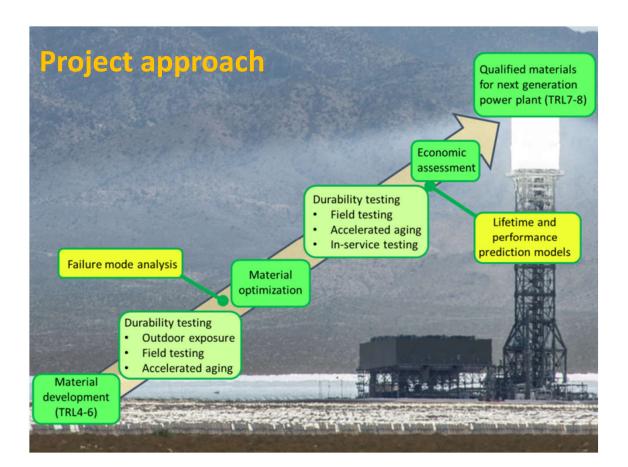


<u>Raising the Lifetime of Functional</u> Materials for Concentrated Solar Power

SolarPACES conference 2020 Florian Sutter (DLR) and RAISELIFE consortium

Project facts

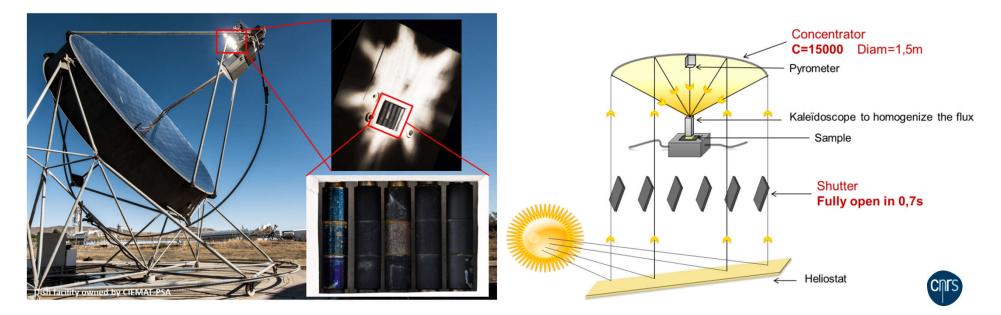
Funded by: EU H2020 program,


Call: NMP-16-2016 Nanotechnologies, Advanced Materials and Production

 Duration:
 48 months

 Start date:
 01/04/2016

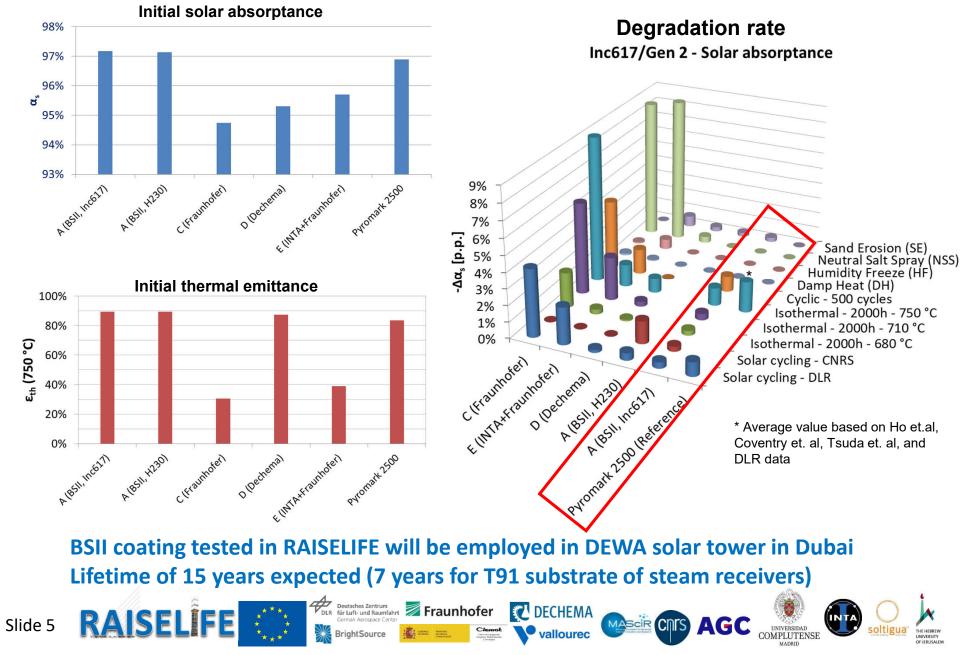
 End date:
 31/03/2020


Budget: Total cost: 10.5 M€ EU contribution: 9.3 M€

Testing of new absorber coatings

100 "slow" cycles: 200 - 650/750°C, 30 K/min, 350 kW/m², 1h, combined with 1000h isothermal pre-oxidation and 120h of condensation

50 "fast" cycles: 400 - 650/750°C, 300 K/min, 700 kW/m², 20min


Lab testing:

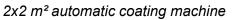
- Climate chambers: Salt Spray, Humidity Freeze, Damp Heat, Sand Erosion
- Isothermal: 3 temperature levels, up to 4000h
- Cyclic furnace: up to 1000 cycles

RAISELIFE, SolarPACES conference 2020

Performance of new absorber coatings

Absorber coatings O&M

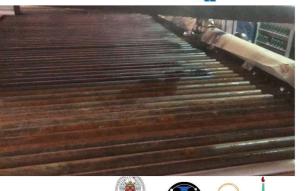
- Ivanpah: after 7 years of operation (+ 2 years construction) no major failures, only local repairs of BSII coating
- On-tower recoating is challenging: cleaning and surface preparation, on-tower painting, complicated solar curing profile, etc.


Similar durability of solar and furnace cured coating demonstrated in dish cycling tests!

Common local coating failure

AGC

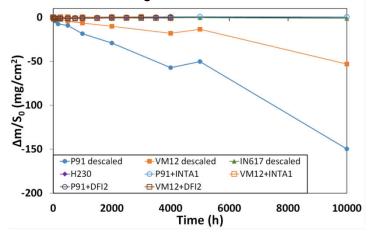
BrightSource


Automatic coating machine

- Coating thickness tolerances: 5 µm (manual painting: 20 µm)
 → fewer coating "weak points"
 - \rightarrow higher durability expected

C DECHEMA

Deutsches Zentrum für Luft- und Raumfahrt


Slide 7

Corrosion protection coatings for molten salt

- Protective coatings: excellent performance after 10,000h of static testing in solar salt at 580°C
- Measured corrosion rates in solar salt at 580°C: T91: 169 µm/year VM12-SHC: 59 µm/year Inconel617: 15 µm/year (based on 4000h data)
- DECHEMA coating: corrosion layers up to 26µm have been measured under dynamic conditions (flow rate of 0.2m/s at 580°C)
- Minimum changes in coating thickness and surface Alconcentration for INTA coating also under dynamic conditions
- Weld joints of coated samples and showed very stable behaviour (tested up 1000h)
- \rightarrow Coated FM steels have potential to reduce CSP cost, next step: demonstration under in-service conditions

Static testing in solar salt at 580°C

INTA coating cross section during testing at 580°C in solar salt

Coatings for solar reflectors

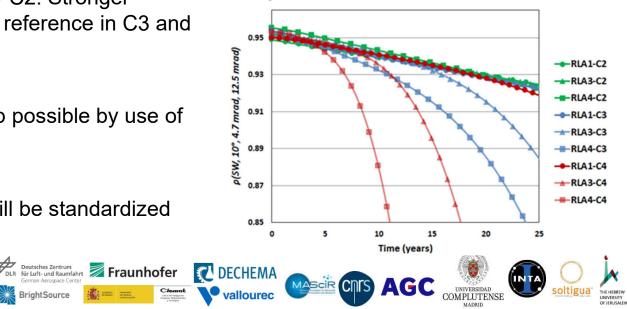
Mirror coatings tested in RAISELIFE:

- 2 types of 2-layer systems (RLF2, RLF4) , Question
- Lead free (RLF3) , ♀
- Powder lacquer (RLF5) , ♀
 → failure
- Cost effective top coat AGC
- Reference 3-layer system (RLF1)
- 6 types of anti-soiling coatings AGC, Second Second

- Low-cost 2-layer mirror coatings (RLA3, RLA4) suitable for sites of corrosivity C2. Stronger degradation than commercial reference in C3 and C4
- Cleanliness gain up to 1.5%-p possible by use of anti-soiling coatings
- Accelerated lifetime testing will be standardized in IEC

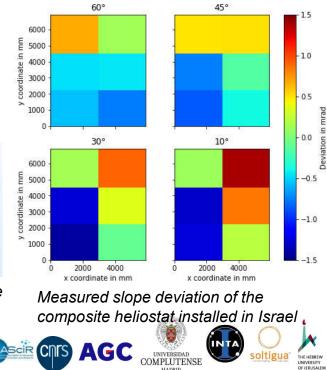
RAISELIF

Slide 8



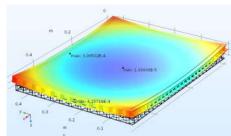
Erosion of glass surface in Zagora

Corrosion of powder coated mirror in Antofagasta


Thin glass composite heliostat

- 1mm thin glass was used instead of standard 4mm glass
 → increase of ~0.5% solar reflectance
- Composite material is used to improve resistance against breakage due to wind loads → prototype withstands winds up to 45m/s
- Lab and field laser scanning analysis showed deformation:
 due to environmental temperature changes
 - due to the gravitational force acting on the large panel
 → optical efficiency losses of about 1%
- 40m² instead of current BSII design of 25.6 m² → potential cost reduction of 30%

5900

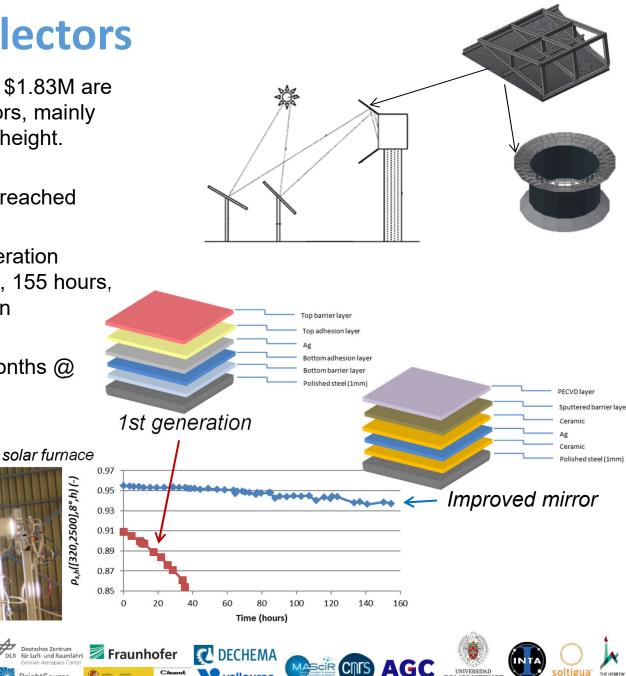


Thin-glass composite heliostat at BSII, Israel, erected autumn 2018

7421

Deformation due to temperature changes measured in the lab

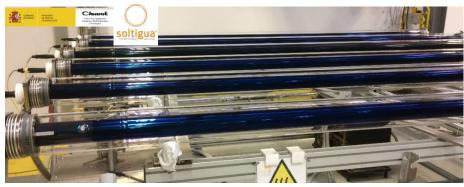
C DECHEMA


Deutsches Zentrum DLR für Luft- und Raumfahrt

Secondary reflectors

- CAPEX savings of \$1.50M to \$1.83M are possible with secondary mirrors, mainly due to the reduction of panel height.
 (→LCOE reduction of ~1.9%)
- Fraunhofer secondary mirror reached ρ=95.5%
- 46 days tested under real operation conditions (380°C, 350kW/m², 155 hours, 388 cycles) with a degradation to *ρ*=93.7%
- ρ stays above 92% for > 2 months @ 450°C in muffle furnace test

Slide 10 **RAISELIFE**


vallourec

Coatings for line focusing receivers

DLR für Luft- und Raumfahrt

C DECHEMA

Anti-reflective coating for evacuated receivers

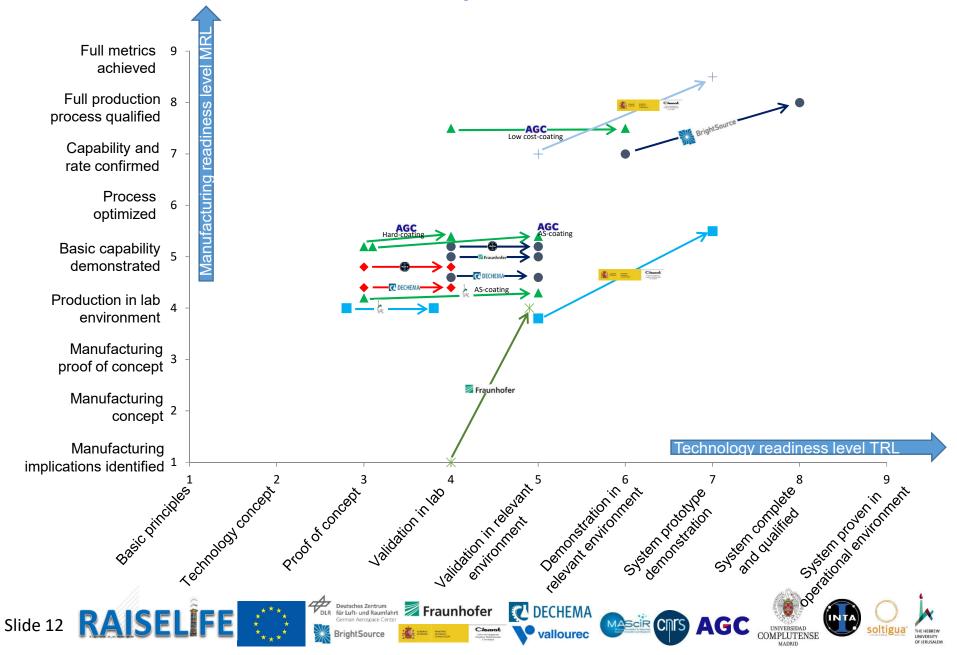
Coated receiver tubes at the ARCHIMEDE SOLAR factory

• High transmittance of $\tau = 97.2\%$

Slide 11 **RAISELIFE**

- Increased abrasion resistance by factor 2.5 verified in Taber Abrasor test
- Stable after 1000h of Damp Heat test and 2000h of Condensation test
- Transmittance stayed between *r* =95.1% -96.1% after 12 months of field testing at Soltigua at 180°C, including 2 cleaning cycles per month.

Non-evacuated receiver coating



Testing of CIEMAT coating at SOLTIGUA at 180°C

- Produced by sol-gel dip coating
- *α*=95.5%, *ε*=13% (250°C), substrate: stainless steel
- α=95.5%, ε=9.1% (250°C), substrate:
 chromium coated stainless steel
- Coatings stable for >15 months in furnace at 400°C without degradation
- Negligible degradation after 14 months of field testing at 180°C by Soltigua
- Chromium coated stainless steel substrate starts to degrade at 450°C

AGC

TRL and MRL of RAISELIFE developments

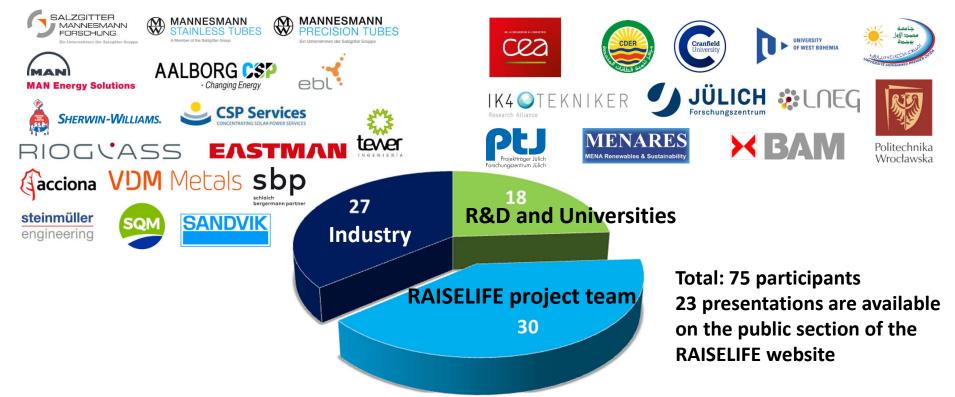
Exploitation and dissemination of RAISELIFE developments

- 14 published conference papers + 10 papers to be published still
- 13 peer reviewed publications
- 1 doctoral thesis
- 1 patent (protective absorber coating from Dechema)
- Exploitation brochure was uploaded on RAISELIFE website and EERA IP repository

	Products ready for market				
No.	Product	Improvement compared to state of the art	Contact person		
1	Absorber coating for tubular solar tower	α _s = 97%, ε = 85% (750°C) T _{max} = 750°C	Mr. Yaniv Binyamin ybinyamin@brightsourceenergy.co		
	receiver	Lower degradation rate than Pyromark2500.	Dr. Alina Agüero Bruna aqueroba@inta.es		
2	Absorber coating for tubular solar tower receiver		Dr. Mathias Galetz galetz@dechema.de		
3	Low-cost selective sol-gel absorber coating for non- evacuated parabolic trough receiver	a ₈ =95.4%, c=7.8% (250°C) T _{max} = 400°C (stable for >15 months in furnace at 400°C without degradation).	Dr. Angel Morales Sabio angel.morales@ciemat.es		
4	Anti-reflective coating for glass- envelope tube for evacuated parabolic trough receiver	Improved abrasion resistance by factor of 2.5	Dr. Angel Morales Sabio angel.morales@ciemat.es		
5	Low-cost protective coating for solar mirrors	2-layer instead of 3-layer coating systems for cost savings in dry desert sites of low corrosivity.	Mrs. Anne Attout Anne.Attout@eu.agc.com		
6	Coating to prevent steel corrosion in molten salt	Negligible mass loss of coated sample after 10,000 h of furnace testing in solar salt at 580°C.	Dr. Alina Agüero Bruna agueroba@inta.es Dr. Mathias Galetz galetz@dechema.de		
7	VM12-SHC steel qualified for CSP application	VM12-SHC may be employed in the low- temperature part of molten salt receivers instead of 191. Corrosion layer of VM12-SHC is 68µm compared to 193µm of T91 after 10,000 h of testing in solar salt at 580°C.	Dr. Javier Piron javier.piron@vallourec.com		

No.	Service	Improvement compared to state of the art	Contact person
1	FREDA measurement	Assess heliostat degradation of entire	Mrs. Anna Heimsath
5	system	solar field.	anna.heimsath@ise.fraunhofer.de
2	device	Automatic collection of continuous soiling data on reflectors.	Dr. Fabian Wolfertstetter fabian.wolfertstetter@dlr.de
3	Sensor to monitor corrosion rates of steels in molten salt	Automatic collection of continuous corrosion data of structural materials.	Prof. Francisco Javier Pérez Trujillo fjperez@quim.ucm.es
4	Automatic coating machine of HSA absorber coating	Minimizes production cost, increases coating lifetime by homogeneous deposition, avoiding hot-spots (coating thickness tolerances of 5µm were achieved compared to 20µm with manual painting).	Mr. Yaniv Binyamin: ybinyamin@brightsourceenergy.com
5	Testing methodology for absorber coatings for solar tower receivers	Testing under concentrated solar flux and in climate chambers.	Dr. Florian Sutter florian.sutter@dlr.de Dr. Bernard Claudet claudet@univ-perp.fr
6	Testing methodology for secondary mirrors for solar tower	Testing under concentrated solar flux and in climate chambers.	Dr. Aránzazu Fernández-Garcia arantxa fernandez@psa.es
7	Testing methodology for primary mirrors	Outdoor exposure and climate chamber testing. Lifetime prediction based on accelerated aging testing.	florian.sutter@dir.de Dr. Aránzazu Fernández-Garcia arantxa.fernandez@psa.es Dr. Sanae Naamane s.naamane@mascir.com
8	Testing methodology for anti-soiling coated mirrors	Outdoor testing in Spain and Morocco with regular cleaning intervals. Climate chamber testing.	Dr. Florian Sutter florian sutter@dlr.de Dr. Aránzazu Femàndez-Garcia arantxa.femandez@psa.es Dr. Sanae Naamane s.naamane@mascir.com
9	Testing methodology for corrosion in molten salt	Furnace and slow strain rate (SSRT) testing in molten sait at different temperatures.	Prof. Francisco Javier Pérez Trujillo <u>fiperez@quim.ucm.es</u> Dr. Alina Agüero Bruna: agueroba@inta.es Dr. Mathias Galetz: galetz@dechema.de Dr. Johannes Preußner johannes Preußner
10	System simulation tools	Allow for economic assessment of novel materials, receiver and solar field efficiency computation.	Theda Zoschke theda.zoschke@ise.fraunhofer.de Ralf Uhlig Ralf.Uhlig@dir.de

Services ready for market


Preliminary developments with further optimization or testing needs

No.	Product	Improvement compared to state of the art	Contact person
1	Selective absorber coating for tubular solar tower receiver	α _k = 95%, ε = 28% (750°C) T _{max} = 750°C Optimization of durability is ongoing	Dr. Christina Hildebrandt christina hildebrandt@ise.fraunhofer.de
2	Low-cost absorber coating for non-evacuated parabolic trough receiver	α _* =96.6%, ε=80.0% (20°C) Carbon nanotube based spray- coating. Optimization of durability is ongoing.	daniel.mandler@mail.huji.ac.il
3	Anti-soiling coating for solar mirror	Increased cleanliness of solar field up to 1.3% after 6 months of testing.	Mrs. Anne Attout Anne Attout@eu.agc.com Prof. Daniel Mandler daniel.mandler@mail.huji.ac.il
4	Ultra-thin glass mirror of high reflectance	200µm flexible glass mirror with solar reflectance of p=96% (1.5%-p higher than state of the art reflectance).	Dr. Michel Prassas PrassasM@corning.com
5	High-reflectance composite heliostat	Low-weight due to composite material; high reflectance due to first surface mirror; able to withstand high wind-loads	

AGC

2nd RAISELIFE Dissemination Workshop

RAISELIFE, SolarPACES conference 2020

Thank you for your attention!

