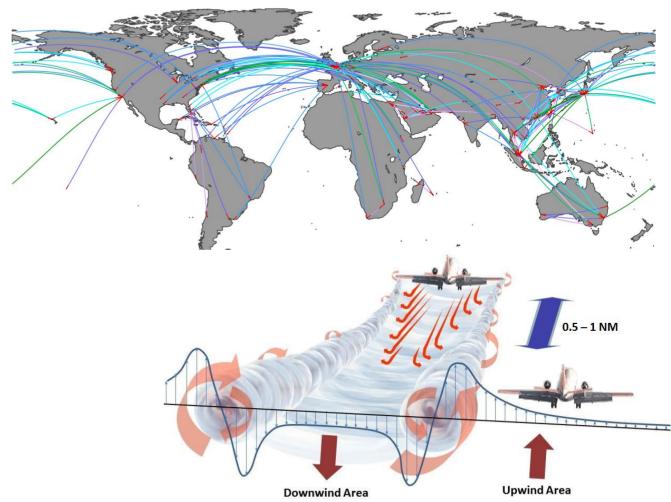
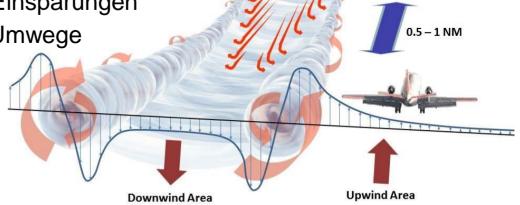
Potential Analysis for Simultaneous Formation Flight Departures

Gregor Schmitz, DLR Institut für Flugsystemtechnik Tobias Marks, DLR Einrichtung Lufttransportsysteme Florian Linke, DLR Einrichtung Lufttransportsysteme


02.09.2020 • DLRK 2020

Inhaltsverzeichnis

- Grundlagen
- Methodik
- Ergebnisse
- Fazit

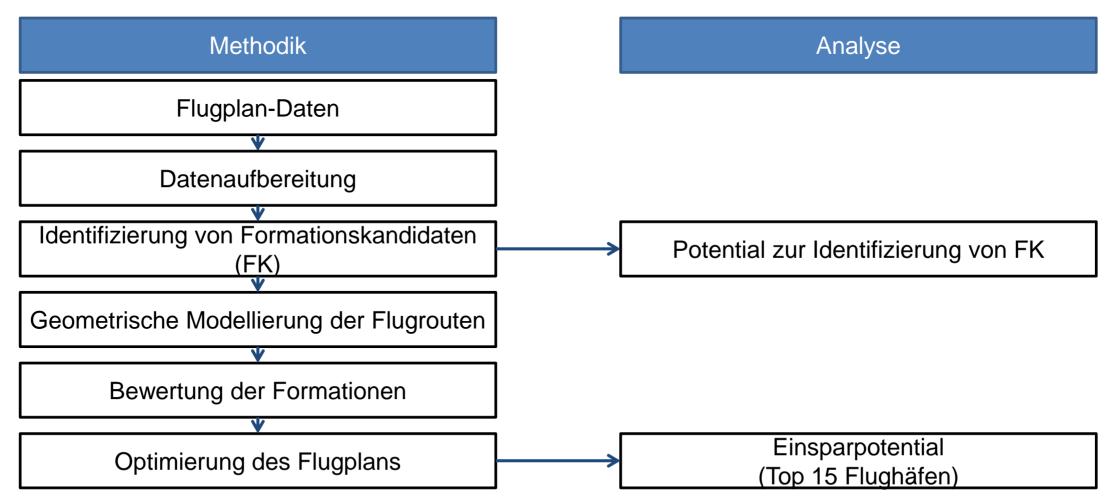


[1]: Koloschin, A., and Fezans, N., "Flight Physics of Fuel-Saving Formation Flight", AIAA Atmospheric Flight Mechanics Conference, January 2020

Konzept des Formationsflugs

- Ziel
 - Treibstoffeinsparungen und reduzierte Emissionen
- Prinzip
 - Flugzeug (Follower) fliegt im Aufwindbereich des vorausfliegenden Flugzeugs (Leader)
- Herausforderungen bei Einbindung in das Lufttransportsystem
 - Abweichung von Ursprungsmission für gemeinsamen Flugabschnitt
 - Verspätung eines Formationspartners reduziert erzielbare Einsparungen
 - Warteverfahren, Geschwindigkeitsanpassungen oder Umwege
 - Erschwerte Koordinierung des Formationsaufbaus

[1]: Koloschin, A., and Fezans, N., "Flight Physics of Fuel-Saving Formation Flight", AIAA Atmospheric Flight Mechanics Conference, January 2020

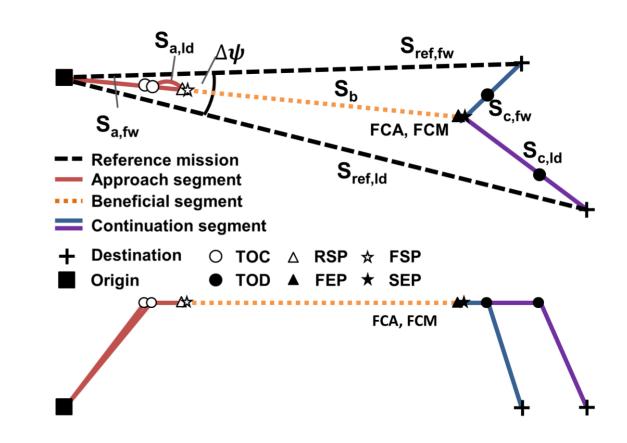


Motivation für gemeinsamen Startflughafen

- Besonderheiten
 - Umweg zu gemeinsamem Treffpunkt entfällt
 - Unabhängigkeit von Verfügbarkeit der Flugpläne aller Flughäfen
 - Kurze Kommunikationswege
 - Schnelle & flexible Reaktion auf kurzfristige Flugplanabweichungen
- Reduzierter Einfluss von Verspätungen
 - Bodenseitiges Warten
 - Alternative Formationspartner
 - Einzelflug

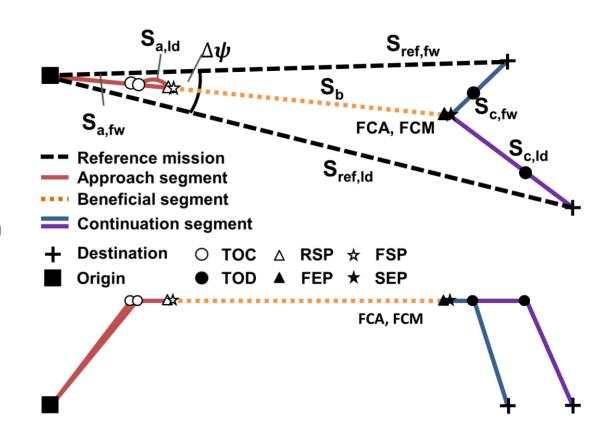
Übersicht

Ausgangsdaten & Identifikation von Formationskandidaten

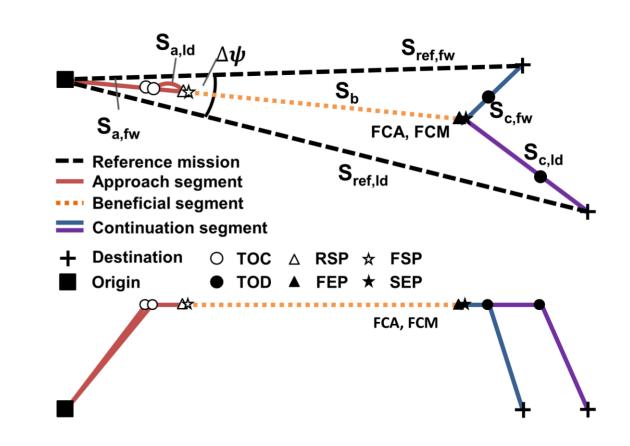

- Globaler Flugplan des Monats Oktober 2014
- Identifizierung von Formationskandidaten (FK) über Filterung des Flugplans
 - Basis-Filter
 - Maximal zulässiger Versatz der Abflugzeiten: $\Delta T = 10 \ min$
 - Maximal zulässiger Azimutwinkel zwischen Referenzflugrouten: $\Delta \psi = 30^{\circ}$
 - Szenario-Filter
 - Szenario I: Alle Formationen
 - Szenario II: Gemeinsamer Zielflughafen
 - Szenario III: Star Alliance

Bewertung & Modellierung der Formationen I

- Bewertungsmethode nach Marks [2]
 - Abschätzung der absoluten Treibstoffeinsparungen ΔF anhand einfacher Parameter & Kennzahlen über Abbildungsfunktionen
 - RSP: Rendezvous Start Point
 - FSP: Formation Start Point
 - FEP: Formation End Point
 - SEP: Separation End Point
 - TOC: Top of Climb
 - TOD: Top of Descent

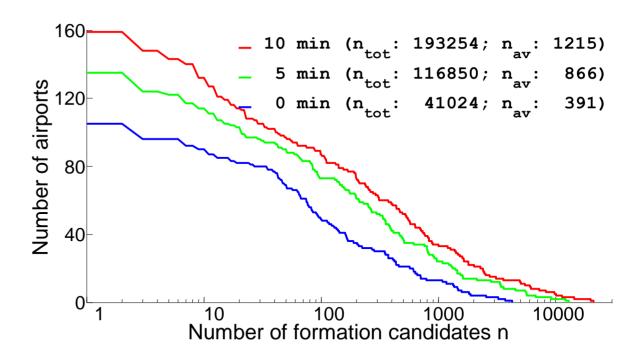

[2]: Marks, T., "Modellansätze zur Bewertung von Formationsflügen im Lufttransportsystem", Dissertation, Technische Universität Hamburg (TUHH), 2019

Bewertung & Modellierung der Formationen II


- Annahmen
 - Gleichzeitige Bereitstellung beider Flugzeuge
 - Sequentieller Start
 - Reihenfolge am Boden koordiniert
 - Konstante Flughöhe & Geschwindigkeit
 - Großkreisflugrouten
- Operationelle & sicherheitsrelevante Randbedingungen
 - Separationsabstände beim Start & Steigflug
 - Unterschiedliche Abfluggewichte & Flugleistungen
- Separationsabstand zwischen beiden Formationspartnern
 - Einholvorgang durch Verlängerung des Leader-Flugpfades

Bewertung & Modellierung der Formationen III

- Abschätzung von FEP & SEP
 - SEP über geometrisch optimale Route (Fermat-Prinzip) [3, 4]
 - Keine Unterscheidung zwischen FEP & SEP
- Abschätzung von RSP & FSP
 - Abschätzung des Rendezvousbeginns (RSP) durch Bogenflug des Leaders
 - Rendezvousmanöver entlang der Großkreisflugrouten zum SEP
 - Modellierung über Flugstrecke von 30 km (2 Minuten Flugzeit)

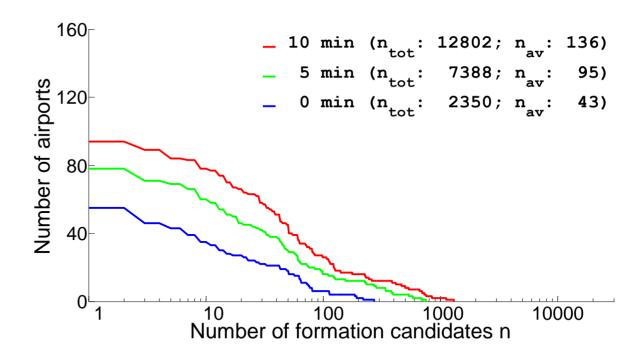

Potential zur Identifizierung von FK – Alle Flughäfen I

Szenario I: Alle Formationen

- 105 bis 159 Formationsflughäfen
- Je größer der Kandidatenpool von Flügen mit ähnlicher Flugrichtung & Abflugzeit, desto größer die Anzahl an Kombinationsmöglichkeiten
- Flughäfen mit vielen Flügen zeigen einen stärkeren Anstieg der Anzahl an FK
- Wenige Flughäfen mit bis zu 20940 FK

Flugplan

- 196677 Langstreckenflüge von 446 Flughäfen
- 1 bis 8162 geplante Flüge

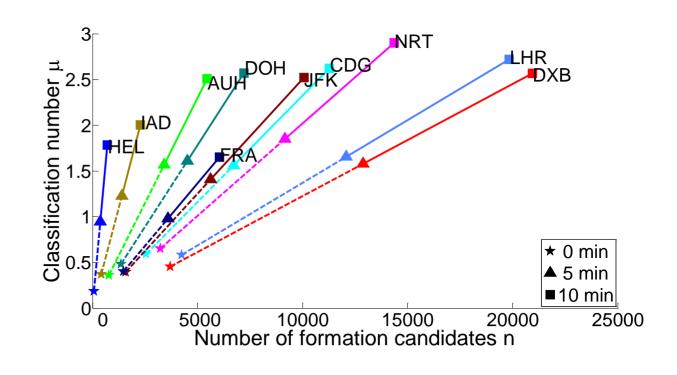

Potential zur Identifizierung von FK – Alle Flughäfen II

Szenario II: Gemeinsamer Zielflughafen

- Insgesamt weniger FK als in Szenario I
 - $\Delta T = 0$ min: Reduktion auf 5,7 %
 - $\Delta T = 10$ min: Reduktion auf 6,6 %
- Reduktion auf 55, 78 und 94 Flughäfen
- Durchschnittliche Anzahl an FK reduziert auf 11% der Werte aus Szenario I
- Maximal 1300 FK an einem Flughafen

Flugplan

- 196677 Langstreckenflüge von 446 Flughäfen
- 1 bis 8162 geplante Flüge



Potential zur Identifizierung von FK – Top 10 Flughäfen I

Szenario I: Alle Formationen

- DXB & LHR mit 20940 & 19800 FK
- NRT mit höchsten μ -Werten (bei jedem ΔT)
- Trend zu höheren μ & n-Werten mit größerer Anzahl geplanter Flüge
- Verteilung der Flüge hinsichtlich Abflugzeiten und Flugrichtung entscheidend (vgl. JFK & FRA)

$$\mu = \frac{Formationskandidaten}{Fl\"{u}ge} = \frac{n}{k}$$



Potential zur Identifizierung von FK - Top 10 Flughäfen II

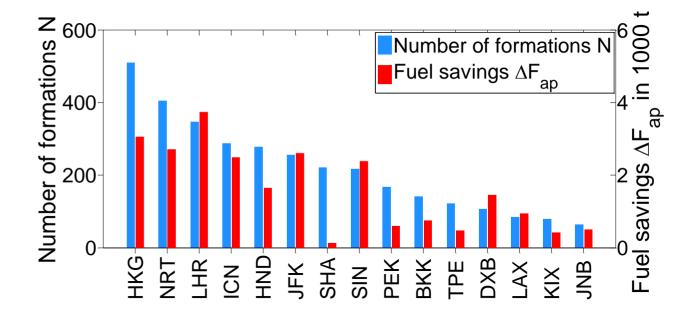
Szenario II: Gemeinsamer Zielflughafen

- Einfluss der ΔT -Erhöhung auf Anzahl der FK
 - Keine Änderung (LRM & DZA)
 - Keine Kandidaten bei $\Delta T = 0$ min (HEL & BGI)
 - Geringer Anstieg ($\Delta T = 5$ min) & starker Anstieg ($\Delta T = 10$ min) (HEL & KIX)
 - Erst starker Anstieg, dann geringer Anstieg (SHA)

Einsparpotential – Top 15 I

Szenario I: Alle Formationen

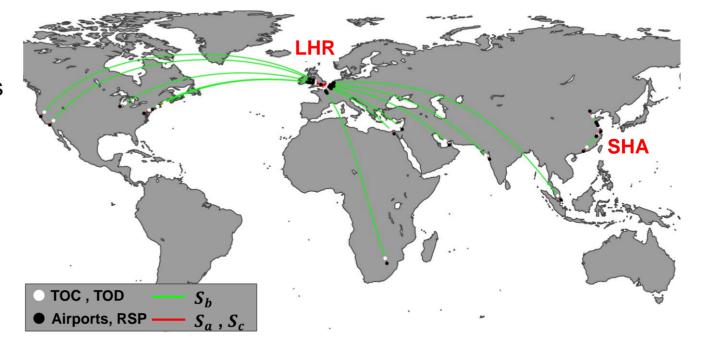
- LHR & DXB mit geschätzten Einsparungen von 19700 t bzw. 18900 t
- LHR & DXB mit 2016 bzw. 2087 Formationen im Formationsflugplan (10 % der FKs)
- FRA & NRT mit vergleichbaren Einsparungen
 - Unterschied von 500 Formationen
- Formationen von FRA besonders effizient
- Formationen von PEK am wenigsten effizient



Einsparpotential – Top 15 II

Szenario II: Gemeinsamer Zielflughafen

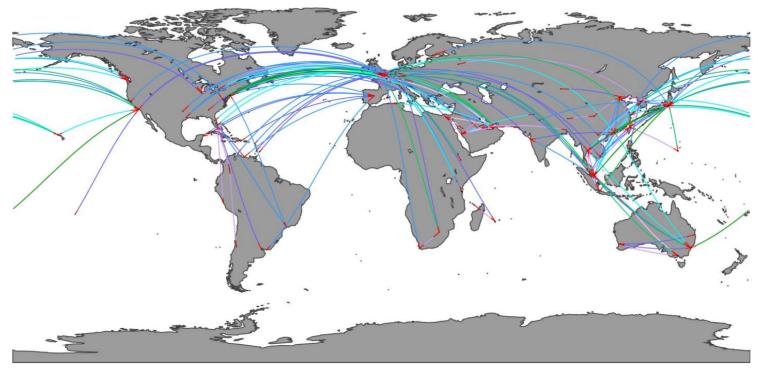
- SHA mit sehr ineffizienten Formationen
- LHR, JFK, SIN, DXB & LAX mit überdurchschnittlichen Formationen
- Umwege scheiden als Ursache aus
- FRA & CDG nicht unter den Top 15
- Großer Anteil asiatischer Flughäfen



Einflussfaktoren

- Absolute Einsparungen skalieren mit der in Formation geflogenen Flugstrecke
 - Flugrouten von LHR sind deutlich länger als die Flugrouten von SHA
- Aufwindfeld & erzielbare Einsparungen skalieren mit dem Flugzeuggewicht des Leaders
 - DXB: Jede zweite Formation mit A380 als Leader
 - LHR: Jede dritte Formation mit A380 als Leader

Flugroutenvergleich LHR & SHA (Szenario II)



Fazit

- Potential zur Identifizierung von FK an 159 von 446 Flughäfen mit Langstreckenflügen vorhanden
- Realistischere Abschätzung der erzielbaren Einsparungen durch Zuordnung jedes Fluges zu maximal einer Formation
- Mehrfachzuordnungen können bei Verspätungen als alternative Formationspartner genutzt werden
- Top 25 Flughäfen (nach Anzahl der Formationen im Formationsflugplan) erzielen mit 73 % der Formationen mehr als 80 % der weltweiten Einsparungen (Szenario I)
- Hub-Flughäfen mit vielen geplanten Flügen besitzen besonders großes Einsparpotential durch die Einführung des Formationsflugs vom gleichen Startflughafen

Vielen Dank für Ihre Aufmerksamkeit!

Fragen?

Literaturverzeichnis

- Koloschin, A.; Fezans, N., "Flight Physics of Fuel-Saving Formation Flight", AIAA Atmospheric Flight Mechanics Conference, Januar 2020
- Marks, T., "Modellansätze zur Bewertung von Formationsflügen im Lufttransportsystem", Dissertation, Technische Universität Hamburg (TUHH), 2019
- Kent, Thomas E.; Richards, Arthur G.: "A Geometric Approach to Optimal Routing for Commercial Formation Flight", In: AIAA Conference of Guidance Control and Dynamics, August 2012
- Khuloud, Ghalieh; Mowaffaq, Hajja: "The Fermat Point of a Sperical Triangle", In: The Mathematical Gazette, vol. 80, no. 489. Nov., 1996, S. 561-564 (1996)

