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Abstract

In this work, two closed-loop controllers are proposed, which control the flux density distribu-
tion on the receiver of a solar power tower plant. The first controller, called Hot Cold Control,
is based on the idea from GarcÍa-MartÍn et al. [1] and modified to work with the flux density
measurement as input. Secondly, a novel control approach is presented, called Static Optimal
Control, which is based upon the ant colony optimization algorithm. In a simulation, the
controllers are tested under three test cases. The first two test cases evaluate the controllers
capacity to compensate for disturbances like mirror errors and to react to overflux conditions.
The last test case investigates the controller’s reaction to dynamic disturbances like clouds.
The Static Optimal Control shows the most promising results. Under the influence of a
mirror error it raises the relative power from 88.9 % to 92.2 %. This is close to the calculated
maximum of 93.7 % and 1.67 % higher than the Hot Cold controller, which yields a relative
power of 90.53 %. The overflux condition in test case 2 is eliminated after one control step by
the Static Optimal Control and results in a relative power of 92.02 %. The Hot Cold control
requires 61 steps and yields a relative power of 90.53 %. Only the Static Optimal Control is
tested for test case 3, where it increases the power while the heliostat field is partly shaded
and compensates overflux conditions after the cloud passes. Finally, the Static Optimal
Control is tested on the solar tower in Jülich. Here, the controller also shows promising
results. However, for a commercial plant the elimination of an overflux condition is not fast
enough. To guarantee a robust control behavior, further testing and development has to be
done.
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1 Introduction

1.1 Motivation

The expansion of renewable energies is constantly increasing, especially due to climate
change and the resulting need to achieve climate targets. For example, the EU’s 2030
Climate and Energy Policy Framework demands to increase the share of renewable energy
to 32 % [2]. In 2018, the share of renewable energy in the EU was at 18.9 % and thus, needs
to be expanded more than 50 % over the next 10 years [3].

In the field of solar energy a variety of different technologies to produce electricity such as
photovoltaic, parabolic trough, Fresnel reflector, dish Stirling as well as solar towers are used.
Among these technologies, solar power tower plants are a promising option. Compared
to other solar technologies, they can achieve a higher theoretical overall efficiency, can be
upscaled easily and cost-effectively and offer a way of storing energy to compensate load
fluctuations [4]. One example for the use of stored energy are hybrid plants, which combine
the more economical energy production of photovoltaic with the more economical energy
storage of solar towers [5].

In a solar tower power plant, numerous mirrors focus the sunlight onto a receiver mounted
on top of a tower. The concentrated radiation is absorbed by a heat transfer medium (e.g.
molten salt) in the receiver. The energy of the medium can then be supplied to a connected
energy conversion process (e.g. steam power process) for electricity production.

Nowadays, around 20 solar towers such as the Ashalim Power Station in Israel with a
maximum capacity of 121 MW or the Khi Solar One in South Africa with a maximum capacity
of 50 MW are operated [6]. Another four solar towers are under construction such as the
Atacama-1 in Chile with a maximum capacity of 110 MW [7].

To make the expansion of solar tower power plants more economically attractive, an increase
in efficiency is of great importance. One possibility to increase the efficiency is by optimizing
the irradiation distribution over the receiver module. Current operated solar towers have a
solar to electric conversion efficiency usually between 15 % to 18 % averaged over a year [8].
The objective is to minimize irradiation losses, while limiting the radiation per area to prevent
damage to the receiver. Furthermore, the solar power tower plant is subject to disturbances
such as clouds or mirror errors. Disturbances can lead to an increase or decrease of the
irradiation. Thus, they either reduce the efficiency or may lead to critical damage to the
receiver. Due to dynamic changes in the sun’s position and the limit of the radiation during
operation as well as the disturbances, an open- or closed-loop controller is required, which
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1 Introduction

can react to these changes. Some models for calculating the optimal irradiation distribution
and thus, for controlling the heliostats with an open-loop control are already available in the
literature. However, there are only a few approaches to control the radiation distribution via a
closed-loop control.

1.2 Objective

The objective of this thesis is to develop suitable control approaches for a solar power tower
plant. The control approaches shall increase the efficiency of the solar power tower plant by
increasing the power on the receiver. However, damage to the receiver shall be prevented
and therefore, the maximum flux density must be restricted. Furthermore, the controllers
shall reject disturbances such as tracking or mirror errors. Rejection of highly dynamic
disturbances such as clouds is desirable. Additionally, the controller should be able to work
with different receiver types (e.g. cylindrical or rectangular receivers).

Based on the literature review, it can be concluded that an open-loop control is not sufficient
to face the control objectives. The open-loop controllers can model the disturbances but
an inaccurate modeling of these disturbances may lead to a non-optimal control behavior.
Furthermore, the controller should not depend on a precise estimation of the disturbances,
which would imply an accurate measurement of them, which is often economically unreason-
able. Thus, the open-loop controller is regarded as not capable to fulfill the requirement of
rejecting disturbances.

In order to compensate for disturbances a closed-loop controller needs to be designed. So
far, none of the controllers in the literature fulfills all the requirements. For example, one
controller lacks the ability to work with rectangular receivers. One possibility to design a new
controller would be to adapt the existing controller to work also with rectangular receivers.
However, due to the fact that only a few closed-loop control approaches were developed
so far, there may be other more suitable solutions to face the control objectives. For this
purpose, new control strategies are developed in this work by considering existing control
approaches used for solar power tower plants as well as control approaches from the control
theory literature.

To develop a control strategy which fulfills the requirements, this work will follow the process
of control system design as stated by Skogestad and Postlethwaite [9]. The process of control
system design, which is slightly adapted, considers the following steps:

1. Study the system (plant) to be controlled and obtain initial information about the control
objectives.

2. Model the system and simplify the model, if necessary.

3. Analyze the resulting model; determine its properties.

4. Decide which variables are to be controlled (controlled outputs).

2



1 Introduction

5. Decide on the measurements and manipulated variables; what sensors and actuators
will be used and where will they be placed.

6. Decide on the type of controller to be used.

7. Design a controller.

8. Analyze the resulting controlled system.

9. Simulate the resulting controlled system either on a computer or a pilot plant.

1.3 Structure of the Thesis

The work consists of six parts. With respect to the process of control system design, this
chapter stated the control objectives (step 1). Chapter 2 gives an introduction to the solar
power tower plant and explains basics regarding the control theory. Then, it presents solutions
from literature and explains the ant colony optimization algorithm. Subsequently, chapter 3
models and analyzes the plant system (step 2 and 3) and then defines the inputs and outputs
of the controller (step 4 and 5). Furthermore, possible closed-loop control strategies for
the respective system are presented. From the presented controller, three controllers are
selected (step 6). Two of them, are novel control approaches developed in this thesis and the
last is taken from literature as a benchmark. The selected controllers are elaborated in more
detail (step 7) and finally, a short description of the simulation software is given. The resulting
control system is analyzed and optimized for one controller in chapter 4 (step 8). Finally, in
chapter 5 the controllers are simulated on a computer and the most promising control is also
tested on a real plant (step 9). Lastly, chapter 6 summarizes the thesis and gives an outlook
for future work.

3



2 Fundamentals and Literature Review

In this work a closed-loop control for a solar power tower plant is developed. This chap-
ter describes the structure of a solar tower system and the parts essential to this work.
Subsequently, the chapter introduces the basics of control theory relevant for this thesis
and presents solutions from the current literature. Finally, the ant colony optimization is
described because knowledge about it is needed for the Static Optimal Control proposed in
section 3.6.

2.1 Solar Power Tower Plant

A solar power tower plant converts solar radiation to electricity via an energy conversion
process or uses it to support thermochemical processes. It consists of a multitude of mirrors
called heliostats which focus the solar radiation onto a receiver which is mounted on top of a
tower. The concentrated radiation is absorbed by a heat transfer medium in the receiver. The
medium transfers the absorbed energy to an attached energy conversion process (e.g. a
Rankine cycle to produce electricity). Instead of being transferred to the energy conversion
process the medium can also be directed to an energy storage module for later use. [10]

Based on the preceding description a solar power tower plant can be divided into a series of
functional components: the heliostat field, the receiver, the energy conversion system and the
storage module which are depicted in Fig. 2.1. Within the context of this work the heliostats,
the receiver as well as the influence of the sun are essential for further understanding. These
parts are explained in more detail in the next three subsections.

2.1.1 Heliostats

The heliostats focus the solar radiation onto the receiver. Their aim points determine how
much and where the radiation is concentrated on the receiver. Furthermore, they are
affected by disturbances which lessen or divert the radiation reflected by the heliostats. The
composition of the heliostat, the arrangement of them (field layout) as well as its deficiencies
and physical limitations (optical losses) are described in the following paragraphs.

CompositionA heliostat is an optical aperture, which is used to always direct the solar radiation to the
same fixed point, regardless of the change of the sun’s position [10]. The solar radiation is
directed by a reflecting surface, which is supported by a structure. A controller tracks the
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G
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Figure 2.1: Simplified schematic representation of a solar power tower plant.

sun’s position and moves the reflecting surface to keep the radiation directed to the same
fixed point. Thus, the heliostat consists of a reflecting surface, a supporting structure and a
tracking mechanism. Depending on the heliostat type the reflecting surface is made up of
one or more mirrors called facets. The facets are usually arranged in the same plane but may
be canted to achieve a certain focal length. From one type to another the facets can differ in
size, form and amount. For example, the form may be rectangular but bent towards the inside
to focus the radiation. Usually, the heliostats have a rectangular shape and its facets are
supported by a T-structure due to economic reasons [11] as shown in Fig. 2.2. The tracking
mechanism guarantees that the heliostat always aims at the same fixed point on the receiver,
the so-called aim point. To enable this, the heliostat can usually be moved bidirectional in the
direction of the elevation and the azimuth axis, which are illustrated in Fig. 2.3. For example
big heliostats are moved by worm drives while smaller heliostats use push rod motors [10].

Field LayoutThe aggregate of heliostats, which are ordered around the receiver of a solar power tower
plant, is called the heliostat field. Heliostat fields consist of a multitude of usually identical
heliostats, which are arranged on concentric circles or in rows. Heliostat fields can be divided
into the categories all-round, north or south field as shown in Fig. 2.4. The category is
determined by the geographical location. All-round fields located near the poles have an
increasing lower field efficiency on one side of the field due to the steep incident angle of
the radiation of this respective side. Thus, when moving towards the poles an all-round field
becomes less economical. Other influential factors than the geographical position are stated
in [12]. These factors concern for example the spacing between the heliostats.

Regarding this thesis the only important aspect is the differentiation between an all-round and
a north or south field, as this implies the receiver type (see subsection 2.1.3) which directly
influences the manipulated variables of the controller (see subsection 2.3.1).
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Figure 2.2: Ausra heliostat of the solar tower power plant Jülich with 8.2 m2 mirror surface
(left) and Sanlúcar-120- Heliostat of the PS10 tower power plant (Sanlúcar la
Mayor) with 120 m2 mirror surface (right) [10]

NorthAzimuth

Elevation

East

South

West

Figure 2.3: Illustration of the elevation and azimuth axis.

2.1.2 Optical Losses

The heliostats as well as their arrangement are suspect to physical limitations and deficien-
cies, which lower the absorbed energy by the receiver. These limitations and deficiencies,
summarized by the word optical losses, influence the shape, aim point and radiation intensity
of the projected image onto the receiver. The optical losses include cosine loss, mirror
reflectivity, blocking, shading, mirror errors, spillage, tracking error and air attenuation. Each
optical loss is briefly explained within the next paragraphs.

Cosine
Losses

The solar radiation hits the mirror surface under a certain angle depending on the sun position

6
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Figure 2.4: Different heliostat field layouts in the Northern Hemisphere: all-round field (left),
northern field (right) [10]

and the inclination of the mirror. This angle determines the effective reflection surface. The
effective reflection surface is the mirror surface projected perpendicular to the direction of
arrival of the solar radiation. The ratio between the effective reflection surface to the mirror
surface of the heliostat corresponds to the cosine of the angle between the direction of arrival
and of the main normal of the mirror surface as illustrated in Fig. 2.5. Hence, the effective
reflection surface decreases with an increasing β and therefore the cosine efficiency which is
represented by the term cos(β). Thus, the cosine efficiency is directly related to the solar
power reflected by the heliostat. For example, the Solar One Tower in Barstow, California has
an annual average cosine efficiency from around 0.65 up to 0.9 depending on the heliostat
position [13].

Reflection
Losses

Part of the solar radiation is absorbed by the facets. This decreases the reflectivity of the
mirror surface, which can be further reduced through environmental influences like rain and

sun ray

main normal

projected surfaceheliostat

Figure 2.5: Side view of a heliostat illustrating the angle β in the context of cosine loss.
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dust. Typical reflection coefficients for cleaned glass facets lie between 0.87 and 0.94 and
can drop to 0.8 through environmental influences [10]. The change in reflectivity has a direct
influence on the power of the solar tower.

Blocking and
Shading

Depending on the sun position, field layout and shadowing objects like the tower, heliostats
may be shadowed or block other heliostats as illustrated in Fig. 2.6. In the case of shadowing,
an object like a heliostat or the tower disturbs the optical path between the sun and the
heliostat so that the solar radiation does not reach the entire heliostat. In the case of blocking,
the reflected radiation of one heliostat is partly blocked by another heliostat, which lies within
the optical path of the reflection. Shadowing occurs mainly during low sun positions while
blocking prevails more in the rear heliostat rows. These losses can be decreased by a proper
field design [14].

Mirror ErrorThe form deviation of a mirror, which leads to slope errors in the mirror, is called mirror error.
The mirror error is often noticed by waviness of the mirror material and leads to a wider
reflection image of a non-point-shaped sun compared to an ideal mirror. Form deviations
may result from manufacturing defects or from stresses within the heliostat structure which
also affect the facets. These stresses may be caused by thermal, gravitational or wind
deformations. The local mirror error corresponds to the angle between the local normal
vector of the mirror and the ideal local normal vector. Usually, a standard deviation of the
local mirror error is given and lies typically between 1.5 and 2.5 mrad. [10]

SpillageSpillage denominates the part of the reflected radiation, which does not hit the receiver and
therefore is energy that cannot be fed to the energy conversion process. Spillage is caused
for example by the mirror error or due to the reason that the heliostat distance to the receiver
is so high that the reflected image onto the receiver exceeds the size of the receiver.

Tracking
Error

The tracking error is a deviation in the tracking of a heliostat, which results in an offset
of the reflected image onto the receiver. Tracking errors may be caused for example by
inaccuracies of the motor aligning the heliostats, dirt or wear at the joints of the tracking axes
or imperfections in the construction of the heliostat [15]. Typically, the tracking error differs
from 0.5 to 2 mrad [10] and is distributed in a non-Gaussian way [15].

Air
Attenuation

The reflected radiation is weakened while it covers the distance between the heliostat and
the receiver due to absorption and scattering processes in the air. The weakening depends
in particular on the distance between heliostat and receiver but also on the height of the
heliostat field above sea level, the local humidity and the vertical distance covered. Under
unfavorable conditions the attenuation at a distance of 1000 m between receiver and heliostat
can be up to 1.2 %. [10]

2.1.3 Receiver

The receiver absorbs the reflected radiation by the heliostats and conducts the stored energy
within the receiver material to a heat transfer medium via convection. The heat transfer
medium is then fed to an energy conversion process. Additionally, due to its physical
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Figure 2.6: Blocking (left) and shading (right) of a heliostat. [10]

limitations it imposes restrictions on the intensity of the radiation. The next two paragraphs
describe the composition of the receiver as well as its physical limitations, which result in an
allowed flux density.

CompositionThe receiver is located in the top part of the tower. It has a rectangular or a cylindrical shape
depending on the field layout. Rectangular receivers are used in north or south fields while
circular receivers are used in all-round fields. A modification of a rectangular receiver is a
receiver that is curved inwards to protect it from wind. The purpose of the receiver is to
absorb the solar radiation reflected by the heliostats, conduct the heat to a heat transfer
medium and transport it to an energy conversion process. The heat transfer medium may
be air, molten salt, water, liquid metals or particles [16]. Depending on the transfer medium,
the receiver surface consists of different materials such as metallic tubes for molten salt
or porous ceramics for air [17]. In thermal receivers, the energy conversion process may
represent a conventional power plant process (e.g. Rankine cycle), while in thermochemical
receivers, the heat will be used for a reaction (e.g. hydrogen production).

Radiation
Physical
Quantities

The radiant flux F is defined as the radiant energy Q emitted or absorbed per unit time:

F = dQ
dt (2.1)

The flux density φ is the radiant flux Φ per area dA and can be expressed as

φ = dΦ
dA (2.2)
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In order to determine the gross power that is fed to the energy conversion process the flux
density is measured on each point on the receiver aperture. The power P can then be
calculated by integrating the flux density φ over the receiver surface A:

P =
∫
A
φ dA (2.3)

Since the measurement has no infinite fidelity, the flux density is usually given with respect to
a certain area called bin size. A sample flux density distribution is shown in Fig. 2.7.

Allowed Flux
Density

If characteristics, such as the corrosion limit as well as the maximum allowed thermal stresses
of the receiver are exceeded, the receiver can be damaged [18]. For example, for a molten
salt tube receiver these characteristics are related to the local salt temperature and velocity
as well as the wind velocity [19]. However, the local salt temperature is influenced by the flux
density on the receiver.

Damage to the receiver material must be prevented. Therefore, a maximum allowed flux
density for the receiver aperture is set, which can be calculated based on the receiver
characteristics. For example, for tube receivers that are cooled with liquid sodium, maximum
radiant flux densities of 2.5 MW/m2 are allowed, while with air-cooled tube receivers only
200 kW/m2 [10] can be achieved. There may also exist a minimum allowed flux density for
example due to the problem of freezing in molten salt receivers as well as restrictions to the
flux gradient, which will not be considered in this thesis. Therefore, the allowed flux density
always denotes the maximum allowed flux density within this work.

While the thermal site of the receiver is a major aspect in solar power tower plants and a
research area on its own, it is only implicitly important to this thesis because it yields the
allowed flux density. Within this work, it is assumed that the thermal site remains static during
the control process, which means that the allowed flux density is considered static, too.

2.1.4 Sun Shape

The sun shape has an indirect role in the control system. Equivalent to the mirror error (see
Fig. 2.1.2) it influences the shape of the flux density profile as well as its intensity.

Due to the fact that the sun is not a point source and does not emit parallel rays of light,
the angle between a sun ray and the facet of a heliostat may differ from sun ray to sun ray
[20]. An observer on earth will note a decrease of the intensity of the sun rays when looking
further away from the center of the sun. This intensity profile which is dependent on the sun
angle α between the observed direction and the direction to the center of the sun is called
sun shape. The angle is illustrated in Fig. 2.8. A sun ray may be scattered on particles in the
atmosphere. If it is scattered multiple times, it still reaches the observer, but from a different
angle than that from which it was originally emitted. Thus, an observer can recognize sun
rays even when not looking directly into the sun. Up to an angle of 4.6 mrad the observer is
looking directly in the sun [10]. The radiation, which can be recognized above this angle is
called circumsolar radiation. The ratio between circumsolar radiation Eaureole and the sum of
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Figure 2.7: Flux density distribution of a simulated plant with 100 heliostats with 8 m2 mirror
surface and a mirror error of 3 mrad.

Sun

Earth

Figure 2.8: Illustration of the sun angle α in context of the sun shape.
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the circumsolar radiation and the radiation of the solar disk Edisk is called circumsolar ratio
CSR, which can be expressed by

CSR = Eaureole
Eaureole + Edisk

(2.4)

Neumann et al. [21] classified different measured sun shape distribution into six groups
of different CSR-ranges. Averaged distributions were then calculated from the sun shape
distributions of the respective groups, which are depicted in Fig. 2.9.

2 Grundlagen 

9 

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Angle in mrad

R
el

at
iv

e 
in

te
ns

ity

CSR 0%
CSR 5%
CSR 10%
CSR 20%
CSR 30%
CSR 40%

Figure 2.9: Sun shape distributions with different circumsolar components [21].

These representative sun shape distributions often serve as the basis for the simulation of
solar radiation in simulation programs for concentrating solar systems [10].

2.2 Control Theory

The objective of a controller is generally to adjust certain variables, usually output variables
of technical processes, so that they are equal to predefined reference variables [22]. The
variables to be controlled should follow changes in the reference variables as closely as
possible and should be influenced as little as possible by disturbances affecting the process.

Controllers can be distinguished between closed- and open-loop controllers. In a closed-loop
control system, the controlled variables y are measured by a sensor and the measurement
results ym are compared with the reference variables yref . From the differences e between
the reference and controlled variables, control actions u (manipulated variable) are derived,
which are suitable for reducing the differences. This feedback of output variables defines the
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closed-loop control and is illustrated in Fig. 2.10a. In the context of closed-loop control, a
distinction is made between a force tracking a disturbance rejection control. The former tries
to follow a given reference trajectory as fast as possible, while the latter attempts to maintain
a reference value under the influence of disturbances.

The open-loop control is defined by the absence of the feedback. The input variables to the
system are only dependent of the reference variables and the control algorithm as shown
in Fig. 2.10b. In contrary to the closed-loop control, the controlled variable is not measured.
Disturbances or errors in the system model can not be compensated by this type of control.
However, if the disturbances can be measured or estimated, the open-loop control can be
extended to a feed forward control as illustrated in Fig. 2.10b. A feed forward control accounts
for disturbances, and adjusts the manipulated variable so that deviations in the controlled
variable from the reference point are minimized. Thus, the controller can reject disturbances
before they affect the controlled variable.

In order to design a controller, knowledge about the system and its characteristics such
as stability is usually essential. To derive these characteristics, the system needs to be
described mathematically.

As will be shown in subsection 3.1.4, the system treated in this thesis is a non-linear
time-invariant multiple-input multiple-output (MIMO) system. Nonlinear MIMO-systems can
generally be described by a nonlinear state space representation consisting of a vector
differential equation:

ẋ = f(x,u) (2.5)

and an output equation:
y = g(x,u) (2.6)

Here, x is the n-dimensional state vector, u the m-dimensional control or input vector, f the
n-dimensional vector function of the system, y the r-dimensional output vector and g the
r-dimensional output vector function.

A non-linear system imposes difficulties on the design of the controller because an overall
stability can usually not be guaranteed but only a stability within an environment of an
equilibrium point. An equilibrium point is defined as the state x where ẋ = 0. In contrast
to a linear system, there may exist more than one equilibrium point. The equilibrium point
of a non-linear system is defined as stable when all trajectories x(t), which start within an
environment of the equilibrium point, run in this point with increasing time and stay there
[23]. A MIMO-system imposes additional difficulties because the inputs and outputs may
be coupled, which means that one input can influence several outputs. Thus, either several
inputs need to be adjusted or it is impossible to change one output while keeping the others
constant. Furthermore, in systems theory most of the analysis possibilities are limited to
linear single-input single-output (SISO) systems, since the theory in this area is much simpler
and more advanced than that of nonlinear MIMO-systems.
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Figure 2.10: Closed-loop (a) and open-loop or feed forward control (b) scheme.

2.3 Existing Heliostat Aiming Control Strategies

One goal when optimizing solar power tower plants is to increase the efficiency in order to
make the plant economically more attractive. The efficiency can be raised in many ways
such as optimizing the field layout, the receiver design or the aim point coordinates of each
heliostat [19]. The latter called heliostat aiming is subject to this thesis.

As stated in chapter 1, the objective of the controller is to minimize the spillage, while not
violating the allowed flux density and also be robust to disturbances. After a comprehensive
literature review, it was found that most developed controllers are open-loop controllers, which
face the first two requirements of minimizing the spillage and not violating the constraints.
However, only a few closed-loop controllers were developed, which cover also the rejection
of disturbances.

Most of the open-loop controllers, try to solve the heliostat aim point optimization problem,
which is explained in the next subsection. The understanding of this problem, is also crucial to
understand the controllers, which are developed later in this thesis. The proposed controllers
in literature are categorized and presented in the last two subsections.
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2.3.1 Heliostat Aim Point Optimization

Optimal heliostat aiming is achieved when the flux density at each bin on the receiver is equal
to the allowed flux density at the respective bin. However, one heliostat correlates with many
bins on the receiver. The flux density on one bin can not be adjusted without changing the
flux density on other bins. Thus, it may be impossible to find a solution, where each bin value
is equal to the allowed flux density. Therefore, the objective when optimizing the heliostat
aiming is usually to maximize the intercepted power Preceiver of the receiver and thus reduce
the spillage while not violating the restrictions (allowed flux density) at each measurement
bin. This can be formulated as an optimization problem as follows

maximize Preceiver

subject to
φi ≤ φmax, ∀i = 1, . . . , nbins,

(xa,h, ya,h) ∈ R2, ∀h = 1, . . . , nheliostats

(2.7)

where φi is the flux density at bin i, φmax,i the respective allowed flux density and (xa,h, ya,h)
the aim point coordinates for heliostat h. The power Preceiver can be calculated by multiplying
the flux density (Eq. 2.2) with the bin area and sum them up for each bin:

Preceiver =
∑
i

φi · dA (2.8)

Because the bin area is constant and usually equal for every bin, the formulation in Eq. 2.7 is
equivalent to

maximize
∑
i

φi

subject to
φi ≤ φmax, ∀i = 1, . . . , nbins,

(xa,h, ya,h) ∈ R2, ∀h = 1, . . . , nheliostats

(2.9)

The optimization problem can be formulated continuous or discrete. While the continuous
formulation (Eq. 2.9) allows all possible aim point coordinates ((xa,h, ya,h) ∈ R2), the discrete
problem specifies a subset A of possible aim point coordinates usually arranged in a grid.
Thus, the discrete optimization problem can be mathematically expressed as

maximize
∑
i

φi

subject to
φi ≤ φmax, ∀i = 1, . . . , nbins,

(xa,h, ya,h) ∈ A, ∀h = 1, . . . , nheliostats

(2.10)

Although the discrete problem can reduce the solution space vastly, the problem can probably
not be solved in polynomial time and thus belongs to the class of the so-called NP-hard
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problems [16]. NP stands for non-deterministic polynomial-time. A NP-hard problem is at
least as “hard” as all NP problems. This means that an algorithm that solves an NP-hard
problem can be used with the help of a reduction to solve all NP problems. It is unlikely that
such an algorithm exist. In order to lower the spillage the heliostats aim preferably at the
center (or centerline for a cylindrical receiver) but pointing all at the center usually exceeds
the allowed flux density. Thus, the heliostats have to be moved while keeping the spillage
low. Which heliostat to move and in which direction depends on the location of the heliostat
(assuming all heliostats are identical) as well as the type of the receiver. Heliostats, which
have a smaller distance to the receiver, spread the solar radiation over a smaller area on
the receiver. Since they reflect almost the same power but on a smaller area as heliostats
that are further away, closer heliostats achieve higher maximum flux densities. Hence, when
moving closer heliostats to the edge of the receiver the spillage is increased less due to the
smaller projected image onto the receiver. Additionally, the flux density on one bin on the
receiver can be reduced more.

It should be noted that an optimal solution to the formulated problem does not represent the
optimal solution with respect to the real system because the plant is subject to disturbances.
The optical losses described in subsection 2.1.2 and clouds are considered as disturbances.
They alter the flux density distribution and therefore, can increase and/or decrease the
intercepted power. For example, a tracking error may result in a violation of the allowed flux
density when it induces a shift to a bin with a high flux density. Clouds reduce the reflected
radiation, which offers the possibility to shift the aim points of the heliostats more to the center.
When the cloud passes, the radiation increases, which then can lead to a violation of the
allowed flux density in the center.

2.3.2 Open-Loop Controllers

Solving the heliostat aim point optimization problem requires high computational effort due to
its many inputs (aim point coordinates) and outputs (measurement bins on the receiver) as
well as its strong correlation between them. Therefore, most controllers in the literature are
concerned with the problem of finding aim point coordinates for each heliostat which yield a
high intercept power while not exceeding the allowed flux density.

Heuristic
Techniques

Vant-Hull [19] proposes an algorithm for cylindrical receivers, which allocates an assumed
beam radius for the reflected image to each heliostat. Half of the heliostats are placed so
that the beam radius corresponds to the distance between the upper rim of the receiver and
the aim point. The other half is placed with respect to the lower rim. The beam radius is
deduced from a calculated cone angle of each heliostat. This cone angle can be multiplied
by a constant factor (the aiming strategy parameter ) to center the reflected image more. An
optimal aiming strategy parameter, which decreases the spillage and does not violate the
restrictions, has to be found. This algorithm was further modified by Flesch et al. [24] and
Sánchez-González et al. [25] as well as by Collado and Guallar [26]. Flesch et al. [24] added
a product to the factor for the cone angle. The product consists of a new parameter and the
distance between heliostat and center of the receiver called slant range. The new parameter
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scales the punishment for the slant range. Sánchez-González et al. [25] divide the all-round
field for a cylindrical receiver into different sectors in circumferential direction and propose an
algorithm which finds suitable aiming strategy parameters for each sector. A similar approach
is implemented by Collado and Guallar [26] who divides the all-round field in three zones
in radial direction and allocates to zone one and two one aiming strategy parameter and to
zone three another. Thus, the proposed algorithm fits two parameters.

Astolfi et al. [4] implemented different optimization approaches for a cylindrical receiver. All
approaches are based on branching the optimization problem in simpler sub-problems.

Local SearchMaldonado et al. [27] present an iterative algorithm, which they call local search. The
controller examines in each step the neighborhood of the aim point for a single heliostat.
In each examination step, the algorithm evaluates the shifts to the neighbouring aim points
with respect to the overall receiver performance. Then, the heliostat aim point assignment
is changed to the shift with the highest increase in the receiver performance. If no shift
increases the performance, the initial solution is maintained.

Metaheuristic
Techniques

Metaheuristic techniques to solve the discrete optimization problem are suggested by Salomé
et al. [28] using the TABU algorithm, Besarati et al. [29] applying a genetic algorithm as well
as Belhomme et al. [30] utilizing an ant colonization algorithm. The ant colonization algorithm
is explained in section 2.4 in more detail.

MILPBy reformulating the discrete optimization problem stated in Eq. 2.10 the optimization problem
can be solved by mixed-integer linear programming (MILP). This was done by Ashley et
al. [31], who implemented a MILP algorithm to find an optimal aim point distribution. The
algorithm was also successfully tested under the influence of clouds. However, to consider
clouds a prediction of these is necessary for the control.

Richter et al. [15] present a MILP formulation based on Γ-robustness. The aiming strat-
egy directly considers the uncertainty of the tracking error to improve the efficiency while
maintaining a high degree of safety. In contrary to other methods, it also constrains the flux
gradients.

SummaryAll proposed controllers rely on approximations of the heliostat errors and have rather high
numerical costs (except the Vant Hull and modified Vant Hull algorithm). If the approximation
is not accurate enough or the numerical costs lead to a high computational time, the controller
is not suitable for real world applications. At least without other systems compensating these
problems. Only the algorithm by Richter et al. [15] may compensate inexact modeling of the
errors but still has rather high numerical costs. Tt needs around 60 s to find a good solution
for a plant of 624 heliostats [32]. However, commercial plants consist of usually 104 heliostats
and require a sample time of only a few seconds to react fast enough to critical situations
like overflux conditions. Furthermore, only some controllers consider clouds (although all
can be modified to work with clouds). However, getting nearly optimal solutions would rely
on a very precise prediction of the clouds, which is currently not the state of the art. To
consider inaccurate approximations or disturbances like clouds, a closed-loop control would
be a solution.
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2.3.3 Closed-Loop Controllers

While there exist many open-loop controllers, the choice of closed-loop controllers is rather
small so far.

Heuristic
Controllers

Vant-Hull [19] proposes a simple control to prevent overflux conditions. When overflux is
measured at one bin, the heliostat producing the greatest flux on the respective bin is
identified and pointed to an aim point outside the receiver surface.

GarcÍa-MartÍn et al. [1] present an algorithm based on measuring the temperature at different
points on a rectangular receiver surface and shifting the aim points of the heliostat to colder
zones of the receiver when the maximum allowed temperature is exceeded.

PIDA controller based on decoupling the system into single-input single-output (SISO) subsys-
tems and then applying a Proportional Integral Derivative (PID) controller to these subsystems
is implemented by García et al. [33]. Each subsystem consists of a group of heliostats with
two manipulated variables. As manipulated variables they introduce the shifting of the as-
signed aim points of the groups as well as the dispersion and concentrating of aim points
within a group. Six PID controllers are needed for the plant system because they divided the
field into three groups with two manipulated variables each. The control is designed for a
cylindrical receiver.

MPCGarcía et al. [34] use a multivariable model predictive control (MPC) approach for cylindrical
receivers. Instead of controlling single heliostats they control groups of heliostats, using the
same manipulated variables (shifting and dispersion) as presented in the previous paragraph.
In [35] the same authors modify the MPC to also work with clouds. To overcome the problem
of an overshoot of the flux density after the cloud passes, a readjustment approach is
implemented, which is supported by a PI controller.

SummaryExcept the heuristic controllers, the controllers are only designed for cylindrical receivers
so far. Although, the heuristic controllers can handle both receiver types (cylindrical and
rectangular), they can only handle overflux conditions or base on the measurement of
temperatures instead of flux densities.

2.4 Ant Colony Optimization

In this section the ant colony optimization is explained, which is used by the Static Optimal
Control described in section 3.6. The ant colony optimization is an algorithm, which imitates
the behavior of ant colonies during foraging. The objective is to find the optimal path along
a route with different junctions. In every iteration, several ants try to find the optimal path,
which is represented by an aim point configuration. The possible paths an ant can take is
defined by the number of heliostats nh and aim points na. Because the numbers nh and na
are finite, the algorithm solves a combinatorial problem i.e. it solves the discrete optimization
stated in Eq. 2.10. An example, for a path is shown in Fig. 2.11, in which the ant chooses an

18



2 Fundamentals and Literature Review

aim point configuration where heliostat 1 and heliostat 5 aim at aim point 2, heliostat 2 and 3
at aim point 3 and heliostat 4 at aim point 1. The ant starts with choosing an aim point for
heliostat 1 and then, can choose at every node an aim point j for the next heliostat i, which
is equal to choosing one of the nodes of the next column.
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Figure 2.11: Sample aim point configuration for a plant with five heliostats and four aim
points.

Transition
Rule

The decision, which edge sij the ant takes, can be expressed through a so-called transition
rule, which is given by

sij =
{

max
{
τij(t) · ηβij

}
if q ≤ q0

Monte-Carlo choice else
(2.11)

Here, τij is the so-called pheromone value, ηij the so-called visibility value, β the weighting
factor, q a random number and q0 a decision parameter.

The edge sij which is chosen, is determined by the equally distributed random number
q ∈ [0, 1]. If the number q is greater than or equal to the parameter q0, the edge is determined
according to Eq. 2.11. Hence, the edge is chosen which has a high pheromone amount and
at the same time a high visibility value weighted by the parameter β. For example, in Fig. 2.12
the ant would choose the edge s2,1 due to the higher pheromone value on this node.
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Figure 2.12: Illustration of the transition rule with β = 1.

The pheromone values for the heliostat aim point combinations are updated in each iteration
by the equation for the pheromone update, which is explained later in this subsection.
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The visibility value ηij is a constant and expressed by the intercept factor of heliostat i aiming
at aim point j. The intercept factor fintercept is defined by the power intercepted by the
receiver Preceiver with respect to the reflected power of the heliostats Pheliostats and ranges
from 0 to 1:

fintercept = Preceiver
Pheliostats

(2.12)

If the random number q is less than the parameter q0, the edge is selected by a Monte Carlo
selection, where the probabilities pij of the edges are determined according to Eq. 2.13.

pij(t) =
τij(t) · ηβij∑
l τil(t) · η

β
il

(2.13)

For example, in Fig. 2.12, there is a higher chance that the edge s2,1 is chosen due to the
higher pheromone value at this node.

To be able to reasonably adjust the weighting factor β, the pheromone value should be of the
same magnitude as the weighting factor i.e. around one. Furthermore, both values must be
greater or equal to zero. Otherwise, the calculation of the probabilities is illogical.

Choosing a relatively high value for q0 leads to a search with a more local and greedy
character due to the lesser occurrence of randomly chosen nodes. In contrary, a smaller q0
intensifies the global search for solutions so that local optima are left again and the possibility
of stagnation is reduced.

Pheromone
Update

In addition to q0, the pheromone update also intensifies the local as well as the global search
for an optimal solution. Consequently, it is divided into a global and a local update. Both
updates are based on Eq. 2.14, but there are differences in the added pheromone amount
∆τij,k.

τij(t+ 1) = (1− ρ) · τij(t) + ρ ·∆τij,k(t) (2.14)

The constant ρ quantifies the relative amount of pheromone that evaporates i.e. vanishes.

The global update is influenced only by the ant k which has the highest objective value in the
current iteration. The amount of the secreted pheromone ∆τij,k corresponds to the value of
the objective function Jk for the best ant:

∆τij,k(t) = Jk (2.15)

The global update increases the pheromone value on every node passed by the best ant.
This increases the chance that these nodes are chosen by other ants in the next iteration.
Thus, the global update pushes the virtual ants to search in the environment of the current,
global best path. An example for a global update is given in Fig. 2.13.

Jk must be greater than zero, because the best ant should lead to an increase in the
pheromone value. Furthermore, it is desired that the search starts from the current aim
point configuration. Therefore, the pheromone values of the nodes of the current aim point
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Figure 2.13: Global pheromone update with ρ = 0.5.

configuration are updated using the global update before the first iteration. If the objective
value of the current aim point configuration would be less or equal to zero, the pheromone
values would be decreased or left unchanged. Both cases would not lead to a search in the
direction of the current aim point configuration. Additionally, to keep the pheromone value
in the magnitude of one, the objective value should be in the same magnitude i.e. around
one.

In contrary to the global update, the local update updates the pheromone values of the
passed nodes for all ants from the current iteration. The value is updated as described in
Eq. 2.14 with ∆τij,k for ant k given by

∆τij,k = τ0, (2.16)

where τ0 denotes the pheromone start value of the optimization. An example for a local
update is given in Fig. 2.14.
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Figure 2.14: Local pheromone update with ρ = 0.5 and τ0 = 0.2.

Unlike the natural model, the local update leads to a reduction of the pheromone amount on
the respective node. Thus, the attractiveness of used nodes is reduced, which forces the
search in different directions to lower the risk of stagnation. It is worth noting that the update
never reduces the pheromone amount to a value less than the pheromone start value. Thus,
there is always a possibility that a node can randomly be chosen under the condition that the
respective visibility value for this node is not zero.

Overall, the pheromone traces act as a collective memory. Thus, during the optimization
process, not only the previous best solution is stored, but also other good solutions, in whose
environment the search is intensified.
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3 Modelling of the System and the
Controllers

The first section of this chapter establishes a mathematical model for the flux density dis-
tribution on the receiver of the solar power tower plant and investigate the dynamics of
the heliostats and the receiver and other properties of the system. Then, the properties
of the controller such as the in- and outputs as well as the sample time of the flux density
measurement are determined. Subsequently, the possible controllers for the solar power
tower plant are presented and suitable control strategies are chosen. The three chosen
controllers are elaborated in the following sections. Lastly, a short presentation of the used
simulation software as well as its enhancements are given.

3.1 System Modelling and Analysis

In order to design a suitable controller, knowledge about the plant system is essential for
most controllers. This section describes an analytical model from literature for the flux density
computation on the receiver and investigates the dynamics of the heliostat movement as well
as the dynamics of the heating of the receiver. Finally, the properties are analyzed that are
relevant for the controller design.

3.1.1 Analytical Model

To calculate the flux density distribution on the receiver surface from one heliostat reflecting
the solar radiation on a given aim point, the HFLCAL model is used in this section. It is an
analytical model developed by Kiera [36] and further modified by Schwarzbözl et al. [37]. The
HFLCAL model is chosen because it is commonly used as in [15, 24, 26, 29, 34].

The flux calculation of the HFLCAL model is based on a bivariate normal distribution and
is calculated at a given point (x, y) on the receiver for a heliostat h aiming at an aim point
(xa, ya) as follows:

F (h)
x,y = PH cosωp

2πσ2
HF

e
− (x−xa)2+(y−ya)2

2πσ2
HF , (3.1)

where PH denotes the power reflected by the heliostat, σHF is the total effective deviation
and ωp represents the angle between the normal vector of the receiver and the heliostat.

22



3 Modelling of the System and the Controllers

The reflected power PH can be expressed through

PH = ID ·AH · cosβ · fat · ρ · fbs, (3.2)

where ID is the direct normal sun irradiation, AH the mirror area, β denotes the angle
between the normal vector of the heliostat and the vector of the sun rays radiating onto the
heliostat (see Fig. 2.5 in subsection 2.1.2), fat represents the air attenuation factor, ρ the
mirror reflectivity and fbs the blocking and shading factor (see subsection 2.1.2).

The total effective deviation σHF is derived from the convolution of three Gaussian distribu-
tions [35].

σ2
HF = s2 · [σ2

sun + 2 · (1 + cosβ) · σ2
slp + σ2

t ], (3.3)

where σsun represents the deviation caused by the sun shape (see subsection 2.1.4), σslp
and σt take the mirror and the tracking error (see subsection 2.1.2) into account. s denotes
the distance between the heliostat and the receiver center, also called slant range.

Based on this model a plant system with multiple heliostats and measurement points can be
mathematically formulated. If the velocity of the aim point movement (ẋa, ẏa) is considered
as inputs instead of the aim point coordinates (xa, ya), a state space representation for a
simple plant with two heliostats and two measurement points can be formulated. The state
space representation allows for a standard description of the system and thus makes it easier
to deduce characteristics such as the stability and eigendynamic of a system.

In order to represent Eq. 3.1 in a more compact way, it can be reformulated as

F (h)
x,y = a(h)e

− (x−xa)2+(y−ya)2

b(h) (3.4)

with

a(h) = PH cosωp
2πσ2

HF

(3.5)

b(h) = 2πσ2
HF (3.6)

For reasons of simplicity the angle ωp is considered static. Then the derivative of the flux F
can be expressed as follows

Ḟ (h)
x,y = −2a(h)/b(h) · [(x− xa)ẋa + (y − ya)ẏa]e

− (x−xa)2+(y−ya)2

b(h) (3.7)

which can be further simplified with Eq. 3.4 to

Ḟ (h)
x,y = −2/b(h) · [(x− xa)ẋa + (y − ya)ẏa]F (h)

x,y (3.8)

Based on the preceding equations, a system of equations for a solar power tower plant with
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two heliostats and two measurement points can be expressed by

ẋ1 = u1 ẋa for h1 (heliostat 1).

ẋ2 = u2 ẏa for h1.

ẋ3 = u3 ẋa for h2.

ẋ4 = u4 ẏa for h2.

ẋ5 = − 2
b5
· [(c1 − x1)u1 + (r1 − x2)u2]x5 Flux density change h1 point (c1, r1).

ẋ6 = − 2
b6
· [(c2 − x1)u1 + (r2 − x2)u2]x6 Flux density change h1 point (c2, r2).

ẋ7 = − 2
b7
· [(c1 − x3)u3 + (r1 − x4)u4]x7 Flux density change h2 point (c1, r1).

ẋ8 = − 2
b8
· [(c2 − x3)u3 + (r2 − x4)u4]x8 Flux density change h2 point (c2, r2).

y1 = x5 + x7 Total flux density point (c1, r1).
y2 = x6 + x8 Total flux density point (c2, r2).

(3.9)

These equations can be restructured to yield the state space representation:

ẋ(t) = A x(t) + B(x) u(t) (3.10)

y(t) = C x(t) + D u(t) (3.11)

with

A = 0

B =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−2/b5(c1 − x1)x5 −2/b5(r1 − x2)x5 0 0
−2/b6(c2 − x1)x6 −2/b6(r2 − x2)x6 0 0

0 0 −2/b7(c1 − x3)x7 −2/b7(r1 − x4)x7
0 0 −2/b8(c2 − x3)x8 −2/b8(r2 − x4)x8


· u

C =
[
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

]
D = 0

(3.12)
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3.1.2 Dynamics of the Heliostats

For the analysis of the dynamics of the heliostats, the time a heliostat needs to move its aim
point over the maximum distance on the receiver is determined. Assuming a rectangular
receiver, the maximum distance is the distance from the lower left to the upper right corner.
As stated in subsection 2.1.1, the heliostats can move in longitudinal and elevation direction
i.e. one motor moves the aim point from left to right and the other from down to up. Because
the motors may not move simultaneously (which is the case at the solar tower in Jülich), the
time needed to cover the maximum distance is the sum of the times needed to move from
the left to the right edge and from the lower to the upper edge.

The distance dy covered in y-direction dependent of the angular position α of the heliostat is
expressed by

dy = s · tanα (3.13)

with s being the slant range calculated by

s =
√
d2 + (htower − hheliostat)2 (3.14)

The angle α is depicted with other relevant parameters in Fig. 3.1. For reasons of simplicity
the receiver is assumed to be oriented so that its surface is perpendicular to the vector from
the heliostat center to the receiver center. The distances between receiver and heliostat are
usually so high that the tilt angle of the receiver is negligible. Therefore, this simplification
is appropriate. α depends on the angular velocity ω. For reasons of simplicity the angular
velocity ω is considered constant.

α = ω · t (3.15)

Receiver

Heliostat

y

Figure 3.1: Longitudinal movement of the aim point.
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Using Eq. 3.15, Eq. 3.13 can be expressed as

dy = s · tan(ω · t) (3.16)

Therefore, the time to cover dy = hreceiver can be calculated by

t =
arctan(hreceiver

s )
ω

(3.17)

The time to cover the distance wreceiver from the left to the right edge can be calculated in the
same way.

For example, the tower in Jülich has a height of 60 m. For a close heliostat (d = 30 m)
and the heliostat height of 1.5 m the slant range is equal to 65.7 m. The angular speed of
the heliostats is estimated to 0.05 rad/s. This value is calculated by measuring the time a
heliostat needs to aim from a 30 m distant off-receiver point to the receiver center at the
solar tower in Jülich. With the receiver height of 5.2 m and the width of 4.4 m the heliostat
presented above needs 1.51 s and 1.28 s to cover the respective distance. This would result
in a time of 2.79 s to cover the maximum distance on the receiver.

3.1.3 Dynamics of the Receiver

For the analysis of the dynamics of the receiver, the critical time tmax in which an overflux
condition damages the receiver is calculated. A ceramic receiver with air as heat transfer
medium is considered because the controller will be tested on the solar tower in Jülich, which
operates on a ceramic receiver. A ceramic receiver consists of several ceramic absorber
structures also called modules. At a stationary operating point, a module has a module
temperature Tmodule and a maximum material temperature Tmax. Furthermore, it absorbs
the irradiation with the flux density φ. The heat transfer medium flows through the module
with a mass flow ṁair and exits it with the outlet temperature Tair,out. Usually, the hot outlet
air is returned after it was fed to the heat exchanger and mixed with the incoming air from the
environment. For reasons of simplicity, this mixture of air streams going into the absorber
is considered as one air stream with a mean air inlet temperature T air,in. All parameters
are depicted in Fig. 3.2. As stated in subsection 2.1.3, the allowed flux density depends
on the characteristics of the used material. The maximum temperature is the restricting
characteristic for the ceramic receiver.

In this work, the time tmax is defined as the time an overflux of 5 % requires to overcome a
safety gap ∆Tmodule to the maximal allowed temperature of 10 K.

tmax can be expressed by an energy balance as follows:

∆Tmodule =
∫
tmax

Q̇total
mmodule · cp,module

dt, (3.18)
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Figure 3.2: Parameters of an absorber module.

where mmodule is the mass and cp,module the heat capacity of the module. Q̇total represents
the total heat flow, which can be expressed by

Q̇total = Q̇air,in − Q̇air,out + Q̇rad − Q̇loss, (3.19)

where Q̇air,in and Q̇air,out denote the incoming and outgoing heat flow of the air respectively,
Q̇rad the incoming radiation of the heliostats and Q̇loss the loss of heat due to the fact that the
absorber radiates itself. The four heat flows can be calculated by

Q̇air,in = ṁair · cp,air,in · T air,in (3.20)

Q̇air,out = ṁair · cp,air,out · Tair,out (3.21)

Q̇rad = α ·A · φ (3.22)

Q̇loss = ε · σ ·A · (T 4
module − T 4

a ) (3.23)

with α representing the absorptivity of the absorber material, cp,air the heat capacity of the
air, A being the area of the absorber, which receives the radiation, ε the emissivity of the
module, σ denoting the Stefan-Boltzmann constant and Ta the ambient temperature.

It is assumed that Tair,out is equal to Tmodule. Then, tmax can be calculated using the values
for a sample operating point at the solar power tower plant in Jülich, given in Tab. 3.1. A
simulation done in MATLAB with the ode45 solver to solve a reformulated form of Eq. 3.18
yields an approximate time tmax of 10.0 s.

3.1.4 System Properties

The essential characteristics to design a controller can be derived from the small example
presented in the previous subsection because the general form of the state space repre-
sentation does not change with a larger system. Firstly, the small system has four inputs
(aim point velocity) and two outputs (flux density). Thus, the system belongs to the class of
multiple-input multiple-output (MIMO) systems. A solar power tower plant usually represents
a large MIMO-system. For example, the Solar Two tower has 1926 heliostats (3852 inputs,
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Table 3.1: Parameters for the thermal receiver model.

Parameter Value Unit

ε 0.92 -
σ 5.67 · 10−8 W/m2 K4

α 0.92 -
cp,air,in 1200 J/kg K
cp,air,out 1200 J/kg K
A 0.0225 m2

mmodule 1.2 kg
cp,module 1000 J/kg K
ṁair 0.015 kg/s
Ta 298 K
T air,in 425 K
Tair,out 1373 K
Tmax 1373 K

considering two aim point coordinates) and measures a flux image of the size 24 × 21
(equivalent to 504 outputs). Secondly, the plant system is a non-linear system because the
matrix B depends on the system states. Furthermore, the system is stable in every operating
point, when setting u = 0. Then, ẋ = 0 for every x ∈ R2, which follows from Eq. 3.10 and
3.12. Thus, the system states do not change when no input is given and therefore the system
is stable with respect to the definition given in section 2.2. The system is also stable in the
sense that a bounded input yields a bounded output of the system, because the output i.e. a
flux density can not exceed a certain limit due to the non-linearity of the system. The output
is limited to the value, when all heliostats aim at one bin. While the outputs are bounded
for every input, the system states are not. States like the aim point coordinates can rise till
infinity for a constant input of the aim point velocity.

A crucial assumption is that the system can be considered static, when the sample time is
higher than the time the heliostats need to move. After the heliostats have moved, (u = 0) the
system states will not change due to the fact that A = 0. This is untypical for plant systems
in control theory in which stabilizing a dynamic plant system is one main objective of the
controller.

3.2 Controller Properties

After determining the properties of the plant system, the next step is to define the controlled
variables (outputs of the plant system) and the manipulated variables (inputs to the plant
system) [9]. This is done in the next subsection. Subsequently, a sample time is derived
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in order to be able to consider the plant system as static system and to derive a maximum
sample time to prevent damage to the receiver.

3.2.1 Input and Output Selection

Within the stated example (see subsection 3.1.1) the aim point velocities are the inputs and
the flux density distribution (consisting of several flux density measurements) is the output
of the system. The flux density distribution is chosen as output because the control of this
variable has a direct influence on the intercepted power of the receiver and thus the efficiency
of the plant, which coincides with the objective of the thesis. Furthermore, by choosing the
flux density distribution as output, the simulation does not need to model the thermal side,
which simplifies the simulation.

In literature, the common choice for the inputs are the aim point coordinates, which is adopted
in this work. Using other inputs, which influence the outputs, such as the voltage of the
heliostat motors imposes more disturbances to consider and requires an extended simulation
model. Furthermore, the dynamics of the motors is much higher than the sample time of
the flux density measurement. Therefore, the heliostat movement can be implemented in a
secondary control. Due to the fact, that the plant system is considered static, the aim point
velocities are not chosen as inputs because this would insert a dynamic into the system.

3.2.2 Sample Time

The sample time is limited by a lower and an upper boundary. The lower bound is determined
by the maximal time the heliostats need to move from one aim point to another plus the
computational time of the control algorithm. If the sample time would be lower than the lower
bound, the system can not be considered static. In this work, the minimum sample time
(excluding the computational time of the control algorithm) is set to 2.79 s, which corresponds
to the time to cover the maximum distance on the receiver at the solar tower in Jülich (see
subsection 3.1.2).

The upper bound is influenced by the time after which a slight overflux damages the receiver.
An overflux does not directly imply damage to the receiver but the increased temperatures and
thermal stresses, which follow from an overflux condition [18]. Thus, the sample time needs to
be smaller than the time an overflux causes critical temperatures or critical thermal stresses.
In the worst case scenario, the overflux condition occurs right after the measurement. Then,
the controller measures the critical condition after one sample time and has then another
sample time to react. Consequently, in the worst case the controller needs two times the
sample times to react. Therefore, the maximum sample time should be half of the critical
time tmax in which an overflux condition damages the receiver. As stated in subsection 3.1.3,
the time tmax at the solar tower in Jülich is estimated to 10.0 s. Therefore, the upper limit for
the sample time is set to 5.0 s.
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Usually, the sample time also depends on the system dynamics (e.g. Shannon theorem [22])
but as stated in subsection 3.1.4 the plant system is regarded as static. Thus, only the lower
and upper bound are crucial.

In conclusion, a sample time between 2.8 s (plus the computational time) and 5.0 s would
be required to be able to safely control the solar power tower plant in Jülich. The sample
time range may change for other heliostat or receiver types as well as a more accurate
approximation.

3.3 Considered Controller Architectures

To control the plant system, a controller, which is capable to control a static non-linear
multi-input multi-output (MIMO) system, has to be designed. Within literature exist several
control algorithms to address this kind of system. The next paragraphs present various
control algorithms and evaluated them with respect to the given plant system. Existing control
strategies for solar power tower plants like the MPC and the PID control are reevaluated as
well.

H∞ Loop
Shaping

The H∞ loop shaping tries to shape the frequency response of a closed-loop system. The
frequency response is a measure of gain and phase of the output as a function of frequency
given a sinusoidal input. Usually, a gain around 1 is preferred for a low frequency so that
the system follows the reference signal with low deviation, while for high frequencies a gain
towards zero is favored to suppress noises and other uncertainties. The control system
designer shapes the closed-loop transfer function by weighting the plant transfer function
in the frequency domain and obtaining a controller through optimization using an objective
function including the∞-norm. The H∞ controller can handle multiple-input multiple-output
(MIMO) systems but needs a linearized system [9]. As shown in Eq. 3.1, the plant system
resembles a behavior similar to a Gaussian bell and is thus highly non-linear. Therefore, a
linearization may not be appropriate.

Neural NetsNeural nets are modeled loosely after the human brain. They try to learn a certain behavior
based on given input and output data. A neural net could be used directly as a controller
i.e. it calculates the manipulated variables (e.g. aim point coordinates) from the error signal
(e.g. reference flux density distribution minus the measured flux density distribution). To
obtain a neural net, training data is required, which would require measurements beforehand
[38]. However, it is desired that the controller works without measurement data from the real
plant.

Decoupling
and PID
Controller

A MIMO system can be decoupled into many single-input single-output (SISO) systems.
Then, common approaches like a PID controller can be used to control the respective SISO
systems. This approach is only reasonable, if the coupling between the inputs and outputs
of the system is rather loose. However, a heliostat can influence several output variables.
Thus, as also stated in [34], an approach with a decoupled system may not handle these
interactions appropriately.
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MPCModel predictive control (MPC) is based on predicting the future states of a time-discrete
dynamic model and calculating the next plant system input by minimizing an optimization
problem. The optimization problem may consider a reference trajectory, the future states
and outputs as well as state constraints. This control is not reasonable for the given plant
system because the plant system behaves statically, as shown in subsection 3.1.4. Thus, a
prediction of the future states is not reasonable because the states do not alter after one time
step.

Extremum-
Seeking
Control with
Sine
Perturbation

In contrary to the other controllers, the extremum-seeking control does not follow a given
reference signal but tries to find a minimum of an objective function during control. The
classical approach is to perturb the input signal with a sine wave [39]. The resulting output
signal is evaluated with respect to the objective function. The input signal is then changed
in the direction of the lowest objective value. The controller reacts after the system was
perturbed with a full sine wave. Due to the rather high sampling time, the period of the sine
perturbation needs to be high in order to measure sufficient points of the sine wave. Hence,
this approach is not suitable because the controller may react to slow.

ADRCActive disturbance rejection control (ADRC) redesigns the PID controller to a non-linear
feedback controller. It is a robust control method that extends the system model by a virtual
state, which represents the sum of the disturbances and model errors, the so-called total
disturbance [40]. The virtual state is estimated online by an adapted state observer. The
algorithm is designed to reject the total disturbance. Thus, it can handle vast uncertainties,
which would be helpful with regard to uncertainties like clouds. In contrast to the other control
strategies the ADRC is a relatively new control approach. However, the ADRC contains
many adjustable parameters in the magnitude of the number of states [41]. The number of
states is proportional to the number of heliostats and the number of bins and rises usually
above the magnitude of 107. Hence, fitting all the parameters may be a cumbersome and
time-consuming process.

Hot Cold
Controller

As explained in subsection 2.3.3, GarcÍa-MartÍn et al. [1] proposed a heuristic controller
algorithm, which shifts the aim points from “hotter” zones to “colder” zones. While the
algorithm is based on the measurement of the temperature, the idea could be easily adapted
to work with the measurement of flux densities.

Static
Optimal
Control

A novel approach would be to adapt an existing open-loop controller for solar power tower
plants to a closed-loop controller by integrating a feedback. The controller may be able
to reject disturbances through the feedback of the measured signal. An option would be
to extend an open-loop controller using an optimization algorithm. A feedback could be
implemented by extending the objective function of the optimization algorithms with weights,
which are modified depending on the measured error. The new controller would inherit the
advantages of the optimization algorithm, which is the general formulation with respect to the
receiver type and the disturbances. In doing so, it would also inherit the drawbacks of the
optimization algorithm, which is mainly the computational time.

Comparison
of Controllers

Most of the presented controllers are unattractive as a choice for a controller because of
their drawbacks such as requiring a linearized or observable system. A summary of the
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drawbacks is given in Tab. 3.2. The most promising control strategies seem to be the heuristic
Hot Cold controller and the novel Static Optimal Control approach. These controllers will be
elaborated, implemented and tested within this work. For comparison i.e. as benchmark, the
existing Vant-Hull controller is implemented and tested as well. The structure of the Vant-Hull
controller, the Hot Cold controller and the Static Optimal Control are explained in more detail
within the next sections.

3.4 Vant-Hull Control

The Vant-Hull control detects the highest measured overflux and then removes the heliostat
from the receiver with the highest influence on that measurement point [12]. This step is
repeated until the overflux is dispersed.

The first step after measuring the flux density distribution on the receiver is to calculate the
critical flux distribution by subtracting from each measured flux density yi,m the respective
allowed flux density yi,max at that bin and weighting it by the inverse of yi,max.

yi,weighted = yi,m − yi,max,i
yi,max

∀i = 1, . . . , nbins (3.24)

If all weighted flux densities are less than zero, no overflux condition is present. Thus, no bin
is considered critical and the algorithm can stop. Otherwise, the most critical bin is the bin
with the highest weighted flux density yi,weighted. The heliostat has to be determined, which
increases the flux density at that bin the most. To determine the flux density impact of each
heliostat, the flux density distribution of each heliostat is simulated. For the simulation, the
software STRAL is used (see section 3.7). As the last step, the heliostat with the highest
impact on the critical bin, is shifted to an off-receiver aim point, where it has no influence on
the receiver. The steps of the algorithm as well as an example are shown in Fig. 3.3.

The Vant-Hull controller can only handle overflux conditions and thus requires a good initial
aim point configuration. If the initial aim point configuration produces only low flux densities
or disturbances reduce the flux density, the controller does not react. Thus, an additional
controller, which calculates an initial aim point configuration or reacts to disturbances, would
be necessary. Furthermore, the algorithm depends on a good simulation of the flux density
distributions of the heliostats. The controller may shift a heliostat away, which has not
the highest impact on the most critical bin, when the simulated flux density distribution is
inaccurate. For example, when the impact of a heliostat is actually less than calculated due
to an aim point offset caused by a tracking error. Lastly, the algorithm may decrease the flux
density too much. For example, another heliostat may reduce the flux density sufficiently but
decreasing the intercepted power less. This case is shown in the example of Fig. 3.3, where
shifting heliostat 2 is a better solution. Another heliostat may also decrease more critical bins
simultaneously and therefore its shift to an off point would be more reasonable.

32



3 Modelling of the System and the Controllers

Table 3.2: Comparison of the drawbacks of the considered controllers.
Controller Drawbacks

H∞ Loop Shaping • Requires a linear system

Neural Nets • Training data required

Decoupling and PID Controller
• Not reasonable for strongly coupled

systems

MPC • Not reasonable for static systems

Extremum-Seeking Control
• Not reasonable for a high sample

time

ADRC

• Relatively new and not widely
tested

• Many adjustable parameters

Hot Cold Controller • No optimal solution

Static Optimal Control • Maybe high computation time
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Figure 3.3: Activity diagram of the Vant-Hull algorithm with a small example.
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3.5 Hot Cold Control

The Hot Cold controller shifts the heliostat aim points from hot to cold areas, if the allowed
flux density is exceeded. Otherwise, it shifts the aim points from colder to hotter areas. Hot
areas denotes areas with relatively high flux densities while cold areas have rather low flux
densities.

After measuring the current flux density distribution, the critical bins are determined like in
the Vant-Hull algorithm (see section 3.4) by subtracting the allowed flux density from the
measured flux density and weighting it by the inverse of the allowed flux density.

yi,weighted = yi − yi,max
yi,max

∀i = 1, . . . , nbins (3.25)

yi,critical = max (yi,weighted, 0) (3.26)

In the second step, the value yi,critical of each bin is allocated to the closest aim point. The
aim point with the highest sum of the allocated critical fluxes is considered most critical. Then,
the most critical heliostat is determined by calculating the impact for each heliostat pointing
to the most critical aim point and choosing the one with the highest impact. This is done by
determining the overall proximity to the allowed flux density. This proximity p is defined by

p(y) = ‖y− ymax‖1 (3.27)

The heliostat impact ξ is then defined as the difference of the proximity of the measured flux
density distribution ym with and without the heliostat flux density distribution yh.

ξ = p(ym)− p(ym − yh) (3.28)

If no heliostat aims at the most critical aim point, the step is repeated for the next most
critical aim point until an aim point is found at that heliostats aim. Subsequently, the most
critical heliostat is shifted virtually to the upper, lower, left and right aim point with respect
to the current aim point. A virtual shift consists of subtracting the simulated flux density
distribution of the heliostat yh from the measured flux density distribution and adding the
shifted simulated flux density distribution y(shifted)

h . The shift with the highest impact which
simultaneously reduces the sum of the exceeded weighted flux densities efr is chosen.

ξ
(shifted)
h = p(ym)− p(ym − yh + y(shifted)

h ) (3.29)

efr =
∑
i

(
max(yi,weighted, 0)−max(y(new)

i,weighted, 0)
)

(3.30)

with

y
(new)
i,weighted =

yi,m − yi,h + y
(shifted)
i,h − yi,max

yi,max
∀i = 1, . . . , nbins (3.31)
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For efr > 0 the overflux condition is reduced. For efr ≤ 0 the overflux does not decrease or
increases. If efr ≤ 0 for all shifts, the heliostat is shifted further (two steps up, down, left and
right) and the impact is evaluated again. These steps are repeated until a valid shift is found.
If no valid shift exists, the heliostat is shifted to an off-receiver aim point. The procedure
is repeated until the overflux condition is resolved. The algorithm is illustrated with a small
example in Fig. 3.4.

If no critical bin exists (yi,weighted ≤ 0 ∀i), a heliostat is moved from a cold spot to a hotter
spot. To determine the coldest spot all weighted flux densities yi,weighted are allocated to
the closest aim points. The coldest aim point is the one with the lowest sum. After that the
procedure is the same as when shifting from hot to cold with the difference that only shifts are
allowed which do not lead to an overflux condition (efr ≤ 0). Moreover, if no valid aim point
shift is found after a continuous increase of the neighborhood i.e. the considered aim points,
the heliostat is not removed from the receiver but remains at its position. The same steps
can be used because the impact is a measurement of how close the current flux density
distribution is to the allowed flux density distribution. Thus, both when moving from hot to
cold and from cold to hot, a shift, which yields a higher impact, is beneficial for the receiver.

The advantage of this algorithm is that it can react to all sorts of disturbances inter alia clouds.
The drawback is that an inaccurate simulation of the flux density distribution of a heliostat
may lead to a non-optimal shift. For example, if due to an offset of the heliostat, which was
not simulated, the shift causes an overflux condition. Another drawback is that the algorithm
only shifts one heliostat per step and also in a usually small neighborhood. Therefore, the
algorithm may need many iterations to find good aim points for all the heliostats. The latter
disadvantage can be addressed by grouping the heliostats or by allowing more heliostats to
shift within one control step. Only the final result was considered to evaluate the controller
within this work and thus, the latter suggestion was not implemented.

3.6 Static Optimal Control

The Static Optimal Control algorithm is based on an optimization algorithm. The controller
maximizes an optimization problem, which is defined as follows

maximizeu J(ŷ,w)

subject to
ŷ≤ ymax

(3.32)

where J denotes the objective function, ŷ is the flux density distribution calculated by a
simulation given the aim point configuration u. Furthermore, ymax represents the allowed
flux density and w the weights. All vectors have a size of nbins× 1 except for u, whose length
is equal to the number of aim points naimpoints × 1.

36



3 Modelling of the System and the Controllers

Example

0 0 0
0 0.5 0
0 0 0

Allocate critical bin
values to aim points

Determine (next)
most critical aim point

Determine heliostats
pointing at aim point

Heliostats found at
aimpoint?

Determine heliostat
with most impact

Shift heliostat in
different directions

Determine impact of
the shifts

Any  > 0?
Choose shift with

highest impact and 
 > 0

Determine exceeded
flux reduction ( )

Shift heliostat

Expand neighborhood

Any critical bins? Calculate weighted
flux map

Measure flux map

Shift heliostat from
cold to hot

[No]

[Yes]

[No]

[Yes]

Further aim points
available?

[Yes]

[No]

1 2 1
2 3 1
1 2 1

2 2 2
2 2 2
2 2 2

-0.5 0 -0.5
0 0.5 -0.5

-0.5 0 -0.5

Central aim point

Heliostat 1 and 2

1 2 1
2 2 1
1 2 1

0 0 0
0 1 0
0 0 0

0 0 0
0 0 1
0 0 0

Impacts: 

Shift to the right

1 2 1
2 2 2
1 2 1

[Yes]

Flux density map ( )

Allowed flux 
density map

Weighted flux
map

Aim point 
distribution

Allocated critical bin values
to aim points

Flux density map 
heliostat 1  

Flux density map 
heliostat 2  

Example: 
shift to the right 

of heliostat 2

[No]

New flux density map 
after shift

Heliostat 2
has the
highest
impact.

Point the heliostat off
the receiver

Figure 3.4: Activity diagram of a Hot Cold control step with a small example.
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In every control step, the weights of the objective function are calculated based on the
measured error e. The weights are estimated by a weight calculator in a way, that the
algorithm yields a solution, which reduces the error. An activity diagram of one control step
plus a small example of how the controller could possibly compensate a tracking error is
given in Fig. 3.5.

The controller can be divided into the following functional components: the optimization
algorithm (including the objective function), the error signal calculation and the weight
calculator, which are shown in Fig. 3.6. These components are explained in more detail in
the next subsections.

3.6.1 Optimization Algorithm

The optimization algorithm solves the stated problem in Eq. 2.9 (see subsection 2.3.1). Within
this work, the ant colony optimization is chosen, which was adapted for the heliostat aiming
problem by Belhomme [10] and is explained in section 2.4. The algorithm showed to find near
optimal solutions in an adequate time [30]. In addition, the implementation of the algorithm is
property of the DLR and thus, the source code was open to the author.

3.6.2 Objective Function

The objective function of the optimization algorithm depends on the simulated flux density
distribution ŷ, the allowed flux density ymax and the weights w, which are estimated by the
weight calculator (see subsection 3.6.4). It could also depend on other variables, such as the
covered distance of the aim point shift to restrict the heliostat movement. However, this is
not within the scope of this work. Within this work the following four objective functions are
investigated:

J = wT ŷ− p
∑
i

max (ŷi − yi,max, 0), (3.33)

J = wT ŷ− p
∑
i

max (wi(ŷi − yi,max), 0), (3.34)

J = ŷ− p
∑
i

max (ŷi − wiyi,max, 0), (3.35)

J = −‖yref − ŷ + w‖22 − p
∑
i

max (ŷi − yi,max, 0), (3.36)

where p is the penalty factor.

The objective value is increased with an increasing simulated flux density, which can be
influenced by the chosen aim points. An increase in the simulated flux density corresponds
to an increase in the simulated efficiency of the plant. However, if the simulated flux density
exceeds the allowed flux density, the objective value is reduced by the overflux multiplied with

38



3 Modelling of the System and the Controllers
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Figure 3.6: Static Optimal Control scheme. Above every signal, a sample signal is depicted.

the penalty factor. In this way, the constraint, mentioned in subsection 2.1.3, is imposed as a
soft constraint into the optimization. In doing so, solutions that slightly violate the constraints
are still valid. The four objective functions differ mostly in the placement of the weights. The
objective of the weights is to direct the aim points of the heliostats to certain bins in order to
correct uncertainties in the simulation like unknown disturbances or modeling errors.

Weighted
Flux

The first function weighs the flux density at every bin. Thus, the optimizer preferably aims the
heliostats closer to bins where the weights are higher relative to other weights.

Weighted
Flux and
Exceeded
Flux

In contrast to the first function, the second function additionally weighs the overflux (yi−yi,max).
Thus, the weights also act like a second penalty factor, which may dampen the control action.
For example, this may happen in the case of clouds shading the field. Clouds reduce the
measured flux density but not the simulated flux density. Thus, the measured flux density
is significantly lower than the simulated flux density. Therefore, the optimization algorithm
needs to exceed the allowed flux density within the simulation in order to bring the measured
flux density closer to the reference flux density. However, the optimization algorithm may not
allow to exceed the allowed flux density in the simulation because the weights also act like a
penalty. To counteract this behavior the penalty factor p should be smaller than or close to
one in order to reduce the penalization by the weights.

Weighted
Allowed Flux

The third function weighs the allowed flux density. Therefore, higher weights allow the
optimizer to exceed the actual allowed flux density and thus allow the algorithm to concentrate
the flux density more.

Quadratic
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The last function is a quadratic function which also considers the reference flux density yref .
To deduce more characteristics the function can be reformulated to:

J = −
∑
i

(yi,ref − yi + wi)2 − p
∑
i

max (yi − yi,max, 0) (3.37)

Eliminating the brackets gives

J =−
∑
i

(w2
i + 2wiyi,ref + y2

i,ref − 2wiyi − 2yi,refyi + y2
i )

− p
∑
i

max (yi − yi,max, 0)
(3.38)

Erasing the constant terms w2
i , 2wiyi,ref and y2

i,ref , which have no influence on the optimal
solution, yields

J =
∑
i

(2wiyi + 2yi,refyi − y2
i )− p

∑
i

max (yi − yi,max, 0) (3.39)

This function is similar to the first function as they both contain the term wTy and thus, in both
functions the weights influence the flux density linearly. The quadratic function additionally
considers the flux density in a quadratic term and the reference flux density. The reference
flux density yref acts like another weight where bins with a higher reference flux density are
promoted more.

ScalingAs stated in section 2.4, the objective value of the best ant is not allowed to be less or equal
than zero and should be in the magnitude of one. Thus, the objective value has to be scaled,
due to the fact that the proposed objective function can yield negative values or values greater
than one. Within this work a simple linear scaling function is used, which can be expressed
by

s = smax − smin
xmax − xmin

· (x− xmin) + smin (3.40)

xmin is set to the objective value using the simulated flux density from the current aim point
configuration. Thus, the objective value of the best ant can not be less than zero as required
because the best objective value needs to be greater than the one from the current aim
point configuration, which is equal to the set minimum. Therefore, the simulated flux density
distribution from the current configuration is a reasonable choice. xmax is calculated by

xmax = xmin + b · |xmin| (3.41)

Here b denotes the improvement factor, which has to be fitted. b is chosen, such that the
objective function does not exceed or only slightly exceeds xmax Then, the scaled objective
value is within the magnitude of smax, which is set to the maximal visibility value, an intercept
factor of unity. smin is a parameter, which needs to be fitted to work with the ant colony
optimization. The parameter must be greater than zero to fulfill the requirement of a positive
objective value for the best ant.
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3.6.3 Error Signal

The error is fed to the weight calculator. To calculate the error from the measured flux density
distribution y and the reference flux density distribution yref the following two formulations
are proposed:

e = yref − y
‖yref‖∞

(3.42)

e = yref − y (3.43)

ScaledThe first formulation scales the error to the maximum flux density of the reference signal.
Therefore, the error is around one and thus, the magnitude of the weights is more determined
by the parameters of the weight calculator than by the error signal. It is desired that the
magnitude of the weights is determined by the weight calculator. Additionally, through the
scaling the reference flux density distributions can be exchanged without changing the
parameters of the weight calculators.

NormalThe second formulation is an error signal as normally used in control loops. This error signal
is only used for the quadratic objective function, because it requires weights around the
magnitude of the measured signal. The magnitude of the weights for the quadratic objective
function is different because the weights are not multiplied with but added to the measured
output.

3.6.4 Weight Calculator

The weight calculator calculates the weights used in the objective function and thus, impels
the optimization algorithm to focus the radiation more onto certain bins than other. Generally,
the weight calculator increases the weights if the error is positive i.e. if the measured flux
density is lower than the reference flux density. Because the algorithm tends to focus on
bins with higher weights, the increased weights reduce the error. If the error is negative, the
weight calculator decreases the weights in order to defocus the heliostats from that point and
thus, reduces the error. Within this work, the following two weight calculators are proposed:

wk+1 = wk +Ki · ek, (3.44)

wk+1 = Kp · ek +Ki · ek,integrated +Kd · (ek − ek−1) (3.45)

with

ek,integrated = ek−1,integrated + ek (3.46)

IntegratorThe first calculator is an integrator, which increases the current weight by the current error
multiplied with the factor Ki. An integrator in control theory has the advantage that it does
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not permit a permanent control deviation but it has the disadvantage that it reacts rather slow
[22].

PIDThe second estimator is adapted from an PID controller. Through the factors Kp the controller
can react immediately on changes in the output. The factor Kd dampens the update of the
weights and so reduces overshoot. The factor Ki acts like in the previous described weight
calculator.

3.7 Simulation Software

There exist many models to simulate the flux of one heliostat on a specific point of the
receiver such as the presented HFLCAL model in subsection 3.1.1. However, in this thesis,
the solar tower ray tracing laboratory (STRAL) proposed by Belhomme [10] is used because
it is more accurate than the HFLCAL model. Moreover, the simulation software was available
to the author. STRAL is a Monte Carlo ray tracing tool, which can simulate the flux density
distribution with a very high accuracy in a small amount of time [42]. For example, for a
field with 100 heliostats it needs less than a second to calculate the flux density distribution.
Furthermore, it can simulate all optical losses mentioned in subsection 2.1.2. However, the
Vant-Hull and the Hot-Cold are implemented in STRAL 2 in contrary to the Static Optimal
Control. Thus, only the Static Optimal Control can be tested with clouds.

In order to speed up the simulation of the flux density distribution precalculated flux density
distributions for every heliostat aim point combination are used. Then, the simulation can
sum up the respective flux density distributions of the heliostats to gain the final flux density
distribution instead of tracing every ray. By using a GPU for the summation of the flux density
distributions, the calculation is further accelerated.

The simulation software is not only required to test the algorithm in a simulation environment,
but the precalculated flux density distributions are also used by the proposed controllers in
this work. Thus, a precise simulation enhances the control quality.
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This chapter optimizes the parametrization of the Static Optimal Control in order to compare
the controller against the other two controllers, which have no need for parametrization. The
Static Optimal Controller is tested and optimized for three test cases, which are described
in the first subsection. The algorithm possesses many adjustable parameters, which are
contained within the ant colony optimization, objective function and weight calculator. The
reference flux density distribution can be interpreted as a parameter as well. However, this
work does not intend to prove the capability of the ant colony optimization for the heliostat
aiming problem, which was already done by Belhomme [10]. Therefore, fixed parameters
for the ant colony optimization were explored beforehand and used for all three test cases.
Furthermore, the allowed flux density is considered static as stated in subsection 2.1.3 and
therefore also the reference flux density distribution is set static. The fixed parameters and the
reference flux density distribution are stated in the second subsection. For the comparison of
different objective functions and different weight calculators, up to three criteria are chosen
for each test case, which are described in the third subsection. Regarding the Static Optimal
Control, this work only investigates the influence of different objective functions and different
weight calculators. These are evaluated in the last two subsections.

4.1 Test Plant

The simulated plant is a small plant with a rectangular receiver and 100 heliostats arranged
in a north-field layout as shown in Fig. 4.1a. Relevant parameters for receiver, heliostats
and environment are stated in Tab. 4.1, Tab. 4.2 and Tab. 4.3 respectively. Furthermore, the
allowed flux density is set to 50 kW/m2. The allowed flux density is kept small in comparison
to the maximum possible flux density in order to force the controller to find a solution which
differs from the trivial solution of pointing all heliostats at the center. The aim points are
distributed on a 5×5 grid as illustrated in Fig. 4.1b. Optical losses such as cosine loss, mirror
reflectivity and air attenuation are considered.
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Figure 4.1: Field layout of the small reference plant (a) and aim point coordinates (b).

Within this work, three cases are tested to examine the control quality of the proposed
controllers. In order to compare the flux density distributions of different controllers and test
cases the relative power Prel is introduced. The relative power is defined by the ratio of the
current power Preceiver to the power induced by the reference flux density distribution Pref :

Prel = Preceiver
Pref

(4.1)

Here, the flux density distribution with a power of 587 kW shown in Fig. 4.2b is chosen as
reference flux density distribution. It was determined by using the ant colony optimization
algorithm to find an optimal aim point configuration with respect to the allowed flux density of
50 kW/m2 without a mirror error.

Test Case 1In the first test case, a mirror error of 3 mrad is simulated to test the behavior of the controllers
with respect to optical losses. The initial flux density distribution is determined by applying the
mirror error to the reference flux density distribution. The resulting flux density distribution is
shown in Fig. 4.2a. Through the mirror error, the relative power on the receiver is decreased
by 11.1 % to 88.90 %. The controllers task is to increase the power on the receiver. The
best relative power is assumed to be around 92.74 %. This value was found by using the ant
colony optimization to find an optimal aim point configuration, which considered the mirror
error during optimization in contrary to the controller. Therefore, starting from the initial flux
density distribution a maximal improvement of 3.84 % is possible.

Test Case 2The second case tests the controller’s reaction to overflux conditions. Therefore, the initial
flux density distribution has flux densities going up to 75 kW/m2 i.e. 25 kW/m2 above the
allowed flux density. The initial flux density distribution is illustrated in Fig. 4.3. Furthermore,
a mirror error of 3 mrad is simulated to enforce a deviation between the simulated plant
and the plant system used by the controllers. Without a deviation between these two plant
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Table 4.1: Receiver parameters of the test plant.

Parameter Value Unit

Tower height to receiver center 60 m
Height 5 m
Width 5 m
Measurement bins horizontal 50 -
Measurement bins vertical 50 -

Table 4.2: Heliostat parameters of the test plant.

Parameter Value Unit

Total refelective area 8 m2

Facets vertical direction 2 -
Facets horizonal direction 2 -
Facet width 1.25 m
Facet height 1.6 m
Gaps between facets None
Pedestal height 2 m
Focal length 0 m
Canting point (0,0,100) m
Tracking error 0 mrad
Total reflectivity 0.92 -
Axis offset 0 m

Table 4.3: Environment parameters of the test plant.

Parameter Value Unit

Latitude location 37.095 °
Longitude location -2.360 °
Ambient temperature 298.15 K
Metres above sea level 500 m
DNI 850 W/m2

CSR sun distribution 5 %
Azimuth sun position 0 °
Elevation sun position 45 °
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Figure 4.2: Initial flux density distribution test case 1 (a) and reference flux density distribution
(b).

systems an open-loop controller would be sufficient and the test of a closed-loop controller
unnecessary.

Test Case 3The third case tests the behavior of the controller with regard to dynamic disturbances such
as clouds. The cloud simulation is achieved by setting the DNI to zero for half the heliostats
after 30 control steps. This is equivalent to the case that clouds shade half of the field.
The shaded heliostats are shown in Fig. 4.4a. For example, the flux density distribution in
Fig. 4.2a, would look like the flux density distribution shown in Fig. 4.4b, when half the field is
shaded. The relative power drops from 88.90 % to 45.19 % due to the clouds. After another
30 control steps, at step 60, the clouds pass i.e. the DNI is set to the initial intensity again.
Furthermore, a mirror error of 3 mrad is simulated during the whole test for the same reason
as described in the previous paragraph.

The presented test cases cover most of the situations the controller is confronted with in a real
life application. The mirror error reduces and widens the flux density distribution. Other errors
(see subsection 2.1.2) have a similar influence. They usually either decrease and/or widen
the flux density distribution. Therefore, the simulation of the mirror error is a good choice
to represent different optical losses. The second case tests the critical overflux condition.
The test gives a tendency of how overflux condition are handled. In contrary to the first two
test cases, the last case tests the reaction with respect to dynamic changes. By means of
the mirror error of 3 mrad, the first two test cases only simulate a slight deviation between
the controlled plant system and the plant system used within the controller. However, by
shading half of the field in test case 3, a vast deviation is simulated. Therefore, the controller’s
ability to work with high modeling errors is tested. Furthermore, a cloud usually leads to
an overflux as described in subsection 2.3.1, which usually causes a higher overflux than
other disturbances. Therefore, the test case 3 additionally tests the reaction to an overflux
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Figure 4.3: Initial flux density distribution test case 2 (a) compared to the reference flux
density distribution (b).
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Figure 4.4: Shaded heliostats marked as black points (a) and resulting flux density distribu-
tion (b).
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condition. Because test case 3 starts from the same initial flux density distribution as test
case 1, and also usually includes an overflux condition, it tests implicitly the same situations
presented in test case 1 and 2. However, the first two test cases are still tested to evaluate
each situation separately.

4.2 Fixed Parameters

The set parameters for the ant colony optimization are listed in Tab. 4.4.

The number of control steps is set to 100 because the algorithm usually converges during this
amount of steps. The weights are always initialized with 1 except for the quadratic objective
function, whose weights are initialized with 0.

If the Static Optimal Control has no feedback, i.e. the weight calculator does not update the
weights, this corresponds to an open-loop control that uses only the ant colony optimization
algorithm. The objective is to show that test case 1 can be initialized in such a way that the
performance improvement can only be attributed to the closed-loop and not to the open-loop
control. Thus, the effectiveness of the Static Optimal Controller can be proven. For this
purpose, the initial aim point configuration is set in a way that it corresponds to an optimal aim
point configuration for the ant colony optimization algorithm. This means that the open-loop
controller alone cannot improve the performance. If the Static Optimal Controller is used, the
performance improvement can then be fully attributed to the closed-loop control. Based on
the initial aim point configuration, a flux density distribution without mirror errors is simulated.
This simulated flux density distribution is set as reference flux density distribution for all three
test cases. This reference flux density distribution corresponds to the reference flux density
distribution in Fig. 4.2b.

Table 4.4: Parameters of the ant colony optimization algorithm.

Parameter Value

Number of runs 50
Number of ants 50
β 2.0
Pheromone start value 0.01
ρ 0.15
q0 0.98
smin and smax for scaling [0.12, 1.0]
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4.3 Evaluation Criteria

The error of the relative power Prel is defined as the difference of the current relative power
and the relative power of one. In order to evaluate the parameter combinations for test case
1 and 2 the mean squared error emse of the relative power for all 100 control steps is taken
into account.

emse = 1
100

100∑
i=1

(Prel,i − 1)2 (4.2)

The mean squared error is chosen because it is commonly used in the literature. A lower emse
is desired because it represents a higher final convergence value and/or a faster convergence.
However, because the algorithm converges within less the half of the control steps, the emse
represents rather a higher convergence value than a fast convergence. In order to separate
these influences, the mean relative power of the first ten µf10 and of the last twenty µl20
control steps is also considered.

For µf10, the range is set to ten, as this seemed to be an approximate number of control steps
the algorithm needs to settle at the beginning. Thus, this criterion describes the convergence
speed rather than a high convergence value.

On the one hand, µl20 considers the last twenty steps and not more to ensure that the
algorithm already converged. On the other hand, it considers not less than 20 steps to give a
representative mean value, which compensates fluctuations in the relative power of the last
control steps. The mean relative power is considered instead of the mean squared error in
order to compare these criteria to the initial relative power.

For test case 3, two criteria are considered for the evaluation. The first criterion knoc (noc =
no overflux condition) states how many control steps the controller needs to eliminate the
overflux condition, which may arise after the clouds pass as described in subsection 2.3.1.
The other criterion describes the final convergence value of the relative power during the
cloud phase. This criterion is expressed by the mean relative power µcloud of step 49 to 59,
the final phase before the cloud passes at step 60. A low value for knoc and high value for
µcloud are desired. However, a higher µcloud value usually leads to a higher overflux after the
clouds passes because the controller concentrated the flux more in the center. To eliminate a
higher overflux, the controller usually needs more steps. Thus, a higher µcloud usually leads
to a higher knoc.

The criteria differ for runs with the same parameter combination due to the fact that the
ant colony optimization is non-deterministic. To account for fluctuations in the criteria, the
value for each criterion takes the mean of five runs of the same parameter configuration into
account.

50



4 Optimization of the Static Optimal Control

4.4 Evaluation of Different Objective Functions

The objective functions are evaluated for all three test cases in combination with the integrating
weight calculator (see subsection 3.6.4). The integrating weight calculator is chosen because
it has the fewest parameters to adjust. Each objective function is influenced mainly by the
penalty factor and the weights. To compare the objective functions comprehensively, each
one should be tested with a wide range of different weights and penalty factors. A wide range
of weights is tested indirectly by varying the integrating factor and through the amount of
control steps. Thus, for each objective function, two parameters are adjusted: the penalty
factor p and the integrating factor Ki of the weight calculator.

Each objective function is tested with a different set of parameters listed in Tab. 4.5. The
parameters were chosen in a way that they yielded solutions which were close to the
maximum of 92.74 % (see section 4.1). The following subsections describe the results for
each test case.

Table 4.5: Parameter ranges for the test of the objective functions used for all test cases (WF
= Weighted Flux, WFEF = Weighted Flux and Exceeded Flux, WMF = Weighted
Maximum Flux, Q = Quadratic).

Objective function p Ki

WF {1000, 100, 10, 1, 0} {1000, 100, 50, 10, 5, 3, 1}
WFEF {2, 1, 0.5, 0.3, 0.1} {1000, 100, 50, 10, 5, 1}
WMF {1000, 100, 10, 1, 0} {10, 5, 3, 1, 0.1}
Q {1000, 100, 10, 1, 0} {10, 5, 3, 1, 0.5, 0.1}

4.4.1 Results Test Case 1

To ensure a safe plant operation, it is important that no overflux condition is caused by the
controller. Therefore, for test case 1 only parameter combinations are regarded valid, which
do not cause an overflux condition during the 100 control steps. Regarding this condition,
the weighted maximum flux objective function showed the best results with respect to all
criteria. The best value for each criterion of each objective function is stated in Tab. 4.6. If an
objective function is better in one criterion, it is also for the other criteria. Overall, it can be
recognized that a high overall mean squared error relates to a fast progress as well as a high
final relative power, although there are slight differences.

An overview of criteria such as the mean error over all bins, the sum of the overflux, the relative
power as well as certain flux density distributions for the parameter configuration with the best
emse is shown in Fig. 4.5. By comparing the initial and the last flux density distribution, it can
be recognized that the controller centers the aim points more during the control. However,
the last flux density distribution still does not resemble the reference flux density distribution
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as the mirror error does not allow such a distinct concentration. Furthermore, the relative
power as well as the error of the weighted maximum flux objective function rises quickly in the
first step, but then it drops again, before it converges. An explanation for this behavior could
not be found, but this is not a desired behavior. Therefore, the quadratic objective function,
which is the second best objective function, may be a better choice. This objective function
rises more steadily to the final value without big drops as can be seen in Fig. 4.6.

Table 4.6: Best results and their parameters for test case 1 (WF = Weighted Flux, WFEF
= Weighted Flux and Exceeded Flux, WMF = Weighted Maximum Flux, Q =
Quadratic).

Objective Function emse p Ki µf10 p Ki µl20 p Ki

WMF 0.635 % 1 1 91.72 % 1 0.1 92.16 % 1 1
Q 0.684 % 100 3 91.66 % 100 3 91.78 % 10 0.5
WF 0.690 % 1 1 91.39 % 1 1 91.77 % 10 10
WFEF 0.741 % 1 100 91.36 % 1 100 91.46 % 1 0.1
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Figure 4.5: Plots of the weighted maximum flux objective function with the best emse for test
case 1.
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Figure 4.6: Plots of the quadratic objective function with the best emse for test case 1.

4.4.2 Results Test Case 2

In test case 2, there exist, a parameter combination for each objective function that leads to
an immediate reduction of the flux density so that the overflux condition is not present after
one step. However, in all these combinations, the relative power drops significantly at first.
It decreases to a level of about 85 % and then raises again to its convergence value. The
fast reaction to an overflux condition may be due to the almost precise simulation of the flux
density within the controller, which only differs through the mirror error from the simulated
flux density distribution. Therefore, the vast overflux condition also represents an overflux
condition within the simulation of the controller. An overflux condition decreases the objective
value due to the penalty term. Thus, the optimizer defocuses the aim points from the center
to decrease the overflux and increase the objective value. Additionally, the initial overflux
causes lower weights in the center and higher weights far from the center. This also impels
the optimization to defocus the heliostats more from the center. The combination of both
reasons, probably causes the initial big drop of the relative power.

There are also combinations needing more than one control step to eliminate the overflux
and have better values with respect to the criteria. Nonetheless, due to safety reasons a fast
elimination of the overflux is more important than a high value in any criteria. Consequently,
only parameter combination eliminating the overflux condition after one step and producing
no overflux condition thereafter are considered valid. In doing so, the emse and the other
criteria are comparable. The best value for each criterion of each objective function in test
case 2 is stated in Tab. 4.7. The weighted maximum flux objective function again yields the
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best results. An overview for the weighted maximum flux objective function with the best emse
is depicted in Fig. 4.7. Here, the drop of the relative power after the first step can be noticed.

Table 4.7: Best results and their parameters for test case 2 (WF = Weighted Flux, WFEF
= Weighted Flux and Exceeded Flux, WMF = Weighted Maximum Flux, Q =
Quadratic).

Objective Function emse p Ki µf10 p Ki µl20 p Ki

WMF 0.687 % 1 1 90.99 % 1 0.1 92.02 % 1 0.5
WF 0.690 % 1 1 90.20 % 1 1 91.88 % 10 5
Q 0.774 % 100 3 89.46 % 100 3 91.39 % 100 3
WFEF 0.781 % 1 1 90.25 % 1 0.1 91.28 % 1 1
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Figure 4.7: Plots of the weighted maximum flux objective function with the best emse for test
case 2.

4.4.3 Results Test Case 3

In test case 3, most parameter combinations caused an overflux condition after the cloud
passed. Especially, the combinations which yielded a high µcloud value. In contrary, to test
case 2 the parameter combinations do not eliminate the overflux condition within one control
step. This is probably due to the reason that the weights are already adjusted to the cloud
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situation, in contrary to test case 2 where they start from the initial weights. In order to
readjust the weights, the controller needs more than one control step. This situation is more
realistic than the situation in test case 2. There are also parameter combinations, which did
not cause an overflux condition after the cloud passed. However, these combinations usually
performed worse with respect to the µcloud and µl20 value.

In Tab. 4.8, the best value for the criteria knoc, µcloud and µl20 of each objective function
in test case 3 is stated. With respect to the µcloud and µl20 values the weighted maximum

Table 4.8: Best results and their parameters for test case 3 (WF = Weighted Flux, WFEF
= Weighted Flux and Exceeded Flux, WMF = Weighted Maximum Flux, Q =
Quadratic).

Objective Function emse knoc µcloud µl20 p Ki

WF 9.612 % 0 46.11 % 91.97 % 100 5
WF 9.282 % 14 46.86 % 92.13 % 100 100
WF 9.312 % 12 46.81 % 92.15 % 10 5

WFEF 9.945 % 0 45.32 % 90.40 % 5 0.1
WFEF 9.500 % 0 46.21 % 91.82 % 1 10
WFEF 9.500 % 0 46.21 % 91.82 % 1 10
WMF 9.300 % 29 47.00 % 91.47 % 5 0.1
WMF 8.950 % 37 48.04 % 92.50 % 1 1
WMF 8.950 % 37 48.04 % 92.50 % 1 1

Q 9.284 % 12 46.84 % 92.14 % 100 1
Q 9.263 % 17 46.87 % 92.14 % 100 5
Q 9.303 % 13 46.78 % 92.18 % 1 0.5

flux objective functions yields the best results. However, it needs almost double as many
steps to eliminate the overflux than the worst knoc from the other objective functions. The
quadratic objective has a lower knoc value and is the second best objective function with
respect to the other criteria. For the weighted flux objective function and the weighted flux
and exceeded flux objective function exist parameter combinations, which yield a knoc equal
to zero. However, these combinations result in worse values with respect to the other criteria.
An overview of the results for the quadratic objective function tested under the conditions of
test case 3 is depicted in Fig. 4.8. The overflux is eliminated after 14 steps. However, for
the last 4 steps before the elimination of the overflux, the flux density does not exceed more
than 5 % of the allowed flux density. Still, this would not be sufficient for a commercial plant.
Furthermore, the figure reveals that the relative power still drops even when the overflux
condition is eliminated. This is not desired and probably due to a non-optimal reference
flux density distribution. The reference flux density distribution has its maximum not in the
center but around the center in 4 particular areas. Therefore, the controller may defocus the
heliostats from the center to these areas, which leads to a reduction in the relative power.

A better parameter combination would be the one for the weighted flux objective function
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shown in Fig. 4.9. This combination does not cause an overflux condition. It still improves
the relative power although, even though it is less than the combination from the quadratic
objective function. However, it cannot be guaranteed that this combination does not lead to
an overflux condition in any cloud situation.
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Figure 4.8: Plots of the quadratic objective function for test case 3.
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Figure 4.9: Plots of the weighted flux objective function for test case 3.

4.4.4 Insights Parametrization

Based on the test cases, some additional insights regarding the adjustable parameters can
be concluded for each objective function.

For the weighted flux objective function, the results yielded that an integrating factor should
be around the same magnitude as the penalty factor. On the one hand, with a high integrating
factor, the weights rise quickly above the magnitude of the penalty factor. The influence
of the penalty term decreases and a solution with an overflux condition may yield a higher
objective value. Thus, a too high integrating factor relative to the penalty factor leads to an
overflux condition during control. On the other hand, yielding a solution close to the reference
flux density distribution, may require to exceed the allowed flux density within the internal
simulation of the controller. If the weights are too small, they can not counteract the penalty
term and a solution with an internal overflux does not yield a higher objective value. Hence,
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a too low integrating factor relative to the penalty factor leads to a slow rise in the relative
power as shown in Fig. 4.10.

The quadratic objective function yields the best solutions with an integrating factor around
3. This is reasonable because the weights should be around the magnitude of the flux
density as described in subsection 3.6.3, which is enforced by an integrating factor around
the magnitude of one. In test case 1, the penalty factor has no influence on the objective
function, as can be seen in Tab. 4.9. This means that the allowed flux density is not exceeded
during the simulation.

Table 4.9: Results for different penalty factors with the quadratic objective function in test
case 1 (Q = Quadratic).

Test Case Objective Function emse µf10 µl20 p Ki

1 Q 0.710 % 91.52 % 91.61 % 1000 3
1 Q 0.710 % 91.53 % 91.60 % 100 3
1 Q 0.710 % 91.54 % 91.61 % 10 3
1 Q 0.710 % 91.52 % 91.60 % 1 3
1 Q 0.710 % 91.51 % 91.61 % 0.1 3

With respect to the weighted flux and exceeded flux objective function, it could be determined
that a lower penalty factor yields better solutions regarding the criteria. A tendency for the
magnitude of the factor Ki could not be found.

If the integrating factor is above 3 for the weighted flux objective function, the allowed flux
density is usually exceeded. A small penalty factor usually gives better solutions.

4.4.5 Conclusions

In conclusion, all objective functions raise the relative power during control. The weighted
maximum flux objective function showed the best results with respect to a high relative power.
For a save operation, it is more important that overflux conditions are eliminated quickly than
yielding a high relative power. Here, the weighted flux objective function shows its limits. It is
the slowest in eliminating the overflux. Therefore, other objective functions like the weighted
flux objective function may be more suitable.

4.5 Evaluation of Different Weight Calculators

The weight calculators are tested with the weighted flux objective function. The weighted flux
objective function has no quadratic term and also, its weights do not directly correlate with
the penalty factor as it is the case for the other proposed objective functions.
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Figure 4.10: Plots of the weighted flux objective function with p = 100 and Ki = 1.

Within this work, an integrating and a PID weight calculator are tested. The objective of
using an integrating weight calculator is not to react quickly to changes in the flux density
distribution but to yield a high final convergence value over time. Therefore, by extending the
integrating weight calculator to an PID weight calculator, the objective is not to increase the
convergence value but to be able to react faster to changes in the flux density distribution
while not decreasing the convergence value. Due to safety reasons, a fast reaction is
especially important when overflux conditions occur like in test case 2 and 3. However, for
test case 2 the integrating weight calculator can eliminate the overflux within one control step
as shown in the previous subsection. Because a faster reaction is not possible in test case 2,
the weight calculators are only evaluated with respect to test case 3.

In context of overflux condition the criterion knoc is of special interest because it gives an
evidence of how fast the controller reacts to an overflux. Consequently, the different parameter
combinations are evaluated with respect to this criterion.

4.5.1 Results Test Case 3

An evaluation beforehand yielded that for a PID weight calculator no parameters could be
found, which gave similar convergence values as the integrating weight calculator. This does
not imply that there is no parameter combination which yields better solutions. However, one
test run needs about 2.2 min and there are no rules of thumb to adjust the parameters. There-
fore, only a few combinations could be tested in the infinite space of possible combinations.
In the range of untested parameter combinations, there may be more suitable combinations.
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For that reason, the influence of the P and the D term are tested separately in combination
with the I term. The integrating parameter is set constant to reduce the parameter space. The
integrating parameter and the penalty factor is set to 1 because this yielded good solutions in
combination with the weighted flux objective function.

The PI weight calculator was tested in a range from 0 to 6 with a step size of 0.01 for the
Kp value. Values above 2 lead to an overflux condition caused by the controller before the
occurrence of clouds and are not appropriate. Values between 0 to 2 had almost no influence
on the µl20 and the µcloud value as required. These values deviated not more than 0.01 %
and 0.03 % respectively compared to the parameter combination with Kp = 0. However, the
P-term can reduce the knoc value up to 2.6 steps in average from 74.8 to 72.2 compared to
the integrating weight calculator.

The D-term of a PID controller has a dampening effect for Kd > 0. However, in case of a
sudden overflux condition a dampening effect is not desired because it would prolong the
time until the overflux condition is eliminated. Therefore, the effect is reversed by choosing
Kd < 0. The PD weight calculator was tested in a range from 0 to −6 with a step size of
0.01 for the Kd value. An overflux condition before the occurrence of clouds was caused by
values below −2 and thus, these values are not appropriate. The µl20 and the µcloud values
were almost not influenced by values between 0 to −2 for Kd. They deviated not more than
0.02 % and 0.04 % respectively compared to the parameter combination with Kd = 0. The
D-term can reduce the knoc value more than the P-Term. The best knoc value is 69.2. Thus,
5.6 steps faster than the integrating weight calculator. The results for the best knoc value and
other criteria are listed in Tab. 4.10.

Table 4.10: Comparison of different weight calculators.

Weight calculator knoc µcloud µl20 Kp Ki Kd p

I 74.8 46.83 % 92.15 % 0 0 1 1
PI 72.2 46.83 % 92.14 % 0.3 0 1 1
ID 69.2 46.84 % 92.15 % 0 -0.3 1 1

4.5.2 Conclusions

In conclusion, the PID weight calculator can enhance the reaction with respect to overflux
conditions without impeding the convergence value. However, finding a suitable parameter
combination can only be done by trial and error and therefore, may be cumbersome and
time-consuming.
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5 Controller Evaluation and Performance
Analysis

In this chapter, the proposed control algorithms are tested and compared to each other in
a simulation environment. To test and compare the controllers, the small reference plant
and the test cases that were used to optimize the static optimal control (see section 4.1) are
used. The first four subsections present the results for each controller and compare them
to each other. Subsequently, the Static Optimal Control is investigated with respect to its
computational performance. Lastly, test results of the solar tower in Jülich are presented and
an overall conclusion is given.

5.1 Results Vant-Hull

The Vant-Hull control is only tested with test case 2 because the controller can only react to
overflux conditions. The controller has no parameters to adjust and is therefore solely tested
once. The overflux of 25 kW/m2 is eliminated within 35 control steps and resulted in a final
relative power of 61.78 %. In every control step one heliostat is removed from the receiver.
Thus, 65 heliostats focus on the receiver when the overflux condition is removed.

The development of the relative power and the sum of the overflux as well as the first and
last flux density distribution is shown in Fig. 5.1. The plot of the relative power is almost a
straight line because the reflected power of the heliostats only differs slightly. Each removed
heliostat decreases the overflux more in earlier than in later steps due to the fact that fewer
bins have an overflux at the end.

5.2 Results Hot Cold

The Hot Cold algorithm is validated with test case 1 and 2. Test case 3 is not tested because
the algorithm was implemented for the use with STRAL 2, which is not capable of simulating
clouds. Moreover, the Hot Cold algorithm has no parameters to adjust.

In test case 1, the controller stops after 17 iterations. The final relative power is 90.56 %,
which is 2.11 % higher than the initial relative power. The development of the relative power
and the sum of the overflux as well as first and last flux density distribution is shown in
Fig. 5.2. As can be seen, the power increases almost steadily without exceeding the allowed
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Figure 5.1: Plots of the Vant Hull control for test case 2.

flux density. As a result of the increasing power, the last flux density distribution is more
concentrated than the first one.

The overflux condition in test case 2 is eliminated after 61 iterations and the final flux density
distribution has a relative power of 90.53 %. An overview of the results is displayed in Fig. 5.3.
The overflux decreases at step 41 the first time slightly below 0. Then the algorithm tries to
move the heliostats from cold to hot spots to increase the power. Due to the fact that the flux
density simulation of the controller differs from the one of the plant system, the controller
executes shifts, which lead to a slight overflux. The algorithm changes then to shifting from
hot to cold areas again. This leads to a behavior where the algorithm oscillates around an
overflux value of 0. The algorithm finally does not find a valid shift from a cold to a hot spot at
step 61 and comes to a hold. However, from step 41 on, the controller decreases the relative
power around 1.25 %, from 91.78 % to 90.53 %.

5.3 Results Static Optimal Control

The results for the Static Optimal Control are taken from the optimization of the controller in
chapter 4. The best results for the criteria are listed in Tab. 5.1. With µl20 values of 92.02 % to
92.50 % the controller achieves results close to the maximum relative power of 92.74 % (see
section 4.1). The emse value of test case 3 can not be compared to the other test cases due
to the fact that they yield a different interpretation. It has to be considered that these values
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Figure 5.2: Plots of the Hot Cold control for test case 1.
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Figure 5.3: Plots of the Hot Cold control for test case 2.
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Table 5.1: Results of the Static Optimal Control for all test cases.

Test Case emse µf10 µl20 knoc µcloud

1 0.635 % 91.72 % 92.16 % - -
2 0.687 % 90.99 % 92.02 % - -
3 8.950 % - 92.50 % 0 48.04 %

are subject to different parametrization. The control designer must adapt the parametrization
with regard to the criteria that are important to meet the requirements of the controller.

5.4 Comparison of the Controllers

Only the Static Optimal Controller is tested under test case 3. Therefore, the controller can
only be compared for test case 1 and 2, except for the Vant Hull control, which was tested
solely for case 2. The controllers are compared with respect to their final relative power. The
performance i.e. the settling time is not compared. To compare these, the Vant-Hull and the
Hot Cold algorithm need to be further enhanced with respect to their performance.

An overview of the final relative powers for test case 1 and 2 is given in Tab. 5.2. For the Static

Table 5.2: Comparison of the final relative powers for the different control strategies.

Test Case Vant Hull Hot Cold Static Optimal Control

1 - 90.56 % 92.16 %
2 61.78 % 90.53 % 92.02 %

Optimal Control, the µl20 of the best weighted maximum flux objective function is considered
as the final relative power. As can be seen, the Static Optimal control yields the best results
for all test cases. The Vant-Hull algorithm performances worst with a gap of almost 30 % to
the other two controllers. The Hot Cold controller comes close to the results of the Static
Optimal Control, only with a difference of 1.60 % and 3.57 % with respect to test case 1 and
2. For test case 2, the Hot Cold controller yields a first valid solution (without overflux) at step
41 with a relative power of 91.78 % as stated in section 5.2. If this value is considered as
final relative power, the gap to the Static Optimal Control is reduced to 0.24 %.

5.5 Performance of the Static Optimal Control

The performance of the algorithm i.e. the computational time is tested on a Windows 7
(64 bit) PC with an Intel(R) Xeon(R) E5-2687W 0 @ 3.10 GHz CPU using 4 cores and the
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NVIDIA GeForce RTX 2080 Ti GPU. The algorithm as well as the used STRAL software
is implemented in C++. The GPU code enables to calculate the paths of multiple ants at
the same time on thousands of cores. The most time-consuming part during the calculation
of the path for an ant is the calculation of the objective value. To calculate the objective
value, the total flux density distribution is needed, which is calculated by summing up the
precalculated flux density distributions of the respective heliostats. In addition to distributing
the path calculation for different ants, this summation is also distributed to different cores for
each bin. Thus, the computational time is further decreased.

The performance is evaluated for the weighted flux objective function and the integrating
weight calculator for test case 1. The controller executed a control step within an average
time of 0.48 s. Thus, the performance of the controller is real time capable because the
computational time plus the maximum time to move the heliostats of 2.79 s is less than the
upper limit of 5.0 s for the sample time (see subsection 3.2.2).

As can be seen in Tab. 5.3, using a GPU for 50 ants per iteration yields only a small
improvement of factor 2.4 with respect to a CPU. If the number of ants is small, the GPU uses
only a part of its cores. Therefore, when increasing the number of ants, the computational
time on the GPU rises only slightly due to fact that many cores were unused before and thus,
most tasks can still be done simultaneously. For example, by increasing the number of ants
by a factor of 100 from 100 to 10000 ants, the computational time doubles. In contrary, the
computational time on the CPU rises proportionally with the number of ants. Thus, the benefit
of using a GPU unfolds with a high number of ants. For example, using 10000 ants, the GPU
is about 215 times faster than the CPU.

Using a higher number of ants can lead to a better solution. Or the number of iterations can
be reduced when raising the number of ants while the quality of the solution does not change.
However, due to a not found error in the implementation, the GPU results differ from the CPU
results. Thus, these statements can not be validated. However, the algorithm for the GPU is
still representative to evaluate the performance of the algorithm.

Furthermore, it is possible to decrease the computational time by grouping the heliostats i.e.
allocating one aim point to a group of heliostats. Then, the GPU should allow to simulate
a commercial plant with tens of thousands of heliostats without significantly increasing the
computational time. However, this was not tested within the scope of this work.

Table 5.3: Comparison of the computational time using a CPU (4 cores) and the CPU (4
cores) plus a GPU.

No. of iterations No. of ants Mean time CPU [s] Mean time GPU [s] Factor CPU/GPU

50 50 1.14 0.48 2.41
50 100 2.23 0.50 4.49
50 1000 22.17 0.57 38.91
50 10000 221.55 1.03 215.44
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5.6 Tests at the Solar Tower in Jülich

The Static Control algorithm is tested at the solar tower in Jülich to analyze the capability
of the controller under real conditions. The receiver is a rectangular receiver, which is bend
outwards and works with air as heat transfer medium. In total, the receiver has a height of
5.22 m and a width of 4.35 m. It consists of ceramic absorber structures, which are aligned
in a grid of 30 horizontal and 36 vertical structures. The heliostats concentrate the solar
radiation onto these structures to heat them. Each structure aspires air and transfers the
absorbed energy to the air. The heated air can be used for an energy conversion process.

The heliostats have a rectangular shape and consist of 4 facets each. They move bidirection-
ally in elevation and azimuth axis. Compared to other heliostats, they have a relatively small
reflective area of 8 m2 [8]. Due to reconstruction work, replacement of drives and controllers,
only 39 heliostats of the 2153 heliostats [8] were available for the tests.

A camera measures the light intensity on each absorber structure. Based on the light
intensities, the current flux density distribution is calculated by an algorithm. During the test,
the allowed flux density distribution is changed to simulate conditions with a too high and a
too low flux density as well as dynamic changes. When the allowed flux density changes, the
reference flux density distribution is scaled in a way that its maximum is equal to the allowed
flux density. As an example, the used reference flux density distribution for an allowed flux
density of 5 kW/m2 is shown in Fig. 5.4a.

The controller was tested with the weighted flux objective function (p = 100) and the
integrating weight calculator (Ki = 20) as well as the ant colony optimization parameters
listed in Tab. 4.4 (see section 4.2).

5.6.1 Controller Adaptions

The controller had to be adapted in order to work under real conditions. Depending on the
sun position, the flux density of the simulation within the controller was almost twice as high
as the measured flux density. Due to the high flux densities and the relative small allowed flux
density, the optimization algorithm could not find a valid solution without an overflux in the
simulation. If then the heliostats aim more on one side, the weights are adapted so that they
are higher on the other side. Thus, in the next step the controller focus the heliostats more
on the other side. This happens in a loop and it comes to an oscillating behavior. Without
strong peak areas, it does not come to an oscillating behavior. High peak areas, which
exceed the allowed flux density, are usually distributed due to the penalty term. However,
because the overflux was present at almost every bin, the penalty term had no significant
effect. Therefore, an oscillating behavior was recognized due to the deviation of the measured
and the simulated flux density distribution.

To reduce the deviation of the measured and the simulated flux density distribution and thus
the oscillating behavior, a correction coefficient was introduced. For the calculation of the
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correction coefficient, a mean value of the flux densities is calculated for each 3×3 grid on the
flux density map. Then, the maximum mean value of the measured flux density distribution
µm is divided by the simulated maximum mean value µsim to yield the correction coefficient c:

c = µm
µsim

(5.1)

The coefficient is multiplied with the flux densities of the simulation so that the deviation
is reduced. The deviation was dependent on the time of day. In the morning and in the
afternoon, the correction coefficient decreased to a value of 0.5 while the deviation at noon
was relatively small with a coefficient of about 0.95. After the tests, it was noticed that the
simulation was based on a heliostat field with 48 instead of 39 heliostats. Additionally, the
direct normal irradiation (DNI) was set higher in the simulation than the measured DNI. Both
these factors account for a part of the deviation. There may be other reasons, which could
not be found until the end of this work.

A second problem was the movement of the heliostats. They moved slower than expected
and often readjusted themselves, which led to a constantly changing flux density. The
readjustment is necessary because the heliostats often move to far or not far enough.
Furthermore, the sun position changes during the control, which changes the incident angle
of the solar radiation. The change in the incident angle shifts the aim point of the heliostat.
Hence, the heliostats also readjust to keep the aim point at the same position. Additionally,
the 39 heliostats are connected to two bus systems (around 20 heliostats are connected
to one bus system). The cycle time is 100 ms. Thus, the twentieth heliostats receives the
signal after 2 s. The combination of the readjustment and the delay through the bus system
led to a steady heliostat movement. However, these reasons seemed not to explain fully the
slow heliostat movement, but further tests to investigate this issue could not be conducted
until now. To compensate the steady movement partly, the sampling time was set to 20 s to
give them sufficient time to readjust. However, this sample time is four times higher than the
calculated upper sampling time in subsection 3.2.2.

5.6.2 Test Results

The results for one test run are shown in Fig. 5.4b. The plots are divided into 5 parts. The
change to another part is marked by the change of the allowed flux density (red line). In the
left plot, the relative power as well as the allowed flux density is shown over the amount of
control steps. Here, the reference power is set in a way that the maximum relative power
is 100 % during the test run. On the right side, the sum of the overflux and the allowed flux
density is plotted. The first part is the initial phase. At first the heliostats aim at a point
offside of the receiver. The allowed flux density is set to 30 kW/m2. This flux density cannot
be exceeded, even when all heliostats aim at the center. Therefore, the controller aims all
heliostats to the center to achieve the maximum power. Then, the actual test starts. After 5
steps, the allowed flux density is reduced to 5 kW/m2. The sum of the overflux jumps due to
a lower allowed flux density but is almost eliminated after 5 steps at step 10. Nonetheless,
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Figure 5.4: Reference flux density distribution in Jülich with respect to an allowed flux density
(AFD) of 5 kW/m2 (a) and evaluation plots of the test run in Jülich (b).

after step 10 the relative power decreases further. This is probably due to the reason that the
overflux is not completely eliminated and the controller tries to find a better solution. However,
the found solutions decrease the relative power more than desired. After 15 steps, the
allowed flux density is raised to 15 kW/m2. The controller increases the relative power, while
not exceeding the allowed flux density as desired. Then, at step 25 the allowed flux density
is again decreased to 5 kW/m2. The behavior of the controller is similar to the previous
decrease to 5 kW/m2. At last, the allowed flux density is increased to 10 kW/m2. The relative
power increases as well, but at one control step a slight overflux is caused.

5.7 Conclusions

The results regarding the final relative power of the Hot Cold and Static Optimal Control were
compared for two test cases. For test case 2, the controllers were also compared to the
existing Vant-Hull control to validate their functionality. In both test cases, the Static Optimal
Control yielded the best results. The Hot Cold controller achieved only slightly worse results
with a maximal gap of 3.57 % to the final relative power of the Static Optimal Control. In test
case 2, the controllers could eliminate the overflux condition but yielded a final relative power,
which was almost 1.5 times better than the Vant-Hull control.

Furthermore, the computational performance of the Static Optimal Control was tested on a
GPU showing that the controller is real-time capable.

Because the Static Optimal Control achieved the best results, the controller was also tested
at the solar tower in Jülich. The Static Optimal Control increased the relative power, when
the allowed flux density was increased almost without exceeding the allowed flux density.
Furthermore, after a decrease of the allowed flux density, the controller reduced most of the
overflux within one control step. Thereafter, it further reduced the overflux but not always
completely. Overall, this is a promising tendency. However, for a commercial operation
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overflux condition need to be eliminated within one control step as stated in subsection 3.2.2.
This may be realized with better fitted parameters of the controller and different objective
functions or weight calculators. Furthermore, there must also be found a solution for the
readjusting heliostats in order to reduce the sample time.

With respect to the objectives of this thesis, it can be concluded that both controllers (Hot
Cold and Static Optimal Control) increase the efficiency of the solar power tower plant, while
restricting the flux density. Furthermore, both controllers can compensate for mirror errors.
However, only the Static Optimal Control was tested under the influence of clouds, which
the controller compensated for successfully. Within this work it could not be tested, if the
controllers also work for different receiver types. They were only tested for a rectangular
receiver.
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In this work, two novel closed-loop control strategies for heliostat aiming of solar power
tower plants were presented. The first control algorithm, called Hot Cold control, is based
on an existing control approach, which shifts the heliostats from hotter to colder zones and
vice versa based on measurements of the receiver temperature. This strategy was adapted
to work with the measurements of flux densities. The second approach, which is called
Static Optimal Control, modifies the existing open-loop ant colony optimization algorithm for
heliostat aiming to work as a closed-loop control. Both approaches were tested with up to
three test cases and compared to the existing Vant-Hull control to validate their functionality.
The first two test cases evaluated the controllers capacity to compensate disturbances like
mirror errors and to react to overflux conditions. The last test case investigated the controller’s
reaction to dynamic disturbances like clouds. The best results yielded the Static Optimal
Control. However, the Hot Cold algorithm was only slightly worse. Both controllers achieved
a relative power, which was almost 1.5 times better than the Vant-Hull control.

The Static Optimal Control requires a high computational effort due to its internal ant colony
optimization. To test if the controller is real-time capable, the algorithm was implemented
on a GPU. An evaluation yielded that the computational time is sufficiently small and in the
boundary of the calculated lower and upper sample time for the solar tower in Jülich.

The Static Optimal Control was also tested at the solar tower in Jülich. Here, the run consisted
of changing the allowed flux density in order to test the controller’s behavior with respect to
overflux conditions and its capability to raise the power on the receiver. The controller showed
a promising tendency but its reaction to overflux conditions needs to be further enhanced to
work in a commercial plant.

Overall, the developed controllers could fulfill the objectives of this thesis, namely increasing
the efficiency, restricting the flux density and compensating for disturbances such as mirror
errors. However, only the Static Optimal Control was tested successfully under clouds and
both controllers were not tested with different receiver types.

As mentioned in section 3.5, the Hot Cold controller can be further enhanced by shifting
several heliostats in one control step. Moreover, the algorithm should also be tested for more
cases like under the influences of clouds.

Based on this work, further work can be done in the direction of enhancing the robustness of
the Static Optimal Control as well as extending its application areas. Two ideas to enhance
the robustness of the controller are presented in the following paragraphs.
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Increased
Robustness

The controller in this work was only tested for some test cases and therefore, may react
badly in other situations. Therefore, the controller should be tested under more test cases
e.g. the impact of a tracking error or the simulation of a slowly passing cloud. However, a
more comprehensive testing does not guarantee a robust behavior of the controller i.e. that
no critical overflux condition can occur. This is due to the non-deterministic optimization
algorithm, which makes a prediction of the behavior of the controller impossible. To enable
a robust control, a switching control mode can be introduced. The controller would switch
to a second control algorithm if an overflux condition occurs, which can not be handled fast
enough by the Static Optimal Controller. The second controller would be a robust controller
(e.g. the Vant-Hull controller), which would bring the system back to a safe state. When the
system is in a safe state, the controller would switch back to the Static Optimal Control. This
idea is inspired by the Simplex architecture [43].

Cloud
Prediction

There exist methods to predict upcoming clouds and their influence on the heliostats e.g. by
detecting the clouds with the Nowcasting System. These predictions could be included in
the plant system model of the controller to generate more precise and robust predictions.
However, the weights try to compensate also modeling errors. If the plant system is changed,
the weights may have to be adjusted accordingly.

In contrary to the previous presented ideas, the ideas in the following paragraphs regard the
application areas of the controller. So far, the Static Optimal Control was only tested on a
rectangular receiver simulating the optical site of the plant system. However, the controller
can be tested with other plant types and with different plant system models.

Commercial
Plants

The controller was only tested on a small plant with 100 heliostats and a rectangular receiver.
However, commercial plants usually have tens of thousands of heliostats and a cylindrical
receiver. The practicability of the controller with respect to the control quality and the
computational time could be tested with these plants, while using a grouping strategy and a
GPU.

Extended
System
Model

The current system model only includes the optical site. However, in real application the
thermal site dictates the allowed flux density, which also is not static as assumed in this work.
Thus, the controller should be tested in connection with a thermal model and a changing
allowed flux density. The model may be directly included in the plant system model used in
the controller or be connected externally by just setting the allowed flux density from outside
by a thermal model.

Energy
Conversion
Process

Different energy conversion processes such as for hydrogen production have different receiver
types and different demands regarding the flux density distribution. It could be investigated, if
the controller works also for these receiver types. A more general formulation of the controller
and the control problem may be necessary to cope with different receiver types. However, an
adaption of the current controller may also be sufficient.

In conclusion, the Static Optimal Control seems to be promising, but there exists still a lot of
possible future work to enhance and extend the functionality of the controller.
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The Vant-Hull and the Hot Cold algorithm are implemented in Python because Python is easy
to learn and use. However, the Static Optimal Control is implemented in C++ because it is
based on the ant colony optimization, which was programmed in C++.

Care was taken to ensure that the code is programmed in a way, which is comprehensible and
reusable. To achieve this, the programming followed certain principles such as DRY (Don’t
repeat yourself!), information hiding and strong coupling (module based coding), which are
further explained in [44]. Moreover, the code is written in a self commenting way. Functions
and classes are kept small to attain a better readability and reusability of the code. The
readability as well as the programming style is further enhanced by taking the Google style
guides for Python and C++ [45, 46] into account. The modular structure is achieved by using
design patterns such as Dependency Injection, Factory and Adapter (further explanation can
be found in [44]). To ensure the correct functionality of the code and to build a safety net as
mentioned by Roth [44], unit tests were implemented by using Pytest for Python and Google
Test for C++.

Although it was attempted to consider all these principles, guidelines and patterns, the
code is certainly not perfect. Due to the limited time, the code is not well commented other
than through its self-commenting style. Moreover, the tests in C++ are not very extensive.
Furthermore, the programming style has developed and was adopted during the process of
implementation. Thus, some parts of the code are written more comprehensive and reusable
than others depending on the time when they were coded.

To be able to easier reproduce the algorithms in Python and C++, a short explanation of the
structure of the implementation is given in the next two sections.

A.1 Structure of the Vant-Hull and Hot Cold Control

A class diagram of the Vant-Hull and Hot Cold algorithm is shown in Fig. A.1. The Controller
class consists of a SolarTowerData, a SolarTowerSystem and a Tracker class as well as some
internal attributes and functions, which are not listed in the diagram. The SolarTowerData
class saves information such as the aim point coordinates and configuration as well as the
bin position. It can perform various tasks on these data, which are helpful for the controller.
The SolarTowerSystem is a class, which can communicate with the solar tower. For example,
it can query the current flux density distribution as well as set and get the current aim point

71



A Implementation

Controller

+ control_algorithm()

{abstract}

VantHull

HotCold
SolarTowerData SolarTowerSystem

StralAdapter

Stral

Tracker

Figure A.1: Class diagram of the Vant-Hull and Hot Cold algorithm.

configuration. The Tracker class saves data like the current power, intercept power and
current flux density distribution during control.

The Controller is an abstract class with the abstract method control_algorithm(). This
method is overwritten by the derived VantHull and HotCold classes in order to implement the
functionality of these algorithms.

A.2 Structure of the Static Optimal Control

In Fig. A.2, the class diagram of the Static Optimal Control is depicted. The controller
consists of the components ObjectiveFunction, WeightEstimator, ErrorSignal, Optimizer, So-
larTowerSystem and DataTracker. The ObjectiveFunction, WeightEstimator and ErrorSignal
are abstract classes, which contain certain attributes and their respective getter and setter
methods. From these classes, child classes are derived, which implement the functionality
described in section 3.6. The child class Quadratic also needs the ReferenceOutputGetter
interface in contrast to the other ObjectiveFunctions. Each of these abstract classes has its
own factory class.

The Optimzer is an interface, which provides functionality such as setting the objective
function as well as starting the optimization. The Optimizer in this work is the ant colony
optimization as explained in section 3.6. Therefore, the existing ant colony optimization by
Belhomme [10] is connected via an adapter to this interface.
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Figure A.2: Class diagram of the Static Optimal Control.
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A Implementation

The SolarTowerSystem is an interface as well, which connects the controller to the solar
tower by defining functions such as retrieving the allowed flux density, the current flux density
distribution or setting the aim point configuration (the latter is not shown in the diagram).
Within the simulation, this interface is connected to STRAL via an adapter.

The DataTracker saves data such as the current flux density distribution. This data can be
processed by another class or program.

From the StaticOptimalController the ExtendedStaticOptimalController is derived. This class
implements some extra functionality for tracking data. It can measure the execution time of
one control step through the StopWatch class. Furthermore, it needs the SolarTowerSystem
interface, which provides functions to retrieve the current power and the intercept factor.

The ExtendedStaticOptimalController is created by the StaticOptimalControlFactory. This
factory class uses the existing factory classes of the components. As inputs, it needs an
adapter for the Optimizer, the SolarTowerSystem, the SolarTowerData and the ControlParam-
eters struct. The ControlParameters struct defines all parameters, which can be set within
the controller.

The presented classes are the most relevant in context of the Static Optimal Control. However,
many more classes were coded to create a simulation environment and provide other
functionality.
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