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Abstract      

 
Our planet is traversing the age of human-induced climate change and biodiversity 

loss. Projected global warming of 1.5 ºC above pre-industrial levels and related 

greenhouse gas emission pathways will bring about detrimental and irreversible 

impacts on the interconnected natural and human ecosystem. A global warming of 2 ºC 

could further exacerbate the risks across the sectors of biodiversity, energy, food, and 

water. Time- and cost-effective solutions and strategies are required for 

strengthening humanity’s response to the present environmental and societal 

challenges.  

 

Coastal seascape ecosystems including seagrasses, corals, mangrove forests, tidal 

flats, and salt marshes have been more recently heralded as nature-based solutions 

for mitigating and adapting to the climate-related impacts. This is due to their ability to 

absorb and store large quantities of carbon from the atmosphere. Focusing on 

seagrass habitats, although occupying only 0.2% of the world’s oceans, they can 

sequestrate up to 10% of the total oceanic carbon pool, all the while providing important 

food security, biodiversity, and coastal protection.   

 

But seagrass ecosystems, as all of their blue carbon seascape neighbors, are losing 

1.5% of their extent per year due to anthropogenic activities. This has adverse 

implications for global carbon stocks, coastal protection, and marine biodiversity. 

Seagrass and seascape recession necessitates their science and policy-based 

management, protection, conservation which will ensure that our planet will remain 

within its sustainable boundaries in the age of climate change.  

 

The present PhD Thesis and research aim is to develop algorithms for seagrass 

mapping and monitoring leveraging the recent emergences in remote sensing 

technology―new satellite image archives, machine learning frameworks, and cloud 

computing―with field data from multiple sources. 

 

The main PhD findings are the demonstration of the suitability of Sentinel-2, RapidEye, 

and PlanetScope satellite imagery for regional to large-scale seagrass mapping; the 

introduction and incorporation of machine learning frameworks in the context of 

seagrass remote sensing and data analytics; the development of a semi-analytical 

model to invert the bottom reflectance of seagrasses; the design and implementation 

of multi-temporal satellite image approaches in coastal aquatic remote sensing; and 



   

 

 

the introduction, design and application of a scalable cloud-based tool to scale up 

seagrass mapping across large spatial and temporal dimensions.  

 

The approaches of the present PhD cover the gaps of the existing scientific literature of 

seagrass mapping in terms of the lack of spatial and temporal scalability and 

adaptability; the infancy in seagrass and seascape-related artificial intelligence 

endeavours; the restrictions of local server and mono-temporal approaches; and the 

absence of new methodological developments and applications using new (mainly 

open) satellite image archives.  

 

I anticipate and envisage that the near-future steps after the completion of my PhD will 

address the scalability of the designed cloud-native, data-driven mapping tool to 

standardise, automate, commercialise and democratise mapping and monitoring of 

seagrass and seascape ecosystems globally. The synergy of the developed momentum 

around the global seascape with the technological potential of Earth Observation can 

contribute to humanity’s race to adapt to and mitigate the climate change impacts and 

avoid cross tipping points in climate patterns, and biodiversity and ecosystem 

functions. 



   

 

 

Zusammenfassung 

 
Unser Planet durchläuft das Zeitalter des vom Menschen verursachten Klimawandels 

und des Verlusts der biologischen Vielfalt. Die prognostizierte globale Erwärmung von 

1,5 ºC über dem vorindustriellen Niveau und den damit verbundenen 

Treibhausgasemissionswegen wird nachteilige und irreversible Auswirkungen auf 

das vernetzte natürliche und menschliche Ökosystem haben. Eine globale Erwärmung 

um 2 ºC könnte die Risiken in den Bereichen Biodiversität, Energie, Lebensmittel und 

Wasser weiter verschärfen. Zeit- und kosteneffiziente Lösungen und Strategien sind 

erforderlich, um die Reaktion der Menschheit auf die gegenwärtigen ökologischen und 

gesellschaftlichen Herausforderungen zu stärken. 

 

Küstenökosysteme wie Seegras, Korallen, Mangrovenwälder, Wattenmeer und 

Salzwiesen wurden in jüngster Zeit als naturnahe Lösungen zur Minderung und 

Anpassung an die klimabedingten Auswirkungen angekündigt. Dies liegt an ihrer 

Fähigkeit, große Mengen an Kohlenstoff aus der Atmosphäre aufzunehmen und zu 

speichern. Sie konzentrieren sich auf Lebensräume für Seegras, obwohl sie nur 0,2% 

der Weltmeere einnehmen, können aber bis zu 10% des gesamten ozeanischen 

Kohlenstoffpools beschlagnahmen, während sie gleichzeitig eine wichtige Rolle bei 

der Ernährungssicherheit, der biologischen Vielfalt und dem Küstenschutz spielen.   

 

Aber Seegras-Ökosysteme, wie alle ihre Nachbarn in der Blaukohle-Seelandschaft, 

verlieren aufgrund anthropogener Aktivitäten 1,5% ihres Umfangs pro Jahr. Dies hat 

nachteilige Auswirkungen auf die weltweiten Kohlenstoffbestände, den Küstenschutz 

und die biologische Vielfalt der Meere. Die Rezession von Seegras und Seelandschaft 

erfordert ihre wissenschaftlich und politisch fundierte Verwaltung, ihren Schutz und 

ihre Erhaltung, die sicherstellen wird, dass unser Planet im Zeitalter des 

Klimawandels innerhalb seiner nachhaltigen Grenzen bleibt.  

 

Das Ziel der vorliegenden Dissertation und Forschung ist es, Algorithmen für die 

Seegraskartierung und -überwachung zu entwickeln, die die jüngsten Entwicklungen 

in der Fernerkundungstechnologie - neue Satellitenbildarchive, maschinelle 

Lernframeworks und Cloud Computing - mit Felddaten aus verschiedenen Quellen 

nutzen. 

 

Die wichtigsten Ergebnisse der Doktorarbeit sind der Nachweis der Eignung von 

Sentinel-2, RapidEye und PlanetScope Satellitenbildern für regionale bis groß 

angelegte Seegraskartierungen; die Einführung und Integration von maschinellen 



   

 

 

Lernrahmen im Kontext der Seegrasfernerkundung und Datenanalyse; die 

Entwicklung eines semi-analytischen Modells zur Umkehrung der Bodenreflexion von 

Seegras; das Design und die Implementierung von multitemporalen 

Satellitenbildansätzen in der aquatischen Küstenfernerkundung; und die Einführung, 

das Design und die Anwendung eines skalierbaren Cloud-basierten Tools zur 

Skalierung der Seegraskartierung über große räumliche und zeitliche Dimensionen 

hinweg.  

 

Die Ansätze der vorliegenden Dissertation decken die Lücken der bestehenden 

wissenschaftlichen Literatur zur Seegraskartierung im Hinblick auf den Mangel an 

räumlicher und zeitlicher Skalierbarkeit und Anpassungsfähigkeit, die Anfänge der 

Bemühungen um künstliche Intelligenz bei Seegras und Seelandschaft, die 

Einschränkungen der lokalen Server- und monozeitlichen Ansätze sowie das Fehlen 

neuer methodischer Entwicklungen und Anwendungen unter Verwendung neuer 

(hauptsächlich offener) Satellitenbildarchive.  

 

Ich erwarte und stelle mir vor, dass die nahen zukünftigen Schritte nach Abschluss 

meiner Doktorarbeit die Skalierbarkeit des entwickelten Cloud-nativen, 

datengesteuerten Kartierungsinstruments zur Standardisierung, Automatisierung, 

Kommerzialisierung und Demokratisierung der Kartierung und Überwachung von 

Seegras- und Meeresökosystemen weltweit betreffen werden. Die Synergie der 

entwickelten Dynamik um die globale Meereslandschaft herum mit dem 

technologischen Potenzial der Erdbeobachtung kann dazu beitragen, dass die 

Menschheit sich an die Auswirkungen des Klimawandels anpasst und mildert und 

Kreuzungspunkte in den Klimamustern sowie in den Funktionen der biologischen 

Vielfalt und des Ökosystems vermeidet. 
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1 Introduction  

 

1.1 Motivation 

 

In the age of Climate Change, global biodiversity loss and the Fourth Industrial Revolution 

that we are traversing, the planetary seascape ecosystem―including habitats like 

seagrasses, corals, mangroves, tidal flats―can offer an impressive and highly-valued 

panoply of ecosystem services for our protection. Seagrasses, underwater vegetation 

forming kilometer-wide meadows in the global seascape, once on land around the time 

that dinosaurs were roaming on Earth and then in the water, due to the toxic atmosphere, 

have been the center of interest of Aristotle when he was laying the foundations of the 

modern marine biology. Featuring the oldest living organism of nature at the moment (a 

Posidonia oceanica seagrass species in the Western Mediterranean of a 200,000-yr 

lifespan), seagrasses, despite their relatively small ocean coverage, have been more 

lately explored by scientists and policy-makers for their large carbon sinking abilities 

and services. In addition, seagrass habitats can protect the planetary coastline from 

erosion by trapping sediment in their roots; can clean the water column from pathogens 

and bacteria; offer food and nursery to thousands of marine organisms worldwide; all of 

which highlight their significant natural, cultural and financial value. 

 

Seagrasses are known to cover a seabed area more or less equal to the size of Germany, 

in all continents but Antarctica, in exposed to the sunlight regions to 80 m of depth, in very 

clear to very turbid waters, in single patches to some kilometers of homogeneous beds, 

and in occurrence of single species to mixed grounds of more than a dozen species. But 

like all of their seascape neighbors, due to a plethora of mainly anthropogenic impacts, 

seagrasses have been dramatically degraded and decreased in area, limiting the 

magnitude and scale of their support to natural and human ecosystems, and to the 

multitude of global problems that relate to the coastal marine environment. This problem 

is further exacerbated by the currently limited information on the extent and diversity of 

seagrass beds; we cannot answer the why without knowing the where, the what and the 

how much. And without the three latter, nor can we realise effective protection, 

management and conservation of these vital organisms. 
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The need to find out, understand the where, what, how much and why of the seagrass 

ecosystems and add one small piece, hopefully, to the puzzle of the required holistic 

solution provided extrinsically the motivation for this PhD research for the last four 

years. The timing for the sparked motivation was exquisite due to the technological 

developments of the Fourth Industrial Revolution in artificial intelligence, cloud 

computing, and satellite sensor and data availability and capacity. All these offered the 

necessary symbiotic environment to develop more focused and state-of-the-art tools to 

explore and study seagrasses. Since the onset of my PhD, I have been lucky enough to 

experience the practical expansion of artificial intelligence, the realisation of the power of 

cloud computing, the exponential growth in government-funded and commercial satellite 

sensors and the resulting Big-Data paradigms of science and management. Without the 

aforementioned technological advances, my whole PhD would be rich in theories, but 

pure in tools, solutions and impacts. 

 

As such, the designed and developed go-to approach of this PhD combines multi-scale 

satellite data (in single scenes to multi-temporal mosaics), powerful machine learning 

classifiers, and thousands of reference data (collected in the field or annotated on very 

high-resolution satellite images) to feed the artificial intelligence models within a cloud 

computing environment. This mainly top-down approach can be adapted in various time 

and spatial scales (from seasonal to inter-decadal and from single coasts to the 

planetary scale), and remote sensing data input to provide large-scale maps of 

seagrasses and their seascape roommates (e.g., corals, mangroves, tidal flats, kelps, 

macroalgae) and to better understand and protect the coastal marine benthos.  

 

Optimistically, in the increasingly-threatened interconnected natural and human 

ecosystem, my proposed approach and solution could strengthen the understanding and 

the momentum around seagrass science, mapping, and management; and motivate other 

people, from students to managers and ministers, to mind seagrasses the same way I 

have minded them since my infancy. 

 

 

1.2 Objectives  

 

Since the very start of this PhD, the main objective has been to develop algorithms for 

seagrass mapping and monitoring using satellite data from multiple sources: 

government-funded, open and freely available satellite image archives from the Sentinel 

and Landsat series, and private-funded commercial from e.g., Planet (PlanetScope and 
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RapidEye), WorldView, etc. The algorithmic design and development have taken place 

from local servers and specialized off-the-shelf softwares to open cloud-based online 

platforms. To achieve my main objective, I had to set and meet a plethora of smaller sub-

objectives:  

 

a) To demonstrate the suitability of the aforementioned sensors for regional to large-

scale mapping of seagrasses at various spatial scales (0.5 to 30 m). 

b) To introduce and incorporate machine learning frameworks in the context of the 

remote sensing (RS) of seagrasses and more generally coastal aquatic habitats. 

c) To select and annotate suitable and independent large-scale training and 

validation (reference) datasets to feed and test the machine learning algorithms in 

use. 

d) To introduce, design and implement adaptive web-based serverless tools in the 

coastal aquatic context to effectively scale up seagrass mapping in the spatial and 

temporal dimensions. 

e) To develop a semi-analytical model to invert the seabed (i.e. bottom or benthic) 

reflectance of seagrasses and similar nearby habitats.  

 

All of the above five sub-objectives are interconnected and essential components of the 

cloud-based mapping and monitoring tool whose successful near-future scalability and 

implementation will resolve past and existing trends in seagrass ecosystems, unravel 

data issues, and aid their management, protection and conservation worldwide. 

 

1.3 Contributions 

 

There have been six publications that compose the sub-chapters of Chapter 4 of this PhD 

Thesis, reflecting its main objectives and contributions. More specifically, from the oldest 

to the newest, the most prominent contributions of my PhD research are the following:  

 

a) The demonstration of the suitability of Sentinel-2, RapidEye, and PlanetScope 

satellite sensors for multi-scale baseline and time-series mapping of seagrasses 

(4.1 – 4.6). 

b) The incorporation and democratization of Support Vector Machines and Random 

Forests for seagrass RS (4.1 – 4.6). 

c) The identification of the degradation of Posidonia oceanica seagrass habitats with 

a trend of ~-0.1 km2/yr between 2011 and 2016 in the largest gulf of the Aegean Sea 
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(Thermaikos Gulf, Greece) through a time-series of RapidEye satellite images 

(4.5).  

d) The remotely sensed identification of seagrass beds up to 33 m of depth in the 

south of Crete (South Aegean Sea, eastern Mediterranean) on Sentinel-2 imagery 

(4.3). 

e) The implementation and designation of the metrics of probability and uncertainty in 

the context of coastal aquatic RS (4.3). 

f) The design of a semi-analytical model following a machine learning-based 

approach to retrieve water column and seabed characteristics of Mediterranean 

seagrasses from Sentinel-2 data (4.4). 

g) The introduction and designation of multi-temporal approaches (in contrast to 

single-image approaches) in the coastal aquatic RS context aided by and hosted in 

the cloud environment (4.6). 

h) The establishment of an end-to-end cloud-based methodological workflow for 

large-scale, high spatio-temporal baseline mapping and monitoring of 

seagrasses, combining the use of the cloud, machine learning models, public 

satellite imagery from Sentinel-2, and low cost in situ data. The first demonstration 

of the adaptability, efficiency and accuracy of the workflow is reflected in the 

mapping of 2,510 km2 of seagrasses throughout 40,950 km2 of the country-scale 

seabed extent of Greece using a multi-temporal composite of 1,045 Sentinel-2 

images (4.6). 

 

1.4 Structure of the Thesis 

 

The structure of the present PhD Thesis is as follows: Chapter 2 describes important 

background information regarding both the Organism of interest here and the Technology 

in use to study and understand the Organism. 

 

Chapter 3 introduces you to the State-of-the-Art mainly concerning the last twenty years 

of research in the remote sensing of seagrass ecosystems worldwide. 

 

Chapter 4 presents the research contributions of my PhD: six publications related to the 

remote sensing of seagrass ecosystems and neighboring seascape, structured as sub-

chapters that follow an increasing scalability axis.  
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Chapter 5 discusses the connection of Chapter 4 contributions and publications, and 

highlights the most vital findings of this PhD within a seascape connectivity, climate 

change and biodiversity loss context. 

Finally, Chapter 6 puts forth the conclusions and takeaways of the present PhD Thesis, 

and finalizes it with my outlook for both the short and long-term future of my research 

and field.  
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2 Background  

 

2.1 The Organism 

Seagrasses (and not seaweed or algae) are marine flowering plants that can form 

extensive seafloor, monospecific meadows limited to the coastal continental shelf (0–80 

m), where there is enough light for their growth via photosynthesis (Fig. 2.1). There are 72 

species of these marine flowering plants which cover 344,958 km2 of seabed in all 

continents but Antarctica (UNEP-WCMC, Short, 2018). Fig. 2.2 and Fig. 2.3 present the best 

current information on the global seagrass extent and species distribution. These 72 

seagrass species extend their area in six global seagrass bioregions: The Temperate 

North Atlantic, Tropical Atlantic, Tropical Indo-Pacific, Temperate Southern Oceans, 

Temperate North Pacific, and Mediterranean (Green and Short et al. 2003; Fig. 2.3).  

 

Fig. 2.1. Physiology of Seagrass vs Algae or “Seaweed” (Courtesy of the Integration and 

Application Network (ian.umces.edu), University of Maryland Center for Environmental 

Science). 
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The global species diversity of seagrasses is low, but species can extend over thousands 

of kilometers of coastline. They form a critical marine ecosystem for carbon storage, 

fisheries production, sediment accumulation, and stabilization (Green and Short, 2003). 

They contribute to the function of ocean ecosystems by providing an important nursery 

area for many species that support offshore fisheries and for adjacent habitats such as 

salt marshes, shellfish beds, coral reefs, and mangrove forests. Seagrass ecosystems 

are critical for threatened species (i.e. sirenians (dugong and manatee), sea turtles, and 

seahorses) which have high cultural, aesthetic and intrinsic values. The ecosystem 

functions of the seagrass meadows include maintenance of genetic variability, the 

resilience of the coastal environment through protection from erosion, and carbon 

sequestration by removing carbon dioxide from the atmosphere and binding it as organic 

matter (Nordlund et al., 2016). Their high productivity attributes them a disproportionate 

influence on oceanwide primary productivity, typically producing considerably more 

organic carbon than the seagrass ecosystem requires (Githaiga et al., 2017). Carbon 

storage by seagrasses is essentially an effective removal of carbon dioxide from the 

ocean–atmosphere system which plays a significant role in the amelioration of climate 

change impacts (Fourqurean et al., 2012). 

Zooming in the seagrass bio-region of the Mediterranean, the basis for the majority of the 

herein presented research, the latter supports a great biodiversity of up to 18% of all 

known marine species (~17,000) (Coll et al., 2010). Seven of the total 72 seagrass species 

are found in the Mediterranean Sea (Short et al., 2007). Posidonia oceanica is the 

dominant Mediterranean seagrass species and although it has a slow horizontal growth 

of ~1 cm/yr, it is considered as one of the longest-living organisms with meadows 

reaching a thousand years of age (Arnaud-Haond et al., 2012).  

Various studies have highlighted the numerous ecosystem services of the large P. 

oceanica meadows and the Mediterranean seagrass species in general including nursery 

grounds, buffering from coastline erosion, wave protection, carbon sequestration (the 

so-called ‘blue carbon’) and bio-indicator amongst others (Campagne et al., 2014; 

Fourqurean et al., 2012; Mtwana Nordlund et al., 2016). The largest stocks of organic 

carbon among all seagrasses have been documented in the extensive rhizomes of P. 

oceanica; three times greater mean living biomass is present in the Mediterranean 

seagrasses than the global mean of six seagrass bioregions (Fourqurean et al., 2012). 

Furthermore, the economic value of P. oceanica meadows arising from their protection 

from coastal erosion and sediment retention services has been estimated between 51.5 

thousand €/km2/yr and 1.72 million €/km2/yr (Campagne et al., 2014; Vassallo et al., 2013). 
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Fig. 2.2. Global Extent of Seagrasses (modified from UNEP-WCMC, Short, 2019) and 

examples from the six global seagrass bioregions. 

 

 
Fig. 2.3. Global Seagrass Species Distribution (modified from Green and Short, 2003) and 

examples from the six global seagrass bioregions. 

 

 



   

9 

 

P. oceanica species is protected by legislation under the EU Habitat Directive 

(92/43/CEE), the Bern (Annex II, Strictly Protected Flora Species) and the Barcelona 

(dedicated Action Plan under the “Protocol concerning Specially Protected Areas and 

Biological Diversity in the Mediterranean”) Conventions as well as other legislations at a 

national level. Furthermore, according to the Marine Strategy Framework Directive 

(MFSD; 2008/56/EC), P. oceanica is selected as a representative species of the 

angiosperm quality elements for the Mediterranean marine environment and a ‘Good 

Environmental Status’ shall be achieved by all Member States regarding the angiosperm 

habitats. More recently, the EU regulated a ban on destructive fishing activities such as 

trawling within the first 50 m of depth in the Mediterranean, a measure which is bound to 

protect seagrass species indirectly (EC Council Regulation No. 1967, 21/12/2016) (Pergent 

et al., 2010).  

 

Despite being a conservation priority of EU legislation, Mediterranean seagrass habitats 

are experiencing a decreasing trend in their coverage. Telesca et al. (2015) estimated an 

average area loss of 10.1% of P. oceanica meadows during the last 50 years throughout the 

Mediterranean seabed, but excluding areas without historical information on seagrass 

beds (mainly in the eastern Mediterranean), this number increases to 33.6%. The latter 

increase is close to the global report of a 29% decline of seagrass meadows since 1879. 

Declines of populations of Mediterranean seagrass ecosystems have been attributed 

mainly to anthropogenic activities including trawling, anchoring, coastal development, 

eutrophication and climate change (Bonacorsi et al., 2013; Waycott et al., 2009).  

 

The major problem with rectifying this decreasing trend is the sparsity or absence of data 

on the extent of Mediterranean seagrass habitats, especially in the eastern and southern 

parts of the Mediterranean basin (Telesca et al., 2015). Present data in this part of the 

Mediterranean Sea are based on experts' knowledge and are principally point-based 

information on seagrasses' presence/absence (Giannoulaki et al., 2013). Lack of these 

valuable data hinders any effort for effective management and conservation of 

Mediterranean seagrass habitats.  

 

Zooming out to the planetary-scale seagrass extent and condition, the existence of 

seagrass datasets at local to global scale can support resource management, strengthen 

decision-making and facilitate tracking of progress towards global conservation targets 

set by multilateral environmental agreements, such as the Aichi Biodiversity Targets of 

the United Nations' (UN's) Strategic Plan for Biodiversity 2011-2020, the Ramsar 

Convention, and the Sustainable Development Goals (SDG) of the UN’s 2030 Agenda for 

Sustainable Development—particularly Goal 14 “Conserve and sustainably use the 
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oceans, seas and marine resources for sustainable development” of the UN SDG 2030 

(UN General Assembly, 2015).  

 

2.2 The Technology  

 

Modern problems require modern solutions. Technology could solve the problems 

associated with seagrasses today and strengthen our capacity to effectively protect and 

manage them globally. I present here the three satellite-related technologies that I have 

mainly exploited during my PhD and whose symbiosis will allow large-scale seagrass 

mapping and monitoring in the future in multiple spatio-temporal scales and in near real-

time: a) the Satellite Sensors, b) the Cloud Computing Platforms, and c) the Artificial 

Intelligence. 

 

2.2.1 Satellite Sensors 

 

Optical satellite technology has been around since the early 70s with the first of the 

Landsat Series, the Landsat 1. Since then, and especially in the last 20 years, exponential 

advances in the so-called Earth Observation (i.e. the remote-sensing-based acquisition 

of information about the biophysiochemical properties of Earth’s surface) have yielded 

hundreds of satellite sensors in single and constellation missions. The instruments that 

these sensors carry measure the sunlight which has travelled through the atmosphere, 

has penetrated the water surface and the water column and has been reflected by the 

seabed on its trip back through the water column and atmospheric media to the satellite 

instrument (Fig. 2.4). These sensor instruments measure the sunlight in different spatial 

(level of image detail), spectral (wavelengths in which light is measured), temporal 

(revisit time of measurement) and radiometric (colour depth) resolutions. Different 

parameters of seagrasses (e.g., extent, distribution, leaf area index, and bathymetry) can 

be quantified depending on the different satellite resolutions (Fig. 2.5). The associated 

resolutions to seagrass detection, mapping and monitoring are between 0.3 to 30 m of 

spatial resolution, revisit time between 1 and 17 days, and spectral wavelengths mainly in 

the visible range―400 and 700 nm (Fig. 2.6).   
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Fig. 2.4. Interactions of atmosphere, water surface, water column and seabed with 

sunlight over shallow coastal waters (from Roelfsema et al., 2017). 
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Fig. 2.5. Spatial and temporal resolution of satellites relevant to mapping of specific 

seagrass parameters (from Hedley et al., 2016). 

 

 
Fig. 2.6. Spectral profile of single blades of three seagrass species (Thalassia testudinum, 

Syringodium filiforme, and Halodule wrightii; from Thornhaug et al., 2007).  

 

 

Today’s satellites which satisfy the aforementioned characteristics and have been used 

to map seagrasses in a plethora of geographic areas in the last decade are either 

commercial or privately funded: IKONOS1, Worldview series2, Quickbird-23, Planet’s 

PlanetScope and RapidEye4; and government-funded with open, public and free image 

archives: European Union’s Copernicus Sentinel-25 and NASA Landsat Series6. Fig. 2.7 

shows the commonly used for seagrass mapping spectral wavelength ranges of the 

aforementioned sensors.  As regards specifically to Planet’s PlanetScope, they are part 

and product of the increasing trend in the development of spaceborne sensors, Cubesats 

(National Academies of Sciences, Engineering and Medicine, 2016). CubeSats are small 

satellites whose size is expressed in increments of 10 cm cubes, such that 1 cube is 1U or 

“unit”, 2 cubes are 2U (two 10 cm cubes together), etc. Earth observation scientists have 

barely assessed the potential of these shoebox-sized satellites in terms of lower-cost, 

but faster science return (National Academies of Sciences, Engineering and Medicine, 

                                                
1 https://www.satimagingcorp.com/satellite-sensors/ikonos/ 
2 https://www.digitalglobe.com/company/about-us 
3 https://www.euspaceimaging.com/about/satellites/quickbird/ 
4 https://assets.planet.com/docs/combined-imagery-product-spec-final-august-2019.pdf 
5 https://sentinel.esa.int/web/sentinel/missions/sentinel-2 
6 https://www.usgs.gov/land-resources/nli/landsat 

https://www.satimagingcorp.com/satellite-sensors/ikonos/
https://www.digitalglobe.com/company/about-us
https://www.euspaceimaging.com/about/satellites/quickbird/
https://assets.planet.com/docs/combined-imagery-product-spec-final-august-2019.pdf
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://www.usgs.gov/land-resources/nli/landsat
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2016). Having launched 88 CubeSats on 14.02.2017 (the so-called ‘Doves’), Planet has 

reached an unprecedented milestone of operating approximately 120 satellites in parallel 

in low Earth orbit. Planet’s satellite constellation of CubeSats 3U will allow daily imaging 

revisit of the entire Earth once it enters normal imaging operation.  

 

The commercial satellite image datasets feature higher spatial and temporal resolution 

to their public counterparts, but at a higher cost as well. Fig. 2.8 showcases the effect of 

varying spatial scale of different sensors (including a drone) on detecting seagrasses. 

Another drawback with using expensive commercial satellite images is their limited 

sensed area; for example, a single CubeSat-derived PlanetScope image contains a slice 

of the Earth of 24.6x6.4 km in size, while in contrast, an individual Sentinel-2-derived tile 

contains a 63-times larger slice―100x100 km in size. The characteristics of the satellite 

sensors, the area of the seagrass of interest, and the available funds will ultimately 

dictate the selected instrument in use for seagrass mapping and monitoring. More 

information about the exploited satellite sensor technology in each research contribution 

can be found in the Materials and Methods sections of Chapter 4.  

 

2.2.2 Cloud Computing Platforms 

 

In the last five years, various cloud computing platforms have been realised and grown. 

These platforms can support Big-Data paradigms of science and management with an 

emphasis on data-driven and data-intensive analyses, time and cost-efficient data 

access, large computational resources, and high-end visualization (Goodchild et al., 

2012). In the seagrass and seascape context, the paradigm shift of cloud computing 

environments could allow global-scale estimations, information, insights and 

management. Cloud serverless platforms provide five main advantages in comparison to 

the traditionally used local servers and softwares: 

 

a) Petabyte-scale image archives of mostly open, free and public satellite, geospatial 

and auxiliary non-geospatial datasets. 

b) High-performance computation, processing and analysis through massive 

parallelization―across thousands of computers in contrast to a single one. 

c) Multi-temporal approaches following the implementation of all available images 

within a selected time period (e.g., season, year) instead of the traditional single 

image/scene approaches; multi-temporal composites theoretically contain fewer 

interferences (e.g., clouds, sunglint, waves) than single scenes. 
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Fig. 2.7. Spectral wavelengths of the main multispectral satellites which have been 

commonly used in seagrass mapping.   
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a) Wide set of available artificial intelligence frameworks within the cloud 

environment. 

b) Online visualization capability which allows an initially fast and easy qualitative 

assessment of cloud-based products. 

 

Until the first semester of 2019, four platforms have been developed and are currently 

offering their cloud environment for storing, processing, analyzing, classifying, and 

visualizing Big Satellite Data: Google Earth Engine (Gorelick et al., 2017), Amazon Web 

Services (Amazon AWS, 2019), Microsoft Azure (Microsoft Azure, 2019), and the European 

Commission’s Copernicus DIAS (Data and Information Access Services; Copernicus 

DIAS, 2019). 

 

Scientists have harnessed the serverless platform of the Google Earth Engine to estimate 

the planetary extent and trajectory of forests (Hansen et al., 2013), surface water (Pekel et 

al. 2016), and tidal flats (coastal neighbors to seagrasses; Murray et al., 2019). The above 

and similar global research efforts have given birth to important baseline mapping and 

monitoring exercises and services: the Global Forest Watch, the Global Mangrove Watch, 

and the Allen Coral Atlas; these state-of-the-art planetary-scale efforts should provide 

inspiration, motivation, and technical capacity towards similar planetary-scale 

estimations in the seagrass and the holistic seascape extent.  

 

Sub-chapter 4.6 presents how the symbiotic synergy between the cloud environment of 

the Google Earth Engine, artificial intelligence algorithms, and the open satellite data of 

Sentinel-2 allowed the first paradigm of large-scale baseline mapping at relatively high 

accuracies (Traganos et al. 2018a). The end-to-end cloud-based workflow, once cached, 

required less than 10 seconds to ingest more than 1,000 satellite images at 10-m spatial 

resolution, mosaic, pre-process for corrections and classify the multi-temporal 

composite and calculate the seagrass distribution in more than 40,000 km2. I envisage 

that such a paradigm can and will pave the way for similar near-future endeavors in 

mapping of various seagrass and seascape biophysical parameters in multiple spatio-

temporal scales, and with improved accuracies and automation. 
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Fig. 2.8. Effect of varying spatial resolution between different satellite and drone sensors 

above a seagrass bed. WVII PAN and MUL are the pan-sharpened and multispectral 

imagery of WorldView-2. (taken from the Global Seagrass Report (in press). 

 

2.2.3 Artificial Intelligence and Machine Learning 

 

The foresaid large-scale endeavors would certainly be unable to be scaled up and 

achieved had it not been for the artificial intelligence. Artificial intelligence (AI) had 

theoretically emerged in the middle 1950s, but its first practical applications, usability and 

value were highlighted only fifty years later, around the end of the 2000s and the start of 

the 2010s. AI has grown into the catch-all term to include Machine and Deep Learning, and 

Artificial General Intelligence (potential future generalized version of AI systems) 

algorithms and frameworks. Here I focus more on machine learning, as I have mainly 

explored such pathways in classifying seagrasses in the present PhD. Machine learning 

algorithms are split into Supervised and Unsupervised Learning ones which vary in the 

inclusion or exclusion of human input. The Supervised Learning Machine Learning is 

further split into classification (which output classes e.g., seagrass extent) and 

regression problems (which predict a continuous variable e.g., seagrass leaf area index). 
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In the context of seagrass, scientists can solve the common classification problem of 

seagrass extent (the output class) with the use of satellite imagery by feeding supervised 

machine learning frameworks with training data―a human-designed labelled set which 

the framework exploits to learn potentially relevant patterns in the data and estimate the 

seagrass extent. The machine learning algorithm will then learn characteristics 

indicative of both seagrass and non-seagrass presence and will interpolate its learnings 

by classifying all the pixels of the implemented satellite imagery given the human input. 

 

The most commonly employed machine learning algorithms in the remote sensing of 

seagrass have been Linear Regression, Random Forests (Breiman, 2001) and Support 

Vector Machines (Vapnik, 1995), mainly powered by their availability in specialized 

geospatial softwares and their straightforward parameterization and implementation. 

These algorithms are characterized by several pros and cons e.g., sensitivity to noise of 

the human-designed label dataset, computational speed and complexity, required 

number of input features, scalability. Also, they are characterized of varying degrees of 

bias (i.e. noise); bias can be introduced into such models and their products, for example, 

through poor spatial representation of an area which has sparse training labels for 

several reasons. To mitigate noise and their impacts in the context of seagrass 

classification, the human analyst should select and design suitable sets of training data 

by ensuring adequate representation in terms of the habitat scale (i.e. seagrass beds of 

varying density) and depth gradient (i.e. shallow to deep seagrasses).    

 

In this PhD, I have mainly exploited the machine learning frameworks of Random Forests 

and Support Vector Machines. More information about the algorithms, their herein 

parameterization, their accuracies and their results can be found in the respective 

sections of Materials and Methods, and Results of Chapter 4. Albeit a yet non-existent 

deep learning framework and application for seagrass detection and mapping, in Chapter 

5, I identify and articulate three main areas in which deep learning could bring about 

breakthrough innovations in data-driven approaches to seagrass mapping; these are 

primarily related to the foreseen improvements in automation, accuracies and 

streamlining of seagrass and more broadly seascape intelligence. 
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3 State of the Art  
 

This section is not an extended aide-memoire about the history of the remote sensing of 

seagrasses. This section is about the technological advances, the scientific approaches 

and efforts, and the resulting publications and projects of the last 20 years; and how these 

have increased our capacity around and have aided sophisticated developments in the RS 

of seagrasses. The efforts and publications by Dekker et al. (2006), Hossain et al., (2014), 

and Purkis and Roelfsema (2015) serve a very good hors d’oeuvre to the most recent 

history of seagrass RS (using both optical and acoustic methods) and this State-of-the-

art chapter. I hope that my take on this two-decade history succeeds into motivating the 

necessity and novelty of the present PhD thesis and its related publications. 

 

The state-of-the-art in seagrass RS here refers to the available sensors (mainly 

satellites), and image processing, analysis and classification techniques to develop 

understanding and retrieve meaningful information about seagrasses. Section 2.2 has 

already provided an introduction to the technology and related advances, including 

satellite sensors, artificial intelligence, and cloud computing, regarding the domain of 

seagrass remote sensing. Building on this section for the same domain, there have been 

various developments and applications concerning the various image analysis, 

processing, and correction and classification methods to apply to the aforementioned 

satellite data.  

 

 

3.1 Remote Sensing Approaches for Seagrass Mapping 

 

Remote sensing technology can sense seagrass meadows which occupy the optically 

shallow seabed where part of the surface reflectance contains a bottom signal. Optically 

shallow areas comprise one of the most challenging environments for remote sensing 

due to the numerous interferences of parameters with the sunlight before this is detected 

and measured by a spaceborne sensor. To invert bottom and water column properties, 

and then to obtain quantitative information on optically shallow beds, one has to correct 

the interferences of the atmosphere, air-water interface and water column. A number of 

researchers have developed a range of empirical, semi-analytical and analytical 

solutions to retrieve properties of interest and ultimately untangle the initially weak 
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bottom signal (Brando et al. 2009; Hedley, Roelfsema and Phinn, 2009; Klonowski, Fearns 

and Lynch, 2007; Lee et al. 1998, 1999; Lyzenga, 1978, 1981; Maritorena et al. 1994; Mobley et 

al. 2005). All these solutions have been the basis for understanding, studying, and 

assessing the coastal aquatic seabed using remote sensing from space and in situ in the 

last 40 years. A good review of the majority of the water column correction algorithms 

sits in Zoffoli et al. (2014) and a thorough intercomparison between empirical, analytical 

and hybrid approaches is described in Dekker et al. (2011). More elaboration on the 

Lyzenga (1978, 1981), Maritorena et al. (1994), and Lee et al. (1998, 1999) solutions can be 

found in the Materials and Methods sections of the present Thesis’ chapter 4. Additional 

context and information on the practical implementation of these algorithms (especially 

the Lyzenga’s approach) can be read in Green et al. (2010).  

 

Various researchers have exploited remote sensing to map seagrasses in different 

spatio-temporal scales. I have selected to refer to only the last twenty years of optical 

remote sensing of seagrasses due to the launch of the first commercial high-resolution 

(4 m) multispectral satellite in 1999, IKONOS. IKONOS was a game-changer mainly in 

scientific endeavors in the Earth Observation domain and enabled respective high-

resolution mapping approaches in the seagrass domain, as well. Mumby and Edwards 

(2002) used Lyzenga (1981) solution to map 13 shallow (<20 m) water environments 

(including the seagrasses of Thalassia tesudinum and Syringodium filiforme) with very 

high accuracies in the seagrass class (89% user accuracy) in ~60 km2 of the Caribbean 

Sea. This paper implemented the Maximum Likelihood Classification (MLC) supervised 

classification framework to classify the 13 classes. Utilizing ten IKONOS images (Fig. 3.1), 

Andréfouët et al. (2003) also utilized Lyzenga (1981) empirical solutions and a combination 

of unsupervised and MLC classifier to map various seagrass species (e.g., 

Thalassodendron sp., Thalassia sp., Halophila sp., and Halodule sp.) up to 30 m of depth in 

ten coral-dominated tropical sites. The overall accuracies of their varying multi-class 

assessments using IKONOS were 15-20% improved in comparison to Landsat-7-derived 

ones.  

 

3.2 Remote Sensing of the Mediterranean Seagrass Bioregion 

 

Focusing on the Mediterranean, Fornes et al. (2006) mapped the extent of the therein 

dominant P. oceanica seagrass with the use of IKONOS and the MLC framework up to 

depths of 15 m in Mallorca Island, Balearic Islands, Spain. They achieved a producer and 

user accuracy of 92.9% and 91%, respectively, but in a small area of 1.31 km2.  Other remote 
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sensing studies in the Mediterranean seagrass bioregion feature, chronologically from 

the oldest to the most recent one, those of: Pasqualini et al. (2005), which mapped P. 

oceanica beds up to 20 m in the Marine National Park of Zakynthos, Greece, with overall 

accuracies between 73 and 96%, implementing two SPOT 5 satellite images (2.5 and 10-m 

spatial resolution); Borfecchia et al. (2013), which charted the same seagrass species up 

to 16 m of depth, using high-resolution, multispectral Quickbird data in the coastal Lazio 

region of the middle Tyrrhenian Sea, Italy with an overall accuracy of 84%; and Matta et al. 

(2014), whose seagrass mapping was between a depth range of 0–10 m in the Gulf of 

Oristano, W Sardegna, Italy, with an overall accuracy of 84%, using RapidEye imagery at 

5-m spatial resolution.  All aforementioned mapping efforts addressed small-scale 

seagrass beds, both spatially and temporally (i.e. single-date mapping approaches).  

 

3.3 Change Detection of Seagrasses 

 

Analysis of multi-date spaceborne remote sensing data allows retrospective quantitative 

assessment of seagrass meadows (Dekker et al., 2006). Applied to the coastal 

environment, spaceborne image archives allow multi-temporal analysis and change 

detection of submerged ecosystems which could in turn permit the identification of 

possible degradation rates and boost conservation  efforts of these problematic areas 

(Purkis and Roelfsema, 2015). Researchers have previously employed spaceborne time 

series to map seasonal to decadal change detection of seagrasses (Fig. 3.2) (Dekker et al., 

2005; Knudby et al., 2010; Lyons et al., 2012;  Pu et al., 2014; Roelfsema et al., 2014). The 

time-series analysis of seagrass communities is as accurate as the classification 

algorithms in use (Palandro et al., 2003). In the Mediterranean, the spatio-temporal 

dynamics and sources of observed variations of seagrass habitats, namely the intertidal 

Zostera noltii and C. nodosa species, have been assessed before through spaceborne and 

airborne time series (Barillé et al., 2010; Garrido et al., 2013).  

 

3.4 Machine Learning-based Classification of Seagrasses  

 

All the aforesaid methodological frameworks and applications implemented simple 

classification algorithms e.g., Maximum Likelihood, Nearest Neighbours. In the last four 

years (until 2019), machine learning algorithms (e.g., Random Forests, Support Vector 

Machines, k-nearest neighbors) have overruled the simple old and traditional 

classification algorithms in the remote sensing literature (Gislason et al., 2006; 
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Mountrakis et al., 2011). However, machine learning has been sparsely implemented in the 

quantitative assessment of coastal environments (Fig. 3.3) (Zhang, 2015). 

 

 
 

Fig. 3.1. Examples of IKONOS RGB high-resolution satellite imagery over seagrass and 

coral- dominated seabed areas in the world’s tropics (from Andréfouët et al. (2003)). 
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3.5 Remote Sensing of Seagrass’ Biophysical Parameters 

 

There is an additional plethora of worth-mentioning research efforts and papers in the 

last two decades which increased the momentum and capacity in seagrass mapping (of 

various biophysical parameters) using remote sensing data. Dierssen et al. (2003) 

leveraged high-resolution airborne hyperspectral imagery from PHILLS and field 

measurements to quantitatively estimate leaf area index ((LAI: ratio of leaf area to 

substrate area) of Thalassia testudinum seagrass beds in Lee Stocking Island, Bahamas 

(Fig. 3.4). They achieved r2 between 0.88 – 0.98. Knudby and Nordlund (2011) utilized 

IKONOS satellite imagery to map seagrass distribution and biomass in a 4.1-km2 inter and 

sub-tidal multi-seagrass (seven species) habitat environment in Zanzibar, Tanzania (Fig. 

3.5). Despite the optically complex environment, they achieved a high overall accuracy of 

77.7% in habitat mapping, and r2 of 0.88 and 0.91, respectively, for subtidal and intertidal 

seagrass species. In an exemplary endeavour for sophisticated seagrass mapping, 

Hedley et al. (2016) developed a physics-based inversion method to map LAI of Thalassia 

testudinum meadows (Fig. 3.6). Sensitivity analysis and application of the method to 

hyperspectral airborne imagery of the Portable Remote Imaging Spectrometer (PRISM) 

in Florida Bay, USA demonstrated good agreement with field data. Additionally, the 

method lacked empirical calibration data, while the paper provided important per-pixel 

uncertainty estimates which are an often missing component in the confidence and 

validation of seagrass and neighbouring habitats.  
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Fig. 3.2. Example of large-scale, high-resolution multi-temporal seagrass mapping over 

142 km2 in the Eastern Banks, Moreton Bay (from Roelfsema et al. 2014). 
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Fig. 3.3. Reference and classified habitat maps including seagrass habitats from the 

fusion of hyperspectral, aerial and bathymetry data and ensemble analysis of Random 

Forests, Support Vector Machines and k-nearest neighbors ((from Zhang, 2015). 
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Fig. 3.4. Example of leaf area index (LAI: ratio of leaf area to substrate area) mapping 

using two high-resolution PHILLS imagery at Lee Stocking Island, Bahamas. Histograms 

feature the distribution of LAI frequency within the outlined box of the respective left 

panels (from Dierssen et al. 2003). 
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3.6 Mind the Gaps 

 

In addition to the novelties at the time of their publication, the aforementioned state-of-

the-art seagrass mapping approaches and papers feature several commonalities and 

gaps for today’s state of advances and requirements in remote sensing:  

 

a) The restricted seagrass mapped areas i.e lack of large-scale seagrass mapping 

efforts 

b) The lack of methodological developments and applications using new spaceborne 

remote sensing datasets (e.g., Sentinel-2, Planet) 

c) The lack of scalability and adaptability  

d) The infancy of seagrass-related artificial intelligence and machine learning-based 

mapping 

e) The lack of democratization in seagrass mapping and algorithms 

f) The relatively low availability of open seagrass data 

 

As I highlighted in the Introduction of this Thesis (section 1.1), today, the existing 

regression of and threats to seagrass habitats requires global-scale, data-driven 

measurements in a repeatable fashion for their science, management, protection and 

conservation. The exponential emergences in satellite remote sensing allow the 

development of Big Data-related methodologies and algorithms which could enable, in 

turn, scalable and adaptable mapping and monitoring of seagrasses worldwide. 

Scientifically, the present PhD thesis has been inspired by the pre-existing literature of 

remote sensing of seagrasses, but also built on their five main, aforementioned gaps.   

As such, the following state-of-the-art contributions of this Thesis to seagrass mapping 

present: 

a) Exploitation and applications of the new satellite remote sensing datasets of 

Sentinel-2, and Planet’s PlanetScope and RapidEye 

b) A highly adaptable and scalable cloud-based framework for multi-temporal  

seagrass mapping and monitoring 

c) Introduction and application of machine learning frameworks  

d) The advance in the democratization of seagrass mapping 
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Fig. 3.5. Example of seagrass biomass mapping using IKONOS satellite imagery and field 

data in Zanzibar, Tanzania (from Knudby and Nordlund, 2011). 
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Fig. 3.6. Example of leaf area index (LAI: ratio of leaf area to substrate area) mapping 

using a physics-based inversion model, PRISM hyperspectral imagery and field data in 

Florida Bay, USA (from Hedley et al. 2016). The transects of (b) represent the white lines of 

(a) while the black dots are quadrat-based in-situ data, lines are model inversion results 

for only clean leaves and 0-25% coverage by sediment. Grey areas represent the 90% 

confidence intervals based on uncertainty propagation. 
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4 Contributions 
 

I herewith provide the six main published contributions of my PhD research as sub-

chapters of Chapter 4. These sub-chapters relate to the remote sensing of seagrass 

ecosystems, exploiting different spatio-temporal scales, satellite data input, machine 

learning classifiers in local servers and serverless environments. They are namely: 4.1 - 

Mapping Mediterranean Seagrasses with Sentinel-2 Imagery (Traganos and Reinartz, 

2018a); 4.2 - Cubesat-derived Detection of Seagrasses using Planet Imagery following 

Unmixing-based Denoising: Is Small the Next Big? (Traganos et al. 2017); 4.3 - On the use 

of Sentinel-2 for Coastal Habitat Mapping and Satellite-derived Bathymetry Estimation 

using Downscaled Coastal Aerosol Band (Poursanidis et al. 2019); 4.4 -Machine Learning-

based Retrieval of Benthic Reflectance and Posidonia oceanica Seagrass Extent using a 

Semi-Analytical Inversion of Sentinel-2 Satellite Data (Traganos and Reinartz, 2018b); 4.5 

- Interannual Change Detection of Mediterranean Seagrasses using RapidEye Image 

Time Series (Traganos and Reinartz, 2018c); and 4.6 - Towards Global-Scale Seagrass 

Mapping and Monitoring using Sentinel-2 on Google Earth Engine: The case study of the 

Aegean and Ionian Seas (Traganos et al. 2018a). 
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4.1 Mapping Mediterranean Seagrasses with Sentinel-2 Imagery 

 

4.1.1 Abstract 

 

Mediterranean seagrasses have been hailed for their numerous ecosystem services, yet 

they are undergoing a decline in their coverage. The major complication with resolving 

this tendency is the sparsity of data on their overall distribution. This study addresses the 

suitability of the recently launched Sentinel-2 satellite for mapping the distribution of 

Mediterranean seagrass meadows. A comprehensive methodology is presented which 

applies atmospheric and analytical water column corrections and compares the 

performance of three different supervised classifiers. Remote sensing of the Thermaikos 

Gulf, northwestern Aegean Sea (Greece, eastern Mediterranean Sea) reveals that the 

utilization of Support Vector Machines on water column corrected reflectances yields 

best accuracies. Two Mediterranean seagrasses, Posidonia oceanica and Cymodocea 

nodosa, cover a total submerged area of 1.48 km2 between depths of 1.4–16.5 m. With its 

10-m spatial resolution and 5-day revisit frequency, Sentinel-2 imagery can mitigate the 

Mediterranean seagrass distribution data gap and allow better management and 

conservation in the future in a retrospective, time- and cost-effective fashion 

4.1.2 Materials and Methods 

 

Study site  

 

The study site is a ~3.3 km2 area located within the SE part of the Thermaikos Gulf, NW 

Aegean Sea, Greece (Fig. 4.1.1; eastern Mediterranean Sea). With a coastline that exceeds 

350 km in length and 52,300 km2 in area, Thermaikos is the largest gulf of the Aegean Sea 

and its coastal system is set within the humid mesothermal climatic zone and a 

principally tideless marine environment. The climate of the Thermaikos Gulf coastal 

system is defined as a semi-arid Mediterranean type with cold winters, mean annual air 

temperatures between 9 °C and 17.5 °C, an annual precipitation between 400 mm and 1300 

mm and mean annual wind speeds between 2.5 and 15 m/s (Poulos et al., 2000). Within the 

inner shelf of the Thermaikos Gulf, Thermaikos Bay, surface water temperatures range 

between winter water values of 9 °C and summer values of 25 °C, while surface salinities 

vary between 28 psu (winter) and 35 psu (summer). The Thermaikos Gulf is considered as 

a microtidal marine environment where the major semi-diurnal constituents M2 and S2 

seldom exceed 10 cm and 7 cm, respectively, while the major diurnal constituents M1 and 
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S1 display extremely small amplitudes of 2.7 cm and 1.7 cm, respectively. In addition, 

current  

 

 
Fig. 4.1.1. Location of survey site within (a) Thermaikos Gulf, (b) Halkidiki Peninsula, (c) 

Aegean Sea, Greece. The depicted Sentinel-2A satellite image in (a) is an atmospherically 

corrected, true color (band 2 as blue, band 3 as green, band 4 as red) composite in UTM 

(zone 34) system/WGS84 projection. The outline colors of the left and upper right frame 

indicate their exact location. The deep water polygon is a selected 115 × 115 pixel window 

used in the water column correction step as it has very little water leaving radiance 

values in all visible bands. 

 

 

meter observations exhibited speeds in the order of 5–20 cm/s near the water surface 

and a maximum of 9 cm/s near the bottom (Robles et al., 1983). In general, an anti-

clockwise, thermohaline water circulation, the prevailing northerly winter winds in 

addition to the dominant south/southwesterly summer winds, and the mixing of different 

water masses regulate the hydrodynamic regime of the Thermaikos Gulf, restricting 

water constituents concentrations to a minimum in the eastern continental shelf of the 
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gulf. In fact, this part of the shelf shows particulate matter concentrations (PMC) of < 1 

mg/l, surface to bottom (Zervakis et al., 2005). The inner continental shelf which includes 

our survey site is also shallower than 40 m and features slopes of between 2% and 5%, 

while the outer continental shelf is deeper than 80 m. Finally, the prevailing sediments in 

the inner continental shelf are sand of > 50% content, silt of < 40% content and clay content 

of < 20% (Poulos et al., 2000; Robles et al., 1983; Tsimplis et al., 1995).  

 

The area under investigation is situated in the wider vicinity of the Municipality of Nea 

Propontida, where several socioeconomic activities including agriculture, aquaculture, 

industry, tourism, fishing, and trade directly affect its coastal system. Nea Propontida has 

a population of 36,500 (National Statistics Service of Greece; census 2011) and the region 

of Central Macedonia of which it is part, exhibits the second largest quantity of fishing 

catch in the whole Greek fishing area with 11,869 t, hence 18.5% of the total Greek fishing 

catch of 64,236 t (National Statistics Service of Greece; census 2015). In total, 19.3% of the 

population of this neighboring region to our study area is employed in the primary sector 

(National Statistics Service of Greece; census 2011), while there are 91 hotels and 66 

factories operating in the entire coastal region. 

 

Data and methodology  

 

Satellite data  

 

The satellite imagery used in this study was acquired by Sentinel2A, the first satellite of 

the twin polar-orbiting Sentinel-2 satellites. Sentinel-2A was launched on 23 June 2015 

while Sentinel-2B was launched on 07 March 2017. Both are part of a European fleet of 

satellites aiming to deliver core data to the European Commission's Copernicus program, 

a program whose services address six thematic areas: land, marine, atmosphere, climate 

change, emergency management and security. The Sentinel-2 satellites carry a single 

optical instrument payload, the MultiSpectral Imager (MSI). In a sun-synchronous orbit 

and at a mean altitude of 786 km above the Earth's surface, the MSI samples 13 spectral 

bands in the visible-near infrared (VNIR) and short wave infrared (SWIR) spectral range 

at 3 different spatial resolutions (10, 20, 60 m) and allows for a 290-km swath width with a 

high revisit frequency of 10 days (the combined constellation revisit frequency will be 5 

days). Sun-synchronous orbits ensure that satellites overfly any given point on Earth at 

the same local solar time (ESA, 2015).  

 

In this study, we processed and analyzed a Sentinel-2A image sensed on 10 June 2016 at 

09.09 am UTC (Table 4.1.1). The imagery was downloaded from the Sentinels Scientific 

Data Hub (https://scihub.copernicus.eu/) which provides unlimited open access to the 
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Sentinel-2 Level-1C (L1C) user products. L1C products, also called granules or tiles, 

consist of 100 km2 orthorectified and spatially registered images in Universal Transverse 

Mercator (UTM)/World Geodetic System 1984 (WGS84) projection. We chose the tile 

identified as S2A_OPER_MSI_L1C_TL_MTI__20160614- T160614_A005052_T34TFK_N02.02 

(Table 4.1.1) for further analysis as it contains our study site (Fig. 4.1.1).  

 

Field data  

 

Generally, satellite remote sensing requires the presence of accurate field data in order 

to improve any imagery interpretation and feature extraction, aid supervised 

classifications and determine a subsequent accuracy assessment. Coastal areas are 

challenging environments for remote sensing assessment due to various parameters 

which can create spectral confusion i.e.  

 

Table 4.1.1 

Sentinel-2A image characteristics 

Tile ID S2A_OPER_MSI_L1C_TL_MTI__20160614T16
0614_A005052_T34TFK_N02.02 

Acquisition date 10 June 2016 

 Acquisition time 09:09 am UTC 

Solar zenith angle 22.4° 

Solar azimuth angle 134.5° 

Sensor incidence angle 5° 

 Sensor view azimuth angle 51° 

 Sensor view azimuth angle 786 km 

 

 

depth gradient, numerous habitats, water quality. To diminish this effect, we adapted a 

stratified random sampling that ensures adequate representation of all physical habitats 

in their different depth range (Congalton, 1991).  

 

Field data were collected in our study site during a boat-based survey between 10 and 13 

July 2016. The temporal difference of one month between the acquisition of the satellite 

image and the collection of the field data is acceptable because Mediterranean seagrass 
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meadows undergo changes in larger time scales and in addition tidal changes between 

the two dates are negligible. Snorkeling and free diving (when needed in larger depths, 

where the bottom was not visible from the water surface) were chosen as the optimum 

sampling method. In total, 228 points (Fig. 4.1.1) were visited, photographed from directly 

above the seabed (Fig. 4.1.2) and related to specific habitat and coordinates, while 53 

points were associated with specific depths measured by the Garmin Fishfinder 160C 

mounted on the bottom of the keel of the boat. A negative number was pre-entered to 

offset the distance between the bottom of the keel and the water surface. The camera 

used for the photographs was a waterproof GoPro HERO4 Session that captures up to 8-

megapixel images. Coordinates were taken from the Android application GPS Waypoint 

Finder 1.0 operating on a Moto G (3rd Generation) Smartphone. The coordinates were 

noted by a surveyor as near as possible to the water surface, above the seabed point 

observed by the snorkeler, to guarantee greater accuracy, which was determined 4.2 m at 

all measurements. All the measurements were exported as GPX files and imported into 

the ArcGIS 10.3.1 platform using the GPX To Features (Conversion) tool. Four different 

habitats were identified in the survey site: Posidonia oceanica seagrass, Cymodocea 

nodosa seagrass, photophilous algae on rocks and sand (Fig. 4.1.2).  

 

 

 
Fig. 4.1.2. Habitats exhibited in the survey site: (from left to right) Dense Posidonia 

oceanica meadows; Shallow Cymodocea nodosa habitat; Photophilous algae on rocks; 

Sand. 

 

 

Auxiliary data  

 

Bathymetry data were also used as an auxiliary dataset to aid bathymetry estimation and 

subsequent validation. These data are offered by the Hellenic Navy Hydrographic Service 

as a Digital Terrain Model (DTM) of the whole extent of the Greek Seas at a resolution. We 

used ArcGIS Spatial Analyst to create a contour dataset from the aforementioned DTM 
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Methodology  

 

A schematic representation of the adapted methodology herein is shown in Fig. 4.1.3. To 

derive quantitative information about submerged habitats from remotely sensed images, 

one has to address the interference of the atmosphere and water column on the satellite 

image. A passive remote sensing instrument like Sentinel-2A MSI measures sunlight that 

has passed previously through the atmosphere, the water column, has reached the 

seabed and then has been reflected back to cross again the water column and 

atmosphere and be received by the satellite sensor. Therefore, the first steps of our 

methodology deal with the corrections of the interferences that determine the fate of light 

in the atmosphere and water before deriving any quantitative information on the aquatic 

habitats with focus on seagrasses. We used only the 10-m Sentinel-2A bands 2, 3, and 4 

for the analysis (with the exception of the 10-m NIR band 8 to mask out land), as they are 

all within the visible spectrum (approximately 390 to 700 nm) and most importantly 

penetrate the water column deeper and provide sensible quantitative data on bottom 

reflectances. 

 

Atmospheric & BRDF correction – radiometric calibration  

 

Sentinel-2 L1C data are top-of-the-atmosphere (TOA) products. ATCOR 9.1.0 software 

(Richter, 2007) was implemented to correct the influence of the atmosphere, viewing and 

solar illumination geometry on the L1C data. The influence of the latter geometries on the 

imagery is described by the bidirectional reflectance distribution function (BRDF). ATCOR 

incorporates a sensor-specific atmospheric database of look-up tables (LUTs), which 

contain the results of radiative transfer calculations. ACTOR2 for flat terrain was used to 

process Sentinel-2A data, because it accounts for the angular variation of view and solar 

geometry over the image. During the atmospheric correction step, visibility was set to 

45.6 km by ATCOR to avoid negative reflectance pixels. Aerosol type was chosen to the 

rural setting because experiments with a maritime type of aerosol resulted to negative 

reflectance pixels. An ozone column of 368 DU (Dobson units) was further applied. 

Finally, the range of adjacency effect was set to 1 km to avoid any interference in the 

coastline boundary between the brighter reflectances of land and darker reflectances of 

adjacent waters. The resulting bottom-of-the-atmosphere (BOA) water surface 

reflectances (hereafter denoted as Rw) are expressed in Integers, thus we divided them  
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Fig. 4.1.3. Schematic presentation of the methodology. L1C1 products are the initial 

orthorectified and spatially registered Sentinel-2A granules in UTM/WGS1984 projection, 

BDRF2 is the bidirectional reflectance distribution function that defines how light is 

reflected at an opaque surface, Rw
3 represents water surface reflectances and Rb

4 are 

bottom reflectances. 

 

 

by a special quantification value included in the Sentinel-2A metadata (10000) to derive 

Rw values in the range 0–1. 

 

Image mask  

 

Image mask is a crucial step in coastal remote sensing due to the enhancement of coastal 

water features by masking all terrestrial features. The atmospherically-corrected near-

infrared (NIR) band 8 and the bathymetric contour of 20 m (Fig. 4.1.1a) were used to clip the 

initial granule to the coastal study area, masking out land and deeper waters than 20 m 

where it is difficult to derive reliable quantitative estimations of the seafloor. NIR Band 8 
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is implemented due to the great water absorption in this wavelength. We applied an Iso 

Cluster Unsupervised Classification to classify the Sentinel-2A granule into two classes 

containing land and water. Subsequently, we extracted our masked study area using the 

water class. 

 

Water column correction  

 

Water column imposes an additional interference on the remotely sensed measurement 

of submerged habitats and thus its effect requires correction. We utilized the analytical 

model of Maritorena et al. (1994) for optically shallow waters (where part of the surface 

reflectance is composed of a bottom signal) which is based on:  

 

𝑅w = 𝑅∞ + (𝑅b − 𝑅∞)𝑒[−2𝐾d𝑍]                (1) 

 

Assuming a vertical and horizontal homogeneity in addition to high water transparency, 

which is the case in the Thermaikos survey site, the model equals the atmospherically 

corrected surface reflectance, Rw, to the reflectance of an infinitely deep water column, 

R∞, plus substrate contrast (bottom reflectance, Rb − R∞) after correction of the water 

depth effect (the term e[−2K
d

 Z]), where Kd is the light attenuation coefficient in the water 

and Z is the water depth. Maritorena et al.'s algorithm, therefore, can be inverted to derive 

bottom reflectances, Rb from measurements of Rw, R∞, Z in each pixel of the satellite 

image and Kd. The following chapters explain in detail the approaches that we followed to 

estimate bathymetry, the infinitely deep water column reflectance, and the attenuation 

coefficient.  

 

Bathymetry estimation and validation 

 

Knowledge of bathymetry of a coastal area can be used to eliminate reflectance changes 

attributed to variable depth and water column attenuation. An additional problem that 

needs to be tackled by coastal remote sensing researchers is the reflectance differences 

between substrates. Seagrasses like P. oceanica tend to form dense meadows that 

appear very dark on satellite images, exhibiting smaller reflectance than deep water. In 

contrast, a sandy substrate appears very bright because of its higher light reflectance. As 

a result, dense P. oceanica meadows will appear deeper than sand at the same true 

depth. To overcome these difficulties and to measure bathymetry, researchers have 

proposed the implementation of band ratios based on the assumption that the ratio of the 

reflectances in these bands will remain constant regardless of the substrate in a single 

scene (Dierssen et al., 2003; Lyzenga, 1978; Stumpf et al., 2003). As such, we developed a 
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site-specific algorithm, modifying the band ratio of Stumpf et al. (2003), to map 

bathymetry using Sentinel-2A band 2 and band 3 (at 490 and 560 nm respectively). These 

two bands can penetrate deeper into the water column than band 4 at 665 nm, and were 

identified as constant for all bottom types (Fig. 4.1.4). The reflectance ratio was  

 
Fig. 4.1.4. Regression between log-transformed water-surface Sentinel-2A blue (band 2) 

versus Sentinel-2A green (band 3) reflectances over various habitats. An offset is applied 

to both logtransformed reflectances to facilitate presentation. 

 

 

furthermore filtered with a median 5 × 5 cell to reduce the resulting noise from the ratio 

calculation. Median filtering ranks neighboring pixels (in this case a 5 × 5 neighborhood) 

according to their brightness (intensity) and the median value becomes the new value 

from the central pixel. Median filtering is preferred over mean filtering because it is less 

sensitive to extreme values (outliers) and therefore it removes them more efficiently. The 

log-transformed and passed with a median filter reflectance ratio of blue and green 

bands was plotted against in situ measured bathymetry (Z) to develop a second-order 

polynomial  

 

𝑍 = 178.22𝑥2  −  428.78𝑥 +  259.17                                          (2) 

 

                                                       𝑥 =
ln [𝑅𝑤(490)]

ln [𝑅𝑤(560)]
                                                                                                                             (3) 

 

which explained > 96% of the variation (p < 0.001) in measured bathymetry in 15 points (Fig. 

4.1.5) that covered the entire depth range and presence of habitats (seagrasses Posidonia 

y = 1,1696x - 0,0333 

R² = 0,94 

n = 53 

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

ln
[R

w
(g

re
e
n

)]
 

ln[Rw(blue)] 
 



   

39 

 

oceanica and Cymodocea nodosa, sand and photophilous algae on rocks). It is worth 

mentioning that the deepest point on Fig. 4.1.5 (0.9012, 20.0) was obtained by taking the 

median value (0.9012) of 41 of the 107 pixels of the scene that fell onto the 20-m contour 

(Fig. 4.1.1; the remaining 66 pixels were used in the validation of the depth measurements). 

The initial in situ depth measurements spanned a depth range between 0 and 12 m and 

thus the 20- m image pixel value ensured that the calibration of the reflectance ratio with 

the surveyed depth measurement will result in  

 
Fig. 4.1.5. Polynomial regression between log-transformed and passed with a 5 × 5 

median filter water surface blue to green reflectance ratio and in situ depth 

measurements from the Thermaikos survey site. The displayed polynomial equation was 

used to measure bathymetry in the study site. 

 

 

sensible values over the whole observed depth range. Subsequently, an Eq. (2) was used 

to create a bathymetry map for every pixel of the atmospherically corrected scene.  

 

Infinitely deep water reflectance estimation 

 

Water column correction following Maritorena et al. (1994) requires estimation of the 

parameter R∞, namely the reflectance measured over an infinitely deep water column. 

Here, we followed an image-based calculation of R∞ from water surface reflectances, Rw 

by extracting the values of an 115 × 115 pixel polygon (indicated with a gold frame in Fig. 

4.1.1) in waters deeper than 50 m where the reflectances are not affected by bottom signal 

(optically deep area). To avoid outliers, we calculated the median value of all 13,287 Rw 

pixel values for all 3 bands for subsequent use in the water column correction Eq. (1).  
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Diffuse attenuation coefficient estimation 

 

The attenuation coefficient Kd represents the diffuse attenuation coefficient for both 

downwelling and upwelling light in the water column. Water attenuation coefficient is 

spectral dependent and increases with longer wavelengths, immersing in sensor noise in 

deep waters (with decreasing surface reflectance Rw). This fact further commends the 

use of Sentinel-2A bands 2, 3 and 4 which achieve reasonable water penetration. Based 

on Bierwirth et al. (1993), we calculated water attenuation coefficients for Sentinel-2A 

bands 2, 3 and 4 implementing the spatially co-registered modeled bathymetry and 

satellite image in a region of the survey site where the substrate and water quality remain 

constant, as the water correction model of Maritorena et al. (1994) dictates, yet depth is 

variable. These conditions were identified in an area on the SE of our survey site, where 

sand extents from 1 to 5 m of depth. 

 

Supervised classifications  

 

An important step in the majority of remote sensing studies of terrestrial or aquatic 

environments is to identify and categorize distinctive cover types of the studied 

environment on a satellite image into sensible classes, namely the classification 

procedure. Conventionally, image classifications are split into supervised and 

unsupervised, where the supervision factor is provided by field data associated with all 

the different classes apparent within the extent of the satellite image and taken during 

fieldwork synchronized to the overpass of the satellite sensor. In coastal remote sensing 

research, supervised classification is performed ideally on bottom reflectances which 

have already been corrected for the double pass of the signal through two mediums 

(atmosphere and water) before it reaches the sensor. In the coastal aquatic environment, 

characteristic substrate types are submerged aquatic vegetation, corals, algae and other 

cover classes. Generally, the outcome of an image classification is to derive some sort of 

quantitative measurement of a certain ecological value, which could be applied in other 

areas besides our study area.  

 

In this study, we applied three different supervised classifiers, Maximum Likelihood, 

Support Vector Machines and Random Forests in three methodological considerations: a) 

before applying any atmospheric correction (L1C reflectances; Fig. 4.1.6A), b) after 

applying atmospheric correction (Rw, water surface reflectances; Fig. 4.1.6B), and c) after 

applying atmospheric and water column corrections (Rb, bottom reflectances; Fig. 

4.1.6C). As a result, 9 different habitat maps were created. The aim was to quantitatively 

indicate the need for the correction steps prior to the application of any classification on 

the remotely sensed coastal image. Furthermore, we compared the three supervised 
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classifiers, which are based on different principles and assumptions in order to be more 

accurate in our methodology than using a single classifier. The outcome of the image 

classifications here is a four-class habitat map (Posidonia oceanica and Cymodocea 

nodosa seagrasses, sand and photophilous algae on rocks) that delineates the 

distribution of each of these four classes. In the following sections, we provide a short 

introduction on all classifiers for optimum clarification.  

 

 

 
Fig. 4.1.6. Sentinel-2A RGB (10-m bands 2, 3, 4) composites of the various methodological 

steps and corresponding best performing classifiers in the Thermaikos Gulf study site. A. 

Masked L1C-composite (no correction applied), B. Rw, water surface reflectance 

composite (with atmospherically and geometric correction applied), C. Rb, bottom 

reflectance composite (with water column correction applied), i. Support Vector Machine 

(SVM) classification of A-composite, ii. Random Forest classification of B-composite, iii. 

SVM classification of C-composite. All 6 images are draped over atmospherically 

corrected Sentinel-2A RGB imagery in UTM (zone 34) system/WGS84 projection. 
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Maximum likelihood 

 

The maximum likelihood classifier (MLC) was chosen for this study due to its simple 

adaptation and wide use in remote sensing studies of shallow aquatic habitats. MLC 

assumes a normal distribution of pixels in each class sample and follows the Bayesian 

decision rule. This decision rule takes into account both covariance/variance of data and 

the probability of each pixel of a scene belonging to each habitat class and outputs the 

distance between a candidate pixel and the mean of all habitat classes. This probability is 

considered to be equal for the selected classes a priori, an assumption that we also 

followed in our application of MLC for our 4 different habitat classes. Of the initial 228 

visited sites in situ (Fig. 4.1.1), 85 sites were used to train MLC and the other two 

supervised classifiers altogether, while the other 143 sites were used to assess the 

accuracy of the supervised classification results. The 0.6 ratio of training to accuracy data 

follows the recommendations of Congalton (1991) and Green et al. (2000). 

 

Support vector machines 

 

The Support Vector Machines (SVM) represent a group of theoretically superior, 

supervised classification algorithms based on statistical learning theory (Vapnik, 1995). 

SVM are essentially machine learning algorithms, whose objective is to differentiate two 

classes by fitting an optimal separating hyperplane (decision boundary) to the training 

samples of the related classes. The samples closest to this hyperplane consist of the so-

called support vectors. SVM have been applied efficiently to deal with both linearly and, 

more importantly, with nonlinearly separable classes applying a kernel function into a 

higher dimensional space, whose new data distribution allows better fitting of a linear 

hyperplane (Mountrakis et al., 2011). In this study, we applied SVM on our training data 

using the universal Gaussian radial basis function kernel (RBF) 

 

𝐾(𝑥, 𝑥𝑖) = exp (−𝑔|𝑥 − 𝑥𝑖|2                                                                                  (4) 

 

where parameter g defines the width of the RBF. Moreover, a regularization parameter, C, 

which regulates the degree of acceptable misclassification was set. A two-dimensional 

grid search in a predefined range was performed to find an adequate pair values for g and 

C for our image classification. The SVM classification experiments were run using the 

open-source LIBSVM library (Chang and Lin, 2013) in EnMAP-Box software (van der 

Linden et al., 2015). 
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Random forests  

 

Random Forests (RF) is an ensemble supervised classification algorithm that combines 

multiple selflearning decision trees to solve classification problems. RF relies on the 

assumption that different independent tree predictors provide incorrect predictions in 

different areas. By combining the predictions in a “forest”, RF can improve the efficiency of 

the model (Breiman, 2001). The RF has been vastly applied into the classification of 

remote sensing data due to their insensitivity to both noisy data and overtraining as well 

as their good performance with small datasets (Gislason et al., 2006). The user of RF 

needs to define two parameters; the number of decision trees and the number of 

randomly selected features (nr) from all features (nα). The latter were related in our 

application of RF with the function 

                                                         𝑛𝑟 = √𝑛𝑎                                                                                      (5) 

 

while 100 decision trees were found to provide adequate results in all 3 experiments 

(described in the second paragraph of section 2.3.4.). Moreover, the Gini Index was 

adopted for the measurement of the best split selection (Breiman, 2001). RF 

parameterization and run were also performed using the EnMAP-Box software. 

 

Accuracy assessment 

 

In remote sensing, the accuracy assessment step is crucial, because it tests the accuracy 

of image classification (i.e. the resulting habitat maps) and builds the link between image 

and reality. We created error matrices for the image classifications. As discussed in 

section 2.3.4.1., 143 out of the total 228 training sites were processed for the accuracy 

assessment. The error matrix is the foundation of the accuracy assessment. It contains a 

square array of rows and columns, where each row and column is one habitat class in the 

classification. Each cell in the error matrix represents the number of classified training 

samples, while the rows represent classified training data and the columns indicate 

reference data for the assessment of the classified data. In whole, overall, producer and 

user accuracy are the outputs of the error matrix (Congalton, 1991). The overall accuracy 

expresses the ratio of the number of correctly classified validation samples (diagonal 

values in the error matrix) to the entire number of validation samples regardless the 

class. Producer accuracy corresponds to the ratio of the number of validation samples in 

a given class that are correctly classified to the actual number of validation samples in 

this class. On the other hand, user accuracy comprises the number of the correctly 

identified validation samples in a given class, divided by the total number of validation 

samples claiming to be in this class. While producer accuracy is a great statistical metric 
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for the remote sensing scientist creating the habitat map, user accuracy is more 

significant in a management context of a given region, because it reports a quantitative 

probability for the actual presence of a studied habitat in this region i.e. Posidonia 

oceanica meadows. 

 

4.1.3 Results  

 

Pre-classification steps  

 

Differences between the various methodological approaches that we followed in this 

study are displayed in succession in Fig. 4.1.6. The masked, non-atmospherically 

corrected (L1C), the atmospherically-corrected (Rw) and the water-column corrected (Rb) 

reflectances in the Thermaikos Gulf survey site are depicted as A, B, C in Fig. 4.1.6. It is 

apparent that the L1C and Rb composites differ a lot in sharpness following an initial visual 

inspection. Seabed habitats are largely enhanced in Fig. 4.1.6C as a result of the 

atmospheric, BRDF and water column correction all of which increase the spectral 

variability.  

Water column correction was performed using Eq. (1) which was inverted and solved for 

Rb for the blue, green and red bands of Sentinel-2A. The equation takes Rw, Z 

(bathymetry), R∞ (reflectance of an infinitely deep water column), in each pixel of the 

scene and Kd (diffuse attenuation coefficient). Using a site-specific polynomial algorithm 

(2) on the previously atmospherically corrected Rw, we created a bathymetry map of the 

study site (Fig. 4.1.7). The mean depth of the whole site is 8.3 m with a mean slope of 3.2°. 

The validation of the modeled water depth was performed using 39 in situ depth points (of 

the initial 53 points), plus the median value of 66 of the 107 pixels that fell onto the 20-m 

contour (Fig. 4.1.1), for a sum of 40 depth points (Fig. 4.1.8). It is worth noting here that 25 of 

these 40 depth points were measured over P. oceanica beds. These depth points allowed 

the estimation of an rsquared value of 0.92 with an RMSE (root-mean-square-error) of 1.3 

m, where an even distribution of calibrated data pointed is exhibited (Fig. 4.1.8). In 

addition, residuals between modeled depth by the site-specific algorithm and surveyed 

depth were calculated but did not show any particular pattern of over/underestimation 

(Fig. 4.1.9). Furthermore, the optically deep water column reflectances were estimated 

using the median values of 13,287 Rw pixels of the ~115 × 115 gold-framed polygon in Fig. 

4.1.1. These values were determined as 0.0172, 0.0122 and 0.0092 for Rw490,Rw560 and 

Rw665, respectively. The diffuse attenuation coefficient for the three Sentinel2A bands 

was calculated plotting the modeled depths versus the logarithms of surface 

reflectances (Fig. 4.1.10). The elongated data clouds for all 3 bands indicate that the 
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identified submerged sandy region of our survey site is adequate for the calculation of 

attenuation coefficients. The latter were estimated using the slope of the three regression 

lines of Fig. 4.1.10 which represent the parameter −2Kd(λ) (λ denominates each of the 

three used bands). Fig. 4.1.11 displays the spectral dependence and increasing pattern of 

attenuation coefficient Kd with Rw490, Rw560 and Rw665. Values of attenuation coefficient 

are in meters because they are depth-specific, as the reflectances are also unitless. 

 

 

 
Fig. 4.1.7. Bathymetry map of the survey site draped over an atmospherically corrected 

S2A RGB composite. Projection is UTM (zone 34) system/WGS84. 
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Fig. 4.1.8. Plot of modeled depth versus in situ measured depth for the validation of the 

bathymetry map of the survey site. Depth model was derived from the relationship of Fig. 

4.1.5. 

 

 
Fig. 4.1.9. Plot of the depth residuals from the regression of Fig. 4.1.7, between modeled 

depth and in situ measured depth. Note that RMSE is 1.3 m. 
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Fig. 4.1.10. Modeled bathymetry versus log-transformed water surface reflectances 

Rw490, Rw560 and Rw665. The surface reflectance pixels were extracted from a sub-area 

on the satellite image that exhibited a constant sandy substrate but a depth variance from 

1 to 5 m. Attenuation coefficients were estimated using the slope of each regression line 

which represents the quantity −2Ki (Bierwirth et al., 1993). 

 

 
Fig. 4.1.11. Spectral dependence of diffuse attenuation coefficient for water surface 

reflectances Rw490, Rw560 and Rw665. Diffuse attenuation coefficients estimations were 

derived from the regressions of Fig. 4.1.9. 
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Supervised classifications  

 

Three different supervised classifiers, Maximum Likelihood, Support Vector Machine and 

Random Forests, were applied to three different rasters for a total of 9 different, four-

class habitat maps of the SE Thermaikos Gulf study site. The first classified raster was the 

S2A L1C composite (Fig. 4.1.6A), the second was the Rw composite (Fig. 4.1.6B) and the third 

was the Rb composite (Fig. 4.1.6C), the result of the water column correction. Therefore, 

quantitative comparisons were performed both in terms of classifier's performance and 

of the application of image corrections (i.e. atmospheric and/or water column). The 

accuracy assessment of the 9 habitat maps was conducted based on 143 in situ points and 

is expressed with the error matrix. Table 4.1.2 shows the error matrices for the best 3 

classifiers for the three imagery composites, while the habitat maps resulting from the 

best classifier's performance for each classified imagery can be seen in the right column 

images of Fig. 4.1.6 (i, ii, iii). SVM classifier performed better than MLC and RF in 

classifying the non-atmospherically corrected data (Fig. 4.1.6A - i), yielding an overall 

accuracy of 86%. As seen from the error matrix, the two seagrass species under 

consideration here, P. oceanica and C. nodosa exhibited a mean producer accuracy and 

user accuracy of 75.8% and 85.6%, respectively. Errors in producer and user accuracies of 

both seagrass classes were solely attributed to confusion with the class of sand (Table 

4.1.2). RF produced the best results classifier-wise in the classification of the 

atmospherically corrected reflectances (Table 4.1.2). Using 100 trees, RF increased the 

overall accuracy to 94.4%. Following atmospheric correction of the satellite imagery, 

mean producer accuracy of seagrass species increased to 87.5%, while user accuracy of 

their classes grew to 98.2% (Fig. 4.1.6B – ii). Seagrass habitats were again confused for 

sandy habitat, however atmospheric correction was more beneficial for the mapping of C. 

nodosa given the growth of 21.5% in its producer accuracy (Table 4.1.2; Fig. 4.1.6B - ii). After 

applying the water column correction, SVM classifier yielded an identical overall 

accuracy to the RF classification of the atmospherically-corrected image (94.4%) (Fig. 

4.1.6C – iii). While the SVM classification of bottom reflectances performed better than the 

RF classifier on water surface reflectances as regards to producer accuracies of 

classified seagrass meadows (mean producer accuracy of 92.8% to 87.5%), it surprisingly 

exhibited smaller values as regards to mean user accuracies (87.4% to 98.2%). 

Nevertheless, on visually examining Fig. 4.1.6 and comparing classifications i and ii with 

iii, one can observe that in both i and ii classifications (with and without atmospheric 

correction), the deeper limit of P. oceanica lacks clear delineation in contrast with iii (with 

applied water column correction) where P. oceanica displays clearer boundaries in its 

seaward extent. On examining the classified habitat maps, both quantitatively  
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Table 4.1.2 

Best error matrixes and statistical tests for accuracy assessment using different 

combination of datasets and classifiers. 

Classes Rocky 
algae 

Sand Cymodocea 
nodosa 

Posidonia 
oceanica 

Total User 
accuracy 
(%) 

Rocky algae 18 1 0 0 19 94.7 
Sand 3 45 6 3 57 79 
Cymodocea 
nodosa 

0 2 8 0 10 80 

Posidonia 
oceanica 

0 5 0 52 57 91.2 

Total 21 53 14 55 143  
Producer 
accuracy 

85.7 84.9 57.1 94.6   

Kappa 
coefficient 

0.94 0.78 0.78 0.86   

Overall accuracy: 86%, Overall kappa coefficient: 0.79 
Notes: Non-atmosperically corrected image (L1C) - Support Vector Machine classifier 

Classes Rocky 
algae 

Sand Cymodocea 
nodosa 

Posidonia 
oceanica 

Total User 
accuracy 
(%) 

Rocky algae 20 0 0 0 20 100 

Sand 1 51 3 2 57 89.5 
Cymodocea 
nodosa 

0 0 11 0 11 100 

Posidonia 
oceanica 

0 2 0 53 55 96.4 

Total 21 53 14 55 143  
Producer 
accuracy 
(%) 

95.2 96.2 78.6 96.4   

Kappa 
coefficient 

1.0 0.83 1.0 0.94   

Overall accuracy: 94.4%, Overall kappa coefficient: 0.92 
Notes: Atmosperically-corrrected water surface image (Rw) - Random Forest classifier 

(100 trees) 

Classes Rocky 
algae 

Sand Cymodocea 
nodosa 

Posidonia 
oceanica 

Total User 
accuracy 
(%) 

Rocky algae 20 0 0 0 20 100 
Sand 0 48 2 0 50 96 
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Cymodocea 
nodosa 

0 3 12 0 15 80 

Posidonia 
oceanica 

0 2 0 55 58 94.8 

Total 21 53 14 55 143  
Producer 
accuracy 
(%) 

95.2 90.6 85.7 100   

Kappa 
coefficient 

1.0 0.94 0.78 0.92   

Overall accuracy: 94.4%, Overall kappa coefficient: 0.92 
Notes: Water-column corrected bottom image (Rb) - Support Vector Machine classifier 

 

and qualitatively, we considered the SVM-derived habitat map of the bottom reflectances 

(Fig. 4.1.6C – iii) to be the one closest to reality from the total 9 habitat maps of the 

Thermaikos Gulf survey site.  

 

Satellite-derived mapping of the SE Thermaikos Gulf reveals that C. nodosa covers an 

area of 0.17 km2 at a depth range between 1.8 and 9.3 m with a mean depth presence of 3.8 

m. Its beds lack a clear homogenous shape and usually precede P. oceanica meadows in 

terms of depth. On the other hand, P. oceanica meadows cover ~8 times larger area than 

C. nodosa (1.31 km2) and span a 15-m bathymetry range (1.4–16.5 m) with a mean depth of 

8.3 m. The species forms 3 clearly delineated, dense meadows with the largest in the 

southeasternmost part of the Thermaikos Gulf, extending to a length and width of 1.96 and 

0.53 km, respectively (Fig. 4.1.6 - iii). Generally, the two seagrass species were distributed 

in the 45% of the total surveyed area of 3.3 km2. 

 

4.1.4 Discussion 

 

Sentinel-2 application to Mediterranean seagrass meadows  

 

The main aim of this study was to test the efficiency of the multispectral Sentinel-2A 

mission in quantitatively assessing seagrass meadows and, more broadly, coastal 

habitats. Here, two of the most dominant seagrass species in the Mediterranean Sea, P. 

oceanica and C. nodosa, were detected and mapped with an accuracy of > 90% up to depths 

of 16.5 m in highly transparent waters, following atmospheric and water column 

correction on Sentinel-2A imagery. These corrections are mandatory as > 80% of the total 

signal received by a satellite sensor over shallow aquatic habitats are attributed to 
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atmospheric effects (Mishra et al., 2005). Additionally, the exhibited overall accuracy of 

submerged habitat maps on the corrected Sentinel-2A image was 94%.  

 

The Sentinel-2 mission was conceived to support various thematic areas including water 

monitoring with open data access policy. These data will provide continuity to the archive 

data of Landsat and SPOT heritage missions. With its twin-satellite capability in full 

function, Sentinel-2 will allow high spatial and temporal resolution coverage over all 

coastal waters up to 20 km away from the shore, all islands > 100 km2, all EU islands, the 

whole Mediterranean Sea and all inland waters between latitudes 56° S and 83° N (ESA, 

2015). In regard to seagrass habitats in the Mediterranean Sea, Sentinel-2 mission 

enables fine-scale mapping and monitoring of seasonal, annual, inter-annual and 

decadal changes of these compelling ecosystems from a small coast to the whole extent 

of the Mediterranean Sea. Moreover, its 12-bit radiometric resolution allows for a 

potential number of 4096 brightness levels which is beneficial for the fine differentiation 

between the seaward limit of the dominant P. oceanica and an optically deep column. 

Generally, knowledge of the retrospective distribution of Mediterranean seagrass is 

crucial towards understanding the thresholds that govern seagrass distribution and 

drive these changes. Ultimately, this will allow more efficient restoration, conservation 

and management of seagrasses in the vastly biodiverse Mediterranean waters.  

 

Supervised classifications  

 

Three different supervised classifiers were compared here in terms of their classification 

performance of Mediterranean underwater habitats and specifically seagrasses. In 

addition, classifier's performance was assessed through non-atmospherically 

corrected, atmospherically corrected and water-column corrected images. The Support 

Vector Machine classifier exhibited better accuracies than Random Forests and 

Maximum Likelihood classifiers with the exception of the atmospherically-corrected 

image, where RF was superior. MLC displayed the lowest accuracies in all 9 

classifications, which is attributed to its assumption of normal distribution of classes, a 

rare occurrence, in reality, for sample classes. The machine-learning RF and SVM 

methods exhibited same overall accuracies on classifying the atmospherically corrected 

image and the water-column corrected image, respectively. However, we observe that 

the RF classifier overestimates P. oceanica seaward limit due to spectral confusion with 

optically deeper waters prior to the application of water column correction. In 8 out of 9 

classification results, C. nodosa beds displayed lower accuracies than P. oceanica beds. 

This is possibly attributed to the lower number of field points of the former (23) than the 

latter (88). Additionally, C. nodosa species were studied in sparse beds mixed with sand. 

This is further exhibited in the error matrices where C. nodosa class was mainly confused 
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with sand class (Table 4.1.2). Therefore, the 10-m pixel basis (spatial resolution of 

Sentinel-2A bands 2, 3 and 4), on which all classifications were performed, is expected to 

contain both classes, resulting in the socalled ‘mixed’ pixels. Object-based 

classifications, linear unmixing models or higher resolution imagery can potentially 

provide better classifications of C. nodosa beds. In contrast, the 10-m pixel basis is 

adequate for highly accurate mapping of the distribution of dense canopy P. oceanica 

meadows. Generally, all three classifiers yielded satisfying overall accuracies of > 83% in 

all 9 classifications. 

 

Error matrices of Table 4.1.2 demonstrate the spectral discrimination between P. 

oceanica and C. nodosa beds in the optically clear waters of the Thermaikos Gulf. This is 

due to their large reflectance difference. P. oceanica exhibits often much lower 

reflectance than an optically deep column and naturally lower than the sparse C. nodosa 

beds. Following accurate pre-processing, processing and analysis of its data, we expect 

Sentinel-2 to map seagrass distribution in more challenging and multispecies 

submerged environments than the one unveiled in the Thermaikos Gulf. Nevertheless, we 

suggest that the spatial organization of seagrass species comprises the greatest 

challenge in classifying them. In more complex submerged areas, in order to overcome 

the intrinsic spatial heterogeneity of seagrasses, multispectral-based or ideally 

hyperspectral-based approaches should focus on distinct pigment-related spectral 

features of each seagrass and other submerged aquatic vegetation within the 

wavelengths that concern water column corrections (500–680 nm) (Fyfe and Dekker, 

2001; Dekker et al., 2006). Fyfe and Dekker (2001) observed the clear separation between 3 

southeastern Australian seagrass species (Posidonia australis, Halophila ovalis, Zostera 

capricorni) following measurements of pigment-related spectral features with a field 

spectrometer. Laboratory measurements of the spectral reflectances of three Western 

Atlantic subtropical/tropical seagrasses (Thalassia testudinum, Halodule wrightii and 

Syringodium filiforme) revealed similar curve shapes but different peak heights between 

the three seagrasses (Thorhaug et al., 2015). In satellite-derived approaches, however, 

the challenges added to the spatial heterogeneity of seagrasses in accurately classifying 

multi-species environments are numerous including the interactions at the air-water 

interface, optical components of the overlying water column, variable depth, noise ratio, 

radiometric and spectral resolution. A characteristic example of the complexities that a 

multi-species environment imposes to remote sensing approaches is shown in Chumbe 

Island, Zanzibar, Tanzania where seven different seagrass species form mixed-species 

meadows of varying densities (Knudby and Nordlund, 2011).  
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Pre-classification steps  

 

Bathymetry estimation  

 

Bathymetry measurements coincident in spatial scale to the processed satellite image 

are integral to correct water column attenuation and derive bottom reflectances. A 

simple method to estimate bathymetry over an optically shallow region is the band ratio 

(Lyzenga, 1978). Mapping depth over shallow waters that contain seagrasses can be 

problematic, as these beds have usually lower reflectances than neighboring optically 

deep waters probably due to the shading which occurs within the canopy (Dekker et al., 

2006). Stumpf et al. (2003) developed a ratio algorithm for relatively clear waters to deal 

with the reflectance issue that requires small tuning with available in situ depth data. In 

this study, after running several experiments, we decided to modify Stumpf's algorithm to 

derive a bathymetry map for our study site as a result of negative values over P. oceanica 

beds, when using the initial algorithm. Although Stumpf et al. (2003) argued the 

effectiveness of the ratio algorithm for variable bottom type and albedo differences, they 

tested and tuned it in shallow-water regions that had higher reflectance than deep water, 

unlike our study site which hosts extensive dense P. oceanica meadows that are less 

reflective than deep water. Our modified bathymetry algorithm implemented the ratio 

between blue reflectance at 490 nm and green reflectance at 560 nm. Half of the depth 

points used for tuning the bathymetry algorithm were over P. oceanica beds that exhibit 

higher reflectance in the green than in the blue wavelength. The magnitude of this 

reflectance difference was greater than the magnitude difference in water column 

attenuation between the two wavelengths with increasing depth, resulting in a 

polynomial relationship between the reflectance ratio and in situ depth. Generally, our 

study lacked a larger availability of depth points, especially in the optically deeper regions 

to which P. oceanica extents. Nevertheless, bathymetric estimations provided adequate 

results to model water column effects. 

 

It is also worthwhile to discuss the influence of the outlying data points in Figs. 5 and 8 on 

resulting regression statistics. These data points are the median values of 41 points (used 

in the estimation of the site-specific bathymetric algorithm; Fig. 4.1.5) and 66 points (used 

in the validation of the bathymetric algorithm; Fig. 4.1.8), respectively. They were 

extracted from the spatial concurrence of the 20-m contour with the pixels of the 

atmospherically corrected Sentinel-2A scene (Fig. 4.1.1). Although they are outliers, we 

decided to use them to ensure that the satellite-derived bathymetric map will have 

accurate values over the whole depth range of seagrasses. The initial field depth 

measurements covered a depth range between 0 and 12 m while Posidonia oceanica 

seagrass was mapped up to 16.5 m. Exclusion of the outlier in Fig. 4.1.8 would decrease r-
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squared value from 0.92 to 0.86, while the RMSE would decrease by 0.022. It is also worth 

noting that we did not run classifications on the water column corrected data that are 

derived following the exclusion of this particular depth point to quantitatively compare 

the differences in resulting habitat maps and accuracies.  

 

Water column correction  

 

The herein applied analytical model of Maritorena et al. (1994) was based on a clear 

discussion of the physics pertaining optically shallow waters, whose reflectance contain 

a benthic signal. In general, analytical models untangle the weak bottom signal from 

satellite imagery following compensation for the water column attenuation (Dekker et al., 

2006). However, these models are always subjected to simplifications inherent in their 

analytical nature. One of these simplifications concerns light attenuation, which is 

naturally split into four vertical attenuation coefficients that describe the wavelength 

dependent absorption and scattering of light due to water components (Maritorena et al., 

1994). Given the lack of field measurements or radiative transfer modeling, the diffuse 

attenuation coefficient is simplified into one parameter.  

 

Maritorena et al. (1994) successfully validated the retrieval of water surface reflectances, 

but neither the initial study nor other studies have tested the model in an inverse manner 

to retrieve bottom reflectances since then, to the best of our knowledge. In one of its few 

applications in an inverse manner, Dierssen et al. (2003) argued that the model yields 

good agreement with in situ bottom reflectances over dense seagrass (Thalassia 

testudinum) cover, while, in contrast, overestimated bottom reflectances over 

intermediate and sparse cover. Deepest areas for their study site were 9 m in contrast to 

15 m in our study. In another application of Maritorena et al.'s model, Pu et al. (2014) 

retrieved bottom reflectances from four 30-m Landsat TM images to map three seagrass 

species in Florida, USA. They demonstrated that the water column correction (alongside 

other image pre-processing steps) improved overall accuracies up to 14% in comparison 

to studies that utilized similar imagery. However, the depth range of seagrass beds in 

their site was 0–4 m with the majority of seagrass species in < 3 m, nearly 20% of our 

observed depth range of seagrass presence. All in all, Maritorena et al. (1994) assume a 

high water transparency, and a horizontal and vertical homogeneity which are in line with 

the assumption for a uniform mixed character of waters that the bathymetry estimation 

dictates. Here, both diffuse attenuation coefficient and infinitely deep water reflectance 

were empirically calculated based on the atmospherically corrected Sentinel-2A image. 

As regards to the calculation of diffuse attenuation coefficient, we considered only the 

first 5 m of water column (Fig. 4.1.10) for the calculation of water attenuation coefficients. 

The principal reason is that attenuation of light increases when wavelength increases 
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(Fig. 4.1.11), thus rendering the satellite signal (reflectance) weaker and “immersed in 

sensor noise for deeper waters” (Bierwirth et al., 1993). Therefore, in the red part of the 

spectrum, even a highly reflective submerged sandy substrate, which was selected here 

to measure diffuse attenuation coefficients, in optically clear waters (as is the case of the 

Thermaikos Gulf) is difficult to be detected in depths over 5 m due to very low reflectance 

values (Maritorena et al., 1994). Extension of the plot in Fig. 4.1.10 in deeper waters than 5 

m would hence result in a not so well-defined axis due to the lack of an elongated data 

cloud after this depth. Generally, fieldbased or radiative transfer-based estimations of 

both attenuation coefficients and infinitely deep water reflectance are expected to further 

improve the calculation of bottom reflectances, however, they also raise the cost of the 

given remote sensing approach of coastal waters. 

 

4.1.5 Conclusions  

 

This study demonstrates the suitability of multispectral Sentinel-2 imagery for the 

mapping of the distribution of Mediterranean seagrass, namely the dominant Posidonia 

oceanica and Cymodocea nodosa. With the launch of the European Union's Sentinels, 

there is now an extensive fleet of satellites providing systematic coverage of the Earth's 

coastal areas including seagrass habitats. This new wealth of open, high spatial and 

temporal resolution remotely sensed data requires suitable preprocessing, processing 

and analysis to be exploited in an efficient and practical manner. In this study, we utilized 

atmospheric and water column correction in addition to three different supervised 

classifiers (MLC, RF and SVM) to accurately map the distribution of P. oceanica and C. 

nodosa in the clear and homogeneous, optically shallow waters of the Thermaikos Gulf, 

Aegean Sea, Greece (eastern Mediterranean Sea). We also created a bathymetry map of 

the SE Thermaikos Gulf through the development of a site-specific algorithm which uses 

Sentinel-2A blue and green bands. Together, the methods presented in our study provide 

an off-the-shelf solution to the mapping of seagrasses and coastal submarine habitats in 

a range of coastal waters. In the near future, we will focus on the development of NDVI 

(Normalized Difference Vegetation Index)-like indices using the essential Sentinel-2 data 

to map the distribution, cover and other important biophysical parameters of seagrasses, 

namely biomass, leaf area index, carbon sequestration, using readily available in situ 

data. In addition, we will attempt to map and monitor changes in Mediterranean seagrass 

dynamics, from seasonal to decadal scales. Quantitative knowledge of seagrass spatial 

distribution, biophysical parameters and dynamics will resolve existing trends, unravel 

data issues, and allow better management and conservation practices in regard to a 
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better future for these immensely valuable ecosystems and for their numerous 

ecosystem services. 
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4.2 Cubesat-derived Detection of Seagrasses using Planet 

Imagery following Unmixing-based Denoising: Is Small the Next 

Big? 

 

4.2.1 Abstract 

 

Seagrasses are one of the most productive and widespread yet threatened coastal 

ecosystems on Earth. Despite their importance, they are declining due to various threats, 

which are mainly anthropogenic. Lack of data on their distribution hinders any effort to 

rectify this decline through effective detection, mapping and monitoring. Remote sensing 

can mitigate this data gap by allowing retrospective quantitative assessment of seagrass 

beds over large and remote areas. In this paper, we evaluate the quantitative application 

of Planet high resolution imagery for the detection of seagrasses in the Thermaikos Gulf, 

NW Aegean Sea, Greece. The low Signal-to-noise Ratio (SNR), which characterizes 

spectral bands at shorter wavelengths, prompts the application of the Unmixing-based 

denoising (UBD) as a pre-processing step for seagrass detection. A total of 15 spectral-

temporal patterns is extracted from a Planet image time series to restore the corrupted 

blue and green band in the processed Planet image. Subsequently, we implement 

Lyzenga’s empirical water column correction and Support Vector Machines (SVM) to 

evaluate quantitative benefits of denoising. Denoising aids detection of Posidonia 

oceanica seagrass species by increasing its producer and user accuracy by 31.7% and 

10.4%, correspondingly, with a respective increase in its Kappa value from 0.3 to 0.48. In 

the near future, our objective is to improve accuracies in seagrass detection by applying 

more sophisticated, analytical water column correction algorithms to Planet imagery, 

developing time- and cost-effective monitoring of seagrass distribution that will enable 

in turn the effective management and conservation of these highly valuable and 

productive ecosystems. 

 

4.2.2 Materials and Methods 

 

Field data 

 

In this study, we employ field data that we collected during a boat-, snorkelling- and free-

diving-based survey in between 10 – 13.07.2016. The temporal difference of four months 
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between the field survey and satellite data acquisition, as noted in 1.2, is acceptable due to 

the nature of Mediterranean seagrass meadows which undergo changes in greater time 

scales. Field data consist of points related to specific habitat and coordinates. Four 

different substrates were observed: a) Posidonia oceanica seagrass, b) Cymodocea 

nodosa seagrass, c) Sand, d) Algae and Rocks.  

 

Satellite data 

 

The satellite data used in our study are acquired by Planet’s PlanetScope (PS) Earth-

Imaging multispectral CubeSat constellation (Planet Team, 2017). Here, we process the 

Ortho Scene products which are one of the three product lines for PlanetScope imagery7. 

PS Ortho Scenes are orthorectified, scaled Top of Atmosphere Radiance image products 

(Level 3B) and are delivered as analytical (4-band) and visual (RGB) products. PS 

CubeSats captures imagery at a ground sampling distance of 3.7 m at a reference altitude 

of 475 km and the imagery is then orthorectified to a pixel size of 3 m. The analytical Ortho 

Scene imagery used in processing and analysis steps herein was acquired on 17/11/2016 

and information about its specific attributes is shown in Table 4.2.1. The signal-to-noise 

ratio (SNR) of the selected image is 68.8. 

 

Unmixing-based Denoising 

 

A schematic workflow of our adapted methodology is presented in Fig. 4.2.1. The low 

Signal-to-noise Ratio of (SNR) of the selected PS image prompts the application of the 

Unmixing-based denoising (UBD) as a Pre-processing step. UBD has been recently 

proposed to selectively retrieve spectral bands characterised by a low SNR by exploiting 

their correlation with non-corrupted pixels across the whole spectral dimension in 

hyperspectral images (Cerra et al., 2014). Spectral unmixing is the process which 

decomposes a hyperspectral image element into a linear combination of signals 

representing the backscattered solar radiation in each spectral band. Considering the 

physical properties of a mixed spectrum, UBD assumes the residual vector derived from 

the unmixing process to be mostly composed of noise and more relevant in spectral 

bands where atmospheric absorption effects are stronger, and therefore ignored in the 

reconstruction. In spite of adopting a linear unmixing model, which in theory does not 

adapt well to water, UBD achieved satisfactory results when applied to spectral bands in 

the blue range for scenes acquired over coastal waters in previous works (Cerra et al., 

                                                
7https://www.planet.com/products/satellite-imagery/files/Planet_Imagery_Product_Specs.pdf. 
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2013). Recently, it has been successfully applied to multitemporal stacks of multispectral 

images (Cerra et al., 2016a, 2016b).  

 

Here, a total of 15 spectral-temporal patterns is extracted from a multitemporal Planet 

image time series, selected among the purest image elements in the stack. In addition to 

the PS image of the 17/11/2016, two other PS images from 30/09/2016 and 03/12/2016 with 

SNRs of 90.1 and 71.8, respectively, comprise this multispectral image time series. 

Subsequently, UBD is applied to restore the corrupted blue and green band in the 

PlanetScope image of the 17/11/2016. 

 

Empirical water column correction 

To display the quantitative benefits of UBD on the Planet high spatial resolution image, we 

implement Lyzenga’s empirical water column correction (Lyzenga, 1981, 1978) on the 

initial  

 
 

Fig. 4.2.1. Workflow of the herein processed methodology. The Planet Image Time Series 

consists of three different PlanetScope Analytic Ortho Scenes. Lyzenga’s empirical water 

column correction is adapted from Lyzenga (1978, 1981).  
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Table 4.2.1. PlanetScope Analytic Ortho Scene Product Attributes. 

Product Attribute Description 

Instrument PS2 (2nd generation) 

Acquisition date 17/11/2016 

Acquisition time 9:27:08 AM GMT+1 

Pixel Size 3 m 

Spectral bands Blue: 455 - 515 nm 

Green: 500 - 590 nm 

Red: 590 – 670 nm 

NIR: 780 – 860 nm 

Pixel depth Analytic (DN): 12-bit 

Analytic (Radiance): 16-bit 

Orbit altitude 475 km 

 

‘noisy’ and denoised (restored) blue and green bands. These bands are selected on the 

basis of their great water penetration in contrast with the red and NIR bands. The two 

main assumptions behind Lyzenga’s algorithm are that: a) radiance differences between 

pixels of the same bottom are due to different depth and b) water column attenuation 

coefficient is constant for each band. We select sandy bottoms in the use of the empirical 

water column correction as they are the easiest to identify and cover large areas over 

different depths. The empirical algorithm derives one depth-invariant bottom index 

before and one after the denoising. These indices are not bottom reflectances, but rather 

represent a relation between radiances in the blue and green spectrum without a depth 

effect. 

 

We choose Lyzenga’s empirical algorithm due to its practicality (it does not require field 

or bathymetry data) and efficiency in improving mapping accuracies in waters that 

feature horizontal and vertical homogeneity of their optical properties of up to 15 m which 

are the case in the Thermaikos survey site. Furthermore, this survey site features same 

substrates (sand and seagrass) over a wide depth range (0 – 16 m), inducing the 

implementation of Lyzenga’s algorithm. 

 

Support Vector Machines 
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The Support Vector Machines (SVM) comprise a group of theoretically superior, 

supervised classifiers based on the statistical learning theory of Vapnik (1995). These 

essentially machine learning algorithms solve classification problems by fitting an 

optimal hyperplane, which comprises the decision boundary, to the training samples. The 

samples that fall 

closer to this hyperplane are the so-called support vectors which are the only data used 

by SVM in the classification step. We apply SVM utilising the universal Gaussian radial 

basis function kernel (RBF): 

 

                                  K (x, xi) = exp (-g|x - xi|2)                                                                                                                                           (1) 

 

where g is the parameter that defines the width of the RBF. In addition, we set a 

regularisation parameter, C which controls the degree of acceptable misclassification 

through limiting the influence of individual training samples. Furthermore, we select a 

Cross validation parameter which monitors the accuracy of results during the grid search 

for the selection of the best pair of values for g and C. Specific model parameters to run 

both SVM experiments are shown in Table 4.2.2. The RBF kernel is employed on the 

acquired field data to classify both depth-invariant indices before and after the 

application of UBD. The SVM experiments are run using the open-source LIBSVM library 

(Chang and Lin, 2013).  

 

Table 4.2.2. Model parameters used to run Support Vector Machines utilising the 

universal Gaussian radial basis function kernel (RBF) for both experiments; before and 

after the application of Unmixing-based Denoising (UBD). Min and Max report the 

minimum and maximum values which define the grid range (g and C dimension). A 

multiplier of 10 is set for grid range for both experiments. 

Model parameters  Before UBD After UBD 

Support vectors 43 31 

RBF width, g 100 1000 

Regularization parameter, C 0.01 10 

Min (g), Max (g) 0.01 1000 

Min (C), Max (C)  0.01 1000 

Cross validation  3 3 
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The quantitative evaluation of the potential benefits of UBD on Planet data for detection of 

Mediterranean seagrasses and other shallow submerged habitats is performed through 

the accuracy assessment of the SVM-derived results. The accuracy assessment employs 

field data from Thermaikos survey site using the error matrix and Kappa value 

(Congalton, 1991). 

 

4.2.3 Results 

 

Our experimental results are displayed in methodological succession in Fig. 4.2.2 and 

4.2.3. Visual inspection of Fig. 4.2.2A and 4.2.2B, which show the initial ‘noisy’ blue and 

green bands of PlanetScope image over our test site, reveals several artefacts, 

generated and enhanced in the acquisition and pre-processing of the acquired images. 

While we have not been able to determine to which extent these artefacts are introduced 

for each processing step, they appear to be significantly decreased following application 

of the Unmixing-based denoising (Fig.  

4.2.3A, 4.2.3B). The depth-invariant index of ‘noisy’ blue and green bands (Fig. 4.2.2C) 

indicates that Lyzenga’s empirical water column correction fails to eliminate the effect of 

water column attenuation on bottom reflectances. In contrast, applying Lyzenga’s 

algorithm on the denoised depth-invariant index (Fig. 4.2.3C) yields a seemingly more 

realistic representation of the bottom. The SVM-derived classification results comprise 

submerged habitat distribution maps of our survey site in the Thermaikos Gulf (Fig. 

4.2.2D, 4.2.3D). Accuracy assessment (Table 4.2.3, 4.2.4) of the classifications of the 

resulting ‘noisy’ and denoised depth-invariant indices following application of UBD and 

empirical water column correction reflects the visual inspections. The denoised depth-

invariant index of blue and green Planet reflectances improves overall accuracy and 

Kappa value from 53.2% and 0.26 to 68.1% and 0.5, respectively. Denoising aids detection 

of Posidonia oceanica seagrass species by increasing its producer and user accuracy by 

31.7% and 10.4%, correspondingly, with a respective increase in its Kappa value from 0.3 to 

0.48. On the other hand, both classified depth-invariant indices, before and after 

denoising, fail to detect Cymodocea nodosa seagrass species. Moreover, the error matrix 

Termination criterion for 

grid search 

0.1 0.001 

Termination criterion for 

final training 

0.1 0.001 
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indicates that P. oceanica seagrass class is mainly confused with sand class. Generally, 

denoising unveils fine, smaller patches of sand within the homogeneous P. oceanica 

meadows, an essential feature of the high spatial resolution Planet imagery towards finer 

scale seagrass detection. Both classification results lack clear delineation of the 

seaward limit of P. oceanica seagrass.  

 

4.2.4 Discussion 

 

Using high spatial resolution CubeSat-derived Planet imagery, we detect Posidonia 

oceanica, the dominant Mediterranean seagrass species, with acceptable accuracies 

following application of UBD, empirical water column correction and SVM. On one hand, 

we expect Planet’s high spatio- temporal resolution imagery to cover gaps in finer scale 

seagrass 

detection of temporal cover of remote sensing data provided by bigger multispectral 

satellites like Sentinel-2 and Landsat-8. On the other hand, remote sensing of coastal 

ecosystems like seagrasses requires sensors with higher SNR than the ones applied in 

terrestrial ecosystems. Planet’s low SNR for pixel-based coastal and aquatic, generally, 

applications may bring degradations in the image quality. In our study, these are shown to 

hinder the production of informative habitat maps following Lyzenga’s empirical water 

column correction. We attribute this problem to the selection of pixels that represent 

sandy bottoms in different depths but suffer from notable degradations. 

 

As we show here, the low SNR drawback can be balanced, first, by the application of UBD 

which significantly improves seagrass detection amongst other submerged habitats 

including sand and algae/rocks. A second solution for the SNR deficit for water 

applications can be possibly provided by applying data fusion between Planet high spatio-

temporal resolution images and Sentinel-2 and/or Landsat-8 lower spatial, but higher 

spectral resolution. A third and last, possible solution for the noise issue can be provided 

through the use of Object-based Image Analysis (OBIA) which in contrast to pixel-based 

approaches, first analyse image scenes to relatively homogeneous areas by 

decomposition and then produce object-based instead of pixel-based classifications 

(Blaschke, 2010). In contrast to its increasing popularity and efficiency to terrestrial 

approaches, however, applications of OBIA to coastal areas are scarce. 

 

In the near future, our objective is to improve accuracies in seagrass detection by 

applying more sophisticated, analytical water column correction algorithms to Planet 

imagery, developing time- and cost-effective mapping and monitoring of seagrass 
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distribution. Effective exploitation of this new kind of high spatio-temporal resolution 

multispectral dataset can meet the scale and aim of the majority of future seagrass 

mapping and monitoring projects, from a small meadow to a whole coastline, allowing for 

improved management and conservation of these significant coastal ecosystems. 
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Fig. 4.2.2. Experimental steps without the application of Unmixing-based denoising. A and 

B display the initial, ‘noisy’ blue and green Planet reflectance, respectively. C is the depth-

invariant index (Lyzenga’s empirical water column correction) of A and B before applying 

the Unmixing-based denoising (UBD). D shows Support Vector Machine classification 

result of C. All rasters are draped over a PlanetScope analytic Ortho RGB Scene of 

17/11/2016 over our test site in Thermaikos Gulf, NW Aegean Sea, Greece, projected in UTM 

(zone 34) system/WGS84. 
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Fig. 4.2.3. Experimental steps with the application of Unmixing-based denoising. A and B 

display the denoised blue and green Planet reflectance following the UBD application on 

the A and B of Fig. 4.2.2., respectively. Differences in overall brightness from A and B of 

Fig. 4.2.3 are due to their different histogram stretch. C is the depth-invariant index of A 

and B after the UBD application. D shows Support Vector Machine classification result of 

C. All rasters are draped over a PlanetScope analytic Ortho RGB Scene of 17/11/2016 over 

our test site in Thermaikos Gulf, NW Aegean Sea, Greece, projected in UTM (zone 34) 

system/WGS84. 

 

Table 4.2.3. Error matrix of Fig. 4.2.2D before the application of UBD on Planet imagery. 

CN: Cymodocea nodosa seagrass, PO: Posidonia oceanica seagrass, A/R: Algae and 

Rocks, S: Sand  

Before UBD 
Class CN PO A/R S Total User 

accuracy 
CN 0 0 0 0 0 0 
PO 3 26 0 14 43 60.5 
A/R 0 1 6 1 8 75 
S 6 14 5 18 43 41.9 
Total 9 41 11 33 94  
Producer 
accuracy 

0 63.4 54.6 54.6   

Kappa 
value 

0 0.3 0.72 0.1   

Overall accuracy: 53.2; Kapp value: 0.26 
 

Table 4.2.4. Error matrix of Fig. 4.2.3D after the application of UBD on Planet imagery. CN: 

Cymodocea nodosa seagrass, PO: Posidonia oceanica seagrass, A/R: Algae and Rocks, S: 

Sand  

After UBD 

Class CN PO A/R S Total User 

accuracy 

CN 0 0 0 0 0 0 

PO 2 39 2 12 55 70.9 

A/R 3 1 7 3 14 50 

S 4 1 2 18 25 72 

Total 9 41 11 33 94  

Producer 

accuracy 

0 95.1 60.1 81.1   
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Kappa 

value 

0 0.48 0.43 0.57   

Overall accuracy: 68.1; Kapp value: 0.5 
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4.3 On the use of Sentinel-2 for Coastal Habitat Mapping and 

Satellite-derived Bathymetry Estimation using Downscaled 

Coastal Aerosol Band 

 

4.3.1 Abstract 

 

Coastal habitats provide a plethora of ecosystem services, yet they undergo continuous 

pressure and degradation due to the human-induced climate change. Conservation and 

management imply continuous monitoring and mapping of their spatial distribution at 

first. The present study explores the capabilities of the Copernicus Sentinel-2 mission 

and the contribution of its coastal aerosol band 1 (443 nm) for the mapping of the 

dominant Mediterranean coastal marine habitats and the bathymetry in three survey 

sites in the East Mediterranean. The selected sites have shallow to deep habitats and a 

high variability of oceanographic and seabed morphological conditions. The major 

findings of our study demonstrate the advantages of the downscaled Sentinel-2 coastal 

aerosol band 1 for both optically shallow habitat and satellite-derived bathymetry 

mapping due to its great water penetration. The use of Sentinel-2 band 1 allows detection 

of Posidonia oceanica seagrass beds down to 32.2 m of depth. Sentinel-2 constellation 

with its 10-m spatial resolution at most of the spectral bands, 5-day revisit frequency and 

open data policy can be an important tool to provide crucial missing information on the 

spatial distribution of coastal habitats and on their bathymetry distribution, especially in 

data-poor and/or remote areas with large gaps in a retrospective, rapid and non-

intrusive manner. As such, it becomes a crucial ally for the conservation and 

management of coastal habitats globally. 

 

4.3.2 Materials and Methods 

 

Study areas 

 

The selected sites are in water bodies with different oceanographic and topographic 

characteristics (SoHelME, 2005). This variety allows comparisons for the capabilities of 

Sentinel-2 in seabed mapping in areas with medium and low productivities. The National 

Park of Marathon-Schinias (hereafter Schinias) covers a landscape of 56 km² in the 

marine body of the Petalioi Gulf, at the outlay of the South Evoikos Gulf. The studied area is 
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the coastal zone of the park where seagrass meadows are present between 2 and 20 m 

(Fig. 4.3.1a). Samaria National Park (hereafter Samaria) is located in the West part of the 

island of Crete; it was declared as a National Park in 1962. The selected area lies up to 38 

m deep and features mainly patchy seagrasses (Fig. 4.3.1b). Gavdos Island (hereafter 

Gavdos) is in the southernmost point of Europe and Greece. The studied area concerns 

the coastal part of the island where seagrass meadows thrive between 5 and 25 m of 

depth (Fig. 4.3.1c). 

 

Sentinel-2 data 

 

Copernicus Sentinel-2A (S2-A) L2A satellite data from the first of the polar-orbiting 

satellites, have been selected and downloaded from the Sentinel Scientific Data Hub for 

the present study (ESA, 2015). L2A data have been corrected from L1C using the rural 

(continental) aerosol type, a mid-latitude summer atmospheric profile, a value of 331 

Dobson Units for ozone concentration, a land-average value for water vapor over water, a 

visibility of 40 km and an adjacency range of 1 km. Here, we have processed and analyzed 

two S2-A images (Table 4.3.1); one for Schinias, and one for Samaria and Gavdos, as one 

S2 tile covers both areas. 

 

In situ data 

 

Field data for the three distinctive Mediterranean coastal habitats in the selected three 

sites (Fig.  4.3.2)  have been  collected  with  various  approaches. These are: a) P. oceanica 

seagrass meadows (Fig. 4.3.2a, c); b) rocky bottoms covered by photophilous algae (Fig. 

4.3.2b); c) soft/sandy bottoms (Fig. 4.3.2d). For the sites located in Crete, we collected the 

data in summer 2013 during research activities for the ecological status of the seagrass 

meadows (Poursanidis et  al.,  2014)  in  Samaria  and  Gavdo  Natura 2000  site, and 

updated  them in  summer  2017. 

 

We collected the data by snorkeling between 0–45 m and SCUBA diving between 5–45 m.  

In both cases, the field scientist used a water- proof GPS unit (GARMIN GPSMAP series) 

either on a buoy or on hand   and collected the data. In each site (Samaria and Gavdos), we 

acquired 20 POIs per habitat for use in image classification.  Bathymetric data were 

collected only in Samaria by using a Lowrance HDS5 gen2 with a single beam sonar head 

placed 15 cm below the water surface. We collected 107 field points in total in Gavdos and 

79 field points in Samaria. In the case of Schinias, we extracted 64 field points by 

interpreting high-resolution aerial images by the National Cadaster & Mapping Agency 

S.A.  from  2010  and  open  access  high  resolution images  between  2010–2016  in  Google 

Earth. 



   

70 

 

 

 
Fig. 4.3.1. Location of survey site in (a) Schinias Marathon National Park, (b) Samaria 

National Park, (c) Gavdos Island, and (d) Greece. 
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Table 4.3.1 

Characteristics of Sentinel-2A images. 

Survey site Schinias Samaria & Gavdos 
Granule 34SGH 34SGD 
Acquisition data 15 June 2017 26 April 2017 
Acquisition time 09:05 am UTC 09:10 am UTC 
Mean solar zenith angle 20.4º 25.3º 
Mean solar azimuth angle 132.6º 142.7º 
 

 

 
 

Fig. 4.3.2. The habitats of the selected sites: (a) Posidonia oceanica meadows at 30 m, (b) 

Rocky reef covered by photophilic algae, (c) Posidonia oceanica meadows at 5 m, and (d) 

Soft sandy bottom. 

 

Pre-processing steps 

 

Fig. 4.3.3 provides an overview of the designed methodology for the processing and 

classification of S2-A images. As a panchromatic band is absent in Sentinel-2, a different 

approach than pan-sharpening is needed to increase the spatial and spectral information 

of the coastal aerosol band 1 (443 nm). Band 1 is of significant importance in the remote 

sensing of coastal waters (Mouw et al., 2015) due to its deeper penetration than the other 
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visible bands. Brodu (2017) developed a downscaling method, namely super-resolution, 

for multispectral, multi- resolution imagery as the Sentinel-2 satellites. We run the 

downscaling algorithm using the Sen2Res plugin in ESA’S Sentinel Application Platform 

(SNAP) Version 5.0 for all survey sites (Fig. 4.3.4) in order to downscale all spectral bands 

at 10 m. We use the downscaled Short-wave Infrared SWIR band 11 at 1610 nm to mask all 

terrestrial features in all survey sites by classifying the image into water and land with an 

Iso Cluster Unsupervised Classification. We correct sunglint using the method of Hedley 

et al. (2005). We also implement the Lyzenga depth- invariant indices (DIV) (Lyzenga, 

1978, 1981) to empirically address the influence of variable depth on optically shallow 

seabed. We estimate three DIV (b1-b2, b2-b3, b1-b3) for all three survey sites. 

 

 
 

Fig. 4.3.3. Schematic methodological workflow. 

 

Analytical water column correction – Bathymetry estimation 

 

In  contrast  to  the  empirical  image-based  technique  of   Lyzenga (1978, 1981),  semi-

analytical  and  analytical  water column correction are  expected  to  increase  

classification  accuracies  by  minimizing  the water column interference on the signal of 

the submerged habitats in a more efficient manner. We implement the analytical water 

column correction model of Maritorena et al. (1994), while for the bathymetry estimation 

we employ the ratio method of Stumpf et al.  (2003). 
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Classifications and uncertainty estimation 

 

We utilize the machine learning classifiers of   Support   Vector   Machines (SVM) and 

Random Forests (RF) - widely used in the remote sensing of optically shallow habitats 

(Eugenio et al., 2015; Traganos and Reinartz, 2017a, 2017b; Zhang, 2015). We employ both 

classifiers on all types of reflectance composites - the first three Sentinel-2A bands in 

10-m resolution (bands 1–3) in all three survey sites: a) Atmospherically corrected L2A 

imagery (R); b) deglinted L2A imagery (R’); c) DIV; d) substrate remote sensing 

reflectance composites (Rrsb) in the case of Samaria. SVM are a group of universal 

machine learning algorithms based on the statistical learning theory of Vapnik (1995), 

while RF comprise an ensemble method for supervised classification based on 

classification and regression trees (CART) and were developed by Breiman (2001). To 

increase understanding as well as interpretation of our classification results, we decided 

to output them as class probability estimates (soft classification) instead of the typical 

multi-class hard classification outputs. To estimate per pixel probabilities,  binary  RF- 

and SVM-derived decision values are first transformed into binary probabilities 

according to Platt (2000) and then into class probabilities following  the  pair-wise  

coupling  approach  (one-against-one)  of   Wu  et  al.  (2004). All experiments with SVM/RF 

and  probability estimates were run in EnMAP-Box (van der Linden et al., 2015). We utilise 

Shannon entropy (H) (Shannon, 1948) to output per-pixel uncertainty as a function of 

class probabilities. We evaluate the hard classification results (the coastal habitat maps) 

by calculating overall (OA), producer (PA) and user accuracy (UA) of every class per 

survey site. 

 

4.3.3 Results 

 

Pre-processing results 

 

Fig. 4.3.4 displays Sentinel-2 A L2A 4-3-2 composites from our three survey sites along 

with the coastal aerosol band (443 nm) over each site in its initial and super-resolved 

resolution (60 and 10-m correspondingly). The pink and yellow polygons in 4(e) and (f) 

display selected super-resolved pixels (sandy and rocky seabed) with same   reflectance 

as  the  initial  60-m  initial  pixel－  0,0489 ± 0,0009  (rocks)  and 0,0629 ± 0003 (sands)－

demonstrating that super-resolution pre-processing does not impact the sensor 

radiometry. Deglinted L2A 3-2-1 composites are depicted in Fig. 4.3.5. Especially in the 

Schinias (Figs. 5a, b) and Gavdos (Figs. 5e, f, g, h), benthic features were spectrally 
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enhanced following the sunglint correction of Hedley et al. (2005). Fig. 4.3.6 shows the 

image-based DIV (Lyzenga, 1978, 1981) in all three field sites. Light blue polygons in the 

insets of Fig. 4.3.6 indicate pixel areas of sandy sub- strate used in the estimation of the 

indices. Negative DIV values were observed and were corrected to cover positive ranges, 

incorporating an offset. Essential to both the estimation of accurate depth-invariant in- 

dices as well as to the analytical water column correction, the ratios of diffuse 

attenuation coefficient k1 /k2, k2 /k3, and k1 /k3 were estimated as 0.64, 0.53, and 0.33 for 

Schinias; 0.77, 0.53, and 0.37 for Samaria 1.18, 0.28, and 0.05 for   Gavdos. 

 

Analytical water column correction and bathymetry estimation 

 

Available field depth data allowed the estimation of substrate  remote sensing  

reflectances  (Rrs
b)  (Fig.  4.3.7a).   Wavelength-dependent attenuation coefficients (k) of 

the Sentinel-2 b1, b2 and b3 bands in Samaria were estimated as 0.03 m−1, 0.04 m−1  and  

0.08 m−1.  These values were incorporated in Equation (3) to derive Rrsᵇ . Furthermore, 

utilising k, we estimated the ‘effective penetration depth’  (EPD)  in  the  first  three  visible  

bands;  74 m  in  443 nm,  57.5 m  in 490 nm, and 30.2 m in 560 nm. Employing Equations (5) 

and  (6), we produced a 10-m  bathymetry  (Z)  map  of  the  Samaria  site  (Fig. 4.3.8). The 

implemented ratio of Equation 6 exploited the different attenuation of the b1 and b3 to 

retrieve water depths. Additionally, we derived a second bathymetry map (not shown 

here), utilising Equation (7) and (8) where we used the ratio of the     b2 to b3 band. The 

validation of both SDBs was assessed with 1658 in  situ  depth measurements from the 

total of 2569 (Fig. 4.3.9a). Linear re- gressions between SDBs and field measurements 

revealed a superior r- squared value of 0.85 and a smaller root-mean-square error 

(RMSE) of 4.31 m following use of the b1-b3 ratio (Fig. 4.3.9) in comparison to the r- 

squared value of 0.68 and the RMSE of 5.46 m of the b2-b3 ratio.  Blending knowledge of 

the bathymetry and effective penetration depth   of Sentinel-2 imagery, we masked 

waters below 30.2 m (Figs. 7a). Past the EPD in 560 nm, the analytical water correction 

model might be possibly compromised or not be able to correct the depth effect (e-2kZ)   in 

Equation (3). We also masked waters below 43 m following the findings of Poursanidis et 

al. (2018) which show that the deep limits of  P. oceanica seagrass  lies  on  this depth. 
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Fig. 4.3.4. Downscaling of Sentinel-2 band 1 following Brodu (2017). (a), (d), (g): 4-3-2 

composite images of Schinias, Samaria, and Gavdos Island. (b), (e), (h): Original band 1 

(443 nm, 60-m resolution). (c), (f), (i): Downscaled band 1 at 10-m resolution. The pink and 

yellow squares in Fig. 4.3.4(f) show the downscaled 10-m pixels over a rocky and sandy 

seabed, respectively. The polygon in the three insets of 4(a), (d) and (g) indicates the 

location of the displayed panels within the extent of each survey site. 
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Classifications and uncertainty estimation 

Two machine learning classifiers, SVM and RF, were applied to three different  

composites in three survey sites for a total of 24 classified habitat maps. Except 

from the case of Rrs
b composites in the Samaria site, the other classified composites 

were the S2-A L2A, the deglinted L2A and the DIV. In Samaria, P. oceanica seagrass 

occupy depths up to 32.2 m in the eastern part of this site with a 96.8% probability 

and 14.7% uncertainty as revealed by the SVM-classified full-depth Rrs
b composite 

(OA: 75%, PA: 100%, UA: 72.5%) and SDB (Fig. 4.3.8). Generally, SVM exhibited a 

marginal higher overall accuracy on classifying the L2A and deglinted L2A 

composites (+2.5%) than the Rrs
b imagery. In addition, the highest  uncertainties  are  

depicted  in deeper areas (> 20 m) which are immersed in noise (Fig.  4.3.7e). 

In Schinias, the SVM-classified deglinted L2A composite (Fig.  4.3.12a) yielded the 

best OA of 87.2%. This classified composite featured similar PA of seagrasses 

(82.6%) to the SVM L2A and RF L2A composites. On the other hand, the RF-classified 

DIV composite was the most accurate product in both PA and UA. Classifier-wise, 

SVM were slightly    more    accurate    than    Random    Forests    in    the two-class 

experiments here, exhibiting 0.9% better OA. They also displayed 2.9% greater PA 

but 1% lower UA in classifying seagra Fig. 4.3.11d indicates a lower uncertainty in 

areas shallower than  10 m. 

In Gavdos, the RF-derived deglinted L2A imagery  (Fig. 4.3.11a) showed the  best 

OA (58.2%) in classifying the benthic habitats of the island. More particularly, as 

regards to the class of P. oceanica and overall classifier performance, RF featured 

a 10.9% better OA than SVM, a 2.7% lower PA and a greater UA of 13.6%. P. oceanica 

class probability seems to be overestimated over optically deep areas (Fig. 12b), 

while uncertainty measure reveals a higher certainty on the eastern and southern 

part of Gavdos Island in contrast to its western part (Fig. 4.3.12e). While SVM 

exhibited a marginal difference from RF in OA by 2.7%, it demonstrated noteworthy 

greater PA and UA of P.  oceanica seagrass class of 25.9% and 21.1%. 
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Fig. 4.3.5. Sunglint correction of Sentinel-2 A images following Hedley et al. (2005). 

All images are 3-2-1 L2A composites with downscaled band 1 at 10-m resolution. 

Yellow polygons indicate pixels selected for the regression. (a), (b): Initial and 

deglinted image of Schinias. (c), (d): Initial and deglinted image of the centre o   

Samaria. (e), (g), (f), (h): Initial and deglinted images of NW and E Gavdos. 

 

4.3.4 Discussion 

The present study selected three protected, eastern Mediterranean sites to 

evaluate the potential of the Sentinel-2 sensor in coastal habitat mapping and 

satellite-derived bathymetry over a variety of seabed morphologies and 

oceanographic characteristics. The coastal aerosol band 1 of S2 in 443 nm is the 

common denominator in the two major findings of our study. Leveraging empirical 

to analytical corrections and machine, we first found that S2 can detect P. oceanica 

seagrasses 32.2-m deep into the South Cretan water column (Fig. 4.3.10). We mainly 

attribute this finding to the high oligotrophic Cretan Sea which features a very low 

primary production (Psarra et al., 2000) and a strong pelagic microbial loop which 
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subsequently reduces particle flux to the sediment (Chronis et al., 1996; Danovaro et 

al., 1996). Previous S2-based SDB estimations in the same basin reached an optical 

depth limit of 16.5 m (Traganos and Reinartz, 2018a). 

 

Fig. 4.3.6. Depth-invariant bottom indices (b1-b2, b1-b3 and b2-b3) following Lyzenga 

(1978, 1981). Light blue polygons indicate regression pixels that represent the same 

substrate, sand, in different depths. (a) Schinias, (b) Samaria, (c) Gavdos. 
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Fig. 4.3.7. Water column corrected S2-A 3-2-1 composite of Samaria survey site, and 

related probability and uncertainty of habitat distribution. Isobaths are based on a     5 × 5 

smoothing of the SDB. (a) Substrate reflectance (Rrsᵇ) image up to 30.2 m of depth. (b), (c), 

(d) SVM-derived probability of P. oceanica, rocky and  sandy  substrate  (%), respectively. 

 

Related errors to the observed detection depth of the deepest P. oceanica bed 

could arise due to two factors. The first concerns the effective penetration depth 
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of imagery which exploits information on the diffuse attenuation coefficient to 

estimate the maximum depth for which an underwater habitat could be identified by 

optical remote sensing. A combination of an image-based (Lyzenga, 1978, 1981) and a 

semi-analytical approach (Lee et al., 2000) yielded a depth penetration of S2 imagery at 

30.2 m in 560 nm. Therefore, the observed detection depth lies 2 m beyond the EPD of the 

green band (560 nm); past the EPD in 560 nm, water column correction could possibly 

produce erroneous results as light would be reflected only by the water column and not 

by the substrate. The second factor is related to the SDB estimation using an empirical 

ratio-based approach. Fig. 4.3.9 indicates that the implemented SDB approach here－

coastal aerosol to green ratio   algorithm－saturates  in  depths  over  22 m  in  addition  to  

providing  a  RMSE   of 4.31 m (b1/b3), respectively. This could produce an over-estimation 

of SDB due to greater water penetration in 443 nm in contrast to 560 nm. The second 

major finding concerns the statistical advantage of forming the ratio of the b1 with the 

green band to derived bathymetry in comparison to the more widely implemented blue to 

green band ratio (Stumpf et al., 2003; Traganos and  Reinartz,  2018a).  

 

Fig. 4.3.8. Satellite-derived bathymetry (SDB) of the Samaria survey site based 

on the ratio of coastal aerosol to green band. (a) Deglinted L2A 3-2-1 composite 

of the survey site. In situ depth data (n = 2569) are shown in light pink. (b) SDB for 

the whole depth range. 
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Fig. 4.3.9. Linear regression between SDB using the b1-b3 ratio and the actual 

depth measurements from the Samaria site. The SDB was implemented in the 

analytical water column corrections. 

 

This is justified by the improved r-squared value, lower RMSE, and the smaller sensitivity  

of the  former to  variation in  bottom reflectance than   the   latter   (Fig.   4.3.9). The   

statistical   gains   of   b1/b3  are clearly attributed to the greater water column penetration 

of b1 than b2. The errors in both ratio approaches derive from the highly steep and diverse 

underwater seascape morphology in Samaria. Studies on SDB (Bramante et al., 2013; 

Collin and Hench, 2012; Pacheco et  al., 2015)  have shown that sensors with coastal 

aerosol bands perform better in comparison to those lacking one. Further investigation 

in different underwater seascapes (low slopes, homogeneous seabed cover) could yield 

more insights into the capability of S2 for coastal SDB, the requirements on the in situ 

data acquisition, and the exploitation of an operational semi-automated, cloud-based 

method for basin- to global-scale coastal  SDB  (Traganos  et  al.,  2018a, 2018b).  
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Fig. 4.3.10. Probability and uncertainty of P. oceanica seagrass distribution in the 

Samaria site (south Crete). (a) Rrsᵇ S2-A 3-2-1 composite with deep dense P. 

oceanica seagrass patch within yellow polygon. The light blue circle indicates the 

presence of P. oceanica seagrass as observed in situ. The golden circles depict 

mean depths of the in situ depth measurement points that fall within the same 

pixels. (b) Probability of occurrence of P. oceanica seagrass following SVM-derived 

classification. (c) General uncertainty (%). (d) Uncertainties of P. oceanica  seagrass 

distribution lower than 20% are displayed with golden polygons. 

 

We summarize this section by reporting some additional sensor- and method-wise 

issues which could affect the accuracy of near-future applications of Sentinel-2 in 

coastal waters of varying water surface conditions, water column composition, depth, 

and seabed reflectance. First, regarding corrections, the applied atmospheric correction 

to derive the L2A product, Sen2cor  has  been  designed  for  land-based  applications and  

does not estimate  water  aerosols. 

It has demonstrated, however, its efficiency in correcting the atmospheric interference 

over water in areas without sunglint (B. Pflug, personal communication; 06/09/2017).  In 

the present study, two sites, Schinias and Gavdos, are heavily ‘polluted’ with sunglint (Fig. 

4.3.5). Additionally, the different angle acquisitions of S2 cause granule limits to be 
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visible (Figs. 4.3.1a, c, Fig. 4.3.4a, b, c). This appears to be a S2-specific issue and can 

hinder image statistical analysis, especially in change detection studies due to the 

difficulty behind radiometrically-corrected composites. Moreover, the sunglint 

technique following Hedley et al. (2005) can over-correct very bright reflectances (e.g.  

shallow sands) due to the contribution of substrate NIR reflectance to the water-leaving 

NIR reflectance. We observe this issue in Fig. 4.3.11d with higher uncertainty (yellow 

values) over the brighter, shallow sands. Furthermore, the utilised adjacency effect 

corrections of Sen2Cor perform in- adequately for water surface pixels near the 

shoreline (Dörnhöfer et al., 2016). Adjacency effect could, therefore, produce 

 

 

Fig. 4.3.11. Probability and uncertainty of habitat distribution in Schinias. 

Displayed probabilities are the most accurate results (overall accuracy) of 

machine learning- based classification. Bathymetric contours derived from the 

Hellenic Navy Hydrographic Office are displayed in purple. Masked land is 

displayed in grey colour. (a) Deglinted S2-A 3-2-1 composite of the survey site. 

(b) SVM-derived P. oceanica probability. (c) SVM-derived sandy substrate 

probability. (d) Uncertainty (%). 
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Fig. 4.3.12. Probability and uncertainty of habitat distribution in Gavdos. Displayed 

probabilities are the most accurate results (overall accuracy) of machine learning-

based classification. Bathymetric contours derived from the Hellenic Navy 

Hydrographic Office are displayed in purple. Masked land is displayed in grey colour. 

(a) Deglinted S2-A 3-2-1 composite of the survey site. (b) RF-derived P. oceanica 

probability. (c) RF-derived rocky substrate probability. (d) RF- derived sandy 

substrate probability. (e) Uncertainty (%). 

 

erroneous reflectance values in both sites in the south of Crete due to their large  seabed  

slopes. As for 15/10/2017, there is a reported 3% error in the spectral response function of 

Sentinel-2 A over coastal aerosol and blue wave- lengths (both in use here), which can 

potentially further affect reflectances in coastal water applications, wherein these bands 

are highly exploited (B. Pflug, personal  communication;  06/09/2017).  Last  but  not  least,  

downscaling  b1  (Brodu,  2017)  enhances  its  resolution from 60- to 10-m/pixel; this 

exploits the spatial information of b1 but introduces relationships between it and the 

other  visible  bands  which  could possibly obstruct subsequent  corrections. 
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Random Forests and Support Vector Machines algorithms have been used to derive the  

probability  of  occurrence  of  the    three  distinctive habitats in the protected areas, while 

uncertainty of each class has been calculated for each site based on Shannon index 

(Shannon, 1949) to unveil regions where the presented S2-A-based methodological 

work- flow may have succeeded or failed. Both machine learning algorithms have been 

extensively used in image classification under several approaches (Belgiu and Dragut, 

2016; Maulik and Chakraborty,  2017).  The use of Shannon’s entropy as a metric of 

uncertainty is also not common in the domain of satellite remote sensing. The two 

algorithms provide different accuracies in each site. In Schinias, SVM provide the highest 

overall accuracy (S2 file) at 87.18%, with a small mis- classification between the two 

classes. This misclassification can be possibly attributed to the mixed pixels which occur 

in the area between seagrass and sand. These can occur mainly in the  borders  of  the  

meadow as the meadow has a compact form and few patches exit out of it or after a short 

storm that has transferred fine sand particles on the leafs. In Gavdos, RF produces the 

highest accuracy of 58.18% which is somewhat poor. This is maybe due to the fact that 

Gavdos coastal habitats are characterized by a highly fragmented seascape where all 

three mentioned habitats can exist within one S2 pixel (100 m²). In Samaria, the highest 

accuracy in the classification of the seagrass class     is produced from SVM classifier at 

100% accuracy with an overall ac- curacy of 80% (S2 file). There, mixed habitats also exist 

in a S2 pixel while the rocky substrate is temporarily covered by sand or small grain of 

pebbles which amplifies  spectral confusion. 

The selected field data were collected from field activities and/or from the interpretation  

of  high-resolution  aerial  (1-m/pixel)   and  satellite images (2-m/pixel). By using them in 

an image classification    with 10-m/pixel,  we  expect  a  mixed-pixel  problem－

inhomogeneity  is    introduced from neighboring areas which will be included  in  the  

pixel, thus a random pixel will contain spectral information from different  types of cover. 

Per pixel level unmixing can be a solution to overcome such issues (Poursanidis et al., 

2015). Another approach could be the collection of large homogeneous datasets 

corresponding to the same pixel size of Sentinel-2 in the form of polygons or the 

selection of pixels directly from the image corresponding to homogeneous areas; a 

comparison with high resolution imagery can support the selection of such areas. Also, 

the use of object-oriented analysis can be advantageous where spatial and texture 

infomation is utilized in addition to spectra information (Ma et al.,  2017). 

All in all, open and free archive of the Sentinel-2 satellite con stellation allows time- and 

cost-efficient, highly accurate coastal habitat mapping and satellite derived bathymetry. 

This new wealth of high-quality remote sensing data raises the need for suitable pre- 

processing, processing and analysis to extract appropriate quantitative and qualitative 

information. Standardizing methodologies for the two herein explored mapping efforts 
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will enable monitoring from seasonal to decadal scales at regional to global spatial 

scales; this, in turn, will allow the development of spaceborne quantitative indicators for 

effective ecosystem management and conservation through the  utilization  of  newly 

developed  cloud  environment (Google Earth Engine, DIAS etc). 
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4.4 Machine Learning-based Retrieval of Benthic Reflectance and 

Posidonia oceanica Seagrass Extent using a Semi-Analytical 

Inversion of Sentinel-2 Satellite Data 

 

4.4.1 Abstract 

 

In the epoch of the human-induced climate change, seagrasses can mitigate the resulting 

negative impacts due to their carbon sequestration ability. The endemic and dominant in 

the Mediterranean Posidonia oceanica seagrass contains the largest stocks of organic 

carbon among all seagrass species, yet it undergoes a significant regression in its extent. 

Therefore, suitable quantitative assessment of its extent and optically shallow 

environment are required to allow good conservation and management practises. Here, 

we parameterise a semi-analytical inversion model which employs above-surface 

remote sensing reflectance of Sentinel-2A to derive water column and bottom properties 

in the Thermaikos Gulf, NW Aegean Sea, Greece (eastern Mediterranean). In the model, 

the diffuse attenuation coefficients are expressed as functions of absorption and 

backscattering coefficients. We apply a comprehensive pre-processing workflow which 

includes atmospheric correction using C2RCC (Case 2 Regional CoastColour) neural 

network, resampling of the lower spatial resolution Sentinel-2A bands to 10m/pixel, as 

well as empirical derivation of water bathymetry and machine learning-based 

classification of the resulting bottom properties using the Support Vector Machines. 

SVM-based classification of benthic reflectance reveals ~300 ha of P. oceanica seagrass 

between 2 and 16 m of depth, and yields very high producer and user accuracies of 95.3% 

and 99.5%, respectively. Sources of errors and uncertainties are discussed. All in all, 

recent advances in Earth Observation in terms of optical satellite technology, cloud 

computing and machine learning algorithms have created the perfect storm which could 

aid high spatio-temporal, large-scale seagrass habitat mapping and monitoring, allowing 

for its integration to the Analysis Ready Data era and ultimately enabling more efficient 

management and conservation in the epoch of climate change. 

 

4.4.2 Materials and Methods 

 

 



   

88 

 

Study site 

The broader study site here contains ~12657 submerged hectares within the southeast 

Thermaikos Gulf, NW Aegean Sea, Greece (Fig. 4.4.1). The prevailing climatic, 

oceanographic, hydrographic and sedimentological conditions of this gulf, as well as the 

various socioeconomic activities in its waters have been thoroughly summarised 

elsewhere (Traganos and Reinartz,  

Fig. 4.4.1. Location of survey site within the Thermaikos Gulf and the Aegean Sea, Greece 

(inset map). The displayed Sentinel-2A image is a top-of-atmoshpere (toa) 4-3-2 

composite in UTM (zone 34) system/WGS84 projection. The depicted bathymetric 

contours are provided by the Hellenic Navy Hydrographic Service (HNHS). The displayed 

waterways are provided by the OpenStreetMap 

(http://download.geofabrik.de/europe/greece.html). 

 

2018a). The Thermaikos Gulf is thriving in two types of seagrasses in depths between 1.4 

and 16.5m: the endemic and dominant in the Mediterranean, Posidonia oceanica and the 

Cymodocea nodosa species (Traganos et al. 2017; Traganos and Reinartz, 2018a; Traganos 
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and Reinartz, 2018). 

 

Data 

 

Satellite data 

 

We used Copernicus Sentinel-2A (S2-A) satellite data in the present study. Along with 

Sentinel-2B, they comprise a system of twin-polar orbiting satellites, Sentinel-2. The first 

one was launched on 23 June 2015, while the second one on 7 March 2017. European 

Union’s Copernicus programme is the most comprehensive Earth Observation (EO) 

programme up-to-date. With a free, full and open data policy, this EO programme 

envisages to tackle global challenges in its six thematic areas: land, marine, atmosphere, 

climate change, emergency management and security. The Sentinel-2 constellation 

carries the MultiSpectral Imager (MSI) instrument which images the Earth’s surface from 

a mean altitude of 786 km, in 13 spectral bands, from the visible-near infrared (VNIR) to 

the short wave infrared (SWIR) spectrum at 3 spatial resolutions (10, 20, 60 m) with a 

swath width of 290 km. The combined temporal resolution of the twin satellites is 5 days. 

Sentinel-2’s radiometric resolution of 12-bit allows for 4096 brightness levels, which is 

expected to be beneficial in the delineation of the lower limit of Posidonia oceanica 

seagrass and optically deep water. 

 

The characteristics of the processed and analysed S2-A image are displayed in Table 

4.4.1. We downloaded the L1C product of the S2A image from the Sentinel Scientific Data 

Hub (https://scihub.copernicus.eu/). The selected L1C product consists of 100 km2 

orthorectified and spatially co-registered images in Universal Transverse Mercator 

(UTM)/ World Geodetic System 1984 (WGS94) projection. The atmospheric correction is 

conducted with the C2RCC neural network processor through ESA’s Sentinel toolbox 

SNAP. This processor depends on a large database of toa radiances and simulated water 

leaving reflectances to invert the atmospheric correction spectrum and to retrieve 

inherent optical properties (IOP) following the training of neural networks. It employs the 

Hydrolight model for the in-water modelling (Mobley, 1994) which derives all relevant 

IOPs at 443-nm wavelengths (S2 coastal aerosol wavelength). As C2RCC requires all 

bands in the same resolution, we also used the S2 resampling processor within SNAP, as 

well, to resample the coarser resolution bands of 60- and 20-m to 10-m pixel with a 

bilinear interpolation. In addition to the upsampling, this approach takes into account the 

particularities of the Sentinel-2 acquisition angles which can degrade S2-based image 

analysis by rendering visible the steps between neighboring granules (Gascon et al. 2017). 

 

 

https://scihub.copernicus.eu/
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Table 4.4.1. Sentinel-2A image characteristics 

Tile ID S2A_MSIL1C_20170330T092021_N0204_R093_T

34TFK_20170330T092849 

Acquisition date 30 March 2017 

Acquisition time 09.20 am UTC 

Solar zenith angle 38.75º 

Sensor incidence angle 4.29 

Sensor altitude 786 km 

 

Field and auxiliary data 

 

The field data collection is described in Traganos and Reinartz (2018a). We collected 

points associated with habitats and corresponding coordinates as well as bathymetric 

data during a 4-day survey in July 2016. Based on these data and our survey experience, 

we manually digitised polygons on the L1C image, displaying each of the four habitats 

present in our survey site (Posidonia oceanica and Cymodocea nodosa seagrasses, sand 

and photophilous algae-rocks). As we will discuss in section 2.3.3., these polygons were 

used to train, cross-validate and test the herein implemented machine learning classifier 

of Support Vector Machines (SVM). In addition to our own acquisition, we utilised 

bathymetric data from the Hellenic Navy Hydrographic Service (HNHS) to aid the training 

and validation of the Satellite-derived Bathymetry (SDB) of the Thermaikos Gulf.  

 

Methodology 

 

Here, we utilised the semi-analytical inversion method of Lee et al. (1998, 1999) and 

adapted it to the implemented satellite data and survey site. Based on the quasi-single 

scattering theory (Gordon, Brown and Jacobs, 1975), the Hyperspectral Optimisation 

Process Exemplar (HOPE) model has served, in turn, as the basis on which several 

optically shallow water inversion algorithms have been developed (Brando et al. 2009; 

Hedley, Roelfsema and Phinn, 2009; Klonowski, Fearns and Lynch, 2007; Mobley et al. 

2005). In HOPE, the remote sensing signals of the bottom and water column are 

mathematically separated and expressed by a few parameters (e.g. bottom reflectance, 

water depth, and water absorption and backscattering at a single wavelength). The 

accuracy of these radiative transfer equations (RTE) always depends on the required 

simplifications which are inherent in their nature.  

 

Initially, HOPE was developed using Hydrolight (Mobley, 1994) to simultaneously derive 

water depth, bottom reflectance and the various optical water column constituents from 
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Rrs (above-surface remote sensing reflectance) spectra via optimisation. Rrs, defined as 

the ratio of the water leaving radiance to downwelling radiance just above the water 

surface, is the fundamental parameter upon which all subsequent inversions are based. 

 

In the following paragraphs, we analytically describe how to derive water column and 

bottom properties from the atmospherically corrected Sentinel-2 visible bands before 

mapping the Posidonia oceanica seagrass meadows of our survey site. Naturally, in 

contrast to the 16 bands between 400 - 700 nm used as an environmental input in the 

development of HOPE, we adopted a simplified approach, tailored to the multispectral 

band set of S2; five S2-A bands in the visible range were utilised (coastal aerosol, blue, 

green, red and vegetation red edge bands at central wavelengths of 443.9 (λ1), 496.6 (λ2), 

560 (λ3), 664.5 (λ4) and 740.2 (λ5) nm, respectively. The first four bands are the usual 

suspects in the remote sensing of optically shallow, coastal waters, as they penetrate 

deeper into the water column, while the vegetation red edge band is used to compensate 

to a degree for under- or over-correction of the atmospheric interference. Additionally, 

we employed the Shortwave Infrared (SWIR) band 11 (central wavelength: 1613.7 nm) to 

mask out all terrestrial features. 

 

Terrestrial mask 

 

To further enhance aquatic features, we masked all terrestrial pixels using the 

resampled SWIR band 11 at 1610 nm. Xu (2006) showed that the use of bands in the SWIR 

wavelength retrieves information from water bodies with greater accuracy than the use 

of Near Infrared (NIR) bands. We applied an Iso Cluster Unsupervised Classification on 

BOA band 11 to separate terrestrial and aquatic pixels into two classes and subsequently 

retrieved the latter. 

 

Semi-analytical inversion of water column properties and benthic reflectance 

 

General description  

 

Remote sensing reflectance above surface, Rrs, forms the basis for the inversion of sub-

surface properties like the water column constituents, depth and bottom reflectance. In 

optically shallow waters, numerous parameters contribute to the remotely sensed from 

a spaceborne sensor Rrs, such as the absorption and backscattering coefficients of 

suspended and dissolved matter, water depth and spectral bottom albedo. For vertically 

and horizontally homogeneous waters and assuming zero contribution from the water 

column inelastic scattering to the water leaving radiance, Rrs is conceptually summarised 

here as:  
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           𝑅rs(𝜆)  =  𝑓[𝑎(𝜆), 𝑏b(𝜆), 𝜌(𝜆), 𝐻, 𝜃w, 𝜃v, 𝜑]                                                            (1) 

where a(λ) is the absorption coefficient, bb(λ) is the backscattering coefficient, ρ(λ) is the 

bottom albedo, Η is the water depth, θw is the sub-surface solar zenith angle, θν sub-

surface sensor viewing angel from nadir, and φ is the viewing azimuth angle from the 

solar plane. For brevity, we will omit the wavelength notation for each wavelength-

dependent parameter unless when it is required for clarity. 

 

The resulting reflectance Sentinel-2 composite of the atmospheric correction and 

resampling is not Rrs, rather than the normalised water leaving reflectance, Rhown which 

we converted to Rrs using: 

                 𝑅rs =  
𝑅hown

π
                                                                                                     (2) 

Afterwards, we followed the two-fold pre-processing method of Lee et al. (2001), first, to 

minimise the possible produced noise from low signals in longer wavelengths than 600 

nm (Red and Vegetation red edge bands for the herein used Sentinel-2 band set) and, 

second, to compensate for under- or over-correction of the atmospheric interference by 

C2RCC. The first part was performed by applying a 3x3 low-pass filter in the two 

aforementioned bands. For the second part, if we assume that the product of (2) is Rrs
raw : 

𝑅rs
∗ (𝜆) =  𝑅rs

raw(𝜆) −  𝑅rs
raw(𝜆5) 

                                               𝛥 = 0.0001 + 0.02𝑅rs
∗ (𝜆4)         

                                                      𝑅rs(𝜆) =  𝑅rs
∗ (𝜆) + 𝛥                                                                                                                   (3) 

This corrected Rrs is then used to invert sub-surface properties. 

Following Hydrolight simulations, Lee et al. (1999) approximated optically shallow Rrs with 

φ = 90º as: 

𝑅rs =  
𝜁𝑟rs

1−𝛤𝑟rs
                                 (4) 

where rrs is the sub-surface remote sensing reflectance, that is the ratio of the water 

leaving radiance to downwelling radiance just below the water surface. The denominator 

1-Γrrs accounts for the internal reflection of the air-water interface, while ζ is the water-

to-air divergence factor (Mobley, 1994). The effects of the internal reflection can be large 

in turbid or very shallow waters and thus are retained here due to the existence of 

shallow waters (<1 m) in our survey site. We used ζ = 0.5 and Γ = 1.5 after the findings of 

Morel and Gentili (1993) for remote-sensing observation angles. 

𝑟rs =  𝑟rs
c + 𝑟rs

b       
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    ≈ 𝑟rs
dp

[1 − exp (− (
1

cos(𝜃w)
+

𝐷u
c

cos(𝜃ν)
) 𝜅𝛨)] +

1

π
𝜌 exp (− (

1

cos(𝜃w)
+

𝐷u
b

cos(𝜃ν)
) 𝜅𝐻)                            (5) 

with  

rrs
dp, the sub-surface remote sensing reflectance for optically deep waters equaling here:  

                                                   𝑟rs
dp

≈ (0.084 + 0.170𝑢)𝑢                                                                                                          (6)  

with 

                                                                   𝑢 =  
𝑏b

𝑎+𝑏b
                                                                                                                                   (7)   

                               𝐷u
C ≈ 1.03(1 + 2.4𝑢)0.5, and 𝐷u

b ≈ 1.04(1 + 5.4𝑢)0.5                                                             (8)   

and,  

                                                                   𝜅 = 𝛼 + 𝑏b                                                                                                                              (9)  

                                                            𝑎 = 𝑎w + 𝑎phy + 𝑎g                                                                                                             (10) 

                                                                  𝑏b = 𝑏bw + 𝑏bp                                                                    (11)    

In the above-given set of equations, Du
c and Du

b are the optical path-elongation factors for 

water column and bottom photons, respectively, and are approximated as in Lee et al. 

(1999). Additionally, κ is the attenuation coefficient, aw is the absorption coefficient of pure 

seawater, aphy is the absorption coefficient of phytoplankton pigments, and ag is the 

absorption coefficient of gelbstoff and detritus. Additionally, bbw is the backscattering 

coefficient of pure seawater and bbp is the backscattering coefficient of suspended 

particles.  Both u in Equation (7) and κ in Equation (9) are inherent optical properties and 

altogether, the combination of Equations (5)-(11) provides the expression for Rrs. 

The left term in Equation (6) comprises the path radiance contribution originating in 

optically deep waters without any bottom signal, while the right term expresses the 

bottom contribution following attenuation by the two-way path throughout the water 

column. 

 

Parameterization 

 

We employed the described model of Equation (5) to solve for the benthic reflectance, rrs
b. 

The retrieval of such sub-surface properties requires the spectral decomposition of 

Equation (5). As we utilised Sentinel-2A’s bands 1-4 in 10-m resolution for all subsequent 

calculations, Equation (5) is:  
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𝑅rs(𝜆1) =  𝑓[𝑎w(𝜆1), 𝑎phy(𝜆1), 𝛼g(𝜆1), 𝑏bw(𝜆1), 𝑏bp(𝜆1), 𝑟𝑟𝑠
𝑏 (𝜆1), 𝐻 ] 

𝑅rs(𝜆2) =  𝑓[𝑎w(𝜆2), 𝑎phy(𝜆2), 𝛼g(𝜆2), 𝑏bw(𝜆2), 𝑏bp(𝜆2), 𝑟𝑟𝑠
𝑏 (𝜆2), 𝐻 ] 

      𝑅rs(𝜆3) =  𝑓[𝑎w(𝜆3), 𝑎phy(𝜆3), 𝛼g(𝜆3), 𝑏bw(𝜆3), 𝑏bp(𝜆3),  𝑟𝑟𝑠
𝑏 (𝜆3), 𝐻 ]         (12)                                             

𝑅rs(𝜆4) =  𝑓[𝑎w(𝜆4), 𝑎phy(𝜆4), 𝛼g(𝜆4), 𝑏bw(𝜆4), 𝑏bp(𝜆4), 𝑟𝑟𝑠
𝑏 (𝜆4), 𝐻 ] 

 

To invert Equation (12) and obtain rrs
b, we implemented an additional series of empirical 

and semi-analytical equations to mathematically solve for the unknowns and ultimately 

derive the bottom properties. It is important to note here that we slightly adapted 

equations, when needed, to match the central wavelengths of Sentinel-2A bands. 

 

The absorption coefficient of phytoplankton pigments, aphy(λ), is estimated using the 

single-parameter model of Lee (1998): 

                                  𝑎phy(𝜆) = [𝛼ο(𝜆) + 𝛼1(𝜆) ln(𝑎phy(𝜆1)] 𝑎phy(𝜆1)                                                                  (13) 

with aphy(λ1) yielded by C2RCC processor. Empirically-derived values of ao and a1 were 

taken from Table 2 of Lee et al. (1999).  

 

Following Bricaud, Morel and Prieur (1981) and Carder et al. (1999), the absorption 

coefficient of gelbstoff and detritus, ag(λ) is: 

                                                 𝑎g(𝜆) = 𝑎g(𝜆1)𝑒−0.015(𝜆−440)                                                                                                  (14)  

with ag(λ1) also estimated by C2RCC.                                                     

 

The backscattering coefficient of suspended particles, bbp(λ) equals: 

                                                      𝑏bp(𝜆) = 𝑏bp(𝜆2) (
550

𝜆
)

𝑌

                                                                (15) 

with   

                                                       𝑏bp(560) = 8𝑅rs(𝜆4)                                                                (16) 

after Dekker et al. (2011). Y expresses the spectral shape parameter of particle 

backscattering. We used the default value of 0.5 for all the pixels here (Lee et al. 2001). 

 

 Satellite-derived Bathymetry (SDB) 
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The final unknown to be determined before the inversion of bottom reflectance is the 

water depth, H. Estimations of bathymetry in optically shallow waters is vital to decrease 

reflectance changes which are attributed to variable depth and water column attenuation. 

Derivation of bathymetry over dense P. oceanica seagrass beds can be challenging due to 

their small reflectance, caused by shading within the canopy (Dekker et al. 2006), which 

often render the beds to reflect less light than the neighbouring optically deep waters. In 

addition, these beds may appear deeper than a seabed of higher reflectance (e.g. sand) at 

the same true depth. Researchers have traditionally derived bathymetry using empirical 

regression of satellite band ratios (Dierssen et al. 2003; Lyzenga, 1978; Mishra et al. 2005; 

Stumpf et al. 2003; Traganos and Reinartz, 2018a). Empirical SDB approaches are valid 

only within the extent of their applied survey site, requires less data processing, however 

they are expected to be less accurate than semi-analytical and analytical approaches 

(Brando et al. 2009; Hedley, Roelfsema and Phinn, 2009; Klonowski, Fearns and Lynch, 

2007; Lee et al. 1999; Mobley et al. 2005). 

 

Site-specific, empirical SDB algorithms exploit the assumption that the ratio of 

attenuation coefficients for a pair of two bands remains the same independent of the 

bottom type and water depth (Lyzenga, 1978). Here, we regressed the log-transformed 

ratio of sub-surface remote sensing coastal aerosol and green reflectance, after 

Equation (5), against in situ measured depths to develop an exponential relationship: 

                     𝐻 = 0.4102𝑒1.3814𝑥                                                                                 (17) 

                                                              𝑥 = ln (
𝑟rs(𝜆1)

𝑟rs(𝜆3)
)                                                                 (18) 

which explained >86% of the variation (p < 0.001) in estimated bathymetry in 43 points (Fig. 

4.4.2) between 0.8 – 25 m with a root-mean-square error (RMSE) of 2.2 m. It is noteworthy 

that from the 43 points, 2 were over rocky seabed with algae, 4 over Cymodocea nodosa 

seagrass, 18 over sand, and 19 over Posidonia oceanica seagrass. We employed Equation 

(17) to estimate H pixel-wise for the optically shallow extent of  

 

our survey site, an extent taken from the observations of Traganos and Reinartz (2018a). 

To remove any potential noise resulting from the band rationing, we applied a 5x5 median 

filter on the SDB result. Finally, we validated the median filtered SDB using 22 additional 

in situ depth estimations. 

 

Machine learning-based classification of Posidonia oceanica seagrass beds 

 

Following the correction of Sentinel-2A bands 1-4 to the benthic reflectance as if the 

satellite MSI instrument was directly sensing the seabed, we applied the machine 
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learning classifier of Support Vector Machines (SVM) at all six stages of reflectance 

correction (Rtoa, Rhown, Rrs
raw, Rrs, rrs, rrs

b) to map the per-pixel distribution of P. oceanica 

seagrass meadows in our survey site and test the contribution of each one of the 

correction steps. SVM are a group of theoretically superior, universal machine learning 

algorithms based on the statistical learning theory (Vapnik, 1995). The aim of SVM is to 

differentiate two classes by fitting an optimal hyperplane to the training data of each class 

in a multi-dimensional space. Support vectors are the data points closer to the separating 

hyperplane and they are the only ones which define it. Researchers have employed 

efficiently SVM to solve both linear and, more significantly, non-linear classification 

problems. In the latter case, the use of a kernel function in a higher dimensional feature 

space classifies more accurately the training data by the better fit of a linear hyperplane 

to the new data distribution. In this study, we utilised the Gaussian radial basis function 

kernel (RBF):  

                       𝐾(𝑥i, 𝑥j) = exp (−𝑔ǀ𝑥i − 𝑥jǀ
2)                                               (19) 

where g defines the width of the RBF and xi  and xj represent feature vectors. Moreover, 

one has to also specify the regularisation parameter C, which regulates the degree of 

acceptable misclassification errors, hence limiting the influence of particular support 

vectors. We also conducted a two-dimensional grid search inside a preset range to find 

an optimal pair of values for g and C. The accuracy of this grid search is monitored 

internally by the k-fold cross-validation.  

 

To classify, validate and test the presence of P. oceanica seagrass, we split our initially 

chosen 2510 pixels (in the forms of polygons), comprising 1.45% of the whole amount of 

image pixels, into three parts: a) the training set, where we parameterised multiple SVM 

algorithms, b) the cross-validation set, where the parameterised algorithms of (a) were 

cross-validated based on their performance, with the best performing being chosen, and 

finally, c) the test set, where the best performing SVM algorithm was tested for its 

accuracy on the whole image. Both the training and cross-validation set contained 80% of 

the 2510 pixels with the number of cross-validation folds, k, determining the final amount 

of both sets. For example, if k is 4, then with the 80% of the pixels allocated for the training 

and cross-validation phase, the latter will employ 20% (80/4) for every internal cross-

validation, while the former will employ the remaining 60%. The test set used the 

remaining 20% of the pixels. Finally, we ran all SVM experiments using the LIBSVM library 

(Chang and Lin, 2013) in EnMAP-Box (van der Linden et al. 2015). 
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Fig. 4.4.2. Exponential regression between the log-transformed ratio of sub-surface 

remote sensing coastal aerosol (443.9 nm) and green (560 nm) reflectances, and in situ 

measured bathymetry from the Thermaikos survey site. The displayed exponential 

algorithm was used to empirically derived bathymetry in the present study. 

 

 

We evaluated the SVM classification results (presence/absence of P. oceanica 

seagrasses) using overall (OA), producer (PA) and user accuracies (UA) per class. While 

PA is an important statistical metric for the scientist who creates the habitat map, UA is 

more vital towards the management of the region under study as it provides a 

quantitative probability of the actual presence of a mapped habitat in this region i.e. P. 

oceanica seagrass beds. 

4.4.3 Results 

Water column properties 

 

The first step towards the retrieval of bottom properties and the mapping of the extensive 

Posidonia oceanica seagrass meadows in the waters of the Thermaikos Gulf was the 

pixel-wise inversion of water column properties from a Sentinel-2A satellite image, 

sensed on the 30 March 2017. In the implemented semi-analytical inversion for optically 

shallow waters (Lee et al. 1998, 1999), both downward and upward diffuse attenuation 

coefficients, are explicitly expressed as functions of the absorption, a, and 

backscattering, bb, coefficients. 
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As regards to individual absorption coefficients, for a solar zenith angle of 38.75º and a 

wind speed of approximately 0.9 m s-1, aphy(λ1), the absorption coefficient of phytoplankton 

pigments at the coastal aerosol wavelength of S2-A, employed to estimate aphy at all other 

herein used wavelengths, ranged between 0 – 1.84 m-1 in the optically shallow waters of 

the Thermaikos Gulf (Fig. 4.4.3a). The absorption coefficient of gelbstoff and detritus at 

443.9 nm, ag(λ1), used to derive ag at all other used wavelengths (Equation 14), spanned the 

0 – 5.52 m-1 range (not shown here). Along with aw, absorption coefficient of pure 

seawater, values of 0.0075 m-1, 0.0191 m-1, 0.0619 m-1 and 0.429 m-1 at the respective, first 

four S2-A band wavelengths, we calculated the total absorption coefficients, a after 

Equation (9), which were 0.01 – 5.53 m-1 at 443.9 nm, 0 – 6.5 m-1 at 496.6 nm, 0.062 – 1.09 m-1 

at 560 nm, and, finally, 0.43 – 1.94 m-1 at 664.5 nm. 

 

On the other hand, concerning individual backscattering coefficients, bbp(λ3), the 

backscattering coefficient of suspended particles at the green S2-A wavelength, which 

was utilised in Equation (15) to derive all other bbp (Fig. 4.4.3b; Equation (16)) ranged 

between 0– 0.12 m-1 . With estimated bbw values of 0.0037 m-1, 0.0023 m-1, 0.0014 m-1 and 

0.0006 m-1 at respective S2-A coastal aerosol, blue, green and red wavelengths (Morel, 

1974), we derived the total backscattering coefficients, bb after Equation (11), between 0.01 

– 0.14 m-1 at 443.9 nm, 0 – 0.13 m-1 at 496.6 nm, 0 – 0.12 m-1 at 560 nm, and, finally, 0– 0.11 m-1 

at 664.5 nm. 

Following estimations of both absorption and backscattering coefficients, we derived 

their pixel-wise sum, κ, attenuation coefficient in the optically shallow extent of the 

Thermaikos Gulf, which ranged between 0.01 – 5.58 m-1 at 443.9 nm (Fig. 4.4.3c), 0 – 6.49 at 

496.6 nm (produced by C2RCC), 0.06 – 1.2 nm at 560 nm, and 0.43 – 2.04 at 664.5 nm. 

  

In addition to κ, calculation of a and bb, yielded u, an important inherent optical parameter, 

after Equation (7), towards the derivation of both the ranges of optical path-elongation 

factors for water column and bottom photons, Du
c and Du

b, respectively, (Equation 8) and 

rrs
dp, the sub-surface remote sensing reflectance for optically deep waters (Equation 6). 

The values of Du
c and Du

b were 1.03 – 2.14 and 1.4 – 3.03 in all bands, correspondingly. 

Median rrs
dp values over 96581 optically deep water pixels were 0.05 sr-1, 0.007 sr-1, 0.004 

sr-1 and 0.0006 sr-1 at coastal aerosol, blue, green and red central wavelengths, 

respectively. 

 

 

 

Satellite-derived Bathymetry 
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We used the site-specific exponential algorithm of Equations (17) & (18) to empirically 

derive pixel-wise bathymetry, H, of the optically shallow extent of our survey site in the 

Thermaikos Gulf (Fig. 4.4.4); the mean depth of the Gulf is 10.98 m. We validated the 5x5 

median filtered SDB using 22 in situ measurements (of the initial 65 points). These 

measurements revealed a coefficient of determination (R2) value of 0.48 with an RMSE of 

3.67 m over the whole optically shallow extent (Fig. 4.4.5).  

 

Benthic reflectance 

 

Employing Equations (5)-(18), we performed the pixel-wise, semi-analytical inversion of 

bottom properties, videlicet, water column correction, of the 10m/pixel coastal aerosol, 

blue, green and red S2-A bands in the optically shallow waters of the Thermaikos Gulf. 

This mixture of empirical and semi-analytical equations derived optical water column 

constituents and water depth per pixel which were used in turn as inputs to output pixel-

wise bottom reflectance, rrs
b, in 173559 pixels (Fig. 4.4.6a). The retrieved rrs

b were 0– 0.02 

sr-1 at 443.9 nm, 0.001 – 0.04 sr-1 at 496.6 nm, 0.005 – 0.076 sr-1 and 0.01 – 0.04 sr-1 at 664.5 

nm over all optically shallow habitats. 

 

Machine learning-based classification of Posidonia oceanica seagrass beds 

 

Fig. 4.4.6 shows the classified by SVM reflectances (3-band composites, 6-fold cross 

validation) of P. oceanica seagrass meadows at the bottom reflectance stage. The 

respective accuracy assessment is provided in Table 4.4.2. In terms of all stages of 

reflectance correction, however, the best performing classification was surprisingly the 

Rtoa  composite with an overall accuracy of 98.8% (0.55% standard error), and PO producer 

and user accuracy of 97.4% and 99.47%, respectively. It was followed by rrs
b which featured 

decreased OA, PA and UA of 0.79% (lower 0.15% standard error), 2.09% and 0.01%, 

respectively. We observe that the raw above-surface remote sensing reflectance, Rrs
raw 

exhibited the lowest accuracies, while in comparison, the corrected for atmospheric 

interference one, Rrs, and the sub-surface remote sensing reflectance, rrs were both 

0.59%, 0.52% and 1.1% more accurate in terms of OA, PA and UA, correspondingly. 

 

Following the elaboration on the split between training and cross-validation data in the 

second paragraph of 2.3.3., the 6-fold cross-validation means that from the 

80% of the data which were allocated for training and cross-validating the individual SVM 

algorithm, 67% was used for the former and the remaining 13% for the latter step. 

 

Optically shallow remote sensing of the Thermaikos Gulf using Sentinel-2A imagery 

revealed eight dense P. oceanica seagrass meadows which cover an area of ~300 ha 
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between 2 – 16 m. PO beds, therefore, occupied 17.3% of the optically shallow extent of the 

survey site. 

 

OA is overall accuracy, SE is standard error, PA is producer accuracy and UA is user 

accuracy. PO represents P. oceanica seagrass, while NON-PO represents all other 

merged classes. 

 

Given herein implemented polygons for the machine learning-based classification of P. 

oceanica seagrass habitat, we extracted 320 pixel values over this particular habitat from 

all the produced reflectance composites of the present study (e.g. Rtoa, Rhown, Rrs
raw, Rrs, rrs, 

rrs
b) (Fig. 4.4.7). We show Fig. 4.4.7 to aid understanding of the spectral behaviour of P. 

oceanica-vegetated seabed across the relevant to optically shallow remote sensing 

spectrum and relevant corrections. There are several notable characteristics in Fig. 4.4.7: 

 

1. All corrections between the toa and bottom layers featured a reflectance peak at 

496.6 nm and decay towards the 664.5-nm wavelength. 

2. The benthic reflectance of PO peaked at 560 nm, while was nearly equal at the S2-A 

blue and red central wavelengths. 

3. rrs
b ranged from 0.03% of the Rtoa at the coastal aerosol wavelength to 2.1% of it at 

the green wavelength. 

4. PO reflectances at all levels were lower than 12.7% of the initial remote sensing 

signal. 

 

We also show the mean reflectance of Posidonia oceanica seagrass and other co-

existing habitats (Cymodocea nodosa seagrass, photophilous algae and deep water) for 

the produced reflectance composite of rrs
b) (Fig. 4.4.8). Habitats in our survey site 

exhibited different peaks, troughs and variable reflectance across the Sentinel-2 bands 

which allow their more accurate machine learning-based discrimination. 

 

4.4.4 Discussion 

 

Our main objective in this study was to evaluate the suitability of the Sentinel-2 satellite to 

quantitatively derive benthic reflectance as well as the distribution of the endemic and 

dominant in the Mediterranean P. oceanica seagrass meadows between 0 – 16m in 1736 

optically shallow hectares of the Thermaikos Gulf, NW Aegean Sea, Greece. To reach our  
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Fig. 4.4.3. Examples of retrieved inherent parameters from both C2RCC and the herein 

parameterised HOPE (Lee et al. 1999) model in the Thermaikos Gulf (see Fig. 4.4.1). (a) 

Absorption coefficient of phytoplankton pigments at 443.9 nm, (b) Backscattering 

coefficient of suspended particles at 560 nm, (c) Attenuation coefficient at 496.6 nm. 

 

objective, we employed a methodological workflow which included atmospheric and air-

water interface correction, resampling of the implemented lower resolution Sentinel-2 

bands, satellite-derived bathymetry 

 

 
Fig. 4.4.4. 5x5 median-filtered, Satellite-derived bathymetry (H) of the Thermaikos Gulf 

(see Fig. 4.4.1) based on the empirical regression of Equations (17)-(18) shown in Fig 2. The 

displayed extent follows the application of an optically shallow mask until 16 m after 

Traganos and Reinartz (2018a). 

 

using an empirical site-specific ratio, semi-analytical inversion of optical water column 

constituents and bottom reflectance (Lee et al. 1998, 1999) and, finally, the machine 

learning algorithm of Support Vector Machines (Vapnik, 1995). 
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Sentinel-2 suitability for P. oceanica seagrass mapping 

 

Ideally, mapping approaches in optically shallow waters, as the herein studied site, 

should involve suitable atmospheric, air-water interface and water column corrections 

to derive bottom reflectance prior to the classification step. Here, the SVM classifier on 

S2-A coastal aerosol, blue, green red bottom reflectances showed a very high producer 

accuracy of 97.4% and user accuracy of 99.47% on a two-class problem (presence or 

absence of P. oceanica beds) with an RBF kernel and a 6-fold cross-validation. SVM 

yielded more accurate results following classification of the Rtoa composite, namely prior 

to any correction of the reflectance, while the classified benthic reflectance composite, 

Rrs
b yielded the second best observed accuracies. This observation raises questions 

about the necessity of correcting the top-of-atmosphere to the benthic reflectance when 

one does not need accurate retrieval of the latter―in contrast to the case of forward 

modelling or existence of accurate field data for optimisation approaches― rather than 

an accurate classification of the extent of benthic habitat. We assume that application of 

the same workflow on a different Sentinel-2 or other multispectral/hyperspectral image 

would produce increasing efficiency from stages 1 to 6 of the successive reflectance 

corrections. Nevertheless, the herein utilised workflow for P. oceanica mapping 

produced accuracies (OA, PA, UA) greater than 93% at all stages of reflectance correction 

(Table 4.4.2).  

 

The small misclassification between the two classes could be attributed to mixed pixels 

of any of the three following types: a) P. oceanica seagrass and sand (near or on top of 

seagrass canopy), b) P. oceanica and Cymodocea nodosa seagrass, which is also studied 

near the meadows of the former (Traganos and Reinartz (2018a), and c) P. oceanica 

seagrass and optically deep seabed due to the low reflectance of the former and the 

inclusion of the latter in the implemented optically shallow mask here. We applied the 

optically shallow mask following previous findings concerning the depth range of P. 

oceanica presence (Traganos and Reinartz, 2018a). More accurate approaches as the 

Substratum Detectability Index implemented in the SAMBUCA semi-analytical model 

(Brando et al. 2009) could have provided better discrimination between optically shallow 

and deep pixels, and thus mapping of the aquatic habitats in study. Polygons utilised for 

training, cross-validation and test of SVM were extracted by interpretation of the 

presence/absence of P. oceanica seagrass meadows on the processed S2-A imagery.  

 

In this study, we paired the machine learning of SVM with the semi-analytical model of 

HOPE to retrieve the benthic extent of seagrass in a Mediterranean Gulf with 

neighbouring habitats of high variation in their reflectance (shallow sands of high 

reflectance to deep seagrasses of low reflectance). Modifying the benthic reflectance 
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parameterisation of HOPE, BRUCE semi-analytical model (Klonowski, Fearns and Lynch, 

2007) retrieves benthic cover of three substrates (seagrass, sediment and brown algae) 

along with bathymetry by spectral matching of modelled and image reflectances. While 

we did not test the applicability of BRUCE model and/or compare it to the SVM approach 

here, we expect the adaption and estimation of four-component bottom reflectance 

fractions to improve accuracies of our methodological workflow. 

  

 

 

 
Fig. 4.4.5. Validation of the Satellite-derived Bathymetry (H) shown in Fig. 2 and 4.4.4. H 

was utilised in Equation (5) to invert bottom reflectances. 
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Fig. 4.4.6. Machine-learning-based classification of P. oceanica seagrass―shown in 

green in panel (b) ―bottom reflectances. Accuracy assessment is shown in Table 2. 

 

Table 4.4.2. Accuracies of classified reflectance composites. 

 

Reflectance Number of folds Number of bands OA (% ) SE (% ) Habitat PA (% ) SE (% ) UA (% ) SE (% )

R toa 6 3 98.81 0.55 NON-PO 99.68 0.22 98.42 0.56

PO 97.40 6.15 99.47 0.32

R hown 6 3 97.42 0.84 NON-PO 99.68 0.24 96.28 0.84

PO 93.75 7.43 99.45 0.33

R rs 
raw

6 3 96.83 0.87 NON-PO 99.04 0.31 95.96 0.88

PO 93.23 7.76 98.35 0.57

R rs 6 3 97.42 0.84 NON-PO 99.68 0.24 96.28 0.84

PO 93.75 7.47 99.45 0.33

r rs 6 3 97.42 0.84 NON-PO 99.68 0.24 96.28 0.84

PO 93.75 7.43 99.45 0.33

r rs
b

6 3 98.02 0.73 NON-PO 99.68 0.23 97.19 0.74

PO 95.31 6.58 99.46 0.33
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Fig. 4.4.7. Mean spectral reflectances (plus standard deviation) over 320 pixels of 

classified as P. oceanica seagrass beds for the four first bands of Sentinel-2A (all in 

10m/pixel resolution) for all the estimated products in the present study. Description of 

reflectance denominators are provided in section 2.3.2. The secondary y axis displays 

reflectance values only for the Rtoa. 

 

 
Fig. 4.4.8. Mean spectral reflectances of the classified habitats for the four first bands of 

Sentinel-2A (all in 10m/pixel resolution) for bottom reflectance product. PO and CN 

represent Posidonia oceanica and Cymodocea nodosa seagrasses, respectively. 
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In general, machine learning-based mapping approaches in the remote sensing of 

optically shallow habitats are rare. In one of these SVM and RF(Random Forests)-based 

approaches, also directly comparable to the present study, due to the same underwater 

setting (Thermaikos Gulf) and satellite imagery, the best observed accuracies were 

somewhat similar (94.4% overall accuracy, 100% producer accuracy, 94.8% user 

accuracy), albeit using an almost 10-fold smaller set of training and test pixels (228 vs 

2510 pixels here) in a smaller optically shallow extent (three vs eight meadows here). This 

last observation about the amount of training data comes in line with the findings that 

SVM define well the hyperplane even from a small number and/or data quality 

(Mountrakis, Im and Ogole, 2011). SVM defines the hyperplane allocating only the support 

vectors from the whole amount of the training data. To achieve higher accuracies, 

therefore, one has to select suitable data points which are likely to be support vectors 

rather than a large data set. This is exemplified by the observed ratios of support vectors 

to the total amount of training data in use in our study and the study in comparison 

(Traganos and Reinartz, 2018a). In our approach, only 4.7% of the training data in use are 

support vectors, while in the latter the respective ratio is 45.9% on a nearly 25 times 

smaller training set. It is noteworthy that the training data set in our study consisted of 

polygons (set of pixels) rather than individual pixels as in Traganos and Reinartz (2018a).  

 

In another application in the same coastal environment of the Thermaikos Gulf, SVM 

yielded an overall accuracy of 68.1%, producer accuracy of 95.1%, and a user accuracy of 

70.9% using Planet’s multispectral CubeSat-derived imagery and the empirical water 

column correction of Lyzenga (1978) (Traganos et al. 2017). This highlights the issue of 

SVM with noisy data, such as the Planet’s CubeSat-derived imagery over coastal areas, 

as they are algorithms not optimised to deal with this problem (Mountrakis, Im and Ogole, 

2011). SVM performance in Traganos et al. (2017) increased by the use of the Unmixing-

based Denoising (UBD) which has also shown remarkable improvements in 

hyperspectral scenes over coastal waters (Cerra et al, 2013, 2017). Elsewhere, Eugenio, 

Marcello and Martin (2015) employed SVM algorithm with an RBF kernel in a similarly 

parameterised radiative transfer model to ours to map benthic habitats on a WorldView-2 

with an overall accuracy of 73% in a depth range between 0 – 25m.  

 

 

Sentinel-2 suitability for inverting water column properties, bathymetry and benthic 

reflectance in optically shallow waters 

 

The initial model-driven spectral optimisation technique of HOPE (Lee et al. 1998, 1999) 

simultaneously retrieves optical water column properties and water depth. Here, we 

simplified its radiative transfer equations to derive water column and bottom properties 
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from a Sentinel-2 image, while we estimated bathymetry using an empirical regression. 

The simplification is required due to the limited spectral bands of S2 in comparison to the 

initially 16 bands between 400-700 nm implemented in the development of HOPE. 

Moreover, the central wavelengths of S2 bands are slightly different than the utilised 

wavelengths in the initial radiative transfer equations (e.g. 560 nm for S2-A band 3 vs 550 

nm in the bbp(λ3) coefficient) which is expected to be a source of error here. Lack of 

relevant in situ data constrained the assessment of the retrieval error of resulting water 

column and bottom properties―produced either by C2RCC or the empirical equations. As 

regards to the atmospheric and in-water processor C2RCC, it is mainly used as the 

ground segment processor of the Sentinel 3 OLCI for generating Case 2 water-related 

products and also in the MERIS 4th reprocessing. Toming et al. (2017) has utilised it to map 

water leaving reflectance, IOPs and water quality parameter (e.g. chlorophyll a, 

suspended matter and dissolved organic matter) in the optically complex Baltic Sea from 

Sentinel-3 data; they reported realistic spectra for the yielded water leaving reflectance 

in contrast to bad correlations of the IOPs and water quality parameters with in situ data. 

 

Concerning the optical water column properties, derived κ(λ2) (Fig. 4.4.3c) by C2RCC 

displayed higher values (maximum of 6.49 m-1) and much greater variation in the optically 

shallow waters of the Thermaikos Gulf near the terrestrial part than the bottom portion of 

the Sentinel-2 image which comprise optically deep waters. Τhis behavior is normal as κ 

is the sum of a, the total absorption coefficient and bb, the total backscattering coefficient, 

and these optical parameters tend to be higher and to strongly vary near the terrestrial 

side due to the river runoff (Fig. 4.4.1) and higher backscattering of possibly suspended 

sand particles of the underlying seabed. Additionally, the mean κ(λ2) of 0.044 m-1 is 

somewhat lower than the image-derived 0.067 m-1 of Traganos and Reinartz (2018a) for 

the same waters. All in all, existence of relevant field data could further resolve the 

accuracy of the produced parameters by C2RCC. 

 

Regarding the satellite-derived bathymetry, H, we estimated a 10-m pixelwise 

bathymetry map of our survey site using an empirical regression between the super-

resolved to 10m/pixel coastal aerosol and the green sub-surface remote sensing 

reflectance, rrs. We utilised the coastal aerosol instead of the previously implemented 

blue band (Traganos and Reinartz, 2018a) to exploit its greater penetration in the optically 

shallow water column. Studies related to SDB approaches have shown that sensors with 

bands centred around 443 nm yield more accurate results in contrast to those lacking a 

similar spectral band (Collin et al. 2012; Pacheco et al. 2015). On the other hand, we should 

note two inherent issues in empirical SDB approaches over optically shallow 

environments with dense seagrass meadows as in the Thermaikos Gulf. The first issue is 

related to the contribution of the underlying low reflectance of seagrass to the SDB which 
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is apparently large. This issue is two-fold: a) First, it causes an overestimation of SDB due 

to the somewhat failure of the herein implemented ratio to minimise seagrass 

contribution, and b) As we implemented an optically shallow mask between 0 – 16m, 

following the findings of Traganos and Reinartz (2018a), this is expected, according to 

point (a), to include optically deep pixels in the mask which could cause misclassification 

in the detection of P. oceanica seagrass due to the marginal difference between the beds 

of the latter and neighbouring optically deep waters. The second issue is more general 

and is related to the inherent errors due to the simple nature of the empirically-derived 

bathymetry in comparison to more sophisticated semi- or analytical derivations. 

Nonetheless, the empirical approach provides a time- and cost-efficient way for 

estimating SDB given existence of a set of accurate in situ bathymetry measurements 

(Dierssen et al. 2003; Stumpf et al. 2003). 

 

Finally, concerning the suitability of Sentinel-2A to invert benthic reflectances, 

quantitative assessment (Fig. 4.4.7) reveals that our processing chain succeeded in 

retrieving the characteristic spectrum shape for seagrass species presented elsewhere 

(Fyfe, 2003; Thornhaug, Richardson and Berlyn, 2005). In contrast to the correct spectral 

shape, the magnitude at all four herein wavelengths was nearly ten-fold less at 443.9 nm, 

50% lower at 496.6 nm, seven times less at 560 nm, and nearly twice as low at 664.5 nm in 

comparison to the reported magnitudes of Thornhaug, Richardson and Berlyn (2005). 

Inversion methods like the algorithm of Lee et al. (1998, 1999) may produce incorrect 

results due to uncertainties related to the estimation of certain parameters, uncertainties 

that propagate to the output. Moreover, the assumption of horizontal homogeneity of 

optical water column parameters by HOPE could produce inaccurate results (Lee et al. 

2007). Also, pre-processing steps like the selected atmospheric and sun glint corrections 

could possibly impact HOPE results (Goodman, Lee and Ustin, 2008). 

 

A few studies have used the inversion scheme of HOPE to accurately derive water column 

and bottom properties, and water depth simultaneously (Goodman, Lee and Ustin, 2008; 

Lee et al, 2001, 2007; Mishra et al. 2005). Goodman, Lee and Ustin (2008) employed a 

hyperspectral AVIRIS imagery of Kaneohe Bay, Hawaii to examine impacts of pre-

processing methods (atmospheric and sun glint correction) on a HOPE-based retrieval of 

four bottom types (sand, coral, algae and flat spectrum). Lee et al. (2001) used the same 

type of hyperspectral imagery over Tampa Bay, Florida in a HOPE implementation over 

two types of bottom: sand and seagrass. Finally, Lee et al. (2007) successfully mapped 

optical parameters, bottom reflectance and bathymetry over a single sandy bottom using 

EO-1 Hyperion data over Looe Key, Florida, while Mishra et al. (2005) mapped sand, 

seagrass and corals at the Roatan Island, Honduras using a simplified version of HOPE 

adapted to IKONOS data to derive an overall accuracy of 80.6%. 
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Seagrasses in the epoch of Analysis Ready Data (ARD) and climate change 

 

In the human-induced climate change era, seagrasses should be awarded a more central 

role mainly due to their ability to act as a natural carbon capture technology (Fourqurean 

et al. 2012). There are existing gaps as regards to the large-scale quantification of the CO2 

absorption by seagrasses. This is immediately related to SDG 13 (‘Take urgent action to 

combat climate change and its impacts’) and SDG 14 (‘Conserve and sustainably use the 

oceans, seas and marine resources for sustainable development’) (UN, 2017). To achieve 

both these goals, and thus to derive quantitative information on the carbon absorption 

and other biophysical parameters indicative of seagrass ecosystem services and health, 

remote sensing can be one of the most vital elements in the toolbox of ocean science. This 

is attributed to the capability of the remote sensing technologies to time- and cost-

efficiently measure numerous parameters in a non-intrusive manner and high spatio-

temporal scale. Recent advances in the development of new multispectral satellites (i.e. 

Sentinel series, Landsat-8, WorldView series, Planet’s Doves), cloud computing 

platforms (the already launched Google Earth Engine and the soon-to-be-launched 

DIAS-Copernicus Data and Information Services), machine and deep learning algorithms 

could all aid high spatio-temporal, large-scale mapping and monitoring of seagrass 

habitats (Traganos et al. 2018a)  which would galvanise two things: a) better management 

and conservation practices, and b) the integration of seagrasses to the epoch of Analysis 

Ready Data (ARD) and sensor agnostic approaches where satellite data will be already 

pre-processed to an already high scientific standard and offered as science-ready data 

immediately after being imaged by a single sensor (Catapult, 2017; Collison and Wilson, 

2017; Landsat, 2017) or by multiple sensors (Descartes Labs, 2017). These approaches will 

decrease the required processing time of satellite data, will increase their usability by a 

greater number of non-remote sensing experts and will finally enable physical change of 

relevant parameters to seagrass habitats and coastal ecosystems to be indexed much 

alike how Google has indexed the Internet. 
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4.5 Interannual Change Detection of Mediterranean Seagrasses 

using RapidEye Image Time Series 

 

4.5.1 Abstract 

 

Recent research studies have highlighted the decrease in the coverage of Mediterranean 

seagrasses due to mainly anthropogenic activities. The lack of data on the distribution of 

these significant aquatic plants complicates the quantification of their decreasing 

tendency. While Mediterranean seagrasses are declining, satellite remote sensing 

technology is growing at an unprecedented pace, resulting in a wealth of spaceborne 

image time series. Here, we exploit recent advances in high spatial resolution sensors 

and machine learning to study Mediterranean seagrasses. We process a multispectral 

RapidEye time series between 2011 and 2016 to detect interannual seagrass dynamics in 

888 submerged hectares of the Thermaikos Gulf, NW Aegean Sea, Greece (eastern 

Mediterranean Sea). We assess the extent change of two Mediterranean seagrass 

species, the dominant Posidonia oceanica and Cymodocea nodosa, following 

atmospheric and analytical water column correction, as well as machine learning 

classification, using Random Forests, of the RapidEye time series. Prior corrections are 

necessary to untangle the initially weak signal of the submerged seagrass habitats from 

satellite imagery. The central results of this study show that P. oceanica seagrass area 

has declined by 4.1%, with a trend of −11.2 ha/yr, while C. nodosa seagrass area has 

increased by 17.7% with a trend of +18 ha/yr throughout the 5-year study period. Trends of 

change in spatial distribution of seagrasses in the Thermaikos Gulf site are in line with 

reported trends in the Mediterranean. Our presented methodology could be a time- and 

cost-effective method toward the quantitative ecological assessment of seagrass 

dynamics elsewhere in the future. From small meadows to whole coastlines, knowledge 

of aquatic plant dynamics could resolve decline or growth trends and accurately highlight 

key units for future restoration, management, and conservation. 

 

4.5.2 Materials and Methods 

 

Study site 

 

The study site is a submerged area of 888 hectares in the eastern Thermaikos Gulf, NW 

Aegean Sea, Greece (eastern Mediterranean Sea; Fig. 4.5.1). The climate, oceanography, 



   

112 

 

and hydrography of its water have been comprehensively described elsewhere (Poulos 

et al., 2000; Traganos and Reinartz, 2018a). Satellite-derived mapping has revealed that 

the Thermaikos Gulf contains extensive beds of varying density of two seagrass species, 

P. oceanica and C. nodosa, between 1.4 and 16.5 m of depth (Traganos et al., 2017; Traganos 

and Reinartz, 2018a). 

The coastal system of the eastern Thermaikos Gulf administratively belongs to the 

Municipality of Nea Propontida. With a population of 36,500 (National Statistics Service of 

Greece, 2011), Nea Propontida hosts numerous socioeconomic activities including fishing, 

aquaculture, tourism, agriculture, industry, and trade directly or indirectly influence the 

marine environment. Furthermore, the administrative  region of Central Macedonia, 

which contains Nea Propontida, features a total fishing catch of 11,869 t (18.5% of the total 

Greek fishing catch) (National Statistics Service of Greece, 2015). Last but not least, 19.3% 

of the total citizens of the municipality are employed in the primary sector, while 66 

factories and 91 hotels are running in the coastal region (National Statistics Service of 

Greece, 2011). 

 

 
Fig. 4.5.1. Location of survey site within (A) Thermaikos Gulf, (B) Aegean Sea, Greece. The 

displayed RapidEye imagery is a non-atmospherically corrected, true color (band 1 as 
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blue, band 2 as green, band 3 as red) composite in UTM (zone 34) system/WGS84 

projection. The imagery was acquired on 22/06/2016 (RE16 in text). The red polygon in (B) 

depicts the location of (A) within the Thermaikos Gulf. The deep water polygon represents 

a ∼160 × 160 pixel window implemented in the water column correction of the image time 

series as it represents an area with very little water leaving radiance values in all three 

bands. 

 

Satellite Data 

 

Planet’s RapidEye constellation consists of five multispectral (five bands between 440 

and 850 nm) satellites which collect high- spatial (5-m orthorectified pixel size) and 

temporal (daily off- nadir and 5.5 days at nadir) imagery. Although designed to operate for 

a minimum of seven years, RapidEye satellites have already collected an 8-year image 

archive. Fourty-seven Level 3A image tiles fell within the extent of our study site. These 

tiles are individual 25 × 25 km orthorectified imagery products with applied geometric, 

radiometric, and sensor corrections. 

Based on a preliminary visual examination, we selected four from these image tiles 

(Table 4.5.1) which satisfied optimum conditions for remote sensing of optically shallow 

environment (e.g., cloud-, sunglint- and skyglint-free, no or low concentration of water 

column constituents, same season). The four images comprise a time series which spans 

the years between 2011 and 2016. For ease, we will refer to the four images with the 

abbreviation RE (stands for RapidEye) and the two last digits from the year of acquisition; 

RE11, RE12, RE15, RE16. 

 

Table 4.5.1. Characteristics of the high spatial resolution satellite imagery and respective 

input parameters for running FLAASH module 
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Field Data 

 

The field data collection is described in Traganos and Reinartz (2018a).  We collected these 

field data, namely habitat-related points with associated coordinates and bathymetry 

data, during   a boat-based survey between 10 and 13 July 2016. Furthermore, we added 

more data points following interpretation of the high resolution RapidEye imagery. We 

selected data points that have indicated the same habitat within the 5-year span of our 

time series analysis. Four-hundred data points (Fig. 4.5.1) were used for both training and 

validation of the machine learning classifier implemented here. In the bathymetry 

estimation step, we employed the image chronologically closest to the field data 

collection, RE16, to develop a pixel-based bathymetry map for subsequent use in the 

water column correction step. 

 

 

 

Methodology 

 

To derive quantitative information from coastal image time series using remote sensing, 

the analyst has to address the interference of the atmospheric, air-water interface, and  

water column by  applying  the  same  processing  protocol  on all satellite images which 

comprise the image time series. Fig. 4.5.2,  4.5.3 show  a  schematic  and  visual  

representation   of the processed protocol herein, respectively, until the classification 

step. The pre-classification steps which we followed in  the  present  study  included:  (1)  

atmospheric  correction   to derive at-water surface reflectances without atmospheric 

interference (Fig. 4.5.4B), (2)  bathymetry  estimation  for  use in the water column 

correction step (Fig. 4.5.4C),  and  (3) water column correction to derive bottom 

reflectances without water column interference (Fig. 4.5.4D). The classification step 

concerned the use of Random Forests (RF), an ensemble supervised classification 

algorithm   which   has   received small attention in the remote sensing of optically shallow 

environments. The accuracy assessment of the RF-derived results was performed using 

the traditional error matrices reporting overall, producer, user, and kappa accuracies 

(Table 4.5.2). Finally, we conducted the interannual change detection  of  the two 

Mediterranean seagrass species, P. oceanica  and C.  nodosa, on the basis of area change 

and related trend throughout the 4 years. 

 

Atmospheric Correction 

 

The first step of the pre-classification procedure was the atmospheric correction. We 

implemented the Fast Line-of- sight Atmospheric Analysis of Spectral Hypercubes 
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(FLAASH) algorithm to correct the atmospheric interference on all RE images. The input 

parameters to run the FLAASH module are described in Table 4.5.1. All aerosol models 

were set as Maritime type except from the RE12 imagery for which experiments using the 

same type resulted to negative reflectances, therefore, we used the Rural type. The 

FLAASH module resulted to at-water surface reflectances, R, of all 5 RE bands (Fig. 

4.5.4B). The positional accuracy on the initial Level 3A RE image tiles was found to be 

adequate, hence we performed no additional co-registration on the four RE images which 

is a necessary step otherwise due to the pixel-based approach of 

 
 

Fig. 4.5.2. Schematic representation of the methodology. 1L3A ortho products are the 

initial radiometric, sensor, and geometrically corrected RapidEye images in 

UTM/WGS1984 projection, 2R represent atmospherically-corrected (FLAASH module), at-

water surface reflectances, 3Rrs are remote sensing reflectances, transformed from R 

using Equation (1), 4Rb are water-column-corrected, bottom reflectances using the 

analytical model of Maritorena et al. (1994). 

 

the present study. In addition, due to our preliminary visual examination of the Level 3A 

products, no evident sunglint was found in the at-water surface reflectance composites. 
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Bathymetry estimation 

 

Bathymetry knowledge of a coastal site is crucial to reduce reflectance changes due to 

water column attenuation and variable depth. Differences between reflectances of 

coexisting submerged habitats can hinder their detection through remote sensing. As a 

result of the shading which occurs within the canopy, P. oceanica seagrass exhibit lower 

reflectances than its seaward neighbor, optically deep water (Dekker et al., 2006). 

Coupled with the high reflectances of a submerged sandy substrate, P. oceanica would 

look deeper than the sandy substrate at the same true depth (Traganos and Reinartz, 

2017). Remote sensing researchers have developed band ratios to tackle the 

aforementioned issues and to measure bathymetry (Lyzenga, 1978; Dierssen et al., 2003; 

Stumpf et al., 2003). The basic assumption of band ratios is that the reflectance ratio in 

these bands remains constant irrespectively of the submerged environment. 

 

To further eliminate interference at air-water interface, we chose to retrieve pixel-based 

bathymetry from the remote sensing reflectance, Rrs, which is also less sensitive to water 

column properties (Mobley, 1994). We derived Rrs from at-water surface reflectances, R, 

using 

 

                                                     Rrs = 
𝑡𝑅

𝑄
                                                                                                                                                         (1) 

 

where t is the transmittance of Ed, spectral downwelling plane irradiance, and Lu, 

spectral upwelling radiance, through the air- water interface and was calculated as 0.54 

by Mobley (1994). Q factor is the ratio of Eu, spectral upwelling plane irradiance, and Lu just 

beneath the water surface and depends on the type and depth of the bottom and the 

wavelength. We chose the π value for Q factor for the calculations of Rrs, which is the 

theoretical value for Lambertian surfaces (Dierssen et al., 2003). We mapped the 

bathymetry of our survey site using the log-ratio of Rrs blue to Rrs green at 475 and 555 nm 

from RE16, respectively. We used RE16 because it is closer chronologically to our in situ 

data acquisition of July 2016. The first two RapidEye bands are attenuated less in the water 

column than the ones in the red, red edge and NIR. Thus, they comprise the ideal 

contestants to develop a second-order polynomial after plotting their ratio against in situ 

estimated bathymetry, Z 

 

                                  Z = 24.135x2  − 70.038x + 51.571                                                                                                  (2) 

                                     x = ln(
𝑅𝑟𝑠(475

𝑅𝑟𝑠(555)
)                                                                                                                                                   (3) 
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which explained >91% of the variation (p < 0.001) in estimated bathymetry in 32 points (Fig. 

4.5.3) which spanned the whole depth range of habitat presence in our survey site. The 

site- specific algorithm of (2) was subsequently employed to create a pixel-based 

bathymetry map (Fig. 4.5.4C). This bathymetry was further smoothed with a 5 × 5 low pass 

filter to reduce local variation and unwanted noise which would impede water column 

correction and possibly decrease classification accuracy. Based on the satellite-derived 

bathymetry and the findings of Traganos and Reinartz (2018a), we applied an optically 

deep water mask utilizing the depth limit of 16.5 m to enhance submerged features in the 

classification step. 

 
Fig. 4.5.3. Polynomial regression between the log-transformed ratio of blue and green 

remote sensing reflectances, Rrs, and in situ depth measurements from the Thermaikos 

survey site. The shown polynomial equation was implemented to estimate the bathymetry 

map displayed in (C) of Fig. 4.5.4. 
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Water Column Correction 

 

The water column correction step is vital to retrieve bottom reflectances from at-water 

surface reflectances. Here, we employ the approximate analytical solution of Maritorena 

et al. (1994) for optically shallow water. 

 

                   R(λ) = R∞(λ) + (Rb(λ) - R∞(λ))exp(-2Kd(λ)Ζ)                                                                                                 (4) 

 

R∞(λ) is the reflectance over an infinitely deep  water column; Rb(λ) is the bottom 

reflectance (Fig. 4.5.4D); Kd(λ)  is the operational attenuation coefficient which expresses  

the attenuation of both upwelling and  downwelling stream  as these are originating from 

the seabed and from the water column  (Maritorena  et  al.,  1994).  Ideally,  R∞(λ)  and  Kd(λ) 

are estimated using in situ optical measurements and radiative transfer simulations. In 

the absence of these, we used image- based techniques and existing measurements 

(Traganos and Reinartz, 2018a). For the infinitely deep water column reflectance, R∞(λ), 

we extracted mean values from the deep water polygon of Fig. 4.5.1A from the at-water 

surface reflectance RE16 composite,  mean  values  which  composed  R∞(λ)  for  all four 

images of the RE time series. For the Kd(λ), we used image-based calculated values  for  

the  water  column  corrections  of all four dates from Traganos and Reinartz (2018a) who 

used Bierwirth et al. (1993) approximations in the same area. Bottom reflectances (Fig. 

4.5.4D) were calculated for every pixel of the first three bands of the atmospherically 

corrected, at-water surface reflectance composites of all four RE images. We selected 

RE bands 1, 2, and 3 at 475, 555, and 658 nm since seagrasses and, generally, underwater 

habitats cannot be detected by wavelengths past 680 nm due to the great attenuation of   

pure water (Kirk, 1994). Last but not least, to save valuable space in the remaining text, we 

will refer to  each  quantity which is wavelength-dependent without its wavelength 

notation except when it is needed i.e., to discriminate between two quantities. 

 

Random Forest Classification 

 

The machine learning approach of Random Forests (RF) comprises an ensemble 

supervised classification algorithm that implements multiple self-learning decision 

trees to handle collinearity and, more significantly, non-linearity between predictor 

variables. Developed by Breiman (2001), RF are based on the assumption that different 

independent tree predictors give wrong predictions in different regions. By combining the 

results of the predictions, RF improve the efficiency of the model. Every decision tree in 

the implemented RF algorithm here is trained with a bootstrapped sample of the training 

data and at every split node, a subset of randomly selected features is utilized. The 

outputs are then combined by a simple majority vote. Generally, RF are robust against 
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overtraining and noisy data in addition to providing good results with relatively small 

datasets (Gislason et al., 2006). Three parameters must be set before running the RF 

classifier: (a) the number of decision trees (k), (b) the number of randomly selected 

features (nr), and (c) the split selection. We selected 100 trees to run all RF experiments as 

they featured the best results out of a plethora of runs with different number of trees. In 

addition, we chose two for the number of nr as well as the Gini Index for the measurement 

of the best split selection. We parameterized and ran all RF experiments using the 

EnMAP- Box software (van der Linden et al., 2015). All the experiments were performed 

using the bottom reflectance composites, Rb and 400 training and validation data for all 

four classes: (a) C. nodosa seagrass, (b) P. oceanica seagrass, (c) Rocky algae, and (d) 

Sand. The training and validation data were split equally into 50 data points per class for 

both training and subsequent validation through accuracy assessment. 

 

 

 
Fig. 4.5.4. Methodological steps from atmospheric to water column correction in order of 

successive processing. All four panels are true color RapidEye image composites 

(22/06/2016; RE16 in text) projected in UTM (zone 34) system/WGS84. (A) Non-

atmospherically corrected composite. (B) Atmospherically-corrected composite using 

the FLAASH module. (C) Satellite-derived Bathymetry map of the survey site draped over 
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the atmospherically-corrected composite of (B) using the site-specific polynomial 

algorithm of Equation (2) as shown on Fig. 4.5.3. We applied a 5 × 5 low-pass filter on the 

initial ratio-derived bathymetry (not shown here) to reduce potential noise which would 

be transferred to the water-column corrected product. (D) Water-column corrected 

composite following application of the water column correction algorithm of Maritorena 

et al. (1994) draped over the atmospherically-corrected composite of (B) and masked 

using the optically deep limit of 16.5 m to enhance bottom features and potentially 

increase classification accuracies 

 

Accuracy Assessment 

 

We used the  error  matrices  (Table 4.5.2)  to  validate  the  results of the Random Forest 

classifications. As discussed in Random Forest Classification section, 50 data points per 

class were used to validate the RF classifier. The error matrix contains a square array of 

rows and columns where each of them represents one habitat class in the classification. 

Each cell in this matrix is the number of classified training samples, while the rows 

comprise classified training data and the columns are validation data for the assessment 

of the classified data. The error matrix outputs the overall, producer, and user accuracy 

(Congalton, 1991). The overall accuracy is the ratio of the number of correctly classified 

validation samples to the total number of validation data (200 in our study). On one hand, 

the producer accuracy expresses the number of correctly classified validation data in one 

class divided by the total number of validation data in the same class (50 in our study). On 

the other hand, the user accuracy corresponds to the number of correctly classified 

validation in one class divided by the total number of validation data that were classified in 

the same class. Although the producer accuracy is a solid statistical value for the creator 

of the habitat map (the remote sensing scientist as the case in point), the user accuracy is 

more vital from a management point of view as it reports the quantitative probability for 

the tangible presence of the habitat in the studied region i.e., P. oceanica and C. nodosa 

seagrass meadows. 

 

4.5.3 Results 

 

Pre-Classification Steps 

 

All pre-classification steps are displayed schematically in Fig. 4.5.2 and visually in Fig. 

4.5.4. It is visually apparent that both the atmospheric and water column correction in Fig. 

4.5.4B,D, respectively, enhance bottom features following the increase of the seabed 
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spectral variability from Fig. 4.5.4A (initial top-of-the- atmosphere reflectance 

composite). 

 

After converting the atmospherically-corrected at-water surface reflectances, R to Rrs 

(1), we developed a site-specific polynomial algorithm (2) using the log-transformed ratio 

of the blue to green RapidEye bands of the RE16 image (3) to map bathymetry, Z, in our site 

(Fig. 4.5.4C). The depth of the eastern coast of the Thermaikos Gulf spanned the depth 

range between 0.8 and 18.9 m with a mean depth of 7.7 m and a mean slope of 5.4º. The 

validation of the Satellite-derived Bathymetry was conducted using 14 in situ depth points 

and revealed an r-squared value of 0.86 with a root mean square error (RMSE) of 2.6 m 

(Fig. 4.5.5). It is worth noting that from the 32 points used in the bathymetry estimation, 15 

were measured above P. oceanica beds, 3 over C. nodosa beds, 11 over sandy seabed, and 

3 over rocky seabed with photophilous algae. On the other hand, from the 14 points used in 

the bathymetry validation, 8 were over P. oceanica beds and 6 over sandy seabed. 

 

Employing Equation (4), we performed water column correction for every pixel in all RE 

images. Equation (4) takes the at-water surface reflectance, R, the per-pixel Satellite-

derived bathymetry, Z, the reflectance of an optically deep column, R∞, and, finally, the 

diffuse attenuation coefficient, Kd, as inputs and outputs bottom reflectance, Rb. The 

reflectances of an optically deep column were determined based on 25,599 pixels within  

the deep water polygon of Fig. 4.5.1; R∞ (475) = 0.033, R∞(555) = 0.024, and R∞ (658) = 0.017. 

As mentioned in section Water Column Correction, Kd values were selected for the whole 

time-series from Fig. 4.1.11 in Traganos and Reinartz (2018a; section 4.1 here); Kd(475) = 

0.067, Kd  (555) = 0.078, and Kd  (658) = 0.134 (in  m−1 as they are calculated based on the 

unitless R and depth). 

 

Random Forest Classification 

 

We employed the Random Forest machine learning classifier  on all bottom reflectance 

images which comprised the studied time series (Fig. 4.5.4D). The results of the random 

forest classifications are presented in Fig. 4.5.6. The accuracy assessment of the 

classification results for all images and habitats is presented in Table 4.5.2 with the form 

of four error matrices, one for each image from RE11 to RE16.  All experiments were run 

using   100 trees. The two Mediterranean seagrasses under study   here, 

P. oceanica and C. nodosa, showed a mean producer accuracy of 89 and 50%, respectively, 

with a mean user accuracy of 91.6 and 63.1%, correspondingly. From the whole time-

series, P. oceanica seagrass was 

 



   

122 

 

 
 

Fig. 4.5.5. Plot of Satellite-derived Bathymetry (SDB) vs. in situ measured depth for the 

validation of the bathymetry map of the Thermaikos Gulf (Fig. 4.5.4C). SDB was derived 

from Equation (2). Regressed SDB have been previously smoothed with a 5 × 5 low pass 

filter to reduce unwanted noise. 

 

more accurately classified in RE16 (Fig. 4.5.6D; 98% producer accuracy) and RE11 (Fig. 

4.5.6A; 92% producer accuracy), but less accurately identified in the same images 

according to the user accuracy of 84.5% of the former and 86.8% of the latter. The best 

user accuracies concerning P. oceanica were produced for the RE12 (Fig. 4.5.6B; 100%) 

and the RE15 (Fig. 4.5.6C; 95%). 

 

As regards to C.  nodosa  species, RF correctly classified it to 62% and 60% producer 

accuracies in RE12 (Fig. 4.5.6B) and RE15 (Fig. 4.5.6C), while the former exhibited the 

second best user accuracy of 86.1% following the 92% of RE16 (Fig. 4.5.6D). Generally, RE12 

featured the second best overall accuracy (81%), marginally behind RE16 (82%), but 

possessed the best mean producer and user accuracies of the two seagrass habitats (76 

and 93%, correspondingly). In  the  contrary,  RE11  revealed  the worst results with the 
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worst overall accuracy of 73.5%, worst mean producer accuracy (62%), worst mean user 

accuracy (81.5%).  

 

Generally, the error matrices indicate that errors in both producer and user accuracies in 

all four images are mainly attributed to confusion between the two seagrasses and less 

with sandy or rocky seabed. 

 

Based on the classified water column corrected RE16 composite, P. oceanica seagrass 

meadows covered an area of 264 ha in depths between 0.8 and 17.9 m, with an average 

depth presence of 8 m. On the other hand, C. nodosa beds covered 242 ha and were spread 

between depths of 0.8 and 16.1 m, with a mean depth presence of 5.8 m. 

 

Change Detection 

 

We report the interannual change detection of P. oceanica  and C. nodosa seagrasses 

here as change of their extent (Fig. 4.5.7, 4.5.8) following random forest classification of 

all four RE images (Fig. 4.5.6). Fig. 4.5.7 shows the areas of both seagrasses and total 

seagrass area in each of the four studied years in addition to indicating change trends at 

species and total level (black lines). We observe that P. oceanica area declined by 4.1% 

(from 275 to 264 ha) between 2011 and 2016, while its declining trend was 11.2 ha/yr.  On  the  

contrary,  C.  nodosa  area  increased by 17.7% (from 199 to 242  ha),  while  its  increasing  

trend was 18 ha/yr. Overall, therefore, the area of seagrasses in the Thermaikos Gulf 

increased by 6.8% (474 to 506 ha) between 2011 and 2016, with an increasing trend of 6.8 

ha/yr. The highest decrease of P.  oceanica  seagrass was displayed between  2012. 

 

4.5.4 Discussion 

 

Change Detection 

 

The main objective of this study was to evaluate whether the application of machine 

learning algorithms, namely Random Forests, on a time-series of high resolution 

satellite images, namely RapidEye, was effective for mapping the interranual change 

detection of two Mediterranean seagrasses, P. oceanica and C. nodosa, in 888 submerged 

hectares of the Thermaikos Gulf, NW Aegean Sea, Greece between 2011 and 2016 (total   of 
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Table 4.5.2. Error matrices of the four water-column corrected bottom reflectance 

images. 
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Fig. 4.5.6. Classified water-column-corrected RapidEye composites from the 4 years using 

Random Forest machine learning classifier (100 trees). The frames on the upper right of 

each panel indicate the date of each RapidEye image. (A) RE11—Overall accuracy: 73.5%. (B) 

RE12—Overall accuracy: 81%. (C) RE15—Overall accuracy: 78.5%. (D) RE16—Overall 

accuracy: 82%. 

 

four images). As attested by Fig. 4.5.7, our main findings reveal that the distribution of P. 

oceanica seagrass meadows have declined by 4.1% with a decreasing trend of 11.2  ha/yr,  

while C. nodosa beds have increased by 17.7% with a gain trend of 18 ha/yr. Generally, total 

seagrass area increased by 6.3% at a +6.8 ha/yr trend throughout the 5 years. 

Approximate trends of seagrass distribution change are indicated by the slope coefficient 

of a standard linear regression between seagrass area and related years (Fig. 4.5.7). This 

method of presenting remotely sensed time series of seagrass was utilized efficiently in 

200 km2 of the Eastern Banks, Moreton Bay, Australia (Lyons et al., 2013). 
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Fig. 4.5.7. Interranual change detection of seagrasses in the Thermaikos Survey site 

between 2011 and 2016 using RapidEye satellite images. The trajectory plot displays 

change of area (in hectares; y-axis) over the years (x-axis) of Posidonia oceanica and 

Cymodocea nodosa species, and of total seagrass area. Linea regression black lines (m = 

slope) show approximate trend in area between 2011 and 2016. Posidonia oceanica 

seagrass is decreasing at 11.2 ha/yr, Cymodocea nodosa seagrass is increasing at 18 

ha/yr, while total seagrass area is expanding at 6.8 ha/yr. 
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Fig. 4.5.8. Change in seagrass distribution in the Thermaikos survey site between 2011 and 

2016 for (A) Posidonia oceanica and (B) Cymodocea nodosa. Between 2011 and 2016, P. 

oceanica seagrass meadows have declined by 4.1%, while C. nodosa seagrasses have 

increased by 17.7%. 

 

To the best of our knowledge, the studied regression of 4.1% of P. oceanica meadows 

between 2011 and 2016 is the first report of regression of this particular seagrass species 

in the Greek seas and one of the first reports in the whole Eastern Mediterranean, a 

poorly mapped area. It is also in line with the reported trends in the Mediterranean and 

globally. Telesca et al. (2015) estimated an average regression of 10.1% for the whole 

extent of the Mediterranean basin during the past 50 years, which further increased to 

33.6% for areas with existing historical information; Greece lacks this significant 

information. Marbà et al. (2014) further estimated that between 13 and 38% of initial P. 

oceanica meadows have been lost since 1960, with a decreasing trend of 1.74%/yr. On 

assessing 215 studies worldwide, Waycott et al. (2009) has shown that since 1990, 
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seagrass grounds are disappearing at a median rate of 7%/yr, a 7-fold increase from the 

median rate of 0.9%/yr before 1940. 

 

Based on the ecological value of P. oceanica, its reported regression of 4.1% in the 

Thermaikos Gulf translates into  loss of the relevant ecosystem services which it 

provides in the broader region, including protection from coastal erosion, carbon 

sequestration, nursery grounds, and nutrient cycling among others. More specifically, the 

related economic loss to the declining rate of P. oceanica of 11.2 ha/yr is 19.264 million e/yr 

(Vassallo et al., 2013). This regression is more alarming due to the slow growth of P. 

oceanica meadows and the existing pressure from climate change. Mortality rates of P. 

oceanica seagrass are expected to increase 3-fold with an increase of 3◦C in maximum 

annual seawater surface temperature (SSTmax) (Marbà and Duarte, 2010). In addition, the 

temperature of 28◦C is the critical SSTmax, above which P. oceanica functional losses 

accelerate. Study of the specific drivers of the observed P. oceanica regression is out of 

our scope in the present study. Future studies, however, of the temporal dynamics of 

SSTmax and the extent of P. oceanica seagrass meadows could unravel the underlying 

causes of their regression in the Thermaikos Gulf and elsewhere in the Mediterranean. 

 

On the other hand, C. nodosa seagrass area faced a 17% increase of its extent, gaining 43 

hectares between 2011 and 2016. We could attribute part of this increase to a combination 

of    two physical factors. First, C. nodosa is a fast-growing seagrass with a reported rate 

of horizontal growth of up to 2  m/yr. Second, the decline in terms of P. oceanica  seagrass 

allowed the fast recolonization of its regressed beds by the former seagrass, causing the 

expansion of its area. This substitution   of P. oceanica by C. nodosa between 2011 and 2016 

is particularly observed in the shallower parts of the northwesternmost, the middle and 

the southeasternmost regions of the Thermaikos Gulf (Fig. 4.5.8). 

 

Temporal dynamics of C. nodosa distribution have been sparsely studied elsewhere. C. 

nodosa populations have shown a progression of up to 42% between 1994 and 2011 in the 

Western Mediterranean, following a regression of 49% between 1973 and 1994 (Garrido et 

al., 2013). Furthermore, C. nodosa seagrass has been found to re-colonize the shallower 

regressed beds of P. oceanica seagrass (Montefalcone et al., 2007). All in all, C. nodosa 

seagrass competes with P. oceanica in terms of its expansion, while it is also considered 

as a significant step in the ecological succession prior to beds of the latter. Further 

research efforts are needed to increase the body of literature on C. nodosa, in terms of its 

spatio-temporal dynamics, associated drivers, and especially potential links with the 

ongoing climate change, and its provided ecosystem services. 
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As regards to the harness of the variety of existing satellite data, numerous studies have 

assessed seagrass dynamics in a plethora of spatial and temporal scales. In one of the 

first and most important seagrass change detection assessments, Dekker et al. (2005) 

exploited four Landsat 5 and 7 images spanning a total of 14 years to map four seagrass 

species, including ones with great ecologically sensitivity, in Wallis Lake, an estuarine 

lake in Australia. Pu et al. (2014) also used Landsat 5 data to evaluate seagrass dynamics 

between 2003 and 2005 in Florida coast. While the two studies monitored change 

detection of seagrass extent and cover, respectively, Roelfsema et al. (2014) mapped 

seagrass species, cover and above ground biomass processing a 142-km2 time-series of 

high spatial resolution WorldView-2, IKONOS and Quickbird imagery between 2004 and 

2013 with an object-based approach in Moreton Bay, Australia. In another yet exploitation 

and longest, to the best of our knowledge, of the Landsat archive, Lyons et al. (2012) 

developed an object-based approach to assess seagrass extent between 1972 and 2010 in 

Moreton Bay as well. The common denominator of the aforementioned four time- series 

studies is that they assessed shallow waters up to 7 m in contrast to the 16.5-m deep limit 

in our study. They also all highlight the significance of remote sensing time series of 

seagrass habitats for seagrass ecology. Roelfsema et al. (2014) argued that the study of 

the correlation of seagrass-related physicochemical parameters like water quality and 

temperature with seagrass distribution and composition is vital. Future approaches to 

this direction could benefit time-series studies and more broadly the management and 

conservation of seagrasses. 

 

Generally, there is a need for the development of an automated workflow which would 

exploit the great quantity of remote sensing information and develop time series of 

seagrass distribution and other management-related parameters in a time- and cost-

efficient as well as accurate fashion. This workflow would enable fast assessment of 

problematic areas (areas of existing or ongoing regression) and raise the need for 

appropriate management and conservation measures. As mentioned in the Introduction 

section, however, to achieve accurate time series of seagrass and broadly coastal 

submerged habitats, one has to select suitable classifier(s) to the subject in study, as 

classification of these habitats always precede time series analysis. 

 

Classification of Submerged Habitats 

 

We selected Random Forests to solve the classification problem of discriminating 

between four habitats in the optically shallow waters of the Thermaikos Gulf, NW Aegean 

Sea. We run the classification experiments on atmospherically and water-column 

corrected RapidEye reflectance composites using 100 trees which yielded better 

quantitative results than other numbers of trees. We also used 50 data for each habitat for 
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both the classification and validation to avoid possible overestimation of any of the 

classes (Traganos and Reinartz, 2018a). It is noteworthy, as Fig. 4.5.1 shows, that we 

chose training data only from the southeastern part of our survey site and validation data 

only from the northwestern part of our survey site. This could have led to biased classified 

results. 

 

Overall, as reported in the error matrices of Table 4.5.2, RF exhibited high accuracies in 

classifying and identifying both seagrass species and especially P. oceanica species, up 

to 98% and 100% producer and user accuracy, respectively. The 5-m pixel-based random 

forest classification of  P.  oceanica and C. nodosa species displayed slightly worse 

producer accuracies, but higher user accuracies than similar efforts using Sentinel- 2A 

10-m imagery in the same waters (Traganos and Reinartz, 2018a). Particularly for the 

latter species, its sparse and mixed nature with sandy beds inhibits classification and 

identification approaches causing the  so-called  “mixed”  pixels.  Higher than 5-m 

resolution approaches employing linear unmixing models and/or object-based 

classifications could solve this classification issue. 

 

We chose RF to classify and identify Mediterranean seagrasses to achieve more accurate 

results than simpler, theoretically, algorithms like Maximum Likelihood (Traganos and 

Reinartz, 2018a) which has had a wide application history in the literature of both single- 

and multi-date studies of seagrass ecosystems (Dekker et al., 2005; Pasqualini et al., 

2005; Pu and Bell, 2013; Pu et al., 2014). MLC assumes a normal distribution of classes 

which is rare in the nature of the examined classes, thus producing inferior results to the 

more sophisticated machine learning classifiers (Traganos and Reinartz, 2018a). RF 

produced promising results concerning classification of seagrasses recently in two 

studies (Zhang, 2015; Traganos and Reinartz, 2018a). (Zhang et al., 2013) demonstrated the 

advantage of RF over MLC using hyperspectral imagery. Utilizing 150 trees to run the RF-

based experiments, Zhang (2015) achieved better accuracies than the machine learning 

classifiers of Support Vector Machines (SVMs) and k-Nearest Neighbor (k-NN) in 

identifying patchy seagrass in a 40-km2 area in lower Florida Keys, but slightly lower 

accuracy for continuous seagrass. Traganos and Reinartz (2018a) compared RF, SVMs 

and MLC classifiers in a small section of the surveyed site in the present study. They 

showed that both RF and SVMs performed evidently better than MLC on classifying P. 

oceanica and C. nodosa habitats. In the same study, both RF and SVMs displayed lower 

accuracies on the classification of C. nodosa than P. oceanica due to the smaller number 

of field data for the former in addition to its mixed ground with sand. 

 

In summary, machine learning classifiers like RF and SVMs gain more and more interest 

in coastal habitat remote sensing and, more broadly, in the remote sensing literature 



   

131 

 

(Gislason  et al., 2006; Mountrakis et al., 2011). Deep learning techniques concerning 

submerged habitats are still in their infancy (Call    et al., 2003; Calvo et al., 2003) and it is 

still unknown whether the extra processing power and time to design the experiments 

are worthy for the potentially better identification that they would offer than machine 

learning classifiers. 

 

Pre-classification Steps in Detection, Mapping, and Time Series of Submerged Habitats 

 

The steps which precede the classification and subsequent development and analysis of 

the time series of submerged habitats  include  geometric,  atmospheric,  and  water    

column corrections of satellite data in addition to developing satellite- derived 

bathymetry. In the present study, geometric corrections were already done in the Level 

3A RapidEye imagery which we processed in the time series. The FLAASH module, 

implemented for the atmospheric correction, has been already deployed by several 

studies for studying the change detection of underwater habitats (Lyons et al., 2010, 2011; 

Pu and Bell, 2013; Roelfsema et al., 2014). 

 

Regarding the water column correction,  the  analytical model of Maritorena et al. (1994) 

accurately retrieved bottom reflectances of both P. oceanica and C. nodosa seagrass 

species in the RE time series of the present study. In the same area, Traganos and 

Reinartz (2018a) employed successfully the same model to perform water column 

corrections for the mapping of the two same species. Dierssen et al. (2003) discussed the 

good agreement of  the  model’s  calculated  bottom  reflectances  with in situ ones over 

dense Thalassia testudinum beds in contrast to overestimated seabed reflectances over 

beds of the same species of sparse to intermediate density up to depths of 9 m in Lee 

Stocking Island, Bahamas. In addition, Pu et al. (2014) conducted water column 

corrections following the same analytical model to identify three seagrass species (T. 

testudinum, Syringodium filiforme, and Halodule wrightii) in depths up to 4 m in Florida, 

USA. A similar to ours image pre-processing and processing methodological approach to 

seagrass change detection led to 14% improved overall accuracies than studies which 

used analogous data. In another application of Maritorena et al. (1994) water column 

correction model, Dekker et al. (2005) mapped the change detection of Posidonia 

australis, Halophila ovalis, Zostera capricorni, and Ruppia megacarpa in the waters of 

Wallis Lake in Australia, in depths of <3 m. In antithesis to the field optical measurements 

of the latter study, we used and developed image-based estimations of both the  diffuse  

attenuation  coefficient and infinitely deep water column reflectance. Future in situ optical 

measurements are expected to increase accuracies in water column corrections and 

succeeding classifications and time series analyses, however, these measurements 

would also raise the cost of the given study. 
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Regarding the satellite-derived bathymetry, we created a  5-m resolution bathymetry 

map of the Thermaikos Gulf using RapidEye imagery to aid the RE-based time series of 

the two Mediterranean seagrass beds. We should note here that we employed the closest 

imagery to our in situ depth estimations, RE16, to estimate bathymetry for all four images. 

Traditionally, remote sensing scientists have calculated depth in optically shallow 

regions by using the band ratio (Lyzenga, 1978). Employing the ratio of blue to green, but in 

the different central wavelengths of Sentinel-2, 490 and 560 nm, than in the present 

study, Traganos and Reinartz (2018a) developed a bathymetry model for a subsection of 

the survey site of the present study. They also applied a low pass filter before the 

estimation of the bathymetry in contrast to the present study where we applied    a low 

pass filter after mapping depth. The lower wavelength of the blue band of RapidEye at 475 

nm, however, in comparison to the 490 m of Sentinel 2 is anticipated to produce more 

accurate bathymetry estimation due to the higher penetration of the blue band in the 

water column in this case. Moreover, we chose to convert at-water surface reflectances 

to the remote sensing reflectances for the development of the bathymetry model as the 

latter are considered more robust to interactions in the air-water interface and water 

column constituent composition (Dierssen et al., 2003; Dekker et al., 2011). 

 

The dense canopy and the incidental shading produce the often lower than the adjacent 

optically deep waters reflectance of P. oceanica seagrass (Dekker et al., 2006). This issue 

imposes a problem to accurate bathymetry estimations over this type of seabed. 

Traganos and Reinartz (2018a) overcome this problem by modifying the widely utilized 

bathymetry algorithm of Stumpf et al. (2003) which displayed negative values over P. 

oceanica beds in relevant experiments. It is worth noting that due to the lack of extensive 

in situ depth data, we tuned our polynomial algorithm using data, mainly from the 

southeasternmost part of the Thermaikos Gulf. Nevertheless, as we presented in section 

Pre-classification Steps, we chose in situ depth data over all four habitats, namely the 

two seagrasses, sand and rocky seabed with algae, achieving an accuracy of 91% in the 

development of the site-specific depth algorithm and a r-squared value of 0.86 with a 

RMSE of 2.6 m in the validation of this site-specific bathymetry. 

 

Other studies have used either existing pixel-based depth maps produced with acoustic 

equipment (Pu and Bell, 2013;    Pu et al., 2014), have developed their own satellite-derived 

bathymetry maps implementing either linear or ratio algorithms (Lyons et al., 2011) or  

have  run  simulation  experiments  of the bathymetry effects using HYDROLIGHT, a robust 

radiative transfer model. It would be interesting to compare in the future bathymetries 

derived from all of the above sources to study how accuracies deviate in turn. 
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4.5.5 Conclusions 

 

The present study demonstrates an off-the-shelf methodology to quantitatively assess 

the spatio-temporal dynamics of seagrasses and other submerged habitats in clear and 

homogeneous optically  shallow  waters  using  Planet’s  RapidEye  time  series of four 5-

m satellite images. The methodology includes three stages: (a) pre-processing including 

atmospheric and water column correction of the satellite data along with satellite- 

derived bathymetry, (b) machine learning classification using the Random Forest 

algorithm, and (c) interannual change detection which is presented here as a change of 

area and associated trend. We applied these three steps to study the dynamics of two 

Mediterranean seagrasses, P. oceanica and C. nodosa, in the waters of the Thermaikos 

Gulf (NW Aegean Sea, Greece) between 2011 and 2016. Total seagrass area has increased 

by 6.3% at a rate of +6.8 ha/yr, while P. oceanica seagrass   has regressed by 4.1% at a rate 

of −11.2 ha/yr and C. nodosa seagrass has progressed by 17.7% at a rate of +18 ha/yr 

throughout      the 5 years. In some occasions, C. nodosa has been studied to substitute the 

regressed beds of P. oceanica. The aforementioned trends, especially in terms of the 

regression of the P. oceanica, are in line with the reported regression of this valuable 

seagrass elsewhere in the Mediterranean. This study is the first to report spatio-

temporal dynamics of both seagrasses in large scales using remotely sensed data. The 

remote sensing of seagrasses lying in optically shallow waters (where the observed 

surface reflectance contains signal from the bottom in contrast  to  an  optically deep 

column) faces a plethora of inherent obstacles due to the complex nature of the media 

above the seagrass beds themselves. Obstacles like water column constituents, sunglint, 

and skyglint presence, air-water interface interference could impede the detection of 

seagrasses and require, usually, consideration through relevant algorithms. The 

presented methodological workflow could act like an alternative ecological assessment 

showing current trends, revealing regressing seagrasses, and allowing better 

conservation of these complex but also significant ecosystems. Potential improvements 

in the given approach could be the existence of in situ optical measurements  of several 

relevant parameters, broader bathymetry field data, advanced radiative transfer 

simulations, possible comparison of different machine learning algorithms for the 

improvement of classification and identification of seagrasses and better tuning of those 

algorithms. Currently, seagrasses are decreasing in alarming rates in a global scale. 

Linkage of this decreasing trend with the anthropogenic and natural interference through 

Earth observation of climate change, eutrophication, coastal development as well as 

temperature, salinity, and hydrodynamic change could develop and refine machine 

learning models to ecologically assess seagrass status worldwide. Harnessing the 

wealth of Earth observation data that this century offers and state-of-the-art machine 
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learning algorithms, we could better understand the thresholds of different seagrass 

habitats in different aquatic environments and strengthen their conservation 

management, allowing a brighter future for these significant ecosystem service 

suppliers. 
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4.6 Towards Global-Scale Seagrass Mapping and Monitoring using 

Sentinel-2 on Google Earth Engine: The case study of the Aegean 

and Ionian Seas 

 

4.6.1 Abstract 

 

Seagrasses are traversing the epoch of intense anthropogenic impacts which 

significantly decrease their coverage and invaluable ecosystem services, necessitating 

accurate and adaptable, global-scale mapping and monitoring solutions. Here, we 

combine the cloud computing power of Google Earth Engine with the freely available 

Copernicus Sentinel-2 multispectral image archive, image composition and machine 

learning approaches to develop a methodological workflow for large-scale, high 

spatiotemporal mapping and monitoring of seagrass habitats. The present workflow can 

be easily tuned to space, time and data input; here, we show its potential, mapping 2,510.1 

km2 of P. oceanica seagrasses in an area of 40,951 km2 between 0 and 40 m of depth in the 

Aegean and Ionian Seas (Greek territorial waters) after applying Support Vector 

Machines to a composite of 1,045 Sentinel-2 tiles at 10-m resolution. The overall 

accuracy of P. oceanica seagrass habitats features an overall accuracy of 72% following 

validation by an independent field data set to reduce bias. We envisage that the 

introduced flexible, time- and cost-efficient cloud-based chain will provide the crucial 

seasonal to inter-annual baseline mapping and monitoring of seagrass ecosystems in 

global scale, resolving gain and loss trends and assisting coastal conservation, 

management planning, and ultimately climate change mitigation. 

4.6.2 Materials and Methods 

Study site 

The study area includes the Greek territorial waters—i.e. Ionian Sea and Greek part of the 

Aegean Sea—covering a total surface of 40,951 km² (Fig. 4.6.1). We define this area on the 

basis of an edited 3-km buffer zone along the Greek coastline of approximately 18,000 km, 

following the results of (Topouzelis et al., 2018) (see section 2.3.2). The Aegean Sea 

features an intricate geomorphology that reflects past geologic history and recent 

geodynamic processes. Shallow shelves, deep basins, and troughs alternate throughout 

the buffer-defined area whose deepest point is ~2,500 m (deepest area in the Aegean 
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trench is ~ 5,000m). It has also a distinctive insular character with more than 1,400 islands 

or islets, while its extensive coastline consists of several landforms, including sandy 

beaches, rocky shores, cliffs, coastal lagoons and deltaic systems, as well as a notable 

variety of coastal and marine habitat types. On the other hand, the Ionian Sea is 

considered an oligotrophic area, based both on low nutrient concentrations and primary 

production. Biological data reflect a very oligotrophic area, dominated by a microbial food 

web, where new production mostly derives from limited events in space and time, mainly 

driven by climatological factors generating mesoscale instabilities. In terms of biology, 

the Ionian Sea is influenced by the Adriatic water in the northern part of the subbasin, with 

higher phytoplankton biomass (particularly diatoms), while water of Atlantic origin 

makes up its southern part with the exception of the whole eastern side (Casotti et al., 

2003; Sini et al., 2017). Seagrass meadows exist in protected bays and gulfs while their 

mean maximum depths of presence are between 25 and 35 m depending on the local 

conditions (Gerakaris et al., 2014). 

Satellite Data 

We use Copernicus Sentinel-2 Level-1C (L1C) Top of Atmosphere (TOA) reflectance 

satellite data, the standard S2 archive in GEE. The available data extends from 23 June 

2015 (date of launch of Sentinel-2A) to today with a 5-day temporal resolution (with the 

use of Sentinel-2B). For the present study, we choose a period between 1 September and 1 

October 2017 which satisfies availability of both S2-A and S2-B imagery, and, more 

importantly, a better-stratified water column in the study areas of Aegean and Ionian 

seas (Traganos et al. 2018b). Our data input is the seven S2 bands: b1-coastal aerosol, b2-

blue, b3-green, b4-red, b8-NIR, b11-SWIR1, and the QA60 band, the bitmask band which 

contains information on cloud mask. Bands b1 and QA60 are in 60-m spatial resolution, 

while b11 is in 20-m spatial resolution. GEE reprojects all to the 10-m native resolution of 

the b2, b3, b4, and b8. In total, 1,045 S2 tiles—100x100 km² sub-images— compose our 

initial image dataset. All available datasets, from satellite images to field and auxiliary 

data are projected in the GCS WGS84 World Geodetic System. 

Field Data 

Training and Validation Data 

We manually digitised all training data on very high spatial resolution images using the 

ArcGIS World Imagery basemap (< 60-cm pixel) (Fig. 4.6.1). To ensure data quality, we 

selected areas in relative shallow waters where seagrass was easily interpreted. The 

digitisation took place in areas where we have a high level of knowledge on the seabed 

cover and composition due to past and ongoing fieldwork activities. The non-seagrass 
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class contained rocky, sandy and deep-sea areas. To ensure consistency across all 

classes, we implement 4x4 homogeneous polygons (16 S2 pixels). In ArcGIS Desktop, the 

digitization tool allows to design polygon data with specific dimension and size. Thus, the 

size of each polygon is the same and the homogeneity is related to the seabed cover as 

this is identified by experienced image interpreters.  In total we used 1,457 homogeneous 

polygons (23,312 pixels), for two classes (seagrass/non-seagrass) (Fig. 4.6.2; Table 4.6.1). 

The homogeneity of all polygons is vital because their absence may cause  

 

Fig. 4.6.1. Geographical location of survey site and training polygons of the herein 

considered classes. All polygons are in GCS WGS84 World Geodetic System. 

misclassification. The validation data consists of 322 independent field data points based 

on unpublished data provided by terraSolutions m.e.r. (http://www.terrasolutions.eu/) to 

reduce bias. 

Auxiliary Data 

We utilise two additional auxiliary datasets to aid both the time (thus computing) 

efficiency of our processing chain and the distillation of its results. First, to mask out both 

http://www.terrasolutions.eu/
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land and deeper waters, we edit a shapefile of the Greek Coastline at scale 1:90,000 

(HNHS, 2018) by the Hellenic Navy Hydrographic Service (HNHS) in a two-step way; a) we 

create a buffer of 3 km to encompass the whole optically shallow extent (where there is 

remote sensing signal from the seabed), b) we manually edit the buffer of 3 km to include 

the deeper and/or larger meadows (according to the seagrass polygons of Topouzelis et 

al. (2018) and to delete all the vertices over land. The resulted coastal area comprises our 

survey site of a total area of ~40,951 km². In addition, we use the bathymetry of the Aegean 

Sea for the post-classification stage (see section 2.4.3). The Aegean Sea Bathymetry 

depth zones (5-m intervals until 50-m depth) is a fused product of  HNHS, EMODnet (the 

European Marine Observation and Data Network), and in situ data collected during 

MARISCA project (Sini et al. 2017). 

Methodology 

In addition to the easy and parallel access to the satellite image archives, GEE offers 

quick and adaptable computational tools for remotely sensed data processing and 

analysis. We exploit GEE tools to build our methodological chain which is divided into 

three parts: a) pre-classification, b) classification, c) post-classification. Fig. 4.6.3 

displays this chain, while Fig. 4.6.4 depicts its various successive stages. 

Table 4.6.1. Number of implemented polygons and pixels per class for our ~40,951 km2 

survey site.  

Class Polygons Pixels % 

Seagrass 329 5,264 22.6 

Non-seagrass 1,128 18,048 77.4 

Sum 1,457 23,312 100 

Pre-Classification 

Our pre-classification part consists of six steps: 

1. Cloud mask: We use the QA60 bitmask band to mask opaque and cirrus clouds and 

scale S2 L1C TOA images by 10,000 (Fig. 4.6.4a, b).  

2. Land mask: Although here we utilise the buffered coastline shapefile of Greek 

waters to mask out terrestrial Greece, we include a CART classifier (Breiman et al., 

1984) in the GEE code which future users could employ to mask out their terrestrial 
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part. The classifier is applied on a b3-b8-b11 composite and the user should train it 

with relevant pixels over land and water. 

3. Image composition: We apply image composition which yields a new pseudo-

image composite whose pixels are the first quartile (Q1) of the median values of the 

cloud corrected and masked for land images of step 2. The purpose of this 

approach is to decrease non-corrected image artefacts by the previous steps. 

4. Atmospheric correction: We implement a modified dark pixel subtraction method 

following (Armstrong et al., 1993) to empirically address path radiance and noise in 

all bands; this method subtracts the average reflectance and two standard 

deviations of optically deep water (> 40 m) (Fig. 4.6.4b).  

5. Sunglint correction: We further correct the atmospherically corrected image 

composites with the sunglint correction algorithm of Hedley et al. (2005). 

Following a user-defined set of pixels of variable sunglint intensity, the algorithms 

equals the corrected for sunglint composite to the initial first quartile composite 

minus the product of the regression slope of b8 against b1 - b4 and the difference 

between b8 and its minimum value (Fig. 4.6.4c). 

6. Depth invariant indices calculation: To compensate the influence of variable depth 

on seabed habitats, we derive the depth invariant indices (Lyzenga, 1978, 1981) for 

each pair of bands with reasonable water penetration (b1-b2, b2-b3, b1-b3) with 

the statistical analysis of (Green et al. 2000). Prior to the machine learning-based 

classification, we apply a 3x3 low pass filter in the depth invariant as well as the 

sunglint-corrected input to minimise remaining noise over the optically deep 

water extent which would have caused misclassified seagrass pixels otherwise 

(Fig. 4.6.4d). 

 

Classification 

Although we experimented with three machine learning classifiers, Support Vector 

Machines (SVM) (Vapnik, 1995), Random Forests (RF) (Breiman, 2001), and CART (Breiman 

et al., 1984) we end up using only SVM due to their better yielded classification output, both 

qualitatively and quantitatively (Fig. 4.6.4e). Based on the statistical learning theory of 

SVM of Vapnik (1995), solve linear and non-linear classification problems by fitting a 

separating hyperplane to the training data of the studied classes; they take their name 

from the support vectors, namely the points closest to the hyperplane which are the only 
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ones that ultimately define it. A small number of studies have utilised SVM to map 

optically shallow habitats (Zhang, 2015; Traganos and Reinartz, 2018a; Traganos et al., 

2017; Poursanidis et al., 2018). Here, we run SVM with a Gaussian radial basis function 

kernel (RBF), a parameter g, the width of the RBF, of 1000, and a regularisation parameter, 

C, which governs the degree of acceptable misclassification, of 100. We empirically select 

the adequate pair values for g and C based on experiments that we run setting their range 

between a minimum of 0.01 and a maximum of 1000 using a multiplier of 10. Τhe input to the 

classifier is the sunglint-corrected S2 composite of b1, b2, b3, b4 and the depth invariant 

index b2-b3.  

 

Fig. 4.6.2. Scatter plots of the first four, sunglint-corrected Sentinel-2 bands depicting 

waveband reflectivity of the herein 1,457 polygons for the whole extent of the study area. 

Seagrasses are in green circles and non-seagrasses are in light blue triangles. 

Post-Classification 

The post-classification part consists of two components: the editing of seagrass polygons 

due to misclassified pixels as seagrass in deep water and the accuracy assessment of the 
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these machine learning derived edited seagrass polygons. The accuracy assessment 

employs an independent validation data set (unpublished data from terraSolutions m.e.r.) 

consisting of 322 data points to reduce general bias. We report the overall accuracy of 

seagrass habitats in the extent of the Aegean and Ionian seas which is the ratio of the 

entire number of correctly classified pixels to the total number of validation pixels. The 

post-classification correction of seagrass pixels over deep water serves a better 

visualisation of the classification output, but more significantly, it decreases the 

overprediction tendency of the classification results, namely seagrass area in the Aegean 

and Ionian seas; a single misclassified 10-m S2 pixel as P. oceanica seagrass would cause 

an over-prediction of 100 m2. 

 

Fig. 4.6.3. Methodological workflow of the present study within Google Earth Engine. OA 

denotes overal accuracy. In the present study we did not implement step 2 (due to the use 

of a coastline buffer), however, we include it as it is an important component of the 

methodological chain. 
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4.6.3 Results 

Pre-Classification 

Regarding the pre-classification steps, r2 of regression between sunglint-polluted b8 and 

b1 - b4 composites are b1: 0.3, b2: 0.3, b3: 0.39, and b4: 0.39. As regards to the only herein 

employed depth invariant index of b2-b3 bands, the ratio of water attenuation coefficient 

is 0.57. Machines-based classified product draped over the b2-b3 depth invariant index 

layer, (f) PlanetScope surface reflectance product (as imaged by Planet’s Doves) in 

natural colour for high resolution reference (3 m) (ID: 

20170828_084352_100e/20170828_084352_100e_3B_AnalyticMS_SR). The pink squares 

indicate sunglint presence in (b) and its correction in (c). Τhe green and yellow polygons 

show employed seagrass and sand pixels in the machine learning classification. All 

panels are in GCS WGS84 World Geodetic System. 

Classification 

Our methodological workflow reveals that the seagrass area of the Greek Seas is 2,510.1 

km2; 1,885 km2 in the Aegean Sea and 625 km2 in the Ionian Sea (Fig. 4.6.5). As regards to 

individual geographical areas, the ones with the largest seagrass area (and maximum 

observed depth, where available, in parentheses) are Limnos (Fig. 4.6.5d) with 254 km2 

(40 m), NW Peloponissos (Fig. 4.6.5c) with 99 km2, Corfu with 90 km2, Crete with 70 km2 (40 

m), Thasos (Fig. 4.6.5b) with 53 km2 (25 m), and the Thermaikos Gulf (Fig. 4.6.5a) with 49 

km2 (20 m). Across both seas, according to the employed auxiliary depth information, the 

depth of seagrass habitats is between 0 and 40 m.  

Post-classification 

The observed overall accuracy of P. oceanica seagrass in both the Aegean and Ionian 

seas is 72% based on the independent field data set. 

4.6.4 Discussion 

On Global Mapping and Monitoring of Seagrasses, and the Results of the Present Case 

Study 

The exponential increase in cloud-based computing power, machine learning algorithms, 

and freely available satellite image archives has rendered the vision of global-scale 

mapping and monitoring of seagrasses and their neighbouring habitats more feasible 

than ever before. However, seagrass environments vary in regards to species  
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Fig. 4.6.4. Successive stages of the developed workflow through the resulting false-

colour (b1-b2-b3) Sentinel-2 composites. (a) Initial S2, (b) Cloud- and atmospherically-

corrected, (c) Sunglint-corrected, (d) Depth invariant index b2-b3, (e) Support Vector  

composition and abundance, but also water clarity (secchi depth) which will influence the 

capability to apply approach globally. At present, while there are tangible efforts for the 

global monitoring of coral habitats (Washington D.C., 2018) similar efforts focusing on 

seagrasses ecosystems have been yet not envisaged. 

Here, we have developed a methodological workflow within Google Earth Engine which 

employs a plethora of universally used algorithms in coastal aquatic habitat remote 

sensing along with image composition and machine learning that could potentially be 

applied to map and monitor seagrasses globally. We demonstrate its power along with its 

issues in the Greek Seas, namely the Aegean and Ionian Sea; in a total coastline extent of 

40,951 km2, we map 2,510.1 km2 of Greek seagrasses (Posidonia oceanica species) 

between 0 and 40 m of depth applying Support Vector Machines in a pixel-based fashion 

on 1,045 Sentinel-2 tiles. In comparison to existing mapping efforts and known 

distribution of seagrasses in our study site, our area findings are ~4.2% less than the 

respective coverage estimations of (Topouzelis et al. (2018) (2619.3 km2). This can be 

attributed to the different methods and data in use: pixel vs object-based approach, 

different type of in situ data and difference in spatial resolution e.g. Sentinel-2 vs 

Landsat-8 spatial resolution (10 vs 30 m, respectively, resulting in a minimum mapping 

unit of 100 m2 vs 900 m2).  A near-future regional comparison of pixel- to object-based 

approaches in the same context could shed further light upon the nature of their 

discrepancies—e.g. statistical vs environmental. On the other hand, in comparison to the 

UNEP WCMC Version 5 seagrass distribution, the herein seagrass area are nearly four 

times more (639.5 km2) (UNEP-WCMC, Short FT, 2017). 

The Good, the Bad and the Best Practices of the Proposed Cloud-based Workflow 

 The strength of our methodological chain lies mainly in the fact that it can be easily 

adjusted in space, time and data input. In comparison to the pre-processing chain of 

(Traganos et al. 2018b) and the therein use of the median value, we implement the first 

quartile here which yields less noisy image composites because it filters higher 

reflectances (=clouds and sunglint). The chain requires specific input to run: 
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Fig. 4.6.5. Distribution of seagrasses in the Greek Seas. (a) Thermaikos Gulf, (b) Thasos 

Island, (c) NE Peloponissos, (d) Limnos Island. Inset maps contain results from 

Topouzelis et al. (2018) and UNEP-WCMC, Short FT (2017) for reference and further 

validation of our results. All panels are in GCS WGS84 World Geodetic System. 

 

a. Selection of a suitable time range; the suitability relates to possible available in 

situ data to run the machine learning classifiers, the atmospheric, water surface 

and column conditions of the study area, but also the season of maximum growth 

of the seagrass species of interest, especially for change detection studies. Here, 

we have chosen one month of Sentinel-2 imagery within the period of better water 

column stratification of the Greek Seas. 
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b. Selection of suitable points that will represent land and water for land masking (if 

needed), polygons over deep water (for atmospheric correction), variable sunglint 

intensity (for sunglint correction), and sandy seabed of variable depth (for the 

depth invariant index calculation). 

c. Accurate in situ data that will cover all the existing habitats within the study extent 

for training of the machine learning classifications and validation with an ideally 

independent data set to reduce potential bias; here, we design remotely sensed, 

homogenous 4x4 (1,600 m2) polygons for the training of the machine learning 

model and employ an independent point-based data set for the validation. We also 

decided to design deep-water polygons to minimise possible misclassifications 

with seagrasses. 

In contrast, the weaknesses of the present workflow are two: 

1. Method-wise, the herein image-based, empirical algorithms (e.g. dark pixel 

subtraction, sunglint correction, depth invariant indices) contain inherent 

assumptions in their nature and necessitate a sufficient selection of pixels to 

produce valuable results. Concerning the sunglint correction, specifically, an 

image composition spanning a large period of time can amplify the artificiality of 

the produced pseudo-composite, causing the sunglint correction algorithm to be 

unable to capture any existing interference by this phenomenon.  

2. Data-wise, there is a three-fold problem with Sentinel-2 applications in the 

remote sensing of optically shallow benthos and broadly aquatic extent. First, the 

tile limits of Sentinel-2 data are visible due to differences in viewing angles (odd 

and even detectors feature a different viewing angle) which produces striping. In 

turn, this artifact could severely impact classification output as it alters 

neighbouring reflectances. A first possible solution for striping could be the 

application of pseudo-invariant feature normalisation using a tile as a reference 

image and all the others as the slave ones—a theoretically, computationally 

expensive operation within GEE. A second solution is to split the initial study area 

into sub-areas—ultimately every tile within the visible stripes—where we could 

select polygons and run the classifier. The second data-related issue is the coastal 

aerosol band 1 which is originally in 60-m resolution in comparison to the 10-m 

resolution of all the other visible bands. Although on-the-fly reprojected to 10-m 

for visual purposes and integral towards coastal habitat mapping and SDB due to 

its great penetration, it causes artefacts upon application of the depth invariant 

indices of (Lyzenga, 1978, 1981). Therefore, we only utilise b2-b3 index during the 

classification step. This could be solved through the implementation of a 
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downscaling approach of band 1 (Brodu, 2017) into the existing workflow which is 

under exploration in terms of computation time efficiency. The third and last data-

wise issue is the selection of training and validation data. We designed as 

homogeneous as possible polygons that represent seagrasses, sands, rocks and 

deep water based on very high spatial resolution images; however, these will be as 

accurate as our experienced eye will dictate us. Fig. 4.6.2 shows that at all band to 

band scatter plots, the designed polygons of seagrass and non-seagrass beds are 

not well differentiated that might have caused misclassifications. Generally, the 

collection of field data for the classification of remote sensing of aquatic habitats is 

expensive, time-consuming and sparse today. More efforts should be driven 

towards allocating funding for accurate and high resolution in situ data and/or 

advocating the sharing of open datasets that would permit regional to global 

projects. The search for open access data on seagrass from relevant data 

repositories reveals a high number, however a fraction of these are potentially 

suitable for use in the remote sensing domain. Therefore, it is mandatory to urge a 

collaborative action between seagrass and remote sensing scientists which will 

galvanise the development of a protocol that could be easily adapted in any 

seagrass bioregion for the designation of accurate and well documented with 

metadata, in situ data for seagrass mapping using the present workflow. 

Future Endeavours 

In addition to the much-needed availability of accurate in situ datasets suitable for image 

analysis of variable scales (from 50-cm to 30-m pixel size), we discuss three future 

endeavours following the use of the present cloud-based workflow: 

1. Basin- (Mediterranean) to global-scale mapping and monitoring of seagrasses 

and related biophysical variables (specifically the climate change-related carbon 

sequestration): The expected lifespan of Sentinel-2 and its succeeding 

complementary twin mission (7.25+7.25 years) would unravel issues related to 

open and free, high spatial resolution data availability and allow intra-annual 

(seasonal) to inter-annual monitoring activities in the optically shallow grounds of 

seagrasses for 14.5 years by 2029 which marks the end of the announced UN 

decade of ocean science (UNESCO, 2018). 

2. Improvement of certain stages of the present workflow: a) Incorporation of a more 

sophisticated atmospheric correction algorithm like Py6S (Wilson, 2012), b) 

Implementation of optimisation approaches for simultaneous derivation of benthic 

reflectance and bathymetry based on the semi-analytical inversion model of (Lee 

et al., 1998, 1999), c) Inclusion of Best available pixel (BAP) approach within span of 
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well-stratified column period which use pixel-based scores, according to both 

atmospheric-, season- and sensor-related issues, to produce a composite with 

the Best Available Pixel (White et al., 2014), d) Incorporation of object-based 

segmentation and classification methods to improve classified outputs. The main 

drawback of the first three improvements is that they would possibly lower the 

time efficiency of the present version of the chain due to the higher demand in 

computational power based on the need to implement look up tables and/or run 

radiative transfer codes.  

3. Integration of seagrasses and other coastal habitats to the Analysis Ready Data 

(ARD) era: Recent advances in optical multispectral remote sensing (e.g. Sentinel-

2, Landsat 8, Planet’s Doves), cloud computing and machine learning classifiers 

can enable multi-scale, multi-temporal and sensor-agnostic approaches where 

all the aforementioned data will be pre-processed to a high scientific standard 

(Cloud Optimised GeoTIFF (Cloud Optimised GeoTIFF, 2018); further harnessing 

past, present and future remotely sensed Big Data and facilitating the near real-

time measurements of physical changes of these immensely valuable habitats for 

Earth. 

4.6.5 Conclusions 

The present study introduces a complete methodological workflow for large scale, high 

spatial and temporal mapping and monitoring of seagrasses and other optically shallow 

habitats. The workflow can be easily tuned to spatial, timely and data input; here, we 

showcase its large spatiotemporal and time efficiency, mapping 2,510.1 km2 of P. oceanica 

seagrasses in 40,951 km2 of the Greek Seas utilising a 10-m Sentinel-2 based composite 

of 1,045 tiles in seconds. The workflow could also ingest the freely available image 

archive of Landsat-8 surface reflectance as input. We envisage that the herein adaptable, 

accurate, and time- and cost efficient cloud-based workflow will provide the vital 

seasonal to inter-annual baseline mapping and monitoring of seagrass ecosystems in a 

global scale, identifying problematic areas, resolving current trends, and assisting 

coastal conservation, management planning, and ultimately climate change mitigation. 
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5 General Discussion  
 

Building on the individual discussions of the six published contributions of the present 

PhD Thesis, I herein discuss their connectivity and relevance in the light of the most 

significant findings of my PhD, the pertinent natural and technological environment, and 

the emerging needs for the future of seagrass and seascape mapping using remote 

sensing technology.  

 

5.1 Important Findings and Innovations 

 

As provided in Section 1.3. and following Chapter 4, the cohesion of this section needs to 

reinforce the eight most prominent and innovative findings and contributions of the 

present PhD: 

 

a) The exploitation of new satellite sensors (e.g., Sentinel-2, RapidEye, and 

PlanetScope) for mapping and monitoring of seagrasses in multiple spatial and 

temporal scales and resolutions 

b) The use of machine learning algorithms and frameworks for seagrass mapping 

and the demonstration of their increased accuracies (in comparison to simpler 

classifiers e.g., Maximum Likelihood) 

c)  The revelation of seagrass loss in northern Greece through a five-year satellite 

image time-series of RapidEye data 

d) The identification of deep seagrass meadows in depths of 33 m in the south of Crete 

(southern Greece) on Sentinel-2 imagery 

e) The designation and integration of the probability and uncertainty metrics for the 

validation of coastal aquatic remote sensing data products 

f) The design and application of a semi-analytical inversion model to retrieve optical 

properties of the water column above and seabed of Mediterranean seagrasses 

from Sentinel-2 imagery 

g) The introduction and exploration of multi-temporal approaches in the remote 

sensing of seagrasses (which address better usual optical interferences in the 

coastal Earth Observation e.g., clouds, sunglint, waves, turbidity) 

h)  The design and development of a cloud-native methodological workflow for large-

scale seagrass mapping and monitoring of seagrasses, combining multi-temporal 

satellite image composites of Sentinel-2, independent image-annotated and field-
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based training and validation data, and a machine learning framework within the 

cloud platform of the Google Earth Engine.    

 

The timing of the start of this PhD was ideal to coincide with the exponential increase in 

the launch of Earth Observation missions (e.g. Sentinel series, Planet’s Cubesats), the 

application, solidification and democratisation of artificial intelligence frameworks in the 

remote sensing domain, and the increase in computing power which has brought about 

the establishment and growth of cloud computing platforms. And the harmonious 

synergy and symbiosis of all these Earth Observation technological advances, and the 

resulting developments for seagrass mapping, as presented in 4.6, are a result of the 

research, experiments, and applications―within local servers―of the chronologically 

prior publications presented in 4.1 – 4.5 within local servers; and, naturally, follow, are 

inspired by, and build on the theories, applications and observations of dozens of 

scientists in the last 50 years.  

 

The cloud-based mapping workflow of section 4.6 could offer the yeast to optimise the 

remote sensing-based detection of seagrass habitats and their natural seascape 

environment at a planetary scale. The serverless machine learning, analytics and 

satellite data refineries will allow this optimisation through the ensuing gains in 

scalability, cost and time-optimisation, adaptability, and automation. 

 

Cloud-native, large-scale satellite-based mapping requires large-scale, well-

distributed, and independent training and validation datasets for nonpartisan mapping 

and monitoring of seagrass and their neighbouring habitats. And the subsequent 

validation of the mapping data requires, as well, the development, application, and 

standardisation of standard and new metrics in the cloud e.g., Error Matrices, Confidence, 

Probability, Uncertainty (similar to the ones implemented within a local environment in 

4.3)   

 

5.2 Standardise It Now 

 

Following the written contributions of The Good, the Bad and the Best Practices of the 

Proposed Cloud-based Workflow Discussion section of 4.6, there are two emerging 

needs due to the transition from the local to the cloud environment and the resulting 

scalability of seagrass mapping; and it is vital to meet them for improved transparency, 

accuracy, efficiency, and ultimately understanding. 
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The first concerns the need for global-scale reference data to train and validate the 

cloud-native workflow and the resulting mapping products. We can meet this need by 

designing a central repository where all the available or new field data will be collected in 

a standardised fashion. These field datasets can be derived from: 

 

a) New field campaigns using optical (e.g., drones) and acoustic means (e.g., side-

scan sonars), and GPS or customized mobile applications (e.g., Collect.Earth - 

http://www.openforis.org/tools/collect-earth.html). 

b) Existing open field data found in online inventories (e.g., PANGAEA - 

https://www.pangaea.de/; ZENODO - https://zenodo.org/; UNEP-WCMC - 

https://www.unep-wcmc.org/resources-and-data) 

c) Design (i.e. annotation) of new reference data based on human photo-

interpretation of high-resolution satellite base maps. Such base maps are offered 

within cloud computational platforms, easing the photo-interpretation. 

 

The aforementioned photo-interpretation would still necessitate experienced 

analysts―with image analysis and the present seagrass species in a given region―to 

differentiate and annotate non-biased reference data. In this case, biases arise from the 

annotation of mixed classes within each digitised pixel block (representative of a certain 

class). Photo-interpretation could be implemented to annotate the drone-based high-

resolution imagery (as explained in point (a) above). This would minimise the cost of 

collecting reference seagrass data in situ by means of snorkelling and diving and 

establish a yet unexplored synergy between drones and satellites in the coastal aquatic 

remote sensing domain.  

 

Machine and/or deep learning-based image analysis tools could be also used to 

standardise and automate the collection and annotation of such field data inventories. 

Already designed and implemented approaches, mainly for semi-automated and 

automated interpretation of coral reefs, like the ones presented in Beijbom et al. (2015), 

Gonzalez-Rivero et al. (2016), and Williams et al. (2019)  provide inspiration and technical 

capacity for the employment and/or development of similar systems for seagrass photo-

interpretation. 

 

It is also vital that the described envisaged central repository of seagrass and seascape-

related data should be open, public, and free. Only this way, there will be advances into the 

research and non-research incentives of the involved stakeholders in the planetary 

seagrass environment.  

 

http://www.openforis.org/tools/collect-earth.html
https://www.pangaea.de/
https://zenodo.org/
https://www.unep-wcmc.org/resources-and-data
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The second need relates to the development, integration and standardisation of 

quantitative validation metrics in the cloud. Cloud-native mapping approaches will 

benefit from the universal implementation of standard accuracy assessment approaches 

like the error matrices (including the metrics of Overall, Producer, User Accuracy and F-

measure score) and alternative ones like the metrics of Confidence, Probability, and 

Uncertainty (section 4.3). Such implementation and standardisation will highlight 

potential bottlenecks and biases of the applied algorithmical components; will reveal 

possible over and under-estimations of seagrass extent and of the ranges of related 

biophysical parameters; and will dictate current and future sampling designs, minimum 

mapping and spatial assessment units, and the required amount of cal/val data in a given 

seagrass mapping and monitoring exercise (FAO, 2016).  

 

Although developed for terrestrial habitats and related environment variables, the 

practices for effective and accurate calibration and validation described in FAO (2016) and 

TERN (2018) could compose a roadmap for similar standardised practices, adaptations 

and efforts in a coastal aquatic context. And the theories, approaches, and metrics 

elaborated in Roelfsema and Phinn (2008, 2013), Tulloch et al. (2017), and section 4.3 could 

complement the two aforementioned practices towards standardising the validation 

component in cloud-native mapping solutions. 

 

5.3 Seeing the Forest for the Trees  

 

Seagrasses are core ecosystems within the global coastal seascape which also includes 

corals, mangroves, tidal flats and salt marshes. These vital seascape components are 

geographically and functionally interconnected; recession of any of the individual 

component habitats of the seascape will have negative consequences for the other 

components (Pendleton et al. 2012) e.g. the degradation of mangroves can induce 

sedimentation in the water column which will, in turn, decrease the light availability for 

the photosynthesis of seagrasses, stressing and degrading their meadows.  

 

The majority of seascape mapping efforts to date has focused on specific habitats of 

interest, being unable to see the forest for the trees. In addition, we are lacking accurate 

estimates of the global extent of seagrasses, with current estimates featuring a 

geographical and historical bias (Macreadie et al. 2019). Near-future nonpartisan data-

driven mapping of the global spatial extent of seagrasses will complement existing and 

current mapping efforts of the neighboring seascape habitats (Giri et al. 2010; Hamilton 

and Casey, 2016; Murray et al. 2019; Allen Coral Atlas, 2019). The cloud-native mapping 
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solution presented in 4.6 could offer such global-scale mapping data in the next three 

years, following the necessary and aforementioned standardisations and automations in 

artificial intelligence frameworks and reference data. 

 

I envisage that the planetary-scale baseline mapping of seagrass ecosystems should and 

will be followed and/or integrated into a comprehensive, long-term cloud-based 

mapping and monitoring service for the entire coastal seascape, similar to the ones 

which exist for terrestrial ecosystems e.g., Global Forest Watch. I also envisage that with 

the current availability and advances in open satellite data archives (e.g., Sentinel-2, 

Landsat series), cloud computing, artificial intelligence and the necessary reference 

data, such potential service could achieve annual to inter-decadal monitoring of the 

global seascape through the next decades. Future holistic seascape mapping approaches 

will unveil related ecosystem tipping points or regime shifts, covering significant gaps in 

seascape knowledge, science, mapping, management, protection and conservation. 

5.4. Leave No One Behind 

 

A previously unexplored mapping endeavor at a global scale is the quantification of the 

carbon stocks of seascape habitats (incl. seagrasses, mangroves and tidal flats). Spatial 

and temporal knowledge of carbon sequestration trends and current carbon stocks could 

improve current climate change mitigation schemes and global carbon budgeting, as they 

present a “no regrets” option for climate change mitigation and adaptation. As agreed in 

the 2018 UN climate conference in Katowice, Poland (COP24, 2019), from 2024, a new 

international climate regime will oblige all countries to report both their emissions and 

the related progress in cutting them biennially. A total of 151 countries contain at least one 

blue carbon habitat, while 71 countries contain all three; these countries could certainly 

benefit from spatio-temporal intelligence of seascape habitats. These envisaged 

incentives will be better facilitated by the inclusion of these habitats in carbon trading 

programs and payments for ecosystem services (PES, 2019) like REDD (Reduced 

emissions from deforestation and degradation) and REDD+ (REDD, 2019). Through these 

incentives and schemes, protection, management and subsequent decrease of the 

ongoing degradation of seascape habitats could help all the involved countries and 

communities to have access to relevant climate funds and carbon trading programs. 

 

The aforementioned climate change mitigation schemes are part of the Sustainable 

Development Goals―especially Goal 13: Climate Action and 14: Life below water in the 

context of seascape ecosystems (PES, 2019; SDG, 2019). These goals address specifically 

the problem of recession and loss of coastal seascapes via efforts towards reducing 
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climate-related risk, while improving economic growth and sustainable ocean 

management. The advances in Earth Observation technology and the resulting wealth of 

global seagrass mapping data can certainly assist national, international and global 

institutions not only to integrate SDGs into their policies and strategies but also to achieve 

them. This integration and achievement is expected to trigger $26 trillion in economic 

benefits by 2030 (SDG, 2019).  

 

5.5 Essential Variables 

 

An additional near-future priority in spaceborne seagrass and seascape mapping can be 

identified in the assessment of the Essential Variable frameworks―the Essential Ocean 

Variables (EOVs) of the IOC-UNESCO Global Ocean Observing System and the Essential 

Biodiversity Variables (EBVs) of the Group on Earth Observations Biodiversity 

Observation Network (GEO BON). The variables associated to seagrasses are their cover 

and composition, at both total and species level percentages, and have been designed 

following their importance to science and society, and viability for planetary-scale 

realisation (Miloslavich et al. 2018). To date, the use of remotely sensed data for the 

measurement of EOVs and EBVs has been largely unproven or demonstrated in limited 

cases (Muller-Karger et al. 2018). Globally coordinated monitoring networks and 

respective standardised practices and assessments could create routine, multi-purpose, 

and interoperable data of these essential variables; and in turn, such efforts and data 

could generate further interest in the operational and commercial sector, and attract 

supplementary funding for seagrass ecosystems (Duffy et al. 2019). 
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6 Conclusions and Outlook 

 

From the dinosaurs and the Aristotle to the age of climate change and the Fourth 

Industrial Revolution, seagrasses have been an overlooked component of our Planet. 

They have been relentlessly contributing their ecosystem services for all these millions 

of years, but more recently they have experienced degradation and loss of their area due 

to the impacts of climate change. And these issues are exacerbated by the current spatial 

and temporal biases in the existing global seagrass dataset. My four-year PhD research 

aimed to build scalable tools and algorithms required for seagrass mapping exploiting 

the technological advances of the last five years in remote sensing and Earth 

Observation―the new satellite data, the democratisation of artificial intelligence 

frameworks, and the proliferation in cloud geospatial computing. These tools have been 

long needed to shed light into which seagrass species are where, how much they are, how 

much area they have lost (or gained), and the drivers of these trends.  

 

Experimentation and experience with the use of new satellite image archives in local and 

cloud servers, in a single scene and multi-temporal fashion, in empirical to analytical 

solutions, in temperate and tropical seagrass regions, have more recently led to the 

design and development of an end-to-end, cloud-based workflow for seagrass mapping. 

Thus far, the cloud-native workflow has provided country-scale seagrass extent data 

(Greece – 41,000 km2 of coastline) and in a yet unpublished effort, it will provide seagrass 

mapping data for the whole of the Mediterranean seagrass region (~180,000 km2) through 

the employment of thousands of Sentinel-2 images.  

 

Such data-driven, nonpartisan seagrass mapping approaches can be utilised to measure 

the global magnitude, condition and dynamics of seagrasses. And such efforts would 

require and bring about increased automation, scalability, democratisation, 

interoperability, standardisations in the cloud-native mapping and monitoring of 

seagrass and seascape ecosystems. Suitable and open reference data―both for training 

and validation of the seagrass mapping―for Earth Observation data are and will be a vital 

component for the realisation of planetary scalability in this context.   

 

The (near) future of seagrass and seascape mapping should be built upon the developed 

momentum around the value and condition of seagrass habitats; the innovations and 

potential of the remote sensing technology; and the capacity of and in conjunction with 

similar global mapping services like the Allen Coral Atlas, the Global Mangrove Watch 

and the Global Forest Watch. Today’s momentum and foreseen potential and benefits of 
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seagrass mapping, science and policymaking can contribute to humanity’s race to adapt 

to and mitigate climate change impacts within a sustainable 1.5 ºC of global warming 

above pre-industrial levels. To avoid cross tipping points and irreversible changes in 

biodiversity, ecosystems and climate patterns past the sustainable boundaries of Earth, 

we need significant coordinated networks with and investments from the commercial and 

private sector, and more so from not so traditional players in the game of marine science 

(e.g., philanthropic foundations, online companies, technology informatics companies, 

insurance companies, global banks, gaming industry companies).  Mapping, scientific 

evidence and risk assessment is one thing, but structurally changing our financial and 

economic incentives in a climate-changed world is another. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



   

157 

 

List of Figures 
 

2.1 Physiology of Seagrass vs Algae or “Seaweed” (Courtesy of the Integration and 
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parameters (from Hedley et al., 2016). 

 

2.6 Spectral profile of single blades of three seagrass species (Thalassia testudinum, 

Syringodium filiforme, and Halodule wrightii; from Thornhaug et al., 2007). 

 

2.7 Spectral wavelengths of the main multispectral satellites which have been commonly 

used in seagrass mapping.   

 

2.8 Effect of varying spatial resolution between different satellite and drone sensors 

above a seagrass bed. WVII PAN and MUL are the pan-sharpened and multispectral 

imagery of WorldView-2. (taken from the Global Seagrass Report (in press). 

 

3.1 Examples of IKONOS RGB high-resolution satellite imagery over seagrass and coral- 

dominated seabed areas in the world’s tropics (from Andréfouët et al. (2003)). 

 

3.2 Example of large-scale, high-resolution multi-temporal seagrass mapping over 142 

km2 in the Eastern Banks, Moreton Bay (from Roelfsema et al. 2014). 

 

3.3 Reference and classified habitat maps including seagrass habitats from the fusion of 

hyperspectral, aerial and bathymetry data and ensemble analysis of Random Forests, 

Support Vector Machines and k-nearest neighbors ((from Zhang, 2015). 
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3.4 Example of leaf area index (LAI: ratio of leaf area to substrate area) mapping using 

two high-resolution PHILLS imagery at Lee Stocking Island, Bahamas. Histograms 

feature the distribution of LAI frequency within the outlined box of the respective left 

panels (from Dierssen et al. 2003). 

 

3.5 Example of seagrass biomass mapping using IKONOS satellite imagery and field data 

in Zanzibar, Tanzania (from Knudby and Nordlund, 2011). 

 

3.6 Example of leaf area index (LAI: ratio of leaf area to substrate area) mapping using a 

physics-based inversion model, PRISM hyperspectral imagery and field data in Florida 

Bay, USA (from Hedley et al. 2016). The transects of (b) represent the white lines of (a) 

while the black dots are quadrat-based in-situ data, lines are model inversion results for 

only clean leaves and 0-25% coverage by sediment. Grey areas represent the 90% 

confidence intervals based on uncertainty propagation. 

 

4.1.1 Location of survey site within (a) Thermaikos Gulf, (b) Halkidiki Peninsula, (c) Aegean 

Sea, Greece. The depicted Sentinel-2A satellite image in (a) is an atmospherically 

corrected, true color (band 2 as blue, band 3 as green, band 4 as red) composite in UTM 

(zone 34) system/WGS84 projection. The outline colors of the left and upper right frame 

indicate their exact location. The deep water polygon is a selected 115 × 115 pixel window 

used in the water column correction step as it has very little water leaving radiance 

values in all visible bands. 

 

4.1.2 Habitats exhibited in the survey site: (from left to right) Dense Posidonia oceanica 

meadows; Shallow Cymodocea nodosa habitat; Photophilous algae on rocks; Sand. 

 

4.1.3 Schematic presentation of the methodology. L1C1 products are the initial 

orthorectified and spatially registered Sentinel-2A granules in UTM/WGS1984 projection, 

BDRF2 is the bidirectional reflectance distribution function that defines how light is 

reflected at an opaque surface, Rw
3 represents water surface reflectances and Rb

4 are 

bottom reflectances. 

 

4.1.4 Regression between log-transformed water-surface Sentinel-2A blue (band 2) 

versus Sentinel-2A green (band 3) reflectances over various habitats. An offset is applied 

to both logtransformed reflectances to facilitate presentation. 

4.1.5 Polynomial regression between log-transformed and passed with a 5 × 5 median 

filter water surface blue to green reflectance ratio and in situ depth measurements from 

the Thermaikos survey site. The displayed polynomial equation was used to measure 

bathymetry in the study site. 
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4.1.6 Sentinel-2A RGB (10-m bands 2, 3, 4) composites of the various methodological 

steps and corresponding best performing classifiers in the Thermaikos Gulf study site. A. 

Masked L1C-composite (no correction applied), B. Rw, water surface reflectance 

composite (with atmospherically and geometric correction applied), C. Rb, bottom 

reflectance composite (with water column correction applied), i. Support Vector Machine 

(SVM) classification of A-composite, ii. Random Forest classification of B-composite, iii. 

SVM classification of C-composite. All 6 images are draped over atmospherically 

corrected Sentinel-2A RGB imagery in UTM (zone 34) system/WGS84 projection. 

 

4.1.7 Bathymetry map of the survey site draped over an atmospherically corrected S2A 

RGB composite. Projection is UTM (zone 34) system/WGS84. 

 

4.1.8 Plot of modeled depth versus in situ measured depth for the validation of the 

bathymetry map of the survey site. Depth model was derived from the relationship of Fig. 

4.1.5. 

 

4.1.9 Plot of the depth residuals from the regression of Fig. 4.1.7, between modeled depth 

and in situ measured depth. Note that RMSE is 1.3 m. 

 

4.1.10 Modeled bathymetry versus log-transformed water surface reflectances Rw490, 

Rw560 and Rw665. The surface reflectance pixels were extracted from a sub-area on the 

satellite image that exhibited a constant sandy substrate but a depth variance from 1 to 5 

m. Attenuation coefficients were estimated using the slope of each regression line which 

represents the quantity −2Ki (Bierwirth et al., 1993). 

 

4.1.11 Spectral dependence of diffuse attenuation coefficient for water surface 

reflectances Rw490, Rw560 and Rw665. Diffuse attenuation coefficients estimations were 

derived from the regressions of Fig. 4.1.9. 

 

4.2.1 Workflow of the herein processed methodology. The Planet Image Time Series 

consists of three different PlanetScope Analytic Ortho Scenes. Lyzenga’s empirical water 

column correction is adapted from Lyzenga (1978, 1981).  

 

4.2.2 Experimental steps without the application of Unmixing-based denoising. A and B 

display the initial, ‘noisy’ blue and green Planet reflectance, respectively. C is the depth-

invariant index (Lyzenga’s empirical water column correction) of A and B before applying 

the Unmixing-based denoising (UBD). D shows Support Vector Machine classification 

result of C. All rasters are draped over a PlanetScope analytic Ortho RGB Scene of 
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17/11/2016 over our test site in Thermaikos Gulf, NW Aegean Sea, Greece, projected in UTM 

(zone 34) system/WGS84. 

 

4.2.3 Fig. 4.2.3. Experimental steps with the application of Unmixing-based denoising. A 

and B display the denoised blue and green Planet reflectance following the UBD 

application on the A and B of Fig. 4.2.2., respectively. Differences in overall brightness 

from A and B of Fig. 4.2.3 are due to their different histogram stretch. C is the depth-

invariant index of A and B after the UBD application. D shows Support Vector Machine 

classification result of C. All rasters are draped over a PlanetScope analytic Ortho RGB 

Scene of 17/11/2016 over our test site in Thermaikos Gulf, NW Aegean Sea, Greece, 

projected in UTM (zone 34) system/WGS84. 

 

4.3.1 Location of survey site in (a) Schinias Marathon National Park, (b) Samaria National 

Park, (c) Gavdos Island, and (d) Greece. 

 

4.3.2 The habitats of the selected sites: (a) Posidonia oceanica meadows at 30 m, (b) 

Rocky reef covered by photophilic algae, (c) Posidonia oceanica meadows at 5 m, and (d) 

Soft sandy bottom. 

 

4.3.3 Schematic methodological workflow. 

 

4.3.4 Downscaling of Sentinel-2 band 1 following Brodu (2017). (a), (d), (g): 4-3-2 

composite images of Schinias, Samaria, and Gavdos Island. (b), (e), (h): Original band 1 

(443 nm, 60-m resolution). (c), (f), (i): Downscaled band 1 at 10-m resolution. The pink and 

yellow squares in Fig. 4.3.4(f) show the downscaled 10-m pixels over a rocky and sandy 

seabed, respectively. The polygon in the three insets of 4(a), (d) and (g) indicates the 

location of the displayed panels within the extent of each survey site. 

 

4.3.5 Sunglint correction of Sentinel-2 A images following Hedley et al. (2005). All 

images are 3-2-1 L2A composites with downscaled band 1 at 10-m resolution. Yellow 

polygons indicate pixels selected for the regression. (a), (b): Initial and deglinted 

image of Schinias. (c), (d): Initial and deglinted image of the centre o   Samaria. (e), (g), 

(f), (h): Initial and deglinted images of NW and E Gavdos. 

 

4.3.6 Depth-invariant bottom indices (b1-b2, b1-b3 and b2-b3) following Lyzenga (1978, 

1981). Light blue polygons indicate regression pixels that represent the same substrate, 

sand, in different depths. (a) Schinias, (b) Samaria, (c) Gavdos. 

4.3.7 Water column corrected S2-A 3-2-1 composite of Samaria survey site, and related 

probability and uncertainty of habitat distribution. Isobaths are based on a     5 × 5 
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smoothing of the SDB. (a) Substrate reflectance (Rrsᵇ) image up to 30.2 m of depth. (b), (c), 

(d) SVM-derived probability of P. oceanica, rocky and  sandy  substrate  (%), respectively. 

 

4.3.8 Satellite-derived bathymetry (SDB) of the Samaria survey site based on the 

ratio of coastal aerosol to green band. (a) Deglinted L2A 3-2-1 composite of the 

survey site. In situ depth data (n = 2569) are shown in light pink. (b) SDB for the 

whole depth range. 

 

4.3.9 Linear regression between SDB using the b1-b3 ratio and the actual depth 

measurements from the Samaria site. The SDB was implemented in the 

analytical water column corrections. 

 

4.3.10 Probability and uncertainty of P. oceanica seagrass distribution in the Samaria 

site (south Crete). (a) Rrsᵇ S2-A 3-2-1 composite with deep dense P. oceanica 

seagrass patch within yellow polygon. The light blue circle indicates the presence of 

P. oceanica seagrass as observed in situ. The golden circles depict mean depths of 

the in situ depth measurement points that fall within the same pixels. (b) Probability 

of occurrence of P. oceanica seagrass following SVM-derived classification. (c) 

General uncertainty (%). (d) Uncertainties of P. oceanica  seagrass distribution lower 

than 20% are displayed with golden polygons. 

 

4.3.11 Probability and uncertainty of habitat distribution in Schinias. Displayed 

probabilities are the most accurate results (overall accuracy) of machine 

learning- based classification. Bathymetric contours derived from the Hellenic 

Navy Hydrographic Office are displayed in purple. Masked land is displayed in 

grey colour. (a) Deglinted S2-A 3-2-1 composite of the survey site. (b) SVM-

derived P. oceanica probability. (c) SVM-derived sandy substrate probability. (d) 

Uncertainty (%). 

 

4.3.12 Probability and uncertainty of habitat distribution in Gavdos. Displayed 

probabilities are the most accurate results (overall accuracy) of machine learning-

based classification. Bathymetric contours derived from the Hellenic Navy 

Hydrographic Office are displayed in purple. Masked land is displayed in grey colour. 

(a) Deglinted S2-A 3-2-1 composite of the survey site. (b) RF-derived P. oceanica 

probability. (c) RF-derived rocky substrate probability. (d) RF- derived sandy 

substrate probability. (e) Uncertainty (%). 

4.4.1 Location of survey site within the Thermaikos Gulf and the Aegean Sea, Greece (inset 

map). The displayed Sentinel-2A image is a top-of-atmoshpere (toa) 4-3-2 composite in 

UTM (zone 34) system/WGS84 projection. The depicted bathymetric contours are 
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provided by the Hellenic Navy Hydrographic Service (HNHS). The displayed waterways 

are provided by the OpenStreetMap (http://download.geofabrik.de/europe/greece.html). 

 

4.4.2 Exponential regression between the log-transformed ratio of sub-surface remote 

sensing coastal aerosol (443.9 nm) and green (560 nm) reflectances, and in situ 

measured bathymetry from the Thermaikos survey site. The displayed exponential 

algorithm was used to empirically derived bathymetry in the present study. 

 

4.4.3 Examples of retrieved inherent parameters from both C2RCC and the herein 

parameterised HOPE (Lee et al. 1999) model in the Thermaikos Gulf (see Fig. 4.4.1). (a) 

Absorption coefficient of phytoplankton pigments at 443.9 nm, (b) Backscattering 

coefficient of suspended particles at 560 nm, (c) Attenuation coefficient at 496.6 nm. 

 

4.4.4 5x5 median-filtered, Satellite-derived bathymetry (H) of the Thermaikos Gulf (see 

Fig. 4.4.1) based on the empirical regression of Equations (17)-(18) shown in Fig 2. The 

displayed extent follows the application of an optically shallow mask until 16 m after 

Traganos and Reinartz (2018a). 

 

4.4.5 Validation of the Satellite-derived Bathymetry (H) shown in Fig. 2 and 4.4.4. H was 

utilised in Equation (5) to invert bottom reflectances. 

 

4.4.6 Machine-learning-based classification of P. oceanica seagrass―shown in green in 

panel (b) ―bottom reflectances. Accuracy assessment is shown in Table 2. 

 

4.4.7 Mean spectral reflectances (plus standard deviation) over 320 pixels of classified as 

P. oceanica seagrass beds for the four first bands of Sentinel-2A (all in 10m/pixel 

resolution) for all the estimated products in the present study. Description of reflectance 

denominators are provided in section 2.3.2. The secondary y axis displays reflectance 

values only for the Rtoa. 

 

4.4.8 Mean spectral reflectances of the classified habitats for the four first bands of 

Sentinel-2A (all in 10m/pixel resolution) for bottom reflectance product. PO and CN 

represent Posidonia oceanica and Cymodocea nodosa seagrasses, respectively. 

 

4.5.1 Location of survey site within (A) Thermaikos Gulf, (B) Aegean Sea, Greece. The 

displayed RapidEye imagery is a non-atmospherically corrected, true color (band 1 as 

blue, band 2 as green, band 3 as red) composite in UTM (zone 34) system/WGS84 

projection. The imagery was acquired on 22/06/2016 (RE16 in text). The red polygon in (B) 

depicts the location of (A) within the Thermaikos Gulf. The deep water polygon represents 

http://download.geofabrik.de/europe/greece.html
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a ∼160 × 160 pixel window implemented in the water column correction of the image time 

series as it represents an area with very little water leaving radiance values in all three 

bands. 

 

4.5.2 Schematic representation of the methodology. 1L3A ortho products are the initial 

radiometric, sensor, and geometrically corrected RapidEye images in UTM/WGS1984 

projection, 2R represent atmospherically-corrected (FLAASH module), at-water surface 

reflectances, 3Rrs are remote sensing reflectances, transformed from R using Equation 

(1), 4Rb are water-column-corrected, bottom reflectances using the analytical model of 

Maritorena et al. (1994). 

 

4.5.3 Polynomial regression between the log-transformed ratio of blue and green remote 

sensing reflectances, Rrs, and in situ depth measurements from the Thermaikos survey 

site. The shown polynomial equation was implemented to estimate the bathymetry map 

displayed in (C) of Fig. 4.5.4. 

 

4.5.4 Methodological steps from atmospheric to water column correction in order of 

successive processing. All four panels are true color RapidEye image composites 

(22/06/2016; RE16 in text) projected in UTM (zone 34) system/WGS84. (A) Non-

atmospherically corrected composite. (B) Atmospherically-corrected composite using 

the FLAASH module. (C) Satellite-derived Bathymetry map of the survey site draped over 

the atmospherically-corrected composite of (B) using the site-specific polynomial 

algorithm of Equation (2) as shown on Fig. 4.5.3. We applied a 5 × 5 low-pass filter on the 

initial ratio-derived bathymetry (not shown here) to reduce potential noise which would 

be transferred to the water-column corrected product. (D) Water-column corrected 

composite following application of the water column correction algorithm of Maritorena 

et al. (1994) draped over the atmospherically-corrected composite of (B) and masked 

using the optically deep limit of 16.5 m to enhance bottom features and potentially 

increase classification accuracies 

 

4.5.5 Plot of Satellite-derived Bathymetry (SDB) vs. in situ measured depth for the 

validation of the bathymetry map of the Thermaikos Gulf (Fig. 4.5.4C). SDB was derived 

from Equation (2). Regressed SDB have been previously smoothed with a 5 × 5 low pass 

filter to reduce unwanted noise. 

4.5.6 Classified water-column-corrected RapidEye composites from the 4 years using 

Random Forest machine learning classifier (100 trees). The frames on the upper right of 

each panel indicate the date of each RapidEye image. (A) RE11—Overall accuracy: 73.5%. (B) 

RE12—Overall accuracy: 81%. (C) RE15—Overall accuracy: 78.5%. (D) RE16—Overall 

accuracy: 82%. 
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4.5.7 Interannual change detection of seagrasses in the Thermaikos Survey site between 

2011 and 2016 using RapidEye satellite images. The trajectory plot displays change of area 

(in hectares; y-axis) over the years (x-axis) of Posidonia oceanica and Cymodocea 

nodosa species, and of total seagrass area. Linea regression black lines (m = slope) show 

approximate trend in area between 2011 and 2016. Posidonia oceanica seagrass is 

decreasing at 11.2 ha/yr, Cymodocea nodosa seagrass is increasing at 18 ha/yr, while total 

seagrass area is expanding at 6.8 ha/yr. 

 

4.5.8 Change in seagrass distribution in the Thermaikos survey site between 2011 and 2016 

for (A) Posidonia oceanica and (B) Cymodocea nodosa. Between 2011 and 2016, P. oceanica 

seagrass meadows have declined by 4.1%, while C. nodosa seagrasses have increased by 

17.7%. 

 

4.6.1 Geographical location of survey site and training polygons of the herein considered 

classes. All polygons are in GCS WGS84 World Geodetic System. 

 

4.6.2 Scatter plots of the first four, sunglint-corrected Sentinel-2 bands depicting 

waveband reflectivity of the herein 1,457 polygons for the whole extent of the study area. 

Seagrasses are in green circles and non-seagrasses are in light blue triangles. 

 

4.6.3 Methodological workflow of the present study within Google Earth Engine. OA 

denotes overal accuracy. In the present study we did not implement step 2 (due to the use 

of a coastline buffer), however, we include it as it is an important component of the 

methodological chain. 

 

4.6.4 Successive stages of the developed workflow through the resulting false-colour 

(b1-b2-b3) Sentinel-2 composites. (a) Initial S2, (b) Cloud- and atmospherically-

corrected, (c) Sunglint-corrected, (d) Depth invariant index b2-b3, (e) Support Vector 

Machines-based classified product draped over the b2-b3 depth invariant index layer, (f) 

PlanetScope surface reflectance product (as imaged by Planet’s Doves) in natural colour 

for high resolution reference (3 m) (ID: 

20170828_084352_100e/20170828_084352_100e_3B_AnalyticMS_SR). The pink squares 

indicate sunglint presence in (b) and its correction in (c). Τhe green and yellow polygons 

show employed seagrass and sand pixels in the machine learning classification. All 

panels are in GCS WGS84 World Geodetic System. 

 

4.6.5 Distribution of seagrasses in the Greek Seas. (a) Thermaikos Gulf, (b) Thasos Island, 

(c) NE Peloponissos, (d) Limnos Island. Inset maps contain results from Topouzelis et al. 
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(2018) and UNEP-WCMC, Short FT (2017) for reference and further validation of our 

results. All panels are in GCS WGS84 World Geodetic System. 
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