting in frame 5. The tracker mistakes the line on the ground with the
people walking across this line and loses both objects. We assume that the line shares similar
appearance features with the tracked people.

In Figure 4.4, we show another typical failure case of DCFNet. The image crops show many
people close to each other walking in different directions, a difficult task for the tracker. The
vast amount of people leads to many ID switches in the consecutive frames. Similar to the
first failure case, we assume that many people share the same appearance features.

We confirm both findings by visualizing the activation map of the last convolution layer
of the network in Figure 4.5. The convolutional layers of DCFNets architecture were trained
on people in our training dataset only, but the activation map also highlights the line on
the ground in a similar way. The similar activation leads the tracker to mistake background
objects or other persons with a given tracklet. Furthermore, based on our visualizations, each
convolutional channel shows a different strength of activation. Based on this behavior, we
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(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4

(e) Frame 5 (f) Frame 6 (g) Frame 7 (h) Frame 8

Figure 4.2: Success case of EOT, test sequence Munich02.

argue that each channel has a different importance with respect to the final output.
In Figure 4.6 we show a successful tracking case. People are not walking together as

crowded as before, and the background is more distinguishable from the objects.
We also evaluate the SMSOT-CNN architecture by Bahmanyar et al. [30] and find that it

shares the same problems with the stacked DCFNet, although achieving a slightly better total
MOTA of -29.8 compared to -30.9. The similarity is reasonable since it also uses convolution
layers to extract appearance information. Based on a visual inspection, SMSOT-CNN shares
similar failure and success cases; however, it provides slightly better results.

In general, the euclidean distance paired with trajectory information is a more informed
metric than IoU in our scenarios. Nevertheless, the quality of detections is significantly worse
compared with the ground truth when using object detectors, as shown in subsection 4.2.3.
This makes a model based on object detections and distance matching not suitable for our
scenarios. Approaches that focus on deep appearance features used for re-identification share
similar problems with object detectors, and indiscriminative features and similar appearance
information lead to ID switches and loosing of tracks. Regression and correlation trackers,
in our case the stacked DCFNet and SMSOT-CNN architecture, show in general a better
performance than methods based on re-identification since they work with local crops where
errors can not spread through the whole image. Nevertheless, they perform badly when
confronted with similar-looking objects, crowded scenes, or occlusions. In general, we find
that the route taken by a pedestrian is influenced by three main points: By its route history,
by the movement and positions of surrounding people, and by the arrangement of the scene.

After carefully considering all of these aspects, we conclude that regression and correlation-
based trackers can be improved by taking into account trajectory information and the influence
of surrounding people. Hereby, typical failure cases shown in Figure 4.3 and Figure 4.4 can
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(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4

(e) Frame 5 (f) Frame 6 (g) Frame 7 (h) Frame 8

Figure 4.3: Failure case of stacked DCFNet, test sequence AA_Walking_02. Tracking results
are visualized in green color, ground truth in black color.

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4

Figure 4.4: Failure case of Stacked DCFNet, test sequence RaR_Snack_Zone_04
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(b) Activation Map

Figure 4.5: Activation map of the last conv layer of Stacked DCFNet

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4

(e) Frame 5 (f) Frame 6 (g) Frame 7 (h) Frame 8

Figure 4.6: Success case of Stacked DCFNet, test sequence AA_Crossing_02
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be eliminated.
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This chapter summarizes our methodology and explains the proposed DL-based architecture.
We propose two novel strategies to handle motion characteristics and adjacent neighbor
modeling in an end-to-end trainable fashion. To conclude this chapter, we present our
experiment and training settings.

As stated previously, scene arrangement, adjacent people, and an object’s previous move-
ment influence a pedestrian’s trajectory mainly. The same occurs in many traffic scenarios,
such as car or street traffic, which is even reinforced by the fact that vehicles move along
predetermined paths (e.g., streets, highways, rails), unlikely to leave these. However, different
objects have different motion characteristics: One may move slowly but steady, another one
fast but discontinuously. For example, several studies have proven that walking speed of
pedestrians is strongly influenced by different factors such as age, gender, temporal variations,
cell phone usage, movement in groups, and even city size [92, 93]. In street traffic, similar
aspects can influence driving behavior and lead to different movement characteristics, includ-
ing phone usage, age, stress, and fatigue [94, 95]. Furthermore, vehicles directly influence
other vehicles with their actions (e.g., if the Vehicle in front brakes, the following vehicles
must brake, too).

The understanding of individual motion patterns is crucial for well-performing tracking
algorithms, especially when only limited visual information about target objects is available.
However, current regression-based tracking methods such as GOTURN and SMSOT-CNN do
not incorporate the movement history or relationship between adjacent objects. These net-
works achieve tracking by monitoring a specific neighborhood of the target object, and hence,
the network is not provided with the contextual information from outside the neighborhood.
Additionally, the networks do not learn to distinguish between target objects and objects
sharing similar appearance features within the crop. Identity switches and lost tracks are a
consequence in crowded situations or object crossing, as we have shown in chapter 4. Other
frameworks, such as DeepSORT or Tracktor++, employ motion models or Kalman filters to
encode the previous movement. Nevertheless, such motion models are outdated. Therefore,
we replace them with DL-based structures.

Tackling the limitations of previous work, we propose to fuse track history, the relationships
of adjacent objects, and visual features in an end-to-end fashion within a regression-based
DNN. Our approach is called AerialMPTNet and takes two regional crops of two consecutive
images (previous and current), called target and search crop in which the object location
is known and has to be detected, respectively. The size of both crops, and consequently,
the amount of context the network receives, is dependent on the object’s size. Both crops
are centered on the known object coordinates of the previous frames and scaled to 227 x
227 pixels afterwards. Both crops are given to an SNN module, consisting of two branches
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Figure 5.1: Overview of the network’s architecture composing a SNN, a LSTM and a
GraphCNN module. The inputs are two consecutive images cropped and centered
to a target object, and the output is the object location in search crop coordinates.

sharing layer weights. The SNN module consists of five 2D convolutions, two local response
normalization, and three max-pooling layers. It serves as a baseline, retained from the work
of Bahmanyar et al. [30]. The output features OutSNN are concatenated and given to four
fully connected layers regressing the object position in search crop coordinates. The output of
the network is four numbers representing the top-left and bottom-right coordinates of the
objects’ bounding box in search crop coordinates. Afterwards, the predictions are stored in
memory and transformed to image coordinates. The LSTM receives the respective search crop
coordinates; the GraphCNN the image coordinates in contrast. Multiple objects are given to
the network as a batch of elements, and hence, only the batch size increases with the number
of objects. Figure 5.1 shows the structure of the network and details each layers’ output size.
We use ReLU activations for all layers detailed in the figure.

5.1 Long Short-Term Memory Module

We need a model that can encode previous motion information and can predict person-specific
trajectories based on a dynamic length of historical movements. Recent work on the task of
path prediction focuses mainly on the use of LSTM- and RNN-like structures to successfully
predict a path based on previous measurements [96, 97, 98]. Nevertheless, most methods
use one of such networks per individual. Due to the vast amount of objects in our scenarios,
this is not applicable. We need a model that treats each object as an element in a mini-batch.
Therefore, the number of models does not increase with the number of objects.

To test an LSTM’s capability of predicting future movements of individual objects, we
conduct a small experiment. We construct an LSTM consisting of two bidirectional LSTM
layers and a dropout layer with p = 0.5 in between. We set the size of the hidden dimensions
to 64. A final linear layer maps to an output of two numbers representing x and y values of
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a movement vector. The input of the LSTM are two-dimensional movement vectors with a
dynamic length history of up to five time steps. The results of this experiment show that
this LSTM is capable of predicting the next movement vector to as accurate as 3.6 pixels,
representing 0.43 m. Consequently, we do not consider it necessary to train one LSTM per
object, but instead consider to train a single LSTM on multiple objects, giving the LSTM the
ability to predict a movement vector based only on dynamic length historical movements of
individuals.

We propose to use such an LSTM as a path prediction module in our network. Our LSTM
module consists of two bidirectional LSTM layers. In a first step, the network generates a
sequence of object motion vectors from its predictions. In our experiments, each track has
a dynamic history of up to five last predictions. Tracks do not necessarily start at the same
time, and consequently, the length of each track history can differ. As a consequence, we use
zero-padding to achieve similar track history lengths, making it possible to process all tracks
as a batch. These sequences are fed to the first LSTM layer with a hidden size of 64. We apply
dropout with p = 0.5 to the hidden state of the first LSTM layer hl−1

t and pass the result as
input to the second LSTM layer. Afterwards, we feed the output features hl

t of the second
LSTM layer to a linear layer of size 128. The last step includes concatenating the output of the
LSTM module OutLSTM with OutSNN and OutGraph, the output of the GCNN module. The
LSTM module allows the network to predict object locations based on a fusion of appearance
and movement features.

5.2 GraphCNN Module

The GraphCNN module consists of three 1D convolution layers with 1× 1 kernels, and the
output channel numbers of 32, 64, and 128. We generate each object’s adjacency graph based
on the location prediction of all objects. The eight closest neighbors in a distance of 7.5 m
of each object are considered and represented as directed graphs by a set of vectors with
the object’s position x, y as center node: [x, y, vx1, vy1, ..., vx8, vy8]. This graph contains the
target object location in the image crop coordinates and the information of the vectors to the
selected neighbors vxi,vyi. In case less than eight neighbors are existing, we zero-pad the
respective vectors. The amount of previous graph configurations is limited to five, and similar
to the LSTM module, we use zero-padding if less than 5 time steps are available. We feed
the sequences of graphs as an input matrix of 18× 5 to the first convolution layer. Multiple
objects are given to the network as a batch of matrixes. We give the output features of the
first layer to the next layers, upscaling channel size to 128 at the end of the convolutional
block. We use global average pooling to generate the final output OutGraph of this module
consisting of 128 features. Similar to the LSTM module, we concatenate these features with
OutSNN and OutLSTM. The GraphCNN module gives the network the ability to understand
group movements better.
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5.3 Experimental Setup

For all of our experiments, we used PyTorch and Nvidia Titan XP GPUs. We trained all
networks with an SGD optimizer and an initial learning rate of 10−6. For all training
setups, unless indicated otherwise, we used the L1 loss, L(x, y) = |x − y|, where x and y
are the output of the network and ground truth, respectively. The mini-batch size of all our
experiments is 150; however, during offline feedback training, the batch size can differ due
to unsuccessful tracking cases and the subsequent removal of the respective object from the
batch.

During the training of SMSOT-CNN, we assigned different fractions of the initial learning
rate to each layer, similar to its original implementation in Caffe inspired by the GOTURN’s
implementation. In detail, we assigned the initial learning rate to each convolutional layer
while we assigned the same value multiplied by 10 to fully connected layers. Weight and
bias initialization were also identical to the Caffe version, where weights were assigned as
Gaussians with different standard deviations and biases as constants being zero or one. The
training process of SMSOT-CNN is based on a so-called Example Generator. Provided with
one target image with known object coordinates, it creates multiple examples by creating and
shifting the search crop to create different kinds of movement. However, it is also possible to
give the true target and search images. A hyperparameter controls the number of examples
generated for each image, which was set to 10. We trained SMSOT-CNN for each dataset,
respectively. However, for the pedestrian datasets, we used DLR-ACD to increase the amount
of available training data. SMSOT-CNN is trained completely offline. Here, the network
learns to regress the object location based on one time step only.

For AerialMPTNet, the SNN module and the fully connected layer were firstly trained
similar to SMSOT-CNN. Afterwards, these layers were initialized with the obtained weights;
the remaining layers were initialized with the standard PyTorch assignment. We decay the
learning rate by a factor of 0.1 in every 20K iterations and train AerialMPTNet in an end-
to-end fashion by using feedback loops to integrate previous movement and relationship
information between adjacent objects. In contrast to the training process of SMSOT-CNN,
which is based on artificial movement created by the example generator, we train our networks
based on real tracks.

In the following, we describe the training process of our approach. In a first step, a batch of
150 random tracks (i.e., objects from random sequences of the training set) is selected starting
at a random time step between 0 and the track end tend − 1. We give the network a target and
search crop for these objects, and the networks’ goal is to regress the position in the search
crops consecutively. However, in contrast to SMSOT-CNN, the training process works across
multiple time steps. The object is left in the batch as long as the network tracks it successfully;
consequently, target and search crop are based on the network predictions. However, if the
true object position moves out of the predicted search area and the network fails, or the true
track reaches an end, we remove the object from the batch and replace it with a new randomly
selected object. For each track and each time step, the networks’ prediction is stored and used
from the LSTM and GCNN module. For each object in the batch, the LSTM module is given
the objects’ movement vectors from the last time steps up to 5. This process provides the
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Name SNN LSTM GraphCNN SE Layers OHEM
SMSOT-CNN X × × × ×

AerialMPTNetLSTM X X × × ×
AerialMPTNetGCNN X × X × ×

AerialMPTNet X X X × ×
AerialMPTNetSE X X X X ×

AerialMPTNetOHEM X X X × X

Table 5.1: Visualization of different network settings.

network with an understanding of each object’s motion characteristics and gives a prediction
of the next movement. As a result, our network uses its predictions as feedback to improve
its performance. Furthermore, we perform gradient clipping for the LSTM during training to
prevent exploding gradients. The neighbor calculation of the GCNN module is also based on
the networks’ prediction of each object’s position. Based on the network’s output, we search
for true nearest neighbors based on the entries of the training set in this specific sequence
and frame. The neighbors are given to the module as a graph structure, also influencing the
network’s future prediction similar to the LSTM module. However, during the testing phase,
we search nearest neighbors based on the network’s prediction of the respective sequence
and frame, not based on the ground truth.

For the pedestrian dataset, we chose a context factor of 4; hence, an object with a bounding
box sized 4 x 4 pixel results in a 16 x 16 pixel sized crop. For vehicle tracking, however, we
reduced the context factor to 3. The main reason is the large bounding box size, also resulting
in a larger search window.

In Table 5.1, we visualized different tracking configuration. The table shows how the
approaches differ from each other and introduces name conventions.

5.3.1 Squeeze-And-Excitation Layers

During our preliminary experiments, we experienced a high deviation in the quality of
activation maps produced by the convolution layers in DCFNet and SMSOT-CNN. This
deviation shows the direct impact of single channels and their importance for the final result
of the network. Nevertheless, our network structure does not take this issue into account.

We decided to model the different importance of the single channels by using SE layers. We
add one SE layer behind the SNN module, as well as one SE layer behind the weight-sharing
multi-layer perceptrons. We visualize the resulting network architecture in Figure 5.2. The
training process of the network does not change.

5.3.2 Online Hard Example Mining for Tracking

In the field of object detection, datasets contain an overwhelming number of easy samples
and a small number of hard examples. Researchers developed several strategies to deal with
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Figure 5.2: Overview of the network’s architecture including SE layers.

this problem, such as special loss functions (e.g., Focal Loss [99]) penalizing the importance of
easy examples, or hard example mining, which gives hard examples to the object detector it
previously failed. The selection of such hard examples can make the training more effective.

However, in the field of multi-object tracking, such strategies are not commonly used.
Nevertheless, datasets also contain a large number of easy samples and a smaller value of
hard examples. To the best of our knowledge, none of the previous works in regression-based
tracking used an online hard exampling mining (OHEM) strategy during training.

Hence, we propose to integrate OHEM in our training process in a simple way. If the
tracker loses an object during training, we reset the object to its original start position and
start frame, and give it to the network in the next iteration again. If the tracker fails again, we
remove the sample from the mini-batch.
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In this chapter, we evaluate the proposed AerialMPTNet with multiple modifications on the
KIT AIS datasets and the AerialMPT dataset. We compare our results to several methods
such as KCF, Medianflow, MOSSE, CSRT, as well as DNN-based methods such as DeepSORT,
Tracktor++, DCFNet, and SMSOT-CNN.

6.1 PyTorch SMSOT-CNN

SMSOT-CNN was originally written within the Caffe framework. However, we decided to
adopt the code and move it to PyTorch. The usage of the saved weights and models was
not possible. Hence, we trained a SMSOT-CNN model on each dataset. We visualized the
respective results in Table 6.1. SMSOT-CNN achieves a MOTA and MOTP score of -35.0 and
70.0 for the KIT AIS pedestrian, and 37.1 and 75.8 for the KIT AIS vehicle dataset, respectively.
Compared to the original implementation of SMSOT-CNN in Caffe, MOTA decreases by 5.2
and 4.0 points for the pedestrian and vehicle set, respectively. We report a MOTA and MOTP
of -37.2 and 68.0 for the AerialMPT dataset.

6.2 AerialMPTNet (LSTM only)

We focused our first experiments on the LSTM-based AerialMPTNet. Table 6.2 demonstrates
the tracking result of AerialMPTNetLSTM with frozen and trainable convolutional weights
during training on the KIT AIS pedestrian dataset. We took the pretrained weights of
SMSOT-CNN to initialize the convolutional weights and bias of both networks here.

The network with the unfrozen weights outperforms the one with the frozen weights. It
reaches a MOTA score of -17.8 and a competitive MOTP of 68.8, while the frozen network’s re-
sult is -26.0 and 69.3, respectively. Additionally, the unfrozen network achieves a significantly
higher percentage of mostly tracked objects than the frozen network. It tracks 28.9 % of the
pedestrians mostly, while the frozen network only tracks 22.0 % of them mostly. Furthermore,
the unfrozen network achieves better results for IDF1, IDP, IDR, Rcll, Prcn, FAR, ML, FP, FN,
and MOTAL. The improvement is distributed equally across all sequences. Nevertheless, it is
striking that the amount of ID switches is 270 for the unfrozen network, compared to 231 for
the frozen network. Based on a visual inspection, the lower amount of ID switches results
from the loss of tracks in non-crossing situations, and thus, the tracker’s estimate is placed
on a space where no target appears. The unfrozen network holds trajectories better; however,
the loosing of tracks happens mostly in more crowded situations leading to increased ID
switches.
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Table 6.1: Results of PyTorch SMSOT-CNN on KIT AIS and AerialMPT datasets.
KIT AIS Pedestrian Dataset

Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA_Crossing_02 13 49.4 49.2 49.6 51.7 51.3 42.92 94 22.4 60.6 17.0 558 548 15 88 1.2 66.8 2.4
AA_Walking_02 17 29.6 29.0 30.2 31.9 30.6 113.76 188 9.1 45.7 45.2 1934 1820 25 139 -41.5 65.7 -40.6

Munich02 31 20.7 19.9 21.5 24.5 22.6 165.45 230 3.5 44.3 52.2 5129 4625 91 271 -60.7 67.1 -59.3
RaR_Snack_Zone_02 4 63.1 62.9 63.4 64.2 63.7 79.0 220 35.0 63.6 1.4 316 310 1 39 27.5 78.2 27.6
RaR_Snack_Zone_04 4 63.5 63.3 63.7 65.3 64.9 108.5 311 35.0 64.0 1.0 434 427 3 48 29.8 76.7 30.0

Total 69 32.5 31.7 33.4 35.7 33.9 121.32 1043 22.2 56.0 21.8 8371 7730 135 585 -35.0 70.0 -33.9

AerialMPT Dataset
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

Bauma3 16 29.3 28.6 30.0 34.6 33.0 385.69 609 9.9 47.1 43.0 6171 5748 200 458 -37.9 69.1 -35.7
Bauma6 26 30.8 28.6 33.3 37.7 32.3 161.23 270 12.2 57.4 30.4 4192 3311 115 302 -43.4 67.7 -41.2

Karlsplatz 27 30.7 29.4 32.2 33.8 30.8 94.93 146 6.9 58.2 34.9 2563 2233 26 95 -42.9 67.9 -42.2
Pasing7 24 57.7 54.5 61.3 61.9 55.1 43.42 103 35.9 54.4 9.7 1042 786 7 136 11.1 67.6 11.4
Pasing8 27 33.5 32.6 34.4 35.1 33.3 50.30 83 8.4 54.2 37.4 1358 1253 10 82 -35.7 67.0 -35.2

Witt 8 15.8 15.7 15.9 16.4 16.2 150.38 185 1.1 20.5 78.4 1203 1184 1 9 -68.6 61.5 -68.6
Total 32.0 30.7 33.4 36.6 33.6 129.13 1396 10.7 47.7 41.6 16529 14515 359 1082 -37.2 68.0 -35.6

KIT AIS Vehicle Dataset
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

MunichStreet02 20 87.4 85.0 90.1 90.5 85.3 5.80 47 87.2 8.5 4.3 116 71 1 7 74.8 80.6 74.9
StuttgartCrossroad01 14 67.3 63.6 71.5 74.9 66.6 14.86 49 57.1 30.6 12.3 208 139 3 17 36.8 75.3 37.3
MunichCrossroad02 45 50.6 49.5 51.7 53.5 51.3 24.38 66 45.5 27.3 27.2 1097 1001 17 41 1.9 69.4 2.6

MunichStreet04 29 83.5 82.4 84.7 85.8 83.6 8.83 68 76.5 14.7 8.8 256 215 6 15 68.6 79.7 68.9
Total 108 68.0 66.4 69.7 71.3 67.9 15.53 230 65.7 20.4 13.9 1677 1426 27 80 37.1 75.8 37.6

Table 6.2: Results of AerialMPTNet (LSTM only) on KIT AIS pedestrian dataset with pre-
trained fixed and unfixed convolutional weights.

Fixed Weights
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

AA_Crossing_02 13 42.0 41.8 42.2 44.8 44.5 48.92 94 13.8 59.6 26.6 636 626 13 99 -12.3 68.4 -11.3
AA_Walking_02 17 34.7 34.0 35.4 37.2 35.8 104.94 188 8.0 55.3 36.7 1784 1678 22 227 -30.4 67.4 -29.7

Munich02 31 26.0 25.1 26.9 33.1 30.8 146.81 230 6.1 57.8 36.1 4551 4098 191 463 –44.3 67.8 -41.2
RaR_Snack_Zone_02 4 57.1 56.9 57.3 59.0 58.6 90.25 220 29.1 69.5 1.4 361 355 1 42 17.1 72.9 17.2
RaR_Snack_Zone_04 4 64.7 64.4 64.9 66.3 65.9 105.25 311 39.6 58.8 1.6 421 415 4 52 31.7 73.8 32.0

Total 69 35.5 34.6 36.3 40.4 38.5 112.36 1043 22.0 60.3 17.7 7753 7172 231 883 -26.0 69.3 -24.1

Unfixed Weights
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

AA_Crossing_02 13 47.1 49.9 47.3 49.6 49.2 44.77 94 23.4 48.9 27.7 582 572 11 91 -2.6 68.2 -1.8
AA_Walking_02 17 39.8 39.2 40.5 41.9 40.5 96.47 188 18.6 46.8 34.6 1640 1553 31 215 -20.7 67.2 -19.6

Munich02 31 29.6 28.6 30.8 37.1 34.5 139.10 230 8.3 59.6 32.1 4312 3852 221 506 -36.9 67.1 -33.3
RaR_Snack_Zone_02 4 63.0 62.8 63.2 64.9 64.4 77.50 220 37.3 60.0 2.7 310 304 4 31 28.6 72.2 28.9
RaR_Snack_Zone_04 4 67.6 67.5 67.8 69.1 68.8 96.50 311 46.0 50.8 3.2 386 380 3 43 37.5 73.3 37.7

Total 69 39.7 38.8 40.6 44.6 42.6 104.78 1043 28.9 53.8 17.3 7230 6661 270 886 -17.8 68.8 -15.5

Compared to the SMSOT-CNN baseline, the frozen and unfrozen AerialMPTNetLSTM
achieves a total MOTA gain of 9 and 17.2 on the KIT AIS pedestrian dataset. MOTP decreases
from 70.0 for SMSOT-CNN to 69.3 and 68.8 for the frozen and unfrozen AerialMPTNetLSTM,
respectively. We argue that the feature extracting SNN needs some finetuning to work well
with the proposed LSTM module, which is the reason why the unfrozen networks show
better results than the frozen one. Due to the advantages of trainable unfrozen weights, we
used those for all of the remaining experiments. The MOTA enhancement of the unfrozen
AerialMPTNetLSTM is especially high for the most complex sequences, AA_Walking_02 and
Munich02. It increases by 20.8 and 23.8 points, respectively. However, the MOTA decreases
slightly to -2.6 from 1.2 for AA_Crossing_02. For the remaining sequences, it increases slightly.

In the next step, we also trained AerialMPTNetLSTM on the AerialMPT and the KIT AIS
vehicle dataset. Table 6.3 shows the tracking results of AerialMPTNetLSTM on the AerialMPT
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Table 6.3: Results of AerialMPTNet (LSTM only) on AerialMPT dataset.
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

Bauma3 16 28.3 27.7 29.0 34.6 33.0 386.00 609 8.4 51.2 40.4 6176 5745 246 608 -38.5 71.0 -35.7
Bauma6 26 33.2 31.2 35.5 39.3 34.5 152.35 270 13.0 58.5 28.5 3961 3225 135 387 -37.8 70.1 -35.3

Karlsplatz 27 48.4 47.0 50.0 51.4 48.2 68.89 146 24.7 55.5 19.8 1860 1641 16 140 -4.2 69.7 -3.8
Pasing7 24 61.0 58.5 63.6 64.3 59.2 38.08 103 35.9 56.3 7.8 914 737 5 127 19.8 70.5 20.0
Pasing8 27 41.3 40.6 42.1 42.7 41.4 43.78 83 18.1 50.6 31.3 1182 1108 4 90 -18.7 69.4 -18.6

Witt 8 15.6 15.5 15.7 17.3 17.1 148.75 185 2.7 23.8 73.5 1190 1171 3 24 -66.9 61.1 -66.8

Total 128 35.7 34.5 37.0 40.5 37.7 119.40 1396 12.8 49.8 37.4 15283 13627 409 1376 -28.1 70.1 -26.3

Table 6.4: Results of AerialMPTNet (LSTM only) on KIT AIS vehicle dataset.
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

MunichStreet02 20 81.9 79.9 84.0 84.9 80.6 7.60 47 74.5 10.6 14.9 152 113 4 3 63.9 79.6 64.4
StuttgartCrossroad01 14 65.9 62.4 69.9 72.7 65.0 15.50 49 59.2 26.5 14.3 217 151 2 11 33.2 76.2 33.5
MunichCrossroad02 45 57.7 56.0 59.5 60.6 56.9 21.93 66 48.5 33.3 18.2 987 850 22 43 13.7 69.4 14.7

MunichStreet04 29 88.7 88.3 89.1 89.9 89.0 5.79 68 86.8 7.4 5.8 168 153 2 3 78.7 79.8 78.8
Total 108 71.6 69.8 73.4 74.5 70.9 14.11 230 67.4 19.6 13.0 1524 1267 30 60 43.3 75.7 43.9

dataset. Similar to the KIT AIS pedestrian dataset, results improve significantly compared to
the SMSOT-CNN baseline. The total MOTA score improves from -37.2 to -28.1, with MOTP
also increasing from 68.0 to 70.1. The percentage of mostly tracked objects increases by 2.1
% to 12.8 %, the percentage of mostly lost tracks decreases by 4.2 % to 37.4 %. Additionally,
the IDF1, IDP, IDR, Rcll, Prcn, FAR, PT, FPs, FNs, and MOTAL scores increase significantly
compared to the baseline. The most complex sequences within AerialMPT are Bauma3 and
Bauma6 captured at BAUMA trade fair, exhibiting overcrowded alleys and many pedestrian-
intersection situations. MOTP increases slightly by 1.9 % and 2.4 %, MOTA decreases by 0.6
% and increases by 5.6 %. In such complex sequences, the LSTM module solely does not
enforce the network with enough distinguishing power to discriminate against every single
person. The Karlsplatz sequence achieves the largest MOTA improvement. It increases from
-42.9 to -4.2 with MOTP, also increasing from 67.9 to 69.7. The results of the Witt sequence are
mostly similar to the baseline, and we explain the reason for this behavior in section 6.4. The
remaining sequences show a gradual improvement of most metrics.

Table 6.4 shows the quantitative results of AerialMPTNetLSTM on the KIT AIS vehicle
dataset. The total MOTA and MOTP scores improved by 6.2 and 7.7 points to 43.3 and 75.7
compared to SMSOT-CNN, respectively. However, the performance gains are low compared
to the results on the pedestrian datasets. IDF1, IDP, IDR, Rcll, Prcn, FAR, MT, ML, FP, FN,
ID, FM, and MOTAL metrics improve significantly, with the number of ID switches reducing
from 27 to 22. MOTA score on all sequences except MunichStreet02 improves. We explain this
behavior with visual inspections in section 6.4.

We conclude that trainable weights are important when adding new modules and improve
the overall results significantly. Furthermore, the motion model encoded by the LSTM brings
significant performance gains compared to the SMSOT-CNN baseline. AerialMPTNetLSTM
outperforms SMSOT-CNN on all datasets in terms of MOTA and mostly tracked objects.
Nevertheless, the improvement on the KIT AIS vehicle dataset is comparably low. We argue
that the appearance features of vehicles are more dominant and easier to distinguish.

48



6 Evaluation & Discussion

Table 6.5: Results of AerialMPTNet (GCNN only) on KIT AIS and AerialMPT datasets.
KIT AIS pedestrian

Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA_Crossing_02 13 43.5 43.3 43.7 45.5 45.1 48.38 94 18.1 51.1 30.8 629 619 11 90 -10.9 68.5 -10.1
AA_Walking_02 17 35.8 35.3 36.2 38.2 37.2 101.35 188 14.9 47.9 37.2 1723 1650 35 204 -27.6 68.1 -26.3

Munich02 31 29.1 28 30.2 35.5 32.9 142.94 230 8.3 53.9 37.8 4431 3951 204 434 -40.2 68.1 -36.9
RaR_Snack_Zone_02 4 55.2 55.0 55.4 56.9 56.5 94.75 220 28.2 69.5 2.3 379 373 3 41 12.7 73.3 13.0
RaR_Snack_Zone_04 4 67.2 67 67.3 68.5 68.2 98.25 311 44.4 52.1 3.5 393 387 6 45 36.1 73.9 36.5

Total 69 37.5 36.7 38.4 42.0 40.0 109.49 1043 25.3 55.3 19.4 7555 6980 259 814 -23.0 69.6 -20.9

AerialMPT
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

Bauma3 16 29.6 28.9 30.4 36.5 34.7 376.75 609 11.3 48.3 40.4 6028 5581 276 550 -35.2 70.0 -32.1
Bauma6 26 36.7 34.4 39.3 43.7 38.2 144.23 270 20.4 50.4 29.2 3750 2994 126 329 -29.3 70.6 -26.9

Karlsplatz 27 43.7 72.3 45.2 46.4 43.4 75.63 146 15.8 63.0 21.2 2042 1809 25 145 -14.9 68.5 -14.2
Pasing7 24 68.6 66.0 71.4 71.6 66.1 31.50 103 51.5 39.8 8.7 756 857 4 96 34.7 71.0 34.9
Pasing8 27 41.2 40.4 42.1 42.7 41.0 44.0 83 18.1 51.8 30.1 1188 1108 2 94 -18.9 68.2 -18.9

Witt 8 14.1 14.0 14.2 15.3 15.1 152.38 185 1.6 19.5 78.9 1219 1200 0 15 -70.8 60.8 -70.8
Total 128 37.0 35.7 38.3 42.0 39.1 117.05 1396 15.6 46.0 38.4 14983 13279 433 1229 -25.4 69.7 -23.5

KIT AIS Vehicle
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

MunichStreet02 20 82.6 80.5 84.7 85.4 81.1 7.40 47 76.6 6.4 17.0 148 109 4 3 65.0 79.5 65.5
StuttgartCrossroad01 14 70.0 66.5 73.8 76.7 69.1 13.57 49 65.3 22.4 12.3 190 129 2 11 42.1 75.7 42.3
MunichCrossroad02 45 56.3 54.7 58.0 59.4 56.0 22.33 66 44.0 34.8 21.2 1005 876 14 41 12.1 70.0 12.7

MunichStreet04 29 87.3 86.8 87.8 88.5 87.4 6.66 68 83.8 8.8 7.4 193 175 2 3 75.6 79.7 75.7
Total 108 71.1 69.4 72.9 74.1 70.6 14.22 230 67.0 18.7 14.3 1536 1289 22 58 42.8 75.9 43.2

6.3 AerialMPTNet (GCNN only)

We focus our second experiments on adjacent neighbor modeling with AerialMPTNetGCNN .
We trained one model for each dataset. Table 6.5 shows the individual results for the KIT AIS
pedestrian and vehicle datasets, as well as for the AerialMPT dataset.

The results of the KIT AIS pedestrian dataset improve significantly compared to SMSOT-
CNN. AerialMPTNetGCNN reaches a total MOTA and MOTP of -23.0 and 69.6, which is an
improvement of 12.0 and a decrease of 0.4, respectively. The tracker tracks 25.3 % of all
pedestrians mostly and only looses 19.4 % of them mostly. This result is an improvement of
3.1 % and -2.4 %, respectively. The IDF1, IDP, IDR, Rcll, Prcn, FAR, MT, ML, FP, FN, and
MOTAL scores surpass the previous results and prove that the knowledge of relationships
between adjacent objects gradually increases the tracker’s performance. As we have seen
previously, the most complex sequences show the greatest improvement. This is also valid for
this experiment: MOTA on AA_Walking_02 and Munich02 increase by 13.9 and 20.5, while
MOTP climbs by 2.4 and 1.0. However, MOTA decreases by 12.1 and 14.8 on AA_Crossing_02
and RaR_Snack_Zone_02. We argue that these sequences are less crowded, resulting in graph
padding, which harms the tracker’s performance. Compared to AerialMPTNetLSTM, the total
MOTA decreases by 5.2, and the total MOTP increases by 0.8.

The results of AerialMPTNetGCNN on the AerialMPT dataset also indicate that neighbor
modeling is an important step to increase the tracker’s performance. The total MOTA and
MOTP scores surpass the results of the SMSOT-CNN baseline by 11.8 and 1.7, resulting in
total values of -25.4 and 69.7, respectively. The percentage of mostly tracked pedestrians
climb from 10.7 % to 15.6 %, while the percentage of mostly lost tracks reduces from 41.6 %
to 38.4 %. Similar to our previous experiments, the IDF1, IDP, IDR, Rcll, Prcn, FAR, MT, ML.
FP, FN, and MOTAL metrics improve. However, in contrast to the KIT AIS pedestrian dataset,
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AerialMPTNetGCNN performs better than AerialMPTNetLSTM. Based on the characteristics of
the datasets, we explain this behavior with the higher crowd density in AerialMPT, making
relationships between neighbors more critical than their movements.

The total results of AerialMPTNetGCNN trained on the KIT AIS vehicle dataset also improve
compared to SMSOT-CNN. The total MOTA and MOTP climb by 5.7 and 0.1, resulting in
a score of 42.8 and 75.9, respectively. Similar to AerialMPTNetLSTM, the MOTA score of
all sequences except MunichStreet02 improves. However, it is striking that the results of
MunichCrossroad02 are comparably low. Visual inspections in section 6.4 will explain this
behavior. Compared to AerialMPTNetLSTM, the total MOTA decreases by 0.8, and the total
MOTP increases by 0.4. In general, both networks have comparable results on this dataset.

6.4 AerialMPTNet

Our third experiment aims to unite the advantages of the LSTM and the GraphCNN module.
We train a model of AerialMPTNet on each dataset.

Table 6.6 summarizes the results of AerialMPTNet on each dataset. AerialMPTNet surpasses
the performance of AerialMPTnetLSTM and AerialMPTNetGCNN in terms of the most metrics
for both pedestrian datasets. However, for the vehicle dataset AerialMPTNet falls behind
both previous versions.

On the KIT AIS pedestrian dataset, the total MOTA increases by 1.6 and 6.8, respectively,
to -16.2. The total MOTP moves +0.8 and 0.0 points to 69.6. Figure 6.1 shows a precision
and a MOTA plot with different association IoU thresholds, comparing AerialMPTNet with
its SMSOT-CNN baseline. The plots prove that AerialMPTNet permanently outperforms
SMSOT-CNN. The network tracks 28.1 % of the pedestrians mostly, while it only looses 16.6
% mostly. Compared to the LSTM- and GCNN based networks, ML score improves by -0.7
% and -2.8 %. We also visualized MT and ML plots in Figure 6.2. Similar to the MOTA and
precision plots, AerialMPTNet surpasses the performance of SMSOT-CNN at almost any
threshold. Nevertheless, SMSOT-CNN loses fewer tracks mostly, when the threshold is set to
0.8 and 0.9. The reason for this behavior lies in the MOTP score, which is slightly worse for
AerialMPTNet (69.6 to 70.0).

AerialMPTNet reaches the best scores among all previously tested methods on AA_Walking_
02, Munich02 and RaR_Snack_Zone_02, with MOTA scores of -16.8, -34.5 and 38.9. These
sequences are the most complex sequences considering their lengths as well as their number
of pedestrians and movements. The sequence length impacts the MOTA scores gradually, with
longer sequences achieving lower scores than shorter ones. We show the illustrative results of
SMSOT-CNN and AerialMPTNet on the AA_Walking_02 sequence in Figure 6.3. White dots
visualize the ground truth object positions, while blue dots are the tracker’s estimates. The
amount of visible white dots indicates that SMSOT-CNN loses many pedestrians within this
sequence. Blue dots are stuck at the lines on the ground and do not move anymore within the
visualized frames. The lines share similar appearance features with some pedestrians, and
SMSOT-CNN cannot handle this problem. For AerialMPTNet, the amount of visible white
dots decreased significantly, tracking the pedestrians crossing the lines successfully. On the
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Table 6.6: Results of AerialMPTNet on the KIT AIS and AerialMPT datasets.
KIT AIS pedestrian

Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑
AA_Crossing_02 13 46.7 45.6 46.9 49.3 48.8 45.08 94 23.4 51.1 25.5 586 576 12 92 -3.4 69.7 -2.5
AA_Walking_02 17 41.4 40.8 42.1 43.7 42.3 93.59 188 17.0 51.6 31.4 1591 1504 25 231 -16.8 68.5 -15.9

Munich02 31 31.2 30.2 32.3 37.8 35.3 136.77 230 10.4 55.7 33.9 4240 3808 192 498 -34.5 67.6 -31.4
RaR_Snack_Zone_02 4 59.0 58.8 59.2 60.9 60.5 86.00 220 33.2 65.0 1.8 344 3338 4 34 20.7 73.4 21.1
RaR_Snack_Zone_04 4 68.5 68.3 68.6 69.8 69.5 94.25 311 45.7 51.8 2.5 377 371 3 42 38.9 74.2 39.1

Total 69 40.6 39.7 41.5 45.1 43.2 103.45 1043 28.1 55.3 16.6 7138 6597 236 897 -16.2 69.6 -14.2

AerialMPT
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

Bauma3 16 31.2 30.4 32.0 38.2 36.3 368.12 606 11.6 51.7 36.7 5890 5435 277 582 -32.0 70.8 -28.9
Bauma6 26 37.2 34.8 39.9 44.2 38.6 143.69 270 17.0 58.1 24.9 3736 2964 123 333 -28.4 70.2 -26.1

Karlsplatz 27 45.6 44.2 47.1 48.6 45.6 72.37 146 19.9 61.6 18.5 1954 1733 25 153 -10.0 67.4 -9.3
Pasing7 24 67.6 64.8 70.7 71.3 65.3 32.58 103 49.5 43.7 6.8 782 593 5 93 33.1 70.7 33.3
Pasing8 27 39.7 38.7 40.8 41.3 39.2 45.85 83 15.7 55.4 28.9 1238 1134 2 83 -22.9 68.9 -22.8

Witt 8 16.0 15.9 16.1 17.9 17.6 147.75 185 2.7 24.3 73.0 1182 1163 4 25 -65.9 60.1 -65.7
Total 128 37.8 36.5 39.3 43.1 40.0 115.48 1396 15.3 49.9 34.8 14782 13022 436 1269 -23.4 69.7 -21.5

KIT AIS vehicle
Evaluation # Images IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

MunichStreet02 20 83.2 81.1 85.4 86.3 82.0 07.05 47 76.6 10.6 12.7 141 102 4 3 66.9 80.1 67.3
StuttgartCrossroad01 14 68.4 65.0 72.2 75.3 67.8 14.14 49 61.2 26.5 12.3 198 137 1 16 39.4 76.3 39.5
MunichCrossroad02 45 54.5 52.9 56.3 58.5 54.9 22.96 66 43.9 37.9 18.2 1033 895 20 45 9.6 70.1 10.5

MunichStreet04 29 86.5 86.0 87.0 89.1 88.0 6.34 68 85.3 7.4 7.3 184 165 4 3 76.8 80.2 77.0
Total 108 70.0 68.3 71.8 73.9 70.3 14.41 230 66.5 20.9 12.6 1556 1299 29 67 42.0 76.3 42.6
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Figure 6.1: MOTA and Precision plots, showing the results of AerialMPTNet and its baseline
SMSOT-CNN on the KIT AIS pedestrian dataset. AerialMPTNet outperforms
SMSOT-CNN at almost any IoU threshold.

51



6 Evaluation & Discussion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

0

10

20

30

40

50

60

M
T

AerialMPTNet
SMOT-CNN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

10

20

30

40

50

60

70

80

M
L

AerialMPTNet
SMOT-CNN

Figure 6.2: MT and ML plots, showing the results of AerialMPTNet and its baseline SMSOT-
CNN on the KIT AIS pedestrian dataset. AerialMPTNet outperforms SMSOT-CNN
at almost any IoU value. However, it strikes that the ML score of AerialMPTNet
increases significantly for IoU threshold greater than 0.7.

remaining sequences, AerialMPTNet achieves competitive performance. We also visualized
a cropped part of the AA_Crossing_02 sequence in Figure 6.4. Similar to AA_Walking_02,
AerialMPTNet tracks the pedestrians crossing the line successfully; however, it loses the object
located on the right-side grass area that SMSOT-CNN tracks successfully.

AerialMPTNet follows a similar trend on the AerialMPT dataset. It outperforms the
previous LSTM- and GCNN-based methods by 4.7 and 2.0 in terms of MOTA, respectively,
while holding a competitive MOTP of 69.7. We visualized the MOTA and precision plots
in Figure 6.5. Similar to KIT AIS pedestrian, AerialMPTNet outperforms SMSOT-CNN for
any threshold. MOTA and precision are continuously higher for AerialMPTNet, proving
the effectiveness of the LSTM and GraphCNN module. AerialMPTNet tracks 15.3 % of the
pedestrians mostly and looses 34.8 % of them mostly. Compared to AerialMPTNetLSTM
and AerialMPTNetGCNN , it looses 2.6 % and 3.6 % pedestrians less, respectively. Figure 6.6
shows the MT and ML plots of AerialMPTNet comparing with the SMSOT-CNN baseline.
AerialMPTNet outperforms SMSOT-CNN at any threshold. The MOTA score increases for
every single sequence compared to SMSOT-CNN. Additionally, AerialMPTNet achieves the
best MOTA score among all previously tested methods on the Bauma3, Bauma6 and Witt
sequences (-32.0, -28.4, -65.9), which contain the most complex scenarios within the AerialMPT
dataset, regarding crowd density and movement, variety of GSDs, as well as the complexity
of the terrain.

However, in contrast to the KIT AIS pedestrian dataset, the MOTA scores are not correlated
with the sequence lengths. This observation proves that the scene complexities are well-
distributed over the different sequences of AerialMPT.

In Figure 6.7, we show the tracker’s ability to encode motion with the LSTM module,
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6 Evaluation & Discussion

(a) Frame 8 (b) Frame 14

(c) Frame 8 (d) Frame 14

Figure 6.3: Illustrative results of SMSOT-CNN (top) and AerialMPTNet (bottom) on sequence
AA_Walking_02. White dots symbol ground truth positions, blue dots the tracker’s
estimates. SMSOT-CNN looses tracks due to the ground terrain sharing similar
appearance features with the pedestrians. AerialMPTNet outperforms SMSOT-
CNN significantly.
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(a) Frame 4 (b) Frame 6 (c) Frame 8 (d) Frame 10

(e) Frame 4 (f) Frame 6 (g) Frame 8 (h) Frame 10

Figure 6.4: Comparing the performance of AerialMPTNet (bottom) and SMSOT-CNN (top)
on sequence AA_Crossing_02. White dots symbol ground truth positions, blue
dots the tracker’s estimates. In contrast to SMSOT-CNN, AerialMPNet holds the
trajectory of the pedestrians crossing the line on the ground well; however, it looses
track of the pedestrian walking on grass that SMSOT-CNN tracks successfully.
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Figure 6.5: MOTA and Precision plots, showing the results of AerialMPTNet and its baseline
SMSOT-CNN on the AerialMPT dataset. AerialMPTNet outperforms SMSOT-
CNN at almost any IoU value.
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Figure 6.6: MT and ML plots, showing the results of AerialMPTNet and its baseline SMSOT-
CNN on the AerialMPT dataset. AerialMPTNet outperforms SMSOT-CNN at
almost any IoU value

with crops taken from the Pasing-8 sequence. The top row shows the illustrative results
of SMOT-CNN. It looses one pedestrian within the intersection scenario, leading to an
ID switch. AerialMPTNet, in the bottom row, tackles this challenge successfully and can
track both pedestrians correctly. The fusion of the appearance with temporal and graphical
features allows AerialMPTNet to outperform the SMSOT-CNN baseline by better handling
the pedestrian crossing situations and keeping the pedestrian trajectories over a longer term
even in the presence of interrupting features.

Furthermore, visual inspections also prove the effectivity of the adjacent neighbor modeling
with the GraphCNN module. We visualized some illustrative results of SMSOT-CNN (top)
and AerialMPTNet (bottom) in Figure 6.8. The images are taken from the right bottom side
of the Karlsplatz sequence and show a pedestrian crowd moving. While SMSOT-CNN has
difficulties in tracking the pedestrians in the middle of the crop correctly, AerialMPTNet
performs significantly better. We argue that that the observed improvement is mainly caused
by our GraphCNN module.

Nevertheless, we find that there are also sequences where both networks reach their limits
and perform poorly. Figure 6.9 shows the illustrative results of SMSOT-CNN (top) and
AerialMPTNet (bottom) on the Witt sequence. The amount of visible white dots signals
that both networks lose most pedestrians mostly. According to the results, despite its small
number of frames, the MOTA score is also low for both trackers (-68.6 vs. -65.9). Further
investigation shows that a non-adaptive search window size causes this poor performance. In
the Witt sequence, objects move out of the search window and are lost by the tracker. Varying
GSDs and pedestrian speeds need to be taken into account more intensively to solve these
problems.

To conclude the evaluation of the pedestrian datasets, we show AerialMPTNet estimates

55



6 Evaluation & Discussion

(a) Frame 11 (b) Frame 13 (c) Frame 15 (d) Frame 17

(e) Frame 11 (f) Frame 13 (g) Frame 15 (h) Frame 17

Figure 6.7: Comparing the performance of AerialMPTNet (bottom) and SMSOT-CNN (top)
on sequence Pasing-8. White dots symbol ground truth positions, blue dots the
tracker’s estimates. AerialMPTNet’s LSTM encodes a learned motion model and
keeps track of trajectories even in pedestrian intersections. SMSOT-CNN cannot
handle such intersections well.

(a) Frame 21 (b) Frame 23 (c) Frame 25 (d) Frame 27

(e) Frame 21 (f) Frame 23 (g) Frame 25 (h) Frame 27

Figure 6.8: Comparing the performance of AerialMPTNet (bottom) and SMSOT-CNN (top)
on sequence Karlsplatz. White dots symbol ground truth positions, blue dots the
tracker’s estimates. AerialMPTNet outperforms SMSOT-CNN clearly, and holds
trajectories significantly better in crowded situations.
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(a) Frame 3 (b) Frame 6

(c) Frame 3 (d) Frame 6

Figure 6.9: Comparing the performance of AerialMPTNet (bottom) and SMSOT-CNN (top) on
sequence Witt. White dots symbol ground truth positions, blue dots the tracker’s
estimates. Both trackers show a poor performance since pedestrians move out of
their search window too quickly.
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for frame 18 and 10 of the Munich02 and Bauma3 sequences in Figure 6.10, respectively. The
images give an overview of AerialMPTNet’s performance and show the difficulties it can
handle.

The results on the KIT AIS vehicle dataset are also promising and outperform those of
SMSOT-CNN; however, the performance gains are low compared to the pedestrian results.
AerialMPTNet reaches a total MOTA and MOTP of 42.0 and 76.3. Compared to the SMSOT-
CNN baseline, this is an increase of +4.9 and +9.5. We visualized the MOTA and precision
plots in Figure 6.11. AerialMPTNet outperforms SMSOT-CNN in terms of MOTA and
precision at any threshold, however, by a lower margin compared to pedestrian tracking. The
LSTM-based network reaches a MOTA of 43.3, and the GCNN-based network a MOTA of 42.8,
and hence they perform better solely than the combined AerialMPTNet. This effect can be
seen among most of the metrics. It results from the construction of the network itself, which
we fitted gradually for pedestrian tracking. Consequently, the thresholds we set may not be
suitable for vehicle tracking. A good example is the distance threshold for neighbor modeling,
where only objects within a distance of 50 pixels from the target object were considered. For
vehicle tracking, such settings differ, but finding a more suitable threshold was out of the
scope of this thesis. AerialMPTNet tracks 67.0 % of the vehicles mostly and loses only 14.3 %
of the vehicles. The plots comparing SMSOT-CNN and AerialMPTNet regarding ML and MT
are visible in Figure 6.12. In contrast to the previous plots, AerialMPTNet does not perform
significantly better than SMSOT-CNN. For the ML metrics, SMSOT-CNN even performs
slightly better continuously.

Looking at the respective vehicle sequences, it is striking that results of MunichCrossroad02
are meager, with the MOTA 29.8 points worse than on the second-worst StuttgartCross-
road01sequence. Figure 6.13 visualizes the problems AerialMPTNet has to deal with in
this sequence. MunichCrossroad02 includes strong camera movement, which affects scene
arrangement and appearance. Additionally, harsh shadows and trees cover vehicles partly.
These effects, combined with intricate movement patterns, lead to the poor performance of
AerialMPTNet on this sequence.

Figure 6.14 and Figure 6.15 show the outperformance of AerialMPTNet compared to
SMSOT-CNN. The difference is especially visible in Figure 6.15, where AerialMPTNet tracks
the truck in the middle of the pictures significantly better.

However, according to Table 6.6, SMSOT-CNN produces better results on the MunichStreet02
sequence. Based on visual inspection in Figure 6.16, we see that AerialMPTNet loses one
vehicle in the middle of the picture, which SMSOT-CNN can track successfully. However, we
argue that these problems can be solved by adjusting the parameter settings accordingly.

6.4.1 Additional Experiments

In this subsection, we evaluate additional experiments, including SE layers, different loss
functions, and OHEM.

We changed our network architecture as described in subsection 5.3.1, and added SE
layers. We trained one model for each dataset, and compare the quantitative results with
AerialMPTNet in Table 6.7. For both of the KIT AIS dataset, overall results worsen, with the
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(a) Frame 18

(b) Frame 10

Figure 6.10: Illustrative predictions of AerialMPTNet on Munich02 and Bauma3 sequence.
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Figure 6.11: MOTA and Precision plots, showing the results of AerialMPTNet and its baseline
SMSOT-CNN on the KIT AIS vehicle dataset. AerialMPTNet outperforms SMSOT-
CNN at any IoU threshold.
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Figure 6.12: MT and ML plots, showing the results of AerialMPTNet and its baseline SMSOT-
CNN on the KIT AIS vehicle dataset. AerialMPTNet outperforms SMSOT-CNN
at any IoU threshold.
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(a) Frame 4 (b) Frame 31

Figure 6.13: Visualization of the difficulties AerialMPTNet faces. The camera configuration
and scene appearance change continously. Additinoally, shawdows and trees
reduce visibility.
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(a) Frame 2 (b) Frame 8

(c) Frame 2 (d) Frame 8

Figure 6.14: Comparing the performance of AerialMPTNet (bottom) and SMSOT-CNN (top)
on sequence MunichCrossroad02. White bounding boxes symbol ground truth
positions, blue bounding boxes the tracker’s estimates. In contrast to SMSOT-
CNN, AerialMPTNet holds the trajectories slightly better.
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(a) Frame 20 (b) Frame 29 (c) Frame 20 (d) Frame 29

Figure 6.15: Comparing the performance of AerialMPTNet (right) and SMSOT-CNN (left) on
sequence MunichStreet04. White bounding boxes symbol ground truth positions,
blue bounding boxes the tracker’s estimates. AerialMPTNet achieves better
results for this sequence. For example, AerialMPTNet tracks the truck in the
middle of the pictures without any additional bounding box. SMSOT-CNN
switches ID there.
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(a) Frame 1 (b) Frame 7 (c) Frame 1 (d) Frame 7

Figure 6.16: Comparing the performance of AerialMPTNet (right) and SMSOT-CNN (left) on
sequence MunichStreet02. White bounding boxes symbol ground truth positions,
blue bounding boxes the tracker’s estimates. SMSOT-CNN generates better
estimates within this sequence.

Table 6.7: Comparison of AerialMPTNet and AerialMPTNetSE.
Dataset SE IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

KIT AIS pedestrian No 40.6 39.7 41.5 45.1 43.2 103.45 1043 28.1 55.3 16.6 7138 6597 236 897 -16.2 69.6 -14.2
KIT AIS pedestrian Yes 38.3 37.5 39.1 42.8 41.1 107.17 1043 27.4 54.5 18.1 7395 6876 250 818 -20.7 69.9 -18.7

AerialMPT No 37.8 36.5 39.3 43.1 40.0 115.48 1396 15.3 49.9 34.8 14782 13022 436 1269 -23.4 69.7 -21.5
AerialMPT Yes 38.9 37.5 40.4 44.1 40.9 113.81 1396 17.0 48.1 34.9 14568 12799 430 1212 -21.4 69.8 -19.6

KIT AIS vehicle No 70.0 68.3 71.8 73.9 70.3 14.41 230 66.5 20.9 12.6 1556 1299 29 67 42.0 76.3 42.6
KIT AIS vehicle Yes 70.0 68.4 71.7 73.2 69.8 14.57 230 63.5 24.8 11.7 1574 1334 23 84 41.1 75.6 41.5

MOTA falling from -16.2 to -20.7 for the pedestrian set and from 42.0 to 41.1 for the vehicle
part. The Rcll, Prcn, FAR, IDR, MT, FP, FN, and MOTAL score also worsen compared to
AerialMPTNet for both datasets. However, for KIT AIS vehicle, we can see an improvement
of the ML score from 12.6 % to 11.7 %.

We observe a completely different behavior for the AerialMPT dataset. All metrics, except
PT and ML, show a gradual improvement with Squeeze-and-Excitation layers. MOTA climbs
from -23.4 to -21.4, and even the MOTP climbs 0.1 points to 69.8. The percentage of mostly
tracked objects increases by 1.7 % to 17.0 %.

It is difficult to judge these results since they differ so much. However, we argue that
the differing quality of the images influences the results. The images in AerialMPT have
significantly better contrast, and hence, the adaptive weighting of channels is more purposeful.

Furthermore, we also experimented with the Huber loss and trained AerialMPTNet with it.
Table 6.8 shows a comparison of AerialMPTNet trained with L1 and Huber Loss. Similar to
the previous experiments, the results for the KIT AIS datasets indicate that the L1 loss works
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Table 6.8: Comparison of AerialMPTNet trained with L1 and Huber Loss.
Dataset Loss IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

KIT AIS pedestrian L1 40.6 39.7 41.5 45.1 43.2 103.45 1043 28.1 55.3 16.6 7138 6597 236 897 -16.2 69.6 -14.2
KIT AIS pedestrian Huber 38.8 37.9 39.7 43.1 41.1 107.42 1043 25.0 56.5 18.5 7412 6845 212 866 -20.3 69.4 -18.6

AerialMPT L1 37.8 36.5 39.3 43.1 40.0 115.48 1396 15.3 49.9 34.8 14782 13022 436 1269 -23.4 69.7 -21.5
AerialMPT Huber 38.0 36.7 39.5 43.0 39.9 115.70 1396 15.6 48.4 36.0 14809 13051 415 1196 -23.5 69.9 -21.7

KIT AIS vehicle L1 70.0 68.3 71.8 73.9 70.3 14.41 230 66.5 20.9 12.6 1556 1299 29 67 42.0 76.3 42.6
KIT AIS vehicle Huber 67.2 65.5 69.0 70.6 67.1 15.98 230 67.0 17.4 15.6 1726 1461 34 65 35.2 76.1 35.9

Table 6.9: Comparison of AerialMPTNet and AerialMPTNetOHEM.
Dataset OHEM IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

KIT AIS pedestrian No 40.6 39.7 41.5 45.1 43.2 103.45 1043 28.1 55.3 16.6 7138 6597 236 897 -16.2 69.6 -14.2
KIT AIS pedestrian Yes 38.6 37.7 39.4 42.7 40.9 107.75 1043 26.1 55.8 18.1 7435 6889 254 854 -21.2 69.5 -19.1

AerialMPT No 37.8 36.5 39.3 43.1 40.0 115.48 1396 15.3 49.9 34.8 14782 13022 436 1269 -23.4 69.7 -21.5
AerialMPT Yes 37.2 35.8 38.7 42.4 39.3 117.31 1396 16.0 46.8 37.2 15016 13181 430 1284 -25.1 69.8 -23.2

KIT AIS vehicle No 70.0 68.3 71.8 73.9 70.3 14.41 230 66.5 20.9 12.6 1556 1299 29 67 42.0 76.3 42.6
KIT AIS vehicle Yes 71.7 70.0 73.4 74.6 71.2 13.94 230 67.0 19.6 13.4 1505 1262 27 66 43.8 75.5 44.3

better. The IDF1, IDP, IDR, Rcll, Prcn, FAR, ML, FP, FN, MOTA, MP, and MOTAL scores of
AerialMPTNet trained with the L1 loss all lay ahead compared to the model trained with
Huber loss. For the pedestrian set, MOTA is -20.3 for the Huber model, and -16.2 for the one
trained with L1 loss. For the vehicle dataset, the difference is more considerable with the
MOTA at 42.0 with L1 loss and 35.2 with Huber loss.

Again, the results for AerialMPTNet are more challenging to interpret. Huber loss improves
the results, including IDF1, IDP, IDR, MT, ID, FM, and MOTP. However, the L1 loss shows
more promising results for Rcll, Prcn, FAR, PT, ML, FP, FN, MOTA, and MOTAL. Nevertheless,
we think that the L1 loss is the better choice to train regression trackers.

Last but not least, we experimented with OHEM and visualized the quantitative results in
Table 6.9. Results on both pedestrian datasets are decreasing, with the MOTA falling from
-16.2 to -21.2 and from -23.4 to -25.1 for the KIT AIS pedestrian and the AerialMPT dataset,
respectively. For the KIT AIS vehicle dataset, however, results show a gradual improvement,
MOTA climbs from 42.0 to 43.8 and the percentage of mostly tracked objects from 66.5 % to
67.90 %.

We argue that pedestrian movement is highly complex, and hence, the multiple passing of
a similar situation to the tracker does not improve the results. For vehicles, however, which
move along predetermined paths, OHEM improves the tracker’s performance and indicates
the beneficing for MOT. Further experiments have to prove this behavior on different datasets.

6.5 Comparison with other Methods

In this section, we compare the results of AerialMPTNet with a set of traditional methods,
including MOSSE, KCF, Median Flow and CSRT, and DL-based approaches such as Tracktor++,
Stacked DCFNet, and SMSOT-CNN.

Table 6.10 shows the quantitative results of different tracking methods on the KIT AIS
pedestrian and AerialMPT datasets. In general, the DL-based methods outperform the
traditional ones, with MOTA scores varying between -16.2 and -48.8 versus between -55.9
and-85.8, respectively. The percentage of mostly tracked and most lost objects varies between
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0.8 % and 9.6 %, and between 36.5 % and 78.3 % for the traditional methods. Furthermore,
CSRT is the best performing traditional method on both datasets based on MOTA (-55.9 and
-64.6). It tracks 9.6 % and 2.9 % of the pedestrians mostly in the KIT AIS pedestrian and
AerialMPT datasets, while it mostly loses 39.4 % and 59.3 %, respectively. Compared to the
DL-based methods, the MT and ML scores vary between 0.1 % and 28.0 %, and between 16.6 %
and 92.3 %. The deficient (0.1 %) and unusually high (92.3 %) scores are caused by Tracktor++,
not working correctly with such small objects. AerialMPTNet outperforms all other methods
on both datasets by the significantly highest MOTA (-16.2 and -23.4) and competitive MOTP
(69.6 and 69.7) values. It mostly tracks 28.1 % and 15.3 % of the pedestrians while mostly
losing only 16.6 % and 34.8 % of them. Among the previous DL-based methods, SMSOT-CNN
achieves the most promising results on both datasets (MOTA: -35.0 and -37.2; MOTP: 70.0
and 68.0). Stacked DCFNet, which we adapted to handle multi-object tracking, outperforms
SMSOT-CNN in terms of MOTP by 1.6 and 4.3 points, its MOTA values fall behind by 2.4
and 4.6 points. Tracktor++ performs the worst among the other DL-based methods due
to suffering from a high amount of FNs and ID switches. Additionally, adding the LSTM
module to the SNN module improves the MOTA by 17.2 and 9.1 points on the KIT AIS and
AerialMPT datasets compared to SMSOT-CNN, respectively. Furthermore, adding the GCNN
module to the SNN module improves the MOTA by 12.0 and 11.8 points. According to the
table, considering both modules increases the MOTA by 18.8 and 13.8 points compared to
SMSOT-CNN.

Table 6.11 shows the quantitative results of all trackers on the KIT AIS vehicle dataset. The
DL-based methods outperform KCF, Median Flow, and MOSSE significantly, with MOTA
scores between 37.1 and 46.6 versus -48.7 and -21.4. The percentage of mostly tracked and
mostly lost objects lies between 19.6 % and 32.2 % and between 50.4 % and 27.8 % for
KCF, MOSSE, and Median Flow. The DL-based methods are ranked better with the ratio
of mostly tracked vehicles varying between 30.0 % and 69.1 % and the ratio of mostly lost
objects between 22.6 % and 12.6 %. AerialMPTNet achieves MOTA and MOTP scores of
42.0 and 76.3. It mostly tracks 66.5 % of the vehicles, while it mostly loses 12.6 %. However,
AerialMPTNetLSTM and AerialMPTNetGCNN outperform AerialMPTNet itself in terms of
MOTA by 1.3 and 0.8 points (43.3 and 42.8). Among the DL-based methods, Stacked DCFNet
performs best in terms of MOTA and MOTP, outperforming AerialMPTNet by 4.6 and 5.7
points, respectively. It tracks 69.1 % of the vehicle mostly while it loses 15.7 % of them
mostly. Compared to the SMSOT-CNN baseline, MOTA and MOTP improve by 4.9 and
0.5 points. Furthermore, the performance of Tracktor++ increases significantly compared to
the pedestrian scenarios. The main reason is the increased capability of the object detector.
The detection of vehicles is significantly easier than the detection of pedestrians. Tracktor++
achieves a competitive MOTA of 37.1 without any ground truth initializations. The best
method in terms of MOTA is CSRT. It outperforms all other methods with a MOTA of 51.1
and MOTP of 80.7. Compared to AerialMPTNet, the metrics improved by 10.1 and 5.7 points.

Additionally, we show all tracker rankings based on MOTA and MOTP for the KIT AIS
pedestrian and AerialMPT dataset in Figure 6.17, and the rankings for the KIT AIS vehicle
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Table 6.10: Total Results of Different Trackers on the Pedestrian Datasets
Tracker Dataset IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

KCF KIT AIS 9.0 8.8 9.3 10.3 9.8 165.56 1043 1.1 53.8 45.1 11426 10782 32 116 -84.9 87.2 -84.7
Median Flow KIT AIS 18.5 18.3 18.8 19.5 19.0 144.72 1043 7.7 55.8 36.5 9986 9678 30 161 -63.8 77.7 -63.5

CSRT KIT AIS 16.0 16.9 15.2 17.5 19.4 126.55 1043 9.6 51.0 39.4 8732 9924 91 254 -55.9 78.4 -55.1
MOSSE KIT AIS 9.1 8.9 9.3 10.5 10.0 163.81 1043 0.8 54.0 45.2 11303 10765 31 133 -85.8 86.7 -83.5

Tracktor++ KIT AIS 6.6 9.0 5.2 10.8 18.7 81.86 1043 1.1 28.4 70.5 5648 10723 648 367 -41.5 40.5 –
Stacked DCFNet KIT AIS 30.0 30.2 30.9 33.1 32.3 120.52 1043 13.8 62.6 23.6 8316 8051 139 651 -37.3 71.6 -36.1

SMSOT-CNN KIT AIS 32.5 31.7 33.4 35.7 33.9 121.32 1043 22.2 56.0 21.8 8371 7730 135 585 -35.0 70.0 -33.9
AerialMPTNetLSTM (Ours) KIT AIS 39.7 38.8 40.6 44.6 42.6 104.78 1043 28.9 53.8 17.3 7230 6661 270 886 -17.8 68.8 -15.5
AerialMPTNetGCNN (Ours) KIT AIS 37.5 36.7 38.4 42.0 40.0 109.49 1043 25.3 55.3 19.4 7555 6980 259 814 -23.0 69.6 -20.9

AerialMPTNet (Ours) KIT AIS 40.6 39.7 41.5 45.1 43.2 103.45 1043 28.1 55.3 16.6 7138 6597 236 897 -16.2 69.6 -14.2
KCF AerialMPT 11.9 11.5 12.3 13.4 12.5 167.24 1396 3.7 17.0 79.3 21407 19820 86 212 -80.5 77.2 -80.1

Median Flow AerialMPT 12.2 12.0 12.4 13.1 12.7 161.97 1396 1.7 20.2 78.1 20732 19883 46 144 -77.7 77.8 -77.5
CSRT AerialMPT 16.9 16.6 17.1 20.3 19.7 148.52 1396 2.9 37.8 59.3 19011 18235 426 668 -64.6 74.6 -62.7

MOSSE AerialMPT 12.1 11.7 12.4 13.7 12.9 165.66 1396 3.8 17.9 78.3 21204 19749 85 194 -79.3 80.0 -78.9
Tracktor++ AerialMPT 4.0 8.8 3.1 5.0 8.7 93.02 1396 0.1 7.6 92.3 11907 21752 399 345 -48.8 40.3 –

Stacked DCFNet AerialMPT 28.0 27.6 28.5 31.4 30.4 128.30 1396 131 617 648 16422 15712 322 944 -41.8 72.3 -40.4
SMSOT-CNN AerialMPT 32.0 30.7 33.4 36.6 33.6 129.13 1396 10.7 47.7 41.6 16529 14515 359 1082 -37.2 68.0 -35.6

AerialMPTNetLSTM (Ours) AerialMPT 35.7 34.5 37.0 40.5 37.7 119.40 1396 12.8 49.8 37.4 15283 13627 409 1376 -28.1 70.1 -26.3
AerialMPTNetGCNN(Ours) AerialMPT 37.0 35.7 38.3 42.0 39.1 117.05 1396 15.6 46.0 38.4 14983 13279 433 1229 -25.4 69.7 -23.5

AerialMPTNet (Ours) AerialMPT 37.8 36.5 39.3 43.1 40.0 115.48 1396 15.3 49.9 34.8 14782 13022 436 1269 -23.4 69.7 -21.5

Table 6.11: Total Results of Different Trackers on the KIT AIS Vehicle Dataset.
Tracker IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT%↑ PT%↑ ML%↓ FP↓ FN↓ ID↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

KCF 41.3 39.0 43.9 45.6 40.4 30.92 230 27.0 33.5 39.5 3339 2708 53 96 -22.6 72.3 -21.6
Median Flow 42.0 39.5 44.9 46.3 40.8 31.00 230 32.2 40.0 27.8 3348 2669 23 47 -21.4 82.0 -21.0

CSRT 76.7 72.1 81.9 83.1 73.1 14.07 230 72.6 21.7 5.7 1520 841 21 46 52.1 80.7 52.5
MOSSE 29.0 27.4 30.8 32.4 28.8 36.82 230 19.6 30.0 50.4 3977 3364 56 81 -48.7 75.0 -47.6

Tracktor++ 55.3 66.6 47.2 57.3 80.7 6.31 230 30.0 47.4 22.6 681 2125 323 204 37.1 77.4 –
Stacked DCFNet 73.8 71.2 76.6 77.2 71.8 14.00 230 69.1 15.2 15.7 1512 1133 9 39 46.6 82.0 46.8

SMSOT-CNN 68.0 66.4 69.7 71.3 67.9 15.53 230 65.7 20.4 13.9 1677 1426 27 80 37.1 75.8 37.6
AerialMPTNetLSTM (Ours) 71.6 69.8 73.4 74.5 70.9 14.11 230 67.4 19.6 13.0 1524 1267 30 60 43.3 75.7 43.9
AerialMPTNetGCNN (Ours) 71.1 69.4 72.9 74.1 70.6 14.22 230 67.0 18.7 14.3 1536 1289 22 58 42.8 75.9 43.2

AerialMPTNet (Ours) 70.0 68.3 71.8 73.9 70.3 14.41 230 66.5 20.9 12.6 1556 1299 29 67 42.0 76.3 42.6

dataset in Figure 6.18. The diagrams offer an intuitive way to illustrate the rankings clearly.
AerialMPTNet ranks best in terms of MOTA for both pedestrian dataset while achieving
competitive MOTP. Median Flow, for example, achieves a very high MOTP score; however, the
reason for this behavior is the low number of matched tracklet-object pairs beyond the first
frame since the tracker is not able to track many objects. Hence, the MOTP score solely is not
a good performance indicator. For the KIT AIS vehicle dataset, AerialMPTNet shows worse
performance than other methods based on MOTA and MOTP. CSRT and Stacked DCFNet
perform favorably for vehicle tracking.
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Figure 6.17: Tracker rankings based on MOTA and MOTP for the KIT AIS pedestrian and the
AerialMPT dataset. AerialMPTNet ranks best in terms of MOTA and achieves a
competitive MOTP for both datasets.
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Figure 6.18: Tracker rankings based on MOTA and MOTP for the KIT AIS vehicle dataset.
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7 Conclusion & Future Work

In this master thesis, we proposed AerialMPTNet, a DNN for pedestrian- and vehicle-tracking
in aerial imagery. AerialMPTNet is a regression-based multi-object tracker and takes two
image crops (previous and current) for each target as input. Multiple objects are given
to the network as a mini-batch. The object position is known and has to be determined,
respectively. AerialMPTNet consists of three different subnetworks, namely an SNN, an
LSTM, and a GraphCNN and fuses appearance, temporal, and graphical features. The SNN
takes both crops as input and extracts important appearance features that are used by 4 linear
layers to regress the top-left and bottom-right corner of the target’s bounding box in the
current crop. The SNN-based method is the standard procedure in most regression-based
trackers. However, such networks typically lack important target information such as previous
movements and the relationship between adjacent objects.

We deal with these issues by using the LSTM and the GraphCNN structures and give the
final output of the network as input to the LSTM module, which learns to predict the next
movement of the target. The produced features are concatenated with the SNN’s features and
given to the linear layers in the next iteration. Previous work often employs Kalman filters
or linear motion models to estimate target positions in consecutive frames. However, the
initialization with matching hyperparameters can be difficult in such cases. In contrast to
these methods, we encode the motion model in an end-to-end fashion and learn characteristics
based on the data itself. Furthermore, previous work on regression-based tracking and motion
models use the estimates to shift the search windows accordingly, but we directly estimate
the object position inside of the crop without moving it.

Additionally, we save the position estimates for all targets and create a directed neighbor
graph for each object. The graph consists of the object position itself, and we extend it by
the vectors to its 9 closest neighbors. Afterwards, we give these graphs to the GraphCNN,
which learns to encode the relationship between adjacent objects. Together with the LSTM
module’s features, we concatenate the GraphCNN features with the SNN’s features. Similar
to the LSTM module, we encode these relationships in an end-to-end way.

We evaluate AerialMPTNet on the KIT AIS and the AerialMPT dataset. The KIT AIS
dataset composes two branches, a pedestrian and a vehicle set. As of today, AerialMPT only
consists of a pedestrian dataset; however, the authors aim to create a vehicle dataset as well.
The results on the KIT AIS pedestrian and the AerialMPT dataset indicate that our model
successfully tackles the challenge of tracking small objects in aerial imagery, leading to a
MOTA improvement by 18.2 and 13.8 points compared to the SMSOT-CNN baseline while
holding a competitive MOTP score of 69.6 and 69.7. We confirm this finding with several
visual inspections and show that ID switches and loosing of tracks during object crossings
and crowded situations improve significantly compared to the baseline. The results on the
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KIT AIS vehicle branch also improve compared to the SMSOT-CNN baseline: MOTA score
increases by 4.9, reaching a final MOTA of 42.0 points. We reach a competitive MOTP of 76.3.

Nevertheless, the total MOTA scores are negative. The general performance indicates that
there is room for improvement. Results also show that AerialMPTNet loses objects that move
out of the search window. Different object speeds and GSDs cause this problem.

Additionally, we performed an intensive comparison with several traditional and DNN-
based tracking methods, including KCF, Median Flow, MOSSE, CSRT, Tracktor++, and Stacked
DCFNet. AerialMPTNet outperforms all these previous works by a large margin for the
pedestrian datasets. However, it falls behind CSRT and Stacked DCFNet for vehicle tracking.

Furthermore, we studied the usage of OHEM, Squeeze-and-Excitation layers, and Huber
Loss for regression-based trackers. For the vehicle part, OHEM shows promising results.
It brings 1.8 point improvement in terms of MOTA. However, for the pedestrian datasets,
the result did not improve. The results for the Squeeze-and-Excitation layers were also not
conclusive. For both KIT AIS datasets, results worsened. However, the results for AerialMPT
show significant improvements, with the MOTA improving from -23.4 to -21.4. We argue
that the reason for this behavior is the different quality of the datasets. However, more
experiments are needed to confirm this finding. The usage of Huber loss does not improve
the tracking performance, confirmed on all datasets.

There are several aspects which we consider for future work. Within our framework,
the size of the search window is dependent on the size of the object’s bounding box only.
Nevertheless, there exist multiple factors influencing the movement range of an object, such
as object speed and speed deviation, as well as the GSD. We leave the development of an
adaptive search window size as an essential step to reduce the number of lost tracks for future
work. Additionally, the SNN module is based initially on the GOTURN’s implementation
and could be replaced by a newer SNN module. We think that this change would improve the
results of feature extraction significantly. As of today, the training process of most DNN-based
tracking methods relies on specific loss functions, which do not correlate with tracking
evaluation metrics such as MOTA and MOTP. The main reason for this choice is that most
tracking measures are not differentiable. This finding is also valid for this master thesis,
where we experimented with the L1 and the Huber loss. However, Xu et al. [100] recently
proposed a framework capable of tackling this challenge by using differentiable proxies of
MOTA and MOTP, which they combine in a loss function and can be used to optimize deep
trackers directly. Based on the results of Xu et al., we suggest using this framework also to
improve the tracking performance of our tracker.
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