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Abstract— Intuitive human robot interfaces like speech or
gesture recognition are essential for gaining acceptance for
robots in daily life. However, such interaction requires that
the robot detects the human’s intention to interact, tracks his
position and keeps its sensor systems in an optimal configu-
ration. Audio is a suitable modality for such task as it allows
for detecting a speaker in arbitrary positions around the robot.
In this paper, we present an extension of our proposed sound
source localization approach Motion Model Enhanced MUlItiple
SIgnal Classification (MME-MUSIC) for segmenting speech
input.

We evaluate the system with speech captured under real
conditions in an experimental setup and show the use of our
estimation in real applications.

I. INTRODUCTION

The ability of mobile robots to interact with people in
an intuitive and maybe anthropomorphic manner is a key to
the acceptance of robots in human-dominated environments.
Human-robot-interaction (HRI) can be visual (e.g. gestures),
tactile (e.g. guiding) as well as auditive (e.g. instructing).
However, all modalities require that the robot recognizes the
intention of a human to interact. Visual systems can only
recognize intention in the sensor’s field of view, which is
usually limited and may also be occluded by obstacles. Tac-
tile systems require that the human is nearby. Robot audition,
however, allows for detecting and tracking a speaker from
arbitrary positions around the robot and also from distant
places. Figure [I] illustrates a typical situation. The human
on the sofa wants to interact with the robot, but the latter
is currently performing another task, thus, positioning its
visual sensor in the opposite direction. Moreover, audio also
allows for gaining information about the environment or to
separate between different speakers. The information about
the speaker’s position can also be used to enhance the audio
input signal, e.g. to improve speech processing as well as
getting more information about the position of humans in
the scenario.

We presented a novel approach for localization of speakers
in reverberant and echoic environments by use of a mi-
crophone array in [1]. We classify received audio streams
as speech or non-speech using a voice activity detector
(VAD). We transform the signal into the frequency domain
and analyze the fourier coefficients to calculate a score.
Afterwards we select the most significant bins and fed them
into our direction of arrival (DoA) estimator. Further on we
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Fig. 1: Ilustration of the interaction recognition problem:
The robot is turned away from the operator. While the vision
system might not recognize him, the audio input will do so.

propose a motion model to check the calculated direction
spectrum to improve the robustness.

In this work we want to show the application and the use
of the motion model to segment received speech and assign
them to different speakers. We deliberately avoid using other
techniques like mel cepstrum analysis [2]-[5] or vision-based
aid [6]-[9] to illustrate the performance of a single DoA
estimator.

II. RELATED WORK

At first, research focused on imitating the binaural audio
localization of animals and humans [10]-[13]. Using both
the interaural phase difference (IPD) and the interaural
intensity difference (IID). Further, some techniques take into
account the head-related transfer function [14], [15] as well
as the prior information on reverberant properties of the
environment to achieve accurate results. Incorporation of a
particle filter approach to be used on binaural measurements
improves the estimation of sound sources as well [16].
Nonetheless these systems need a demanding hardware setup
and calibration.

Other approaches use an array of microphones to over-
come the challenging requirements on the hardware and to
estimate the direction of arrival (DoA) of a received signal
[17], [18]. It is possible to calculate the most probable DoA
by estimating the time delay between the signals received
by each microphone. Combining these methods with delay
and sum beam forming (DSBF) as well as random sample
consensus (RANSAC), more than one sound source can be



localized simultaneously [19]. However, these approaches
have problems with low signal-to-noise-ratios (SNR) input
signals, changing acoustic conditions and varying speak-
ers. Different approaches using neural networks have been
studied to tackle these problems. Nevertheless, they need
training dedicated to the specific speaker or require very large
amounts of data for generalizing [20]-[24].

Recently, exploiting the properties of the subspace as in
Multiple Signal Classification (MUSIC) [25] and Estimation
of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) [26] have received more interest. They overcome
the resolution limit constrained by the sampling rate and are
more robust to signal noise but they are computational costly
[27]-[30].

Several extensions have been proposed for enhancing the
performance of MUSIC, e.g. using singular value decom-
position [31] to reduce the computational complexity while
enhancing robustness against noise. Incremental versions are
introduced to reach real-time performance while enhancing
robustness against noise [32], [33]. Additional research to
further reduce the computational costs in the representation
space is done in [34], [35].

However, even recent sound source localization systems
face problems when detecting humans in indoor scenar-
ios under non-optimal acoustic conditions. We identified
significant effects that degrade the performance, namely
reverberation and echo. The first one is the reflection of
numerous acoustic wavelets at every surface which results
in a “fading-out” effect and lower SNR. The latter one is
the complete reflection and delayed reception of the original
source. This leads to miss-classification.

III. SYSTEM

Our system Motion Model Enhanced Multiple Signal Clas-
sification (MME-MUSIC) is based on the SEVD-MUSIC
[36] approach. We enhance the process by limiting the
estimation only to speech phases classified by the voice
activity detector. Furthermore we reduce the number of
frequency bins by selecting the most significant ones based
on a score calculated in the previous step. Additionally we
post-filter our results using a motion model. Lastly we exploit
the decision of the model to segment the speech and assign it
to the speakers. For capturing the audio we use a microphone
array consisting of four acoustic sensors. An overview on the
system is illustrated in Figure [2]

A. Voice Activity Detector and Band Selection

We use the VAD proposed by Ramirez ef al. to classify the
incoming signal [37]. First, we transform the audio into the
frequency domain. Afterwards, we use the Longterm Speech
Divergence (LTSD) approach which assumes that the spec-
trum of noise differs significantly from frames containing
speech. Yet, short time sound events like clapping or door
closing are suppressed.

Subsequently we use the gained information on the dif-
ference of individual frequency bins compared to noise to
find the significant components. This enables the reduction
of calculation costs while preserving estimation accuracy.
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Fig. 2: System overview.

B. DoA Estimation

We assume that our received signal consists only of the
direction-depending source signal and independent system
noise. The approach of MUSIC exploits this dependency
and decomposes the transformed audio into noise and source
subspace. Ultimately it tries to find the corresponding direc-
tion vector which fulfills the constraints given by the system
and the subspaces. We repeat this estimation for all selected
frequency bins and accumulate a total pseudospectrum to
reflect the direction dependencies.

C. Motion Model and Segmentation

We check the plausibility of the estimated angle by eval-
uating it with a motion model. To do this, we assume that
for a given time span the source moves with mean angular
velocity. We take into account a constant motion tolerance
to cope with dynamic changes and measurement noise.

When receiving a new DoA from the previous steps we
gather all estimation within the time span. If we can explain
the measurement given our motion model, we flag them as
valid. We need at least 3 valid estimations, the first ones to
calculate the motion vector, the last one to verify the model.

Furthermore we exploit the verification for our segmen-
tation. We consider a scenario with two persons speaking.
If we receive new measurements which are marked as
valid but based on a different motion vector than previous
measurements, we assign them to a different speaker. This
is a fairly naive approach, however the performance shown
in the next section is notable.

IV. EXPERIMENTS

We show the application of our sound source localization
in a segmentation process where two persons are having
a conversation. Our system uses the estimated position to
assign the speech to the corresponding speaker. The scenario
is shown in Figure [3]| We illustrate both cases, the speakers
facing the system and each other. We assume the last one as



Fig. 3: Conversation between two person. Left side shows the
case where both of them are speaking towards the camera.
In this scenario a vision-based system may lead comparable
performance. Right side shows the case where both speakers
are facing each others. This is a hard task for vision classifier.
As indicated by the blue bar, the auditory system succeeded
in identifying the current speaker.

a hard task for camera-based systems, as the visual clues for
identifying the speaker are reduced to a minimum.

We compare our approach with AFRF-MUSIC [38], which
is an optimized version of SEVD-MUSIC [31] according to
execution time. In contrast, our approach is also optimized
for use in indoor scenarios.

For AFRF-MUSIC we add the information, that the left
speaker can be localized by positive angles, the right speaker
by negative, as the system has no indicator for changing
sources.

We manually labeled the data for left and right speaker and
compare it with the outcome of the algorithms. The results
are shown in Figure {4

For AFRF-MUSIC we get correct assignment in 79.5%
of all estimated cases, for MME-MUSIC in 93.1%. In total
comparing all cases where the approaches did not assign
a speaker, AFRF-MUSIC performs with 61.0% and MME-
MUSIC with 73.0% successfull assignments (see Table [I).

V. CONCLUSION

In this work we showed the application of our recently
developed sound source localization system Motion Model
Enhanced MUSIC (MME-MUSIC). We shortly introduced

TABLE I: Segmentation results.

Total Segmented
Method TP FP | TP FP
AFRF | 61.0% 39.0% | 79.5% 20.5%
MME | 73.9% 26.1% | 93.1%  6.9%

the pitfalls of indoor scenarios and the resulting effects
on auditory systems. We developed a simple segmentation
algorithm based on our approach to assign speech phases of a
received signal to specific speakers. Furthermore we showed
that this naive approach is reliable enough in situations where
classical approaches using vision-based systems may fail to
locate the correct speaker.

With this work we want to propagate the benefit of using
robot audition as an additional modality for robust robotic
systems. We expect enhanced perception systems which
operate robustly in complex environments.
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Fig. 4: Experimental results of our segmentation. Top shows the manually labeled ground truth. Center shows the result
using AFRF-MUSIC, a state-of-the-art and real-time capable approach. Bottom shows our approach using MME-MUSIC.
It can be seen, that AFRF-MUSIC has a lot of miss-classifications. MME-MUSIC has less segmented points while having
better assignments.
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