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Abstract
Algorithms for studying transitions and instabilities in incompressible flows typ-
ically require the solution of linear systems with the full Jacobian matrix. Other
popular approaches, like gradient-based design optimization and fully implicit
time integration, also require very robust solvers for this type of linear system.
We present a parallel fully coupled multilevel incomplete factorization precondi-
tioner for the 3D stationary incompressible Navier-Stokes equations on a struc-
tured grid. The algorithm and software are based on the robust two-level method
developed by Wubs and Thies. In this article, we identify some of the weak spots
of the two-level scheme and propose remedies such as a different domain par-
titioning and recursive application of the method. We apply the method to the
well-known 3D lid-driven cavity benchmark problem, and demonstrate its supe-
rior robustness by comparing with a segregated SIMPLE-type preconditioner.
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1 INTRODUCTION

The incompressible Navier-Stokes equations accurately describe flow of Newtonian fluids like water and air at low Mach
numbers. In this article, we consider the numerical solution of these equations after spatial discretization on a structured
grid. The discretization we use does not introduce artificial diffusion and is therefore popular for direct numerical sim-
ulations of turbulent flow. In this flow regime, one is typically interested in accurately resolving the temporal evolution
of the flow. The relatively small time steps in such a simulation allow simplifications in the solution process, in partic-
ular, Picard linearization (instead of Newton’s), and a segregated solution scheme that treats the velocities and pressure
separately.1

On the other end of the spectrum are Stokes flows and flows at very low Reynolds numbers. Here it is common to solve
the coupled linear systems with a segregated preconditioner; see, for example, Elman et al.2 This class of linear solvers
tries to reduce the problem to scalar linear systems that can be solved by multigrid methods.

In this article, we are interested in the intermediate flow regimes, where the focus lies on accurately describing flow
transitions occurring when model parameters are varied (or uncertain). In such situations, it may be beneficial to directly
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compute steady state solutions, or at least take very large implicit time steps in order to quickly reach a statistical equilib-
rium solution. Another application where the solution of linear systems with the full Jacobian (and its adjoint) play a key
role is design optimization with gradient-based optimization methods.3 In that application, however, unstructured grids
may be preferable, which we do not address here.

To study the stability of steady states in fluid flow problems as a function of a parameter, for example, the Reynolds
number (see Charru and Forcrand-Millard4 for an introduction to such problems), a continuation method5 can be used.
To apply such a method to high-dimensional systems, we require an efficient and robust method for solving linear sys-
tems associated with the discretized incompressible Navier-Stokes equations. An elegant way of solving these systems
is by replacing the complete LU factorization by an accurate incomplete one, which can be used as a preconditioner in
an iterative procedure. By an appropriate ordering technique and dropping procedure, one can construct an incomplete
LU (ILU) factorization that yields grid independent convergence behavior and approaches an exact factorization as the
amount of allowed fill is increased. During the continuation process, this preconditioner can also be used to find approxi-
mate smallest eigenvalues and eigenvectors of the Jacobian matrix of the incompressible Navier-Stokes equations Sleijpen
and Wubs.6 These eigenvalues are of interest since a switch in sign may indicate a bifurcation.

The incompressible Navier-Stokes equations can be written as

𝜕u
𝜕t

+ u ⋅ ∇u = −∇p + 1
Re

Δu,

∇ ⋅ u = 0, (1)

where Re = 𝜌UD
𝜇

is the Reynolds number, 𝜌 is the density and 𝜇 is the dynamic viscosity, and D and U are characteristic
length and velocity scales of the flow. These equations are discretized using a second-order symmetry-preserving finite
volume method on an Arakawa C-grid;7 see Figure 1. The discretization leads to a system of ordinary differential equations
(ODEs)

M du
dt

+ N(u,u) = −Gp + 1
Re

Lu + fu,

−GTu = fp,

where u and p now represent the velocity and pressure in each grid point, N(⋅ , ⋅) is the bilinear form arising from the
convective terms, L is the discretized Laplace operator, G is the discretized gradient operator, M is the mass matrix, which
contains the volumes of the grid cells on its diagonal, and f contains the known part of the boundary conditions. Our
method will exploit the property that the divergence operator is given by −GT .

The term N(u, v) is the discretized form of u ⋅∇v, and is bilinear. Hence for given u the expression is linear in
v: there exists a matrix N1(u) such that N(u, v)=N1(u)v. Similarly, for given v, there exists a matrix N2(v) such that
N(u, v)=N2(v)u, which is the discretized form of v(∇ ⋅u). For the contribution of N(u, v) to the Jacobian, we consider
the derivative of N(u, u) in the direction Δu, which is found from the following expression by taking the limit 𝜖 → 0:

[N(u + 𝜖Δu,u + 𝜖Δu) − N(u,u)]∕𝜖 = N(u,Δu) + N(Δu,u) + 𝜖N(Δu,Δu) = N1(u)Δu + N2(u)Δu + 𝜖N(Δu,Δu),

where we used only the bilinearity of the expression N(⋅ , ⋅). The last term becomes zero when taking the limit.
Using this notation, the linear system of saddle point type8 that has to be solved within each Newton step is given by(

N1(u) + N2(u) − 1
Re

L G
GT 0

)(
Δu
Δp

)
= −

(
fu

fp

)
. (2)

F I G U R E 1 Positioning of unknowns in an Arakawa C-grid [Color figure can be viewed at
wileyonlinelibrary.com]
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It is known1 that, on closed domains, dissipation of kinetic energy only occurs by diffusion. Our discretization pre-
serves this property, which has the consequence that for divergence-free u, the operator N1(u) is skew-symmetric. A
popular simplification is to omit N2(u), which replaces the Newton process by a Picard iteration.2 The approximate Jaco-
bian then becomes negative definite (on the space of discrete divergence-free velocities), which greatly simplifies the
solution process since definiteness is a condition under which many standard iterative methods converge. We remark,
however, that Picard iteration works well only for fairly low Reynolds numbers and far away from bifurcation points
where steady solutions become unstable, and seriously impairs the convergence rate of the nonlinear iteration.9,10 Fur-
thermore, some authors use time dependent approaches to study the stability of steady states.11 This approach, however,
also requires some tricks to obtain the desired information. Since we want to study precisely the phenomena where the
above methods experience difficulties, we would rather use the full Jacobian matrix of the nonlinear equations, applying
Newton’s method.

There are many methods, based on segregation of physical variables, that can solve the linear equations that arise
in every Newton iteration. In this approach the system is split into subproblems of an easier form for which standard
methods exist. The segregation can already be done at the discretization level, for example, by doing a time integration and
solving a pressure-correction equation independently of the momentum equations.1,12 Another class of methods performs
the segregation during the linear system solve, often in a preconditioning step. Physics based preconditioners13-16 try to
split the problem into subsystems which capture the bulk of the physics. The subsystems are again solved by iterative
procedures, for example, algebraic multigrid (AMG) for Poisson-like equations. These methods consist of nested loops
for: the nonlinear iteration, iterations over the coupled system, and iterations over the subsystems. The stopping criteria
of all these different iterations have to be tuned to make the solver efficient. Furthermore, the total number of iterations in
the innermost loop is given by the product of the number of iterations performed on all three levels of iteration and thus
easily becomes excessive. This is a major problem when trying to achieve extreme parallelism, because each innermost
iteration typically requires global communication in the inner products. The number of levels of nested iteration may
increase even more if additional physical phenomena are added.13,17 Our ultimate aim is to remove the inner iterations
altogether and to solve the nonlinear equations using a subspace accelerated inexact Newton method. In Sleijpen and
Wubs,6 we did this for simple eigenvalue problems using the Jacobi-Davidson method, which is in fact an accelerated
Newton method. The method we present here will make this feasible for the 3D Navier-Stokes equations, even at high
Reynolds numbers and close to bifurcation points, for which we have so far failed to find other scalable parallel solution
methods.

To achieve this, fully aggregated approaches are important. In this category, multigrid and multilevel ILU methods
for systems of PDEs exist (see Trottenberg et al.18 and Wathen19 and references therein). The former is attractive, but
for those methods smoothers may fail due to a loss of diagonal dominance for higher Reynolds numbers, for which a
common solution is to use time integration.20 The latter comprise AMG algorithms and multilevel methods like MRILU21

and the methods available in ILUPACK.22 ILUPACK has been successful in many fields since it uses a bound to preclude
very unstable factorizations. However, this method does not show grid independence for Navier-Stokes problems and is
difficult to parallelize.23 It works well for large problems, but not yet beyond a single shared memory system.

In this article, we present a novel multilevel preconditioning method which is specially designed for the 3D
Navier-Stokes equations. In Section 2, we first describe the two-level ILU preconditioner as introduced in Wubs and
Thies24 and Thies and Wubs.25 After this, we generalize the two-level method to a multilevel method in Section 3. To
make this method work for the 3D Navier-Stokes equations, we introduce a skew partitioning method in Section 4. In
Section 5, we discuss the scalability and general performance of the method, and compare it to a popular physics based
method, after which we summarize the paper in Section 6.

2 THE TWO-LEVEL ILU PRECONDITIONER

In Wubs and Thies,24 a robust parallel two-level method was developed for solving

Ax = b,

with A ∈ Rn×n for a class of matrices known as  -matrices. An  -matrix is a matrix of the form

A =

(
K B
BT 0

)
,
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F I G U R E 2 Cartesian partitioning of a 12× 12 C-grid
discretization of the Navier-Stokes equations into 9 subdomains of
size sx × sy with sx = sy = 4. The interiors are shown in gray. Velocities
of the same (nongray) color together form a separator group (but
only if they point in the same direction and are in neighboring grid
cells). The red circles are pressure nodes that are retained [Color
figure can be viewed at wileyonlinelibrary.com]

with K symmetric positive definite and B such that it has at most two entries per row and the entries in each row
sum up to 0, as is the case for our gradient matrix G.26,27 It has been shown that the two-level preconditioner leads to
grid-independent convergence for the Stokes equations on an Arakawa C-grid, and that the method is robust even for the
Navier-Stokes equations, which strictly speaking do not yield  -matrices because K becomes nonsymmetric and possibly
indefinite.

Rather than reviewing the method and theory in detail, we only briefly present it here. For details, see Wubs and
Thies24 and Thies and Wubs.25

To simplify the discussion, we focus on the special case of the 3D incompressible Navier-Stokes equations in a
cube-shaped domain, discretized on an Arakawa C-grid (see Figure 1). We refer to the velocity variables, which are located
on the cell faces as V -nodes, and to the pressure, which is located in the cell center, as P-node. The variables are numbered
cell-by-cell, that is, the first three variables are the u/v/w-velocity at the north/east/top face of the cell in the bottom south
west corner of the domain, and variable four is the P-node in its center. Appropriate boundary conditions (e.g., Dirichlet
conditions) are easily implemented in this situation. We remark that the algorithm (and software) can handle more gen-
eral situations like rectangular domains, interior boundary cells, and so on, and could be generalized to arbitrary domain
shapes and partitionings.

First we describe the initialization phase of the preconditioner, which is the necessary preprocessing that has to be
done only once for a series of linear systems with matrices with the same sparsity pattern. Then we describe the factor-
ization phase, which has to be done separately for every matrix. Finally, we describe the solution phase, which has to be
performed for every application of the preconditioner.

2.1 Initialization phase

First the system is partitioned into N nonoverlapping subdomains Ω𝛼 , with 𝛼 = 1, … ,N. These subdomains
may be distributed over different processes, which allows for parallelization of the computation. The partition-
ing may be done based on the graph of the matrix, as implemented for instance in METIS,28 or by a geo-
metric approach, for example, by dividing the domain into rectangular subdomains. An example of a Carte-
sian partitioning of a square domain is shown in Figure 2. The nonoverlapping subdomains are denoted by the
black lines.

Based on the nonoverlapping decomposition, we can define a global minimal set of separator nodes Γ such that it
decouples the linear systems associated with the remaining variables in any two subdomains Ω𝛼,𝛽 . This Γ can straight-
forwardly be defined based on either geometric information or the graph of the matrix. Let I𝛼 = Ω𝛼⧵Γ denote the set of

http://wileyonlinelibrary.com
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interior variables of subdomain Ω𝛼 , then we have by construction

∀𝛼 ≠ 𝛽, i ∈ I𝛼, j ∈ I𝛽 ∶ Ai,j = 0. (3)

Furthermore, we define the set of separator variables associated with subdomain Ω𝛼 as S𝛼 = {j ∈ Γ ∶ ∃i ∈ I𝛼 ∶ Ai,j ≠

0}. Note that the interior variables of two subdomains can be eliminated independently on a parallel computer, and
that the union of the sets I𝛼 and S𝛼 defines an overlapping partitioning. Although we use the nonoverlapping domain
decomposition to define our incomplete factorization, we formally introduce the overlapping subdomains Ω𝛼 = I𝛼 ∪ S𝛼 .
In the remainder of this article, we will refer to the variables in the sets I𝛼 and S𝛼, 𝛼 = 1, … ,N as interior nodes, and
separator nodes, respectively. One separator is defined as a set of separator nodes that are coupled with the same set of
subdomains (geometrically, separators comprise faces, edges, and corners). One separator group is defined as the variables
on the same separator that have the same variable type (u, v, w, or p). Note that because separators are defined by the set of
subdomains they are coupled to, separator nodes can never be in multiple separator groups at the same time. In Figure 2,
the interior nodes are shown in gray and the different separator groups are denoted by different colors.

We can now reorder the matrix A such that the interiors (I) and separators (S) are grouped. This gives us the system(
AII AIS

ASI ASS

)(
xI

xS

)
=

(
bI

bS

)
,

where AII consists of independent diagonal blocks. This submatrix is invertible because on each subdomain we deal with
a discretized Navier-Stokes problem on an Arakawa C-grid which is known to be well-posed if the normal and tangential
velocities are specified on the boundaries and the level of the pressure is fixed by setting it in one grid point inside the
domain. The velocities are indeed specified on the surrounding boundaries and separators of each subdomain and one
pressure is fixed in each subdomain. Since AII consists of independent diagonal blocks, applying A−1

II is easy and trivial to
parallelize. For this reason, we aim to solve

SxS = bS − ASIA−1
II bI ,

xI = A−1
II bI − A−1

II AISxS,

where S is the Schur complement given by S = ASS − ASIA−1
II AIS.

Whether a variable is coupled to a different subdomain could be determined directly from the graph of the matrix, as
discussed earlier. In our implementation, however, we determine this geometrically by defining the overlapping subdo-
mains during the partitioning step, and checking what overlapping subdomains a node of the nonoverlapping subdomain
belongs to.

There are three types of separators: faces (in 3D), edges and corners. For the Navier-Stokes problem on a C-grid,
these separators only consist of V -nodes. The P-nodes are only connected to V -nodes that belong to the same overlapping
subdomain, so these should never lie on a separator. We arbitrarily choose one P-node in every interior which we also
define to be its own separator group to make sure the Schur complement stays nonsingular.

We want to eliminate velocities on a separator in such a way that the velocities that remain on a separator face provide
an approximation of the collective flux through that face. It is therefore important that the variables are correctly scaled
before the factorization in a way that they represent physical fluxes. In the matrix in Equation (2) this gives a G-part with
entries of constant magnitude. In this case, we can define a Householder transformation which exactly decouples all but
one V -node from the P-nodes.24 This transformation is of the form

Hj = I − 2
vjvT

j

vT
j vj

, (4)

for some separator group gj with

v(k)
j =

{
e(k)

j + ||ej||2 if node k is the first node of separator group gj

e(k)
j otherwise

(5)
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and

e(k)
j =

{
1 if node k is in separator group gj

0 if node k is not in separator group gj,

for all k= 1, … , n. We call the one V -node that is still coupled to the P-nodes a VΣ node. Since the Householder trans-
formation can be applied independently for every separator group, we may collect all these transformations in one single
transformation matrix H.

2.2 Factorization phase

For every overlapping subdomain Ωi, i= 1, … , N, where N is the total number of overlapping subdomains, we can define
a local matrix

A(i) =

(
A(i)

II A(i)
IS

A(i)
SI A(i)

SS

)
.

After computing the factorization A(i)
II = L(i)

II U (i)
II , the local contribution to the Schur complement is given by

Si = A(i)
SS − A(i)

SI(L
(i)
II U (i)

II )
−1A(i)

IS ,

and the global Schur complement is given by

S =
∑
Ωi

A(i)
SS −

∑
Ωi

A(i)
SI(L

(i)
II U (i)

II )
−1A(i)

IS .

Here we take the sum of the A(i)
SS contributions over the nonoverlapping subdomains to make sure that contributions

from separators are not counted multiple times.
We now apply the Householder transformation

ST = HSHT = H
⎛⎜⎜⎝
∑
Ωi

A(i)
SS −

∑
Ωi

A(i)
SI(L

(i)
II U (i)

II )
−1A(i)

IS

⎞⎟⎟⎠HT

=
∑
Ωi

HiA(i)
SSHT

i −
∑
Ωi

HiA(i)
SI(L

(i)
II U (i)

II )
−1A(i)

IS HT
i , (6)

which can be done separately for every separator group or subdomain, or on the entire Schur complement. We choose to
apply the transformation separately for every subdomain, since H is very sparse, and sparse matrix-matrix products are
very expensive and memory consuming.

We now drop all connections between VΣ and non-VΣ nodes, and between non-VΣ nodes and non-VΣ nodes in different
separator groups. The dropping that is applied here is what makes our factorization inexact. Not applying the dropping
gives us a factorization that can still be partially parallelized, but is also exact.

Our transformed Schur complement is now reduced to a block-diagonal matrix with blocks of non-VΣ nodes for every
separator, and one block for all VΣ nodes, which we call SΣΣ. Separate factorizations can again be made for all these
diagonal blocks, which can again be done in parallel. For the non-VΣ blocks, a sequential LAPACK solver can be used, and
for SΣΣ we can employ a (distributed) sparse direct solver. We denote the factorization that is computed by these solvers
as LSUS.

The full factorization obtained by the method is given by

A ≈

(
LII 0

ASIU−1
II HTLS

)(
UII L−1

II AIS

0 USH

)
.
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2.3 Solution phase

After the preconditioner has been computed, it can be applied in each step of a preconditioned Krylov subspace
method, for which we use the well-known GMRES method.29 Communication has to occur in the application of AIS
and ASI , and when solving the distributed VΣ system. The latter was adressed by using a parallel sparse direct solver
in Thies and Wubs,25 but in the next section we propose a different road that does not rely on the availability of such
a solver.

3 THE MULTILEVEL ILU PRECONDITIONER

The main issue with the above two-level ILU factorization that prevents us from scaling up to very large problem
sizes in three space dimensions is that, as the problem size increases and the subdomain size remains constant, the
size of SΣΣ increases steadily, and any (serial or parallel) sparse direct solver eventually limits the feasible problem
sizes. Increasing the subdomain size, on the other hand, leads to more iterations and therefore more synchronization
points.

One of the strong points, on the other hand, is the fact that it preserves the structure of the original problem in
the sense that, when applied to an  -matrix, it produces a strongly reduced matrix SΣΣ which is again an  -matrix. It
is therefore intuitive to try to apply the scheme recursively and avoid the problem of the growing sparse matrix that
has to be factorized. From the structure preserving properties of the algorithm, it is expected that such a recursive
scheme again leads to grid-independent convergence if the number of recursions is kept constant as the grid size is
increased.

From now on we refer to the number of recursions, or the number of times a reduced matrix SΣΣ is
computed, as the number of levels. Note that this means that the method, which was previously referred
to the two-level method is in fact the first level of the multilevel method. Applying a direct solver to
ST from (6) is level zero. In this case the preconditioner is a direct solver and GMRES will converge in
1 iteration.

In order to apply the method to the reduced matrix SΣΣ, we require a coarser partitioning, in which a subdomain
consists of multiple subdomains from the original partitioning. In case we have a regular partitioning like a rectangular
partitioning, this may be done by multiplying the separator length by a certain coarsening factor. Having a coarsening
factor of 2, for instance, means that in 3D the separator length is increased by a factor 2, and the number of subdomains
is reduced by a factor 8.

As stated in the previous section, we require the velocity variables to be correctly scaled to be able to apply the
Householder transformation. However, the VΣ-variables from the previous level that lie on one separator have a different
number of variables in their separator groups. In case of a regular partitioning, an edge separator, for instance, consists
of VΣ-nodes from two edges and one corner from the previous level This leads to a different scaling of the VΣ-nodes
and thus to nonconstant entries in the G-part of SΣΣ. Instead of re-scaling the SΣΣ matrix on every level, we instead use
a test vector t. The test vector is defined initially as a constant vector of ones, and is multiplied by the Householder
transformation H at each consecutive level. The Householder transformation is as defined in Equations (4) and (5), but
now with

e(k)
j =

{
t(k) if node k is in separator group gj

0 if node k is not in separator group gj
,

for all k= 1, … , n. After applying the Householder transformation, we can again apply dropping to remove connections
between VΣ and non-VΣ nodes and between non-VΣ nodes and non-VΣ nodes in different separator groups. When the
matrix SΣΣ is sufficiently small, a direct solver is applied to factorize it.

Instead of just having one separator group per variable per separator, we may also choose to have multiple separator
groups, meaning that instead of retaining only one VΣ node per variable per separator we retain multiple VΣ nodes. This
in turn means that less dropping is applied, and therefore the factorization is more accurate. Retaining all nodes in this
way, possibly only after reaching a certain level, gives us an exact factorization, which, in terms of iterations for the outer
iterative solver, should give the same results as using any other direct solver at that level. A visual representation of this
process is given in Figure 3.
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Initial separators

Retain 1, level 1

Retain 1, level 2

Retain 4, level 1

Retain 4, level 2

Retain all, level 1

Retain all, level 2

F I G U R E 3 One-dimensional
representation of the process of
retaining multiple nodes per separator.
Each separator group has its own color
and shape [Color figure can be viewed
at wileyonlinelibrary.com]

4 SKEW PARTITIONING IN 2D AND 3D

Looking at Figure 2, we see that there are pressures that are located at the corners of the subdomains that are sur-
rounded by velocity separators. This means that if we add these pressures to the interior, as was suggested above, we
get a singular interior block. We call these pressure nodes that are surrounded by velocity separators isolated pres-
sure nodes. For the two-level preconditioner in 2D, it was possible to solve this problem by adding these pressures
to the Schur complement as single-element separator groups. This unfortunately does not work for the multilevel
method, since in this case velocity nodes around the isolated pressure nodes get eliminated. It also does not work
in 3D because there the isolated pressure nodes also exist inside of the edge separators, where they form tubes of
isolated nodes.

A possible way to solve this for the multilevel case and in 3D is to also turn all velocity nodes around the isolated
pressure nodes into separate separator groups. This means that they are all treated as VΣ nodes and are never eliminated
until they are in the interior of the domain at a later level. This, however, has the downside that a lot more nodes have
to be retained at every level, resulting in much larger SΣΣ matrices at every level. Furthermore, a lot of bookkeeping is
required to keep track of all the extra separator groups, and their elimination leads to long-range connections and thus a
more irregular matrix structure.

In 2D, we can resolve these problems by rotating the Cartesian partitioning by 45 degrees. The result is shown in
Figure 4A. It is easy to see that in this case, no pressure nodes are surrounded by only velocity separators. We call this
partitioning method skew partitioning. In Figure 4, we also show the workings of the multilevel method, with all the steps
being displayed in the different subfigures.

For the skew partitioning to work with our multilevel method, we have two requirements on the shape of the subdo-
mains: (1) it should be space-filling, meaning that it can be used to fill the entire domain and (2) it should be self-similar,
meaning that we can construct a larger subdomain of the same shape from multiple smaller subdomains. It is easy to see
that these two properties hold for the 2D skew partitioning.

The most basic idea for generalizing the rotated square shape to a 3D setting is to use octahedral subdomains.
Partitioning with this design turned out to be unsuccessful, but it is still briefly discussed here since it led to some
new insights. Since regular octahedra (the dual to cubes, having their vertices at the centers of the cube faces) by
themselves are not space-filling, the octahedra can be slightly distorted to make them fit within a single cubic repeat
unit. The resulting subdomains are space-filling, but only by using three mutually orthogonal subdomain types. The
fact that it requires the use of three types of subdomains increases the programming efforts significantly since it
introduces a lot of edge cases that should be considered, for example, for subdomains located at the boundary of
the domain.

The major problem with the octahedral subdomains, however, is that they are not self-similar, meaning
that we cannot construct a larger octahedral subdomain from multiple smaller octahedral subdomains. How-
ever, self-similarity can be achieved by splitting the octahedra into four smaller tetrahedra, of which six differ-
ent types are required to fill 3D space. This introduces additional separator planes that are similar to the 2D
skew case and hence it increases the risk of isolating a pressure node when such planes intersect. Especially pla-
nar intersections which are parallel to any of the Cartesian axes have a high risk of producing isolated pressure
nodes.

We did indeed not manage to find any self-similar tiling using tetrahedra that would not give rise to any isolated
pressure nodes. Moreover, we would like to have a single subdomain shape that we can use instead of six, since this
would greatly simplify the implementation. A lesson we learned is that isolated pressure nodes always seem to arise when
having faces that are aligned with the grid. Therefore, we looked into a rotated parallelepiped shape that does not have
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F I G U R E 4 Skew
partitioning of a 12× 12 C-grid
discretization of the
Navier-Stokes equations into 12
subdomains. The interiors are
shown in gray. Velocities of the
same (nongray) color together
form a separator group (but
only if they point in the same
direction and are in neighboring
grid cells). The red circles are
pressure nodes that are retained.
This example uses a coarsening
factor of 2, that is, the separators
on the next level have twice the
length of those on the previous
level. (A) Initial partitioning. (B)
After elimination of interiors
only the separator groups
remain. (C) The householder
transformations leave one
VΣ-node per separator group.
(D) Partitioning on next level
[Color figure can be viewed at
wileyonlinelibrary.com]

(A) Initial partitioning (B) After elimination ofinteriors only the separator groups

remain

(C) The Householder transformations leave one Σ-node per

separator group

(D) Partitioning on next level

any faces that are aligned with the grid.30 This shape is shown in Figure 5A, where the cubes represent a set of sx × sx × sx
grid cells. A welcome property of this domain is that its central cross section resembles the proposed 2D skew partitioning
method.

A schematic view of the position of the separator nodes is shown in Figure 5B. One important detail to
note is that on the side that is facing toward us, only half of the w-nodes are displayed. This is because
the w-nodes have to be positioned in an alternating fashion on the inside and outside of the nonoverlap-
ping subdomain to prevent isolated pressure nodes from appearing. A consequence of this alternating property
is that the w-planes have to be divided into two separate separator groups; one for the w-nodes that are
located inside the nonoverlapping subdomain, and one for w-nodes that are only present in the overlapping
subdomain.

Another advantage of using a skew domain partitioning is that the amount of communication that is
required is reduced when compared to a square partitioning. In Bisseling,31 it is estimated that for the Laplace
problem, the communication is asymptotically reduced by a factor of

√
2 for the 2D diamond shape. If we

instead compare the diamond shape to a rectangular domain with the same number of nodes (having the
same number of nodes with a square domain is impossible), we find that communication is reduced by a
factor of 3

2
. In the same manner, we can compare a 3D domain of size sx × sx × sx/2 to the rotated paral-

lelepiped, and find a factor of 4
3
. We remark that the truncated octahedron that is used in Bisseling31 for the 3D

domain and has a factor of 1.68 cannot be used for our multilevel method, since truncated octahedra are not
self-similar.

http://wileyonlinelibrary.com
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(A) Shape of the parallelepiped inside of two cubes

that consist of × × grid cells
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z

(B) Schematic view of the position of the separator

nodes from the same point of view as the figure on

the left The -nodes are depicted as red faces, the

-nodes are depicted in green and the -nodes in

yellow.

F I G U R E 5 Parallelepiped shape
for partitioning the domain. (A) Shape
of the parallelepiped inside of two cubes
that consist of m×m×m grid cells. (B)
Schematic view of the position of the
separator nodes from the same point of
view as the figure on the left The
u-nodes are depicted as red faces, the
v-nodes are depicted in green, and the
w-nodes in yellow [Color figure can be
viewed at wileyonlinelibrary.com]

5 NUMERICAL RESULTS

A common benchmark in fluid dynamics is the lid-driven cavity problem. We consider an incompressible Newtonian
fluid in a square three-dimensional domain of unit length, with a lid at the top which moves at a constant speed U. The
equations are given by Equation (1). No-slip boundary conditions are applied at the walls, meaning that they are Dirichlet
boundary conditions, and the equations are discretized on an Arakawa C-grid as described before. We take nx =ny =nz
grid cells in every direction.

At first, however, we will only look at the Stokes equations of the form

Δu − ∇p = f,
∇ ⋅ u = 0,

where we take f to be random. This is because our preconditioner is constructed in such a way that memory usage and time
cost for both computation and application of the preconditioner should not be influenced by inclusion of the convective
term. After this, we further investigate the behavior of the method on the lid-driven cavity problem for increasing Reynolds
numbers, which constitute harder problems. Therefore we expect an increase in iterations of the iterative solver, but
otherwise the same behavior.

For obtaining the exact memory usage, we developed a custom library which overrides all memory allocation routines
when linking against it. The library contains a hash table in which the amount of memory that is allocated is stored by its
memory address. We keep track of the total amount of memory that is allocated, which is increased on memory allocation,
and reduced by the amount that is stored in the hash table when memory is freed. The reason we developed this library
is that existing methods rely on rough estimates of the memory usage of the used data structures, use the data that is
available from /proc/meminfo, which is inaccurate, or actually count memory usage in a similar way as we do (e.g.,
valgrind), but have a large performance impact.

We perform every experiment twice: once to determine the memory usage, and once to determine the run time,
without linking to the memory usage library. This means that when reporting timing results, we are not affected by the
performance impact of tools to determine memory usage. The reason that we are still concerned about their performance
impact, even though we developed our own library, is that it adds roughly a constant amount of time per process, which
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impacts scalability results. The memory usage that we report is the exact difference in memory usage before and after a
certain action is performed, for example, before and after the construction of the preconditioner.

For the timing results, we do not include the time it takes to compute the partitioning, because we did not opti-
mize this step. The partitioning is computed by first constructing one full overlapping subdomain of the prescribed
subdomain size sequentially, which is then mapped to the correct position of every overlapping subdomain to deter-
mine the interiors and separator groups. However, since the initial full overlapping subdomain contains all (possibly
already eliminated) nodes, every time we increase the number of levels by 1, the amount of time required to compute
the partitioning increases by a factor 8, which is the worst possible scenario. The reason we do not include this in the
timing results is that this may be resolved by only computing the partitioning for nodes that are still present in the
Schur complement at that level. This requires a full rewrite of the existing partitioning code, and will be addressed
in a future version of the software. It does, however, not have any impact on the timing results of the remainder
of the implementation, since this is completely decoupled. This means that even though the partitioning method
does not scale at all, the preconditioning method itself can be studied reliably without including the timing of the
partitioning.

For the implementation of the preconditioner and solver, we use libraries from the Trilinos project.32 The libraries
we use are Epetra (vector and matrix data structures), IFPACK (direct solver and preconditioning interfaces),33 Ame-
sos (direct solvers)34 and Belos (iterative solvers).35 As iterative solver we use GMRES(250),29 as parallel sparse direct
solver on the coarsest level we use SuperLU_DIST 6.1,36 and as direct solver for the interior blocks we use KLU37

with the fill-reducing ordering from Niet and Wubs.27 The implementation of our preconditioner can be found
on GitHub.*

The benchmark is performed on the SuperMUC-NG cluster at LRZ, Munich.† The nodes contain two Intel Xeon “Sky-
lake” Platinum 8174 processors with 24 cores and have 96 GB of memory. For all experiments, we disable multithreading
inside the MPI processes, since the use of OpenMP in Epetra is not compatible with our need for very small objects (e.g.,
sparse matrices living on a very small subdomain).

5.1 Weak scalability

First, we look at results obtained when increasing the grid size nx at the same rate as the number of used cores np,
that is, the problem size on each core is kept constant. The exact configurations that we use are 1 core for nx = 16, 1
core for nx = 32, 8 cores for nx = 64, 64 cores for nx = 128, 512 cores for nx = 256, and 4096 cores for nx = 512. The size
of the subdomains (the size of the cubes in Figure 5A) at the first level is sx = 8, while we choose the coarsening factor
to be 2, meaning that we increase sx by a factor of 2 at each level. We perform experiments where we keep the number
of levels constant at L= 2, and experiments where we increase the number of levels by 1 when doubling the grid size.
For the latter, we look at three cases where we retain a different number of separator nodes starting at level 2: 1, 4,
and all. Since we start retaining more nodes after two levels, results with only two levels (nx = 16) will be the same for
all configurations. When no result is shown for nx = 512, this means the method ran out of memory, unless otherwise
stated.

For the fixed number of levels, we expect the number of iterations of the iterative solver to converge to a con-
stant number as the grid is refined. For the case where we increase the number of levels as the domain size increases,
we expect the number of iterations to only increase mildly, and we expect that retaining more separator nodes start-
ing at level 2 decreases the number of iterations until it again becomes constant as we retain more and more nodes
per separator.

The results are shown in Figure 6. We see that indeed the number of iterations becomes constant when fixing the
number of levels or when retaining all separator nodes. When increasing the number of levels with the grid size, we see
that the number of iterations keeps increasing gradually. What is interesting is that when we retain 4 instead of 1 separator
node per separator group after level 2, the number of iterations that is required decreases drastically, even though this
does not have a significant impact on the memory usage as we will see later.

The computational time of both computing the preconditioner, as well as the application of the preconditioner would
ideally become constant when keeping the problem size at each core constant while increasing the problem size. However,

*https://github.com/nlesc-smcm/hymls
†https://www.top500.org/system/179566/

https://github.com/nlesc-smcm/hymls
https://www.top500.org/system/179566/
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F I G U R E 6 Number of iterations of GMRES for the Stokes
problem on a grid of size nx ×nx ×nx , while keeping the number of
levels at L= 2, and when increasing the number of levels by 1 when
nx is doubled. A relative residual of 10−8 was used as convergence
tolerance [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 7 Time to compute the preconditioner for the Stokes
problem on a grid of size nx ×nx ×nx , while keeping the number of
levels at L= 2, and when increasing the number of levels by 1 when
nx is doubled [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 8 Time to solve the linear system with
GMRES (lines), and time of 200 applications of the
preconditioner (dashed lines). This is for the Stokes
problem on a grid of size nx ×nx ×nx , while keeping the
number of levels at L= 2, and when increasing the
number of levels by 1 when nx is doubled. A relative
residual of 10−8 was used as convergence tolerance [Color
figure can be viewed at wileyonlinelibrary.com]

in practice this is not possible since increasing the number of cores also increases the required amount of communication.
The results are shown in Figures 7 and 8.

When computing the preconditioner, we see that if we increase the number of levels with the grid size, the computa-
tional time rises only slightly. Ideally, there would be no rise at all, but since an increased the number of computational
nodes also means more communication, there will always be an increase in practice. In our case, the communication
mainly happens at the point where contributions of neighboring subdomains have to be added up in the Schur comple-
ment. Since retaining more nodes per level means an increase in the amount of communication, we also see that retaining

http://wileyonlinelibrary.com
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F I G U R E 9 Memory usage of the preconditioner per core for
the Stokes problem on a grid of size nx ×nx ×nx , while keeping the
number of levels at L= 2, and when increasing the number of levels
by 1 when nx is doubled [Color figure can be viewed at
wileyonlinelibrary.com]
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4 or all nodes takes more time than retaining only 1 node per separator at every level. It must be noted that due to sys-
tem variability, we also found results that were about 10% better or worse than the results displayed here. This could be
improved by disabling frequency adaptation in the CPUs, but we are aware that at very large core counts the synchronous
nature of our algorithm may become a scalability problem.

If we keep the number of levels constant, the computational time required to compute the factorization at the last
level increases rapidly, and for larger grid sizes, the amount of memory that is required for the factorization is too large
for the computation to complete. We also notice that retaining all nodes after level 2 is much less efficient than just using
SuperLU_DIST at level 2, meaning that our preconditioner performs very poorly as a direct solver. This is mainly due
to the fact that the Schur complement at the last level is quite large and full. The last level Schur complement for a grid
of size 2563 has size 20, 961× 20, 961, and its factorization is filled with 72% nonzeros. Computing the factorization of
this matrix and using it in a forward/backward substitution is therefore very expensive. Using a parallel dense solver
instead of SuperLU_DIST might help to make it more efficient. Moreover, since we choose n∼np, the cost of computing
the factorization by a sparse direct solver grows at best with (n2∕np) = (n) = (n3

x),36 and we expect that the cost
of computing the preconditioner when keeping the number of levels constant, or when retaining all separator nodes,
increases with n3

x .
In Figure 8, we show both the time required to solve the linear system after computation of the preconditioner, and the

time of 200 applications of the preconditioner, which is not influenced by the number of iterations of the iterative solver
and does not include the time spent on, for instance, matrix-vector products and orthogonalization. First of all, we again
observe that retaining all separator nodes is a bad idea, since the computational time goes off the chart. For the case where
we only use 2 levels, we also see the unwanted behavior of a time that keeps increasing linearly for the total solution time,
and superlinearly for the application of the preconditioner, where we would actually expect (n4∕3∕np) = (nx) behavior
from the triangular solve.36 This may be caused by disabling multithreading support, which results in an increased amount
of communication inside of SuperLU_DIST.

For both cases where we retain 1 and 4 separator nodes after 2 levels, we see that the computational time only
slightly increases for larger grid sizes. We also note that for the case where we retain 4 nodes, the application of
the preconditioner is slightly slower, but the total solution time is much smaller due to the lower number of iter-
ations that is required, as can also be seen in Figure 6, and the fact that applying the preconditioner is relatively
cheap.

In Figure 9, we see the average memory usage of the preconditioner per core. Here we again observe that the 2 level
case, and the case where we retain all separator nodes after level 3, perform poorly. The cases where we retain 1 or 4
separator nodes per separator group after level 2 show similar behavior in terms of memory usage, and the memory usage
becomes constant as expected.

5.2 Strong scalability

In this section, we look at a problem of size nx = 128, with 6 levels and retaining only one node per separator group. We
use 1 to 128 cores with steps of a factor of 2 for all cases except the application time, where we use 2 to 128 cores. The
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F I G U R E 10 Total memory usage of the preconditioner for the
Stokes problem on a grid of size 1283, with 1 to 128 cores [Color
figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 11 Speedup of computation and application of the
preconditioner for the Stokes problem on a grid of size 1283, with 2
to 128 cores [Color figure can be viewed at wileyonlinelibrary.com]

reason we do not look at 1 core for this timing is that this configuration caused a memory allocation error in the iterative
solver (Belos).

We first look at the total memory usage in Figure 10. We observe that there is a large difference between the memory
usage on one core, and the memory usage on two cores. This is because especially Epetra uses different implementations
of its data structures for serial and parallel computations.

We also observe that the total memory usage increases slightly when using more cores. This can be explained by the
overlap that exists between different processes. Since the difference in communication between a cubical domain and a
parallelepipedal domain is a constant factor of 3

4
, we may instead look at a cubical domain to explain this behavior. If we

have a subdomain of size sx × sy × sz, then communication is required for 2sxsy + 2sxsz + 2sysz grid cells. If the subdomain
is split in the x-direction, communication for 2sxsy + 2sxsz + 4sysz grid cells is required. For the case sx = sy = sz, commu-
nication increases with a factor 4

3
when doubling the number of cores. This explains the slight increase in memory usage

we measure.
In Figure 11, we look at the speedup when using more cores. Ideally, we would see that using twice the number of

cores would mean half of the computational time. We plotted this ideal line for reference. We see that the speedup of both
the computation and application of the preconditioner is very close to this ideal line. There is one outlier at 2 cores which
is above the ideal line, which may be explained by system variability. Other than that the behavior is as expected.

5.3 Lid-driven cavity

In the previous sections, we determined the weak and strong scalability properties of the preconditioner, which means
that we can now continue with the robustness of the solver on the lid-driven cavity problem with increasing Reynolds
numbers. We perform a continuation with steps of Re= 100 starting from the solution of the Stokes problem. We show
the results of the first iteration of Newton at Re= 500 and Re= 2000. The reason we go up to Re= 2000 is that a Hopf
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F I G U R E 12 Number of iterations of GMRES for the lid-driven
cavity problem at Re= 500 on a grid of size nx ×nx ×nx , while keeping
the number of levels at L= 2, and when increasing the number of
levels by 1 when nx is doubled. A relative residual of 10−8 was used
as convergence tolerance. As initial guess we used the solution at
Re= 400 [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 13 Time for GMRES to converge for the lid-driven
cavity problem at Re= 500 on a grid of size nx ×nx ×nx , while keeping
the number of levels at L= 2, and when increasing the number of
levels by 1 when nx is doubled. A relative residual of 10−8 was used
as convergence tolerance. As initial guess we used the solution at
Re= 400 [Color figure can be viewed at wileyonlinelibrary.com]
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bifurcation is located between Re= 1900 and Re= 2000,20,38 which is of interest because it changes the qualitative behavior
of the solution and makes the Jacobian indefinite.

In Figures 12 and 13, we show the results at Reynolds number 500, which show good correspondence with the results
on the Stokes problem. The main difference is that more iterations are needed, since higher Reynolds numbers constitute
harder problems. We see that the number of iterations that is required when keeping the number of levels constant actually
decreases, which is due to the grid refinement having a positive effect on the mesh Péclet number, that is, the coefficients
of the diffusion increase with respect to those of the convection.

The results at Reynolds number 2000 are shown in Figures 14 and 15. We again observe that the number of iterations
is much larger. What is odd, however, is that retaining more nodes now actually gives worse convergence. This may be
because we use GMRES(250) instead of GMRES due to memory limitations, and therefore do not preserve the convergence
properties of GMRES. This effect is more prevalent for this problem because of the large number of iterations that is
required. We did confirm that for the first 250 iterations, retaining 4 nodes after level 2 gives rise to better convergence,
as we expected. For Reynolds number 2000, we do not show results with a grid of size 5123, because the method does not
converge within 10,000 GMRES iterations, which we set as the maximum. It does converge, however, and extrapolating
the results, we expect that around 15,000 iterations are required to meet the tolerance. Alternatively, instead of increasing
the number of levels with the grid size, we could also have used 6 levels as we did for a grid of size 2563, in which case we
would have expected it to actually use fewer iterations due to the effect of grid refinement on the mesh Péclet number as
explained earlier.

In Table 1, we show results for Reynolds number 500 using the LSC-SIMPLEC block preconditioner implemented in
Teko.15 We also tried preconditioners from other packages, as well as other preconditioning strategies implemented in the
Teko package, but those unfortunately converged even slower or did not yield convergence at all. The stopping criterion
of the linear solver is 10−8, as before.

Compared to our method, we see that Teko has much more difficulty with the grid refinement, leading to a huge
computational cost at a grid size of only 643. A crude computation shows that per grid point the method becomes about 65
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F I G U R E 14 Number of iterations of GMRES for the
lid-driven cavity problem at Re= 2000 on a grid of size nx ×nx ×nx ,
while keeping the number of levels at L= 2, and when increasing the
number of levels by 1 when nx is doubled. A relative residual of 10−8

was used as convergence tolerance. As initial guess we used the
solution at Re= 1900 [Color figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 15 Time for GMRES to converge for the lid-driven
cavity problem at Re= 2000 on a grid of size nx ×nx ×nx , while
keeping the number of levels at L= 2, and when increasing the
number of levels by 1 when nx is doubled. A relative residual of 10−8

was used as convergence tolerance. As initial guess we used the
solution at Re= 1900 [Color figure can be viewed at
wileyonlinelibrary.com]

np nx L its tc (s) ts (s)

1 16 2 142 0.12 0.77

1 32 2 187 9.88 18.80

8 64 3 245 1511.12 313.00

Note: Here np is the number of cores, L is the number of levels, its is the
number of iterations, tc is the time to compute the preconditioner and
ts is the time for solving the linear system.

T A B L E 1 Performance of Teko with LSC-SIMPLEC preconditioner
for the lid-driven cavity problem at Re= 500 on a grid of size nx ×nx ×nx

times more expensive per iteration. This must be attributed to slow convergence of algebraic multigrid on the subblocks.
One of these blocks is the L+N block from Equation (2), with N indefinite, and this is something that is difficult for a
standard AMG method. We choose the number of levels to be 2 for grid sizes 163 and 323, and 3 levels for 643 since these
seem to give the optimal results. For Reynolds number 2000, we do not observe convergence past the 163 grid.

6 SUMMARY AND DISCUSSION

We presented a robust method for solving the steady, incompressible Navier-Stokes equations, which makes use of paral-
lelepiped shaped overlapping subdomains. The interiors of these overlapping subdomains can be eliminated in parallel.
On the interfaces of the subdomains, Householder transformations are applied to decouple all but one velocity node from
the pressure nodes, after which all decoupled nodes can also be eliminated in parallel. The key to the multilevel approach
is the resulting reduced Schur complement matrix, which has the same structure as the original matrix. We can therefore
recursively apply our method to this matrix. The shape of the subdomains makes sure that pressure nodes are not isolated
in the factorization process, which would result in a singular Schur complement matrix.
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Our weak scalability experiments show that if the number of levels of the multilevel approach is kept constant while
increasing the problem size, grid independent convergence is obtained. We also show that by increasing the number of
levels and processors as the problem size increases, we only require a small amount of additional time and memory for
both the factorization and solution process. Moreover, by increasing the number of nodes that is retained per separator
after level 2, we can further decrease the time that is required to solve the system.

Our strong scalability experiments show that the time that is required to both compute and apply the preconditioner
scales very well. The same holds for the memory usage, which behaves as expected.

We also showed that the preconditioner leads to convergence of GMRES for the lid-driven cavity problem at high
Reynolds numbers, where other methods, such as the LSC-SIMPLEC preconditioner that is implemented in Teko, fail to
do so.

This leads us to conclude that we implemented a robust solution method for the Navier-Stokes equations on staggered
grids which shows good parallel scalability. In this article, we only showed results for Arakawa C-grids. We have already
succeeded to apply the idea to discretization on other staggered grids, for example, Arakawa B-grids and mixtures of B-
and C-grids as used in oceanography. This will allow us to use it as preconditioner in ocean-climate models, which is
our application goal. The approach is, however, not limited to structured grids. The essence of the method is that we can
iterate in the divergence-free space in a cheap way. As far as we can see this is the case when we have discrete conservation
of mass. The C-grid discretizaton leads to one mass conservation law per subdomain (the B-grid has two). By uniting
two neighbouring subdomains, we can find, by a simple combination of the two laws, a single new one for the united
subdomains. This is also possible for finite volume discretizations on unstructured grids. For this reason, we think that
the method can be applied to such discretizations in general and to some (discontinuous) Galerkin methods that also have
the discrete conservation property. In the future, we may generalize the approach to unstructured grid discretizations for
which we will need graph based partitioning methods.
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