Flux Density Measurement for Industrial-Scale Solar Power Towers Using the Reflection off the Absorber

M. Offergeld1, M. Röger2, H. Stadler1, P. Gorzalka1, B. Hoffschmidt3

German Aerospace Center (DLR), Institute of Solar Research, 1Juelich (Germany), 2Almeria (Spain), 3Cologne (Germany)
*mattias.offergeld@dlr.de

Motivation
• Flux density measurement is precious for
 o Heliotest control for optimized efficiency
 o Damage prevention & life time extension
 o Separate determination of heliotest field’s
 and receiver’s energy conversion efficiencies
 (in acceptance tests etc.)
 • “Moving bar”-method suffers from high costs &
 effort due to moving parts under irradiation [1]
 • Measurement method using the reflection off the
 absorber is not yet mature.

Approach & Methods
• Mathematical analysis of measurement method for external receivers (valid for open volumetric & tube receivers)
 \[E_{\text{Delta}} = 0 \cdot d \cdot f \cdot \Delta \cdot \Omega \cdot \lambda \cdot \kappa \text{corr} \cdot \kappa \text{cal} \cdot t \exp \cdot d \text{ref} \Rightarrow \cdots \Rightarrow \frac{E_i}{f_i} \cdot \frac{1}{\sum f_i \cdot \kappa \text{corr} \cdot \kappa \text{cal}} = \frac{1}{\kappa \text{exp} \cdot t \exp} \]
 • Invention of patented “scan method” for improved detection of absorber’s reflection properties. [3], [4]
Tests at Solar Tower Juelich with open volumetric receiver:
 a) Movement of light beam on tight meander-shaped path. Usage of heliotest (daytime) or spotlight (nighttime).
 b) Merging image series into single “maximum image” by determining maximum gray value pixel by pixel
 c) Maximum image equals hypothetical image taken during homogeneous irradiation of whole absorber
 surface with \(E_{\text{max}} \) at the same time. \(\Rightarrow \) Reflection properties are revealed!
 d) Detection of directional dependence: Division of heliotest field into 16 areas and conduction of scan
 method from one place per area
 \(\Rightarrow \) Application of scan results for reflectance correction of raw images (see section Results)
 • Conduction of innovative methods for determination of radiation’s directional composition and for calibration

Results
• BRDF \(f_\lambda \) (bidirectional reflectance distribution function) of entire absorber surface was determined in situ at plant.
• Strong dependence of reflectance on direction of irradiation observed (factor ~3 between extremes)
• Retroreflective behavior of open volumetric receiver recognizable

• Significant smoothing of measured flux density distribution by scan method (compared to former method)
• Reason: Local differences in directional dependency are taken into account

• Good correction results in modules between absorber modules suggest suitability for tube receivers, too.
• Plausibility check of radiant flux results using CFD receiver model shows fine agreement.

Summary & Outlook

Key results
• Stringent mathematical formulation of method
• Advantages of new “scan method” over formerly used reflectance correction method:
 o Detection of directional dependency for entire absorber surface in situ at plant
 \(\Rightarrow \) smoother flux density results
 o Irradiation of absorber is more even.
 o Spectra are more similar to measurement.
 \(\Rightarrow \) Promising for commercial applications at large-scale receivers including tube receivers. German patent [3].

Ongoing and future work
• Completion of measurement uncertainty analysis
• Validation using radiometers
• Scans with spotlight at night
• Transfer to tube receiver with experimental proof
• New research project has started.

References
(3) Offergeld et al., German Patent 10 2016 226 033 (2016)

Acknowledgements:
This work is supported by the German state North Rhine-Westphalia through the program progres.nrw – Innovation, reference number PRO 0070A.