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Abstract

Hands are an essential part of daily human life. Without them, one cannot perform even
the simplest of activities like brushing, opening doors. However, many people around the
world suffer from upper limb amputations due to a variety of reasons. Prosthetic limbs
have been on the market for many years. They seem to be a viable solution to boost the
confidence and morale of amputees. Despite this fact, such artificial limbs are still limited
in terms of their functionality, efficiency, and affordability. Many different control strategies
recognizing different hand gestures have been investigated by the scientific community.
But it is also important to be able to deploy these algorithms on compact and economical
processing hardware. Hence, in this thesis, two control algorithms, namely, regression and
neural networks are analyzed for identification of hand movements and their implementation
roadmap on a cost and energy-efficient Cortex M microcontroller has been discussed. This
solution could help the prosthesis to reach out to the common man.
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1. Introduction

This thesis is written with the Chair of Robotics, Artificial Intelligence and Real-time Systems
at TUM, in cooperation with the Institute of Robotics and Mechatronics at the German
Aerospace Center (DLR). I started my work as part of my internship in the Adaptive Bionics
Group at DLR, Oberpfaffenhofen and the research topic was to find an efficient imple-
mentation of regression and neural network control algorithms for an artificial limb on a
resource-constrained embedded platform.

1.1. Motivation

Hands play an essential part in the daily life of humans. Without them, we would not be
able to perform any sort of movement or activity. Because of their excellent mobility and
flexibility, humans can complete multiple complex actions with their hands. The thumb
provides humans with a higher level of adroitness which enables humans to achieve tasks
such as holding, lifting, grasping and picking more efficiently than other living beings. Hands
also give us a perception of touch as they are the primary means for obtaining information
like pain, tactile and temperature. Moreover, it is worth noting that hands are used to express
sign language which helps us to communicate with others.

The World Health Organization’s report on disability shows that about ten percent of
the total world’s population consists of individuals with disabilities. Additionally, the
World Health Survey shows that around 785 million (15.6%) persons, 15 years and older,
suffer impairments and about 110 million people (2.2%) have very significant difficulties in
functioning, while the Global Burden of Disease estimates a figure of around 975 million
(19.4%) specially-abled persons of which 190 million (3.8%) have severe ailments [1]. Out of
these disabilities, some people suffer from upper limb amputations. Considering the crucial
functions of hands, the everyday life of such amputees is complicated. It inevitably takes
more time for them to execute something that is typically considered natural. For example,
it is arduous for them to apply toothpaste onto a toothbrush, cook, tie shoes, or even open
a bottle. Furthermore, the person missing two hands normally cannot lead a comfortable
life. They cannot even eat by themselves easily and mostly must be cared by their loved ones.
Moreover, impaired people have a tougher time being employed. Most jobs require people
to have hands, which limits the domain of work for such handicapped people. They cannot
do assembly-line jobs where heavy manual labor is needed. More than that, the physically
challenged are sometimes discriminated just because they are lacking hands. Along with
such physical limitations they also have to bear emotional and psychological challenges.
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1. Introduction

1.2. Past Research

Artificial hands seem to be a possibility that can help amputees to be more flexible in
performing their daily activities and provide them a better quality of life. Such artificial
limbs exist since the ancient Egyptian empire [2]. In its initial development phase, they
acted as dummy body parts and provided only basic functionality. However, the advent of
microprocessors and significant research and development in the area of artificial intelligence
have paved the way for modern rehabilitation devices. The modern prosthesis is lightweight
and provides more agility through machine learning-based control driven by body signals.

For biosignal based gesture recognition it is important to consider which type of sensor to
use, for example, Electromyography (EMG), Force myography (FMG) or Electroencephalogra-
phy (EEG) sensor. Which machine learning method to use and which set of actions to identify
should also be noted. Additionally, when developing the control algorithm, it is important to
think upon the feature sets to use e.g. zero crossing, mean absolute value, etc. Finally, the
implementation path of this model on small and energy-efficient hardware for portability is
of importance.

EMG-based gesture recognition algorithms can be summarized as classifier-based algo-
rithms [3]– [4], artificial neural network (ANN)-based algorithms [5], [6], fuzzy logic-based
algorithms [7], and probabilistic model-based algorithms [8].

Primarily, for these learning algorithms to work correctly, stable and good quality signals
must be generated. This depends on the proper design of the sensor including the material
used for the sensor electrodes, inter-electrode distances and finally preparation of the skin,
appropriate sensor placement and its orientation on the muscle of interest. However, there
is a wide discrepancy in the procedure followed among different groups of users. Surface
Electromyography for the Non-Invasive Assessment of Muscles (SENIAM) is a European
group with know-how about sEMG sensors and sensor placement properties as well as
practical guidelines for the proper use of sEMG [9]. From the study of about 144 publications,
SENIAM has defined a standardized procedure for conducting EMG based research on a
more comparable level.

In recent years, many developments have occurred in the design, control and implementa-
tion strategies of hand prosthetics. For instance, S.M. Mane et al. proposed to use a single
channel surface EMG (sEMG) over multichannel sEMG signals to reduce the complexity of
the system. Due to the nonlinear processing capabilities of Artificial Neural Networks, it was
used as the learning algorithm along with the wavelet transform. NI ELVIS was the sensor
used for data collection and three actions namely open palm, closed palm and wrist extension
were classified with an average accuracy of 93.25% [10]. P. Chrapka employed a multiclass
classification using "one against one" SVMs to classify two gestures only: open and closed
hand, with 80% accuracy [11]. However, no discussion was done on the embedded application
of the algorithms. In contrast to this, A. Hartwell et. al [12] analyzed an embedded implemen-
tation of a modified SqueezeNet based CNN along with Myo and Delsys electrodes for 15
gestures classification. This gave accuracies about (84.6± 6.0)% with Myo and (80.3± 7.0)%
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1. Introduction

with Delsys (Figure 1.1). The spatial reduction strategy used helped to reduce the number of
parameters. The trained model (using NVIDIA 1080Ti GPU) was implemented on an NVIDIA
Jetson TX2 GPU and benchmarked against SVM (Fig. 1.1) showing ~15% performance gain.

Figure 1.1.: Comparison of accuracy and run-times of deep CNN used in hand movement
classification [12]

Another attempt was made by M. Esponda and T. Howard [14] who inspected a vision
based adaptive grasp control incorporating sEMG signals with Myo, visual information,
and a multi-modal interface with touchscreen and speech inputs to control and interactively
teach a prosthesis for 14 gestures recognition. The system was realized on a Raspberry Pi
and depicted difficulty in the parsing of voice samples. A novel work is the KIT prosthetic
hand with similar capabilities [15]. Such systems [12], [14], [15] seem bulky, expensive,
limited and can be uncomfortable for routine use. They are not applicable in every situation,
e.g. driving a car would require the person to keep his hand on the steering wheel thus
blocking the camera view. As part of the Hand of Hope project and pursuit to develop
low-cost robotic prostheses, a feedforward ANN was used by C. Cordova and colleagues
for classifying relaxed hand, cylindrical grip, pinch grip, thumb adduction and index finger
extension considering ANN’s high success rate (~95%) [16] but did not mention about a
real-time embedded implementation. N. Rashid et.al [17] developed a two-stage logistic
regression classifier using Electroencephalogram (EEG) signals and tested for 3 movements:
thumb, finger, and fist. This model was implemented on an Arduino Uno with an SD card to
save data but lacked real-time recognition. Also, the small spatial distance between index and
middle fingers made the classification difficult and the overall accuracy was 70%. T. Teban et.
al [18], concludes that a nonlinear autoregressive network with exogenous inputs recurrent
NN outperforms a linear recurrent NN. Anyhow, this study puts the real-time application as
future work. J. Hahne et. al used an Atmega32 microcontroller for data acquisition but the
regression training was performed on the PC [19].

All in all, many novel machine learning architectures for hand movement recognition
have been studied by the scientific community nonetheless, there is a deviation from the
embedded implementation of these algorithms. Though a few attempts have been made
in [12], [14], [15], their feasibility for daily use is still a question. There is a necessity to
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1. Introduction

Figure 1.2.: Mean classification error averaged across (a) amputees and (b) able-bodied sub-
jects for all classifiers (Decision Tree, Naive Bayes, K-Nearest Neighbour, Support
Vector Machine, Linear Discriminant Analysis, Artificial Neural Network) within
a day [13]

concentrate on implementing prosthetic control algorithms on compact, low power and
affordable processing platforms. This is where the work of my thesis plays a major role
in discussing the implementation workflow for regression and neural networks on high
performance and low-cost Cortex M3 microcontroller.

From an algorithmic perspective, Artificial Neural Networks [20]– [21], perform better [22]
than popular recognition algorithms like Linear Discriminant Analysis [23], fuzzy classifier,
Support Vector Machine, classifiers based on Principal Component Analysis [24] and are the
current hot topics in sEMG based prosthesis control. Also, the figure 1.2, shows that neural
networks are a better choice for hand pattern recognition in both able-bodied subjects and
amputees. Moreover, the scrutiny of [10], [16], [22] and [25], suggests that neural networks
are a better alternative due to their capacity to learn complex features and stability over
other hand recognition methods. Hence, in this thesis the use of neural networks, deployable
on an embedded platform using suitable libraries, will also be demonstrated in parallel to
regression.

1.3. Problem Statement

A technology, like a prosthetic hand, which can replace missing hands could help thousands
of disabled people improve their lives, enhance their self-confidence, and participate in social
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1. Introduction

activities. Though such prosthetic hands have been in research for decades, they still are
limited in their functionality and need to be smarter, faster and energy-efficient. This thesis
will investigate two machine learning algorithms namely regression and neural networks
for better hand gesture recognition. Generally, machine learning algorithms are resource
hungry and are implemented on expensive and energy-consuming hardware. Therefore the
main goal of this research would be to thoroughly describe the process to implement the two
learning algorithms on a resource-constrained low power embedded system. Furthermore,
the required static analysis for the correct choice of the computing platform, usage of
computationally efficient libraries, cross-compilation techniques, solving memory constraints
and other functional properties will be elaborated. In the end, it is desired to have a working
real-time embedded hand gesture recognition system.

1.4. Structure

The structure of this thesis is defined as per the chronological order in which the research was
conducted. Chapter 2 talks about the factors affecting the quality of the generated biosignals.
Chapter 3 enlightens us on the Electromyography (EMG) and Force myography (FMG)
sensors used during this thesis, their advantages, and disadvantages. Chapter 4 introduces
the processing setup, that is, the embedded platform, the programming environment, libraries
used and their limitations. Chapter 5 discusses the regression and neural network algorithms
investigated during the research and the problems of overfitting and underfitting. Chapters 6
and 7 extensively explain the process followed for porting the regression and neural network
algorithms on the Cortex M microcontroller respectively. Chapter 8 is reserved for discussing
the results and observations. Finally, chapter 9 provides a detailed explanation for the results
and rates the examined methods based on its ease of implementation and then we wrap up
with the conclusion and future scope.
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2. Related Theory

In this chapter we will talk about the two important factors that influence the recognition
accuracy of hand gestures: structure of muscles and the limb position effect.

2.1. Muscular Structure

Electromyography is the measure of electrical activity across the muscles of interest and
Force myography records the deformations of the forearm muscles. Muscles generate the
force required in all types of activities including sports and exercise. They enable us to jump,
lift objects, cycle, throw, hit, run and kick. This force is generated by the contraction of
skeletal muscles. Interestingly, this contraction is caused by the transmission of tiny electrical
impulses, along the motor nerves, from the brain to the muscles.

The forearm muscles that control hand motions can be generally grouped into flexors
in the anterior surface, and extensors in the posterior surface surrounding the radius and
ulna bones [26]. The forearm enables us to perform four sets of actions: flexion, extension,
pronation, and supination. The intrinsic and extrinsic muscles of the hand allow us to perform
wrist, hand, and finger movements. The extrinsic muscles of the hand originate from the
forearm whereas the palm is the origin of the intrinsic muscles. The anatomy of the forearm
can be seen in figure 2.1 and figure 2.2. The anterior muscles of the forearm (Fig.2.2) facilitate
wrist and fingers flexion, and pronation. The Flexor Carpi Ulnaris performs wrist flexion and
adduction, Palmaris Longus does wrist flexion, Flexor Carpi Radialis helps for wrist flexion
and abduction and Pronator Teres are responsible for pronation. The posterior muscles a.k.a
extensors (Fig.2.1) contain Brachioradialis for elbow flexion, Extensor Carpi Radialis Longus
and Brevis for wrist extension and abduction, Extensor Digitorum for finger movements,
Extensor Digiti Minimi for little finger extension, Extensor Carpi Ulnaris for wrist extension
and adduction and Anconeus for extension and stabilisation of forearm.

Every individual performs different kinds of activities in daily life and the muscle sizes and
strength also varies from person to person. Handgrip strength (HGS) is used as a measure
for determining skeletal muscle functions [29]- [30] and disability [31]. Figure 2.3 depicts the
strength of muscles across distinct categories of people depending on their age, sex, hand
size, arm circumference, etc and thus implies variations in skeletal muscles structures.

As the hand gesture recognition system relies on muscle signals, bracelet position and
electrode distribution play a critical role in high accuracy detection. During this thesis, both
EMG and FMG sensors are placed at the thickest part of the forearm just below the elbow,

6



2. Related Theory

Figure 2.1.: Posterior Muscles of the Fore-
arm [27]

Figure 2.2.: Anterior Muscles of the Fore-
arm [28]

Figure 2.3.: Mean and standard deviation of maximum Handgrip Strength (HGS) according
to sex and age [32]

with the main electrode directly facing up, as this section contains the maximum muscles
(suggested by Myo Armband manufacturer).

2.2. Limb Position Effect

Most pilot experiments in this context are performed by keeping a fixed hand position. But
in real-life scenarios, this seems impractical. For instance, to drink water one must lift the
forearm to reach the face. Thus the hand position changes and affects the muscle length and
shape thereby affecting the EMG signals generated. The dependence of the muscular signals
on the limb position is known as the limb position effect. EMG classification error is strongly
dependent on the limb position [33]. As a result, there exists a gap between the research
findings and commercial implementation of the prosthesis control.

7



2. Related Theory

Figure 2.4.: Classification error (in %) for different limb positions [34]

To make the pattern recognition system more robust, one solution can be to get the arm
position from accelerometers and use along with EMG data [34]. But more data needs to
be collected and additional hardware is required. Another approach is to use an aggregate
classifier obtained from training in different limb positions or by integrating some knowledge
about the limb position to weigh the individual classifiers appropriately [35]. In this thesis,
this would not be under focus but it is worth mentioning this effect for better analysis of the
final results.
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3. Sensors

This study was conducted with the help of two types of sensors provided by the Adaptive
Bionics Group at DLR. The first one is an electromyographic sensor, called the Myo band,
from Thalmic Labs (now North Inc.). The second sensor bracelet is based on high-density
force myography (FMG) called the Tactile Bracelet from Bielefeld University. The following
sections discuss the particulars of each sensor array.

3.1. The Myo Armband

Figure 3.1.: Myo Armband [36]

The non-invasive EMG based Myo bracelet with 8 electrodes is depicted in figure 3.1. It
is a wearable device equipped with a 9-axes inertial measurement unit and a transmission
module. It is battery powered and uses Bluetooth Low Energy technology for transmission of
data. The Myo Connect software is primarily needed to interface the band [37]. Following are
the technical details of the Myo:

• Kinetis ARM Cortex M4 120Mhz
MK22FN1M MCU

• BLE NRF51822 chip & vibration motor

• Inven-sense MPU-9150 at 9 axes IMU • 2 x lithium battery 3.7V - 260mAh

As mentioned in Chapter 2, the Myo band will be placed on the bulky muscle just below
the elbow with the central electrode facing upwards. For data acquisition, the "Interactive
Myocontrol" software, developed by the Adaptive Bionics group was used (Figure 3.2). The
sampling rate of the Myo is 200 Hz and for the pilot study, the stimulus capture time is
set as 2 seconds and defined in the config file for interactive myocontrol (i.e a total of 400

9



3. Sensors

Figure 3.2.: Interactive Myo Control software interface

samples/action/repetition are acquired). Care is taken that only the stable action is recorded
and not when moving into or out of the action.

The Myo Armband results in a mean classification error of (9.86± 8.05)% compared to
(5.82± 3.63)% for conventional EMG system [38]. There are signal variations due to the
different muscle contractions, dynamic arm movements and outer interfering forces [39].

Advantages:

1. Low cost compared to others

2. Simple to use and portable

3. No wires

4. One fit for all

Disadvantages:

1. Variations of EMG patterns due to electrode-skin impedance changes, cross talk, sweat-
ing, electrode donning-doffing, short circuits or loss of electrode contact to the skin [40]

2. Low sampling rate

3. Lower resolution due to the lower number of electrodes

4. Unstable signals

5. Recharging required at regular intervals

6. Finger movements difficult to identify [41]

10



3. Sensors

In a nutshell, the Myo band is an easy-to-use sensor and widely used for sEMG analysis
but at the same time we need to consider its limitations in terms of instability of signals, class
separability [42] and interference from various noise sources.

3.2. Tactile Bracelet

Most of the scientific community is researching using surface EMG for hand gesture recogni-
tion systems. However, a new technology based on force sensing is making its way through
the limitations of sEMG. This methodology is called force myography. Furthermore, high
density force myography [43] is called tactile myography and the associated sensor is called
the Tactile bracelet (TB).

Figure 3.3.: (a) The tactile bracelet prototype with 10 tactile sensor modules and soft conduc-
tive foam (b) Working principle of the bracelet: The resistance changes according
to the load applied to the foam [43]

The central concept is that flexing a finger causes bulging of the corresponding muscle,
which in turn produces increased pressure on the surface of the skin above the location of
the muscle [44]. This non-invasive shape conformable sensory device is capable of capturing
pressure data, with the help of tactile sensors, from around the full circumference of the arm.
The interface resistivity between two electrodes changes according to the applied load and a
conductive elastomer foam is used as the sensor material [45]. The foam is very sensitive to
low forces due to its hyperbolic characteristics [45]. The tactile sensor cell resistance, Rt, is the
aggregate of the variable surface interface resistance, consisting of Rs1 + Rs2, and a constant
sensor material volume resistance Rv. A voltage divider is used to convert the variable sensor
cell resistance into a voltage change and then digitized using a 12bit ADC (range 0 to 4095).
There are 10 modules (only 9 used in this study) on the bracelet with each module having 32
electrodes (taxels) in a 4x8 cell arrangement i.e. total of 320 taxels [46]. This is illustrated in
figure 3.3. Here, each sensor output represents the intensity of a pixel (Fig 3.4) and hence
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3. Sensors

this pressure map can be used in image processing algorithms, like Convolutional Neural
Networks, for further exploitation.

Figure 3.4.: Interactive Myo Control software interface showing 288 Taxels from 9 modules

Another point to note is that FMG, unlike EMG, is not affected by the conductivity of the
skin or by fatigue and has the potential to produce more stable signals. Having said that,
there are concerns that the force sensors stay in place and contact with the skin. Also, force
sensing enables the detection of contact forces, accelerations, and orientations, as well as the
deformations in the subject’s body, which are due to skeletal structures other than muscles
(e.g., tendons). These factors can influence the capturing of muscle activations.

Even though FMGs have higher stability in time and the signals are better separated in the
input space [47], the classification accuracies tend to decrease with the inclusion of finger
flexion along with wrist actions [43].

Advantages:

1. Shape conformable

2. High density of sensors (320 taxels)

3. High sensitivity

4. Stable signals compared to Myo

Disadvantages:

1. Wires are prone to breaking and frequent disconnections

2. Low sampling rate (100Hz)

12



3. Sensors

3. Foam is too sensitive at the edges

4. Modules need to be removed to fit a thin person (low effective resolution)

5. Settling time required for the foam (around 15 minutes)

6. USB wire can become uncomfortable while testing

7. Help is needed to fit the bracelet firmly unlike the Myo

To sum up, a question arises whether tactile myography is a valid replacement or a companion
to sEMG. Therefore, in this thesis, the focus would be on exploiting this pressure map
generated by the tactile bracelet for better classification and implementation on an embedded
platform.

13



4. Processing setup

The computing device is the heart of a real-time gesture recognition system. Therefore, the
embedded hardware used for the employment of regression and neural network algorithms
will be deliberated within the next sections.

4.1. The Microcontroller

The primary hardware platform used in this thesis is the Keil MCB 1800 evaluation board. It
is populated with the NXP LPC1857 chip which belongs to the family of ARM Cortex M3
processors. A top view of the board can be seen in figure 4.1.

Figure 4.1.: Keil MCB 1800 board [48]

The specifications of the board [48] are as follows:

• 180MHz ARM Cortex-M3 processor-based MCU in LBGA256

14



4. Processing setup

• 136KB On Chip SRAM

• 1MB dual bank On Chip Flash memory

• On-Board Memory: 16MB NOR Flash, 4MB Quad-SPI Flash, 16 MB SDRAM & 16KB
EEPROM (I2C)

• Color QVGA TFT LCD with touchscreen

• 10/100 Ethernet Port

• High-speed USB 2.0 Host/Device/OTG interface (USB host + Micro USB Device/OTG
connectors)

• Full-speed USB 2.0 Host/Device interface (USB host + micro USB Device connectors)

• CAN interfaces

• Serial/UART Port

• MicroSD Card Interface

• 4 user push-buttons + reset

• Digital Temperature Sensor (I2C)

• Analog Voltage Control for ACD Input

• Audio CODEC with Line-In/Out and Microphone/headphone connector + Speaker

• Debug Interface Connectors:

– 20-pin JTAG (0.1 inch)

– 10-pin Cortex debug (0.05 inch)

– 20-pin Cortex debug + ETM Trace (0.05 inch)

This board supports the Keil µVision IDE as well as MCUXpresso IDE by NXP. The
programming environment chosen here is the MCUXpresso IDE v10.3.0 to overcome the code
size limitations of µVision IDE. A screenshot of the IDE can be seen in figure 4.2. Example
projects are available from both Keil and NXP. A collection of free software libraries i.e drivers,
middleware and example programs is provided by LPCOpen (NXP) for getting started with
the LPC microcontrollers. All programs are developed and tested on a Windows 10 host
machine and LPCOpen v3.02 was used for this thesis.
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Figure 4.2.: A screenshot of MCUXpresso IDE

Cortex Microcontroller Software Interface Standard (CMSIS)

This board also supports the Cortex Microcontroller Software Interface Standard which
provides a vendor-independent software framework for embedded applications that run on
Cortex-M based microcontrollers and Cortex-A based processors. Interfaces to the processor
and peripherals, real-time operating systems, and middleware components are provided by
CMSIS. Within the scope of this thesis, the CMSIS-DSP that allows the use of digital signal
processing functions and CMSIS-NN that provides efficient neural network functions are
employed. Following are the categories included in the CMSIS-DSP [49] library:

• Basic math functions

• Fast math functions

• Complex math functions

• Filters

• Matrix functions

• Transform functions

• Motor control functions

• Statistical functions
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• Support functions

• Interpolation functions

This library has separate functions for operating on 8-bit integers, 16-bit integers, 32-bit
integer, and 32-bit floating-point values.

A variety of efficient neural network kernels are supported by the CMSIS-NN library
to maximize the performance and minimize the memory footprint of neural networks on
Cortex-M processor cores [50]. Functions supported by the CMSIS-NN [51] library are:

• Neural Network Convolution Functions

• Neural Network Activation Functions

• Fully-connected Layer Functions

• Neural Network Pooling Functions

• Softmax Functions

• Neural Network Support Functions

This library has separate functions for operating on different weight and activation data
types including 8-bit integers (q7_t) and 16-bit integers (q15_t). Figure 4.3 gives an overview
of this library.

Figure 4.3.: CMSIS NN Overview [50]

It is important to note that currently CMSIS NN supports only the convolutional, pooling,
rectified linear activation and fully connected layers and also the Cortex M3 board does not
have a floating-point unit (FPU). Therefore, the neural network architecture is chosen likewise
in this research study. Further implementation details will be touched in chapter 7.
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4.2. Intel Neural Compute Stick 2

Another popular hardware used for AI Inferencing is the Intel Movidius Stick 2. It is a
simple Plug and Play USB device based on Intel Movidius Myriad X Vision Processing
Unit (VPU). The VPU comprises of 16 powerful SHAVE processing cores and a dedicated
hardware accelerator for high performance deep neural network inferences with low power
requirements. An out of the box view of the Neural Compute Stick 2 (NCS2) is depicted in
figure 4.4.

Figure 4.4.: Intel Neural Compute Stick 2 [52]

The basic architecture of the Vision Processing Unit can be visualised in figure 4.5.

Figure 4.5.: Vision Processing Unit Architecture [53]

The Intel Distribution of OpenVINO toolkit is the default software development kit to opti-
mize performance, integrate deep learning inference, and run deep neural networks (DNN)
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on the NCS2. It enables easy usage of Computer Vision functions and preoptimized kernels.
Moreover, it supports popular frameworks like TensorFlow, Caffe, Apache MXNet, Open
Neural Network Exchange (ONNX), PyTorch, and PaddlePaddle via an ONNX conversion. It
also provides access to numerous pretrained models (like SqueezeNet, MobileNet, ResNet,
etc) and inference examples on Github.

With this toolkit pretrained deep learning models can be deployed through a high-level
C++ or Python inference engine API onto the Movidius stick. The workflow for deploying a
trained deep learning model on the NCS2 is shown in figure 4.6.

Figure 4.6.: Flowchart for inferencing with NCS2 [54]

The major components of this toolkit [54] are:

1. Model Optimizer (MO): This Python-based command line tool imports trained models
from popular deep learning frameworks mentioned previously. It performs analysis
and adjustments of the trained models for optimal execution on endpoint target devices
and thereafter serializes and adjusts the model into an intermediate representation (IR)
format. Floating point 16 (FP16) quantization format is also supported in addition to
low precision INT8. The IR consists of a pair of files describing the model:

• .xml - Describes the network topology

• .bin - Contains the weights and biases binary data.

2. Inference Engine (IE): This engine works on the IR files and uses a common API to
deliver inference solutions on platforms like CPU, GPU, VPU, or FPGA. Additionally, it
allows different layers to run on different targets i.e implement custom layers on a CPU
while running the remaining topology on a GPU without the need to rewrite the custom
layers. The IE also performs computational graph analysis, scheduling, and model
compression for target hardware with an embedded-friendly scoring solution thus
allowing asynchronous execution to improve frame-rate performance while limiting
wasted cycles.
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The basic definition of machine learning, problems of overfitting and underfitting will be
mentioned in this chapter. In addition to this, the details of the types of regression and
classification algorithms examined within this thesis will be unfolded in the following sections.

5.1. Machine Learning

Machine Learning (ML) was defined by Arthur Samuel, in 1959, as a “Field of study that gives
computers the ability to learn without being explicitly programmed” [55]. In 1997, Tom Mitchell
defined it as: "A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E" [56].

Generally, machine learning is classified broadly into two categories:

1. Supervised learning

• Ground truth is available

• Examples are: Regression and Classification algorithms

2. Unsupervised learning

• Ground truth is unavailable

• Examples are: Clustering algorithms

A good machine learning model is one that can generalize correctly on new unseen input
data from the problem domain. Thus the model is capable of making rightful predictions
on future inputs. To judge whether the model is well generalized or not, machine learning
curves play a significant role. These curves help us to infer if the algorithm is overfitting,
underfitting or is a good fit.

1. Underfitting: A learning model is underfitting when it is unable to learn the trend in
the variability of data [57]. In one sense this means that the model is over-generalizing
the trend in the sample data. Consequently, the final classifier will not be able to predict
correctly on unseen inputs. Underfitting indicates that the model is too simple to fit
the data or the dataset is small. This case is also called "High Bias". Figure 5.1 shows a
typical case of underfitting. Underfitting can be solved by adding more data or by using
a higher degree polynomial to fit the data i.e increase the model complexity. Figure 5.2
narrates that when training and test error are both high, it is High Bias.
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2. Overfitting: This implies that the model is memorizing the behavior of the sample
dataset and generating a very specific model [58]. Also, the model is too complex for the
given dataset and is learning too many details including the noise in the data. Figure 5.1
shows a typical case of overfitting a.k.a "High Variance". A high variance occurs when
the training error is decreasing but test error is increasing (see Figure 5.2). The solution
here is to reduce the number of features thus reducing the complexity of the model or
by using regularization. Regularization introduces a penalty to the cost function so that
less relevant features make less impact on the learning. λ is called as the regularization
parameter. The two major types of regularization are:

• L1 regularization (Lasso regularization): An absolute value of magnitude of
coefficient is added as penalty to the loss function by the Least Absolute Shrinkage
and Selection Operator (LASSO). The loss equation with L1 regularization [59] is:

Loss = Error(y, ŷ) + λ
N

∑
i=1
|wi|

• L2 regularization (Ridge regularization): This adds a squared magnitude of coef-
ficient as penalty to the loss function. The loss equation with L2 regularization [59]
is:

Loss = Error(y, ŷ) + λ
N

∑
i=1

wi
2

where:

y: is the true label
ŷ: is the predicted label
|wi|: is the norm of the ith weight in an N dimensional weight vector w

The value of λ must be chosen wisely as a high value can cause underfitting. Regularization
also addresses the problems of non-invertibility of matrices when the number of examples in
the dataset is less than or equal to the number of features.

A good fit model is one that has low training and test losses. Thus it will be able to perform
well on unseen data. The optimal capacity in figure 5.2 is the point of a good fit.

5.2. Regression

Regression is a type of supervised learning algorithm that predicts a continuous-valued
output based on the given input. For instance, the prediction of the price of a house based on
its size/area is a regression problem. Regression analysis gives us a mapping between the
dependent variable and the independent variable. Linear regression, logistic regression, and
polynomial regression are common types of regression algorithms.

Within the Adaptive Bionics Group, two selected pattern recognition algorithms are used
for hand prosthesis control. The first one is a ridge regression algorithm used together with
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Figure 5.1.: Underfitting, Good fit and Overfitting in machine learning [60]

Figure 5.2.: Error vs Model capacity(or complexity). The red point marks a good fit where
training and test error are both small [61]

.
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input data from the Tactile bracelet and the other one is an extension of this approach with
random Fourier features used along with EMG input from the Myo. This is illustrated in the
following subsections.

5.2.1. Linear Regression

The starting point for the ridge regression is a multivariable linear regression model. This
multivariate model studies the effect of multiple variables on the dependent variable , say yi.
For a sample set {yi, xi1, ..., xin}, this effect can then be formulated as a linear combination of
the independent variables, x = {xi1, ..., xin}, as follows [62], [63]:

yi = w1xi1 + ... + wnxin = xi
Tw (5.1)

A compact representation of the output is given as:

y = Xw (5.2)

with:

y: a m-dimensional vector consisting the output values for the bionic hand.
m: the number of degrees of freedom of the hand prosthesis
w: a n-dimensional weight vector
n: the number of sensors electrodes. For this thesis, n=288 for TB and n=8 for Myoband
X: training matrix of size (m × n)

X =


x1

T

x2
T

...
xm

T


Note: For the prosthesis at DLR, m=9, due to its 9 degrees of freedom.

5.2.2. Ridge Regression

The concept of L2 regularisation is already introduced in previous sections. In general, the
ridge regression (RR) is a regularised linear regression with regularisation parameter λ.

Usually, the X matrix has more number of samples (m) than variables (n). To solve this
over-determined system for the weight vector w, the classical approach used is the "least
squares" method to minimize the error in the predicted value [64], [65]. The least squares
solution would then be:

w = (XTX)
−1

XTy (5.3)

However, a common problem faced in multiple linear regression is that the inverse of XTX
may not exist. Therefore to find a particular solution with desirable properties, a penalty term
Γ, called the Tikhonov matrix, is included in equation 5.3. In most cases, Γ = λI is chosen as
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it gives preference to solutions with smaller norms. This transforms the optimization problem
as [66]:

w = arg min
w ∑

i
(yi − xi

Twi)
2 + λ ∑

j
wj

2 (5.4)

This final solution can be rewritten in terms of the training matrix (X) and labels (y) as:

w = (XTX + λI)−1XTy (5.5)

One of the motivations of using the Ridge Regression is that it allows updating the model
incrementally without the need to store the training samples [66].

5.2.3. Ridge Regression with Random Fourier Features

The Ridge Regression is limited due to its linearity. To overcome this limitation, a "kernel
trick" [66] is applied which can turn any linear model into a non-linear model by replacing
its features by a kernel function and can operate in a potentially infinite-dimensional space.
However, this advantage comes at the price of additional computational and storage require-
ments which scale poorly with the increasing size of the dataset [67], [68]. This makes kernel
ridge regression unsuitable for real-time operation.

A solution to this issue is to approximate the mapping of the kernel function to a finite-
dimensional feature [66]. As a result, the training process is accelerated while still guarantee-
ing an increased classifier capacity due to the utilization of higher dimensions. Consequently,
the memory and timing constraints are relaxed. Ali Rahimi and Ben Recht [69] proposed to
sample a finite number of random Fourier features from shift-invariant kernel functions (e.g.
the Gaussian kernel) [67]. The mapping function for Random Fourier features (RRRFF) is:

φ(x) =
√

2cos(ΩTx + b) (5.6)

where:

Ω is drawn from a Gaussian distribution
b is drawn from a uniform distribution from 0 to 2π

Then, the D-dimensional weight vector ŵ can then be estimated using the equation:

ŵ = (ΦTΦ + λI)−1ΦTy = A−1β (5.7)

with:

A: a (D× D) matrix ΦTΦ + λI
β: a D-dimensional vector β = ΦTy
n: the number of EMG sensors
Φ: Φ = φ(X), a (m× D) matrix
X: a (m × n) training matrix with sensor input values
y: a m-dimensional vector consisting the output values for the bionic hand
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m: the number of degrees of freedom of the hand prosthesis

Overall, the accuracy of the resulting algorithm is directly proportional to the number of
Fourier features D. However, choosing larger D demands higher computational capacity.

5.3. Neural Networks

The human brain is a masterpiece of complex computing systems. It can store and process
tons of information daily. But how is it able to achieve this complex task? The human brain is
made up of billions of neurons, arranged together in a network-like structure, that transmit
and process the information that we perceive through our senses. Tiny electrical impulses are
passed from one neuron to the other.

The same concept forms the basis of the widely used supervised learning method of neural
networks (NN) wherein the neurons are artificially created and complex architecture of
interconnected neurons is developed. The working of this network is equivalent to neurons in
our brains. In figure 5.3, x1, x2, ..., xn are the inputs, w1, w2, ..., wn are the weights, β is the bias,
f [.] is the activation function and yk is the output. The relation between input and output is:

yk = f (
N

∑
i=1

xi ∗ wi + β) (5.8)

Figure 5.3.: An artificial neuron [70]

Neural Networks give discrete output and are used for classification tasks where the input
belongs to either of n probable classes. The classification of an email as spam or not spam is
a binary classification problem. In multi-class classification, the input instance can belong to
any of n possible outputs e.g. classify a fruit like an apple, banana, orange, etc. An artificial
neural network learns to perform tasks without being explicitly programmed by extracting
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complex hidden features. Pattern recognition and prediction are two prominent applications
of neural nets [70].

Neural networks have distributive associative memory meaning that the knowledge is
distributed across all neurons in the network. Thus, when the trained network is provided
with an incomplete input the network will choose the closest match to that input and generate
the output accordingly. Neural computing systems are also tolerant of noisy input. The
network performance suffers from increasing noise in the input signal but the system does
not fail completely. In pattern recognition, large amounts of information are processed
simultaneously to generate a binary or categorical output. It is therefore required that the
network provides a reasonable response to noisy or incomplete inputs. Neural networks have
proven to be very good pattern recognizers with the ability to build unique structures for a
specific problem [71]. Furthermore, the studies [10], [16], [22] and [25], suggests that neural
networks are a better choice than prevailing learning algorithms like Linear Discriminant
Analysis, fuzzy classifiers, Support Vector Machines due to their capacity to model complex
non-linearities and hence are well suited for hand gesture recognition systems. The two
types of neural network architectures used in this study are multilayer perceptrons to process
vectorized inputs from the Myo as well as TB and convolutional neural networks to benefit
from the pressure image produced by the TB. Other popular types of neural networks
like Recurrent Neural networks were not chosen due to the limited layers and network
architectures supported by CMSIS NN library as intimated in chapter 3.

5.3.1. Multilayer Perceptrons

A neural network consisting of one input layer, one hidden layer, and an output layer is
known as a multilayer perceptron (MLP) or a feed-forward network (see figure 5.4). This
means, there are no loops in the network, unlike recurrent neural networks, and information
is always fed in the forward direction. Structures with more than one hidden layer are
called deep networks. In supervised training, both the inputs and the ground truths or
labels are provided. In the first step, the network processes the inputs and compares the
predicted outputs to the desired outputs and in the second step, the computed errors are then
propagated back through the system (a.k.a backpropagation), causing the system to adjust the
weights which control the network. These steps occur iteratively and the weights are tweaked
till the output error is minimized. The network is trained on a training set and tested on a
validation set to keep track of its performance. Popular optimizers such as Gradient Descent,
Adam, RMSProp, etc are used as optimization functions to adjust the weights according to
the error and minimize the cost function or loss. An activation function introduces non-linear
properties into our network so that the mappings between the inputs and outputs of a node
make sense. The extensively used activation functions are rectified linear unit (relu), sigmoid
(for binary classification), softmax (for multi-class classification), etc.
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Figure 5.4.: Multilayer Perceptron [70]

Back propagation algorithm

The backpropagation algorithm is used to update the weights of the network to minimize the
cost function or loss function. Mean Squared Error (MSE), binary crossentropy or categorical
crossentropy are generally used as the cost function. MSE is used for regression problems
wheres the other two for classification.

The algorithm is described as [72]:

1. Initialize the weights randomly.

2. Choose an input vector xu

3. Feed the network with the input and calculate output as per equation 5.8

4. Compute δi
L in the output layer L

δi
L = f

′
(hi

L)[di
L − yi

L]

where δi
L is the error of node i in layer L, hi

L represents the net input to the ith neuron
in the Lth layer, d is the expected output value, y is the predicted value and f

′
is the

derivative of activation function f

5. Compute the deltas for preceding layers by propagating the error backwards

δi
l = f

′
(hi

l)∑
j

wij
l+1 − δj

l+1

for l = (L− 1), ..., 1
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6. Update weights using
∆wji

l = ηδi
lyj

l−1

where η is the learning rate between 0 and 1

7. Repeat from step 2 for next input until the error is minimum or the max number of
iterations is reached

5.3.2. Convolutional Neural Networks

Convolutional Neural Networks (CNN) deal with inputs that are images which permits us to
integrate certain aspects into the architecture. This facilitates a more efficient implementation
and reduction in the number of parameters of the network [73]. CNNs have gained excellent
performance in many computer vision and machine learning problems due to their ability to
capture spatial and temporal dependencies in images. Applications of CNN include image
classification, semantic segmentation, object detection, etc.

CNNs are made up of a sequence of layers, mainly, convolutional layers, pooling layers,
rectified linear units (ReLU) and fully connected layers. Each layer extracts high level abstract
features known as feature maps which preserves the most important plus unique information.
A representation of a CNN is shown in figure 5.5.

Figure 5.5.: A CNN architecture [74]

Convolutional Layer

This is the core layer in the network and is the most computationally expensive. It consists
of learnable filters or kernels. The input image is fed as a 3 dimensional tensor in the form
of height × width × channel (e.g. 32 × 32 × 3) matrix. The filter then slides and convolves
over the input image. The filter values are multiplied with pixel values of the image and all
multiplications are then summed up to a scalar value. This process repeats for every location
on the input size and finally provides a feature map. It provides an opportunity to detect
and recognize features, like edges, regardless of their positions in the image [73]. A CNN
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can have multiple such convolutional layers and each layer has its own filter and therefore
extracts different features from the input.

Pooling Layer

The pooling layer performs down-sampling of the input. It reduces the spatial size of the
convolved feature map while retaining significant information. This dimensionality reduction
decreases the computational power required. There are two types of pooling: Max Pooling
and Average Pooling. Max Pooling returns the maximum value from the portion overlapped
by the filter whereas Average Pooling returns the average of all the values. Max pooling
helps in better generalization by eliminating noisy activations and hence performs better than
average pooling [75].

ReLU Activation

ReLU is a non-linear activation function and includes a rectifier. It is applied element-wise
per pixel and all negative values in the feature map are replaced by zero. The function is:
f (x) = max(0, x), where x is the neuron input. This layer is applied to saturate the output or
limit the generated output. ReLU is popular due to its simplicity and helps to speed up the
processing since its gradient is a constant for a positive input [73]- [76].

Fully connected layer

In this layer, every neuron is connected to each node in the previous layer as observed in
feedforward neural networks. It produces non-linear combinations of high-level features from
previous layers. One major disadvantage of a fully-connected layer is its high computational
effort due to a large number of parameters [73].

Softmax layer

The fully connected layer is followed by a Softmax activation function that converts the output
into probabilities and its sum is 1 [75]. The class with the highest probability is chosen as the
predicted output. Softmax layer is mostly used for multiclass classification problems.

5.3.3. Limitations of Artificial Neural Networks

The downsides of ANN are:

• The output may be unpredictable

• Black box Nature: Difficult to understand how ANN solve problems [77]

• Greater computational burden and lack of standard software

• Prone to over fitting [78]
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The previous chapters have laid the foundation of the processing setup and algorithms
examined during this thesis. In this section, we would discuss thoroughly the various steps
followed from the analysis of the Ridge Regression (RR) and Ridge Regression with Random
Fourier Features (RRRFF) methods, choice of hardware to the final implementation on the
Cortex M board.

6.0.1. Complexity analysis of regression algorithms

The goal of this study is to go towards an embedded solution for the control of a prosthetic
hand. The setup that already included a complete C# based software called the Interactive
Myocontrol (Fig. 3.2), which also incorporates the two regression-based learning methods
and multiple sensor drivers was provided by the Adaptive Bionics group at DLR. This was
a convenient reference point for commencing the work. However, the myocontrol software
runs on a computer. To be able to translate and fit the program on the microcontroller, it was
essential to do a static analysis of the computational complexity of the training functions in
both methods.

Visual Studio 2015 running on a Windows 7 host machine was the primary IDE used for the
analysis. It offers a powerful tool, called Profiler, for measuring application performance by
analyzing the CPU usage. The following steps are followed for the diagnosis of the training
function:

1. Open the Intercative Myocontrol solution in Visual Studio and set a breakpoint at the
beginnning of the training function and another at the end of the function.

2. Run the program and check the timings in the Profiler sidebar.

The myocontrol software contains training functions for both RR and RRRFF which can be
selected by modifying the config file. A set of 17 actions with 5 repetitions of each is available
for both methods. The available actions are: rest, power, point, pre-lateral, lateral, tridigital,
precision, wrist flex, wrist extension, wrist pronation, wrist supination, rotate thumb, flex
thumb, flex index, flex middle, flex ring and flex little. The initial timing tests were conducted
with the Myoband only for different combinations of the number of actions, repetitions, ridge
regression and ridge regression with random Fourier features.

The training function for ridge regression is:

W = (X.Transpose()× X + lambda× I).Inverse()× (X.Transpose()×Y)
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and for ridge regression with random fourier features is:

W = (phi(X).Transpose()× phi(X) + lambda× ID).Inverse()× (phi(X).Transpose()×Y)

where:
X: An m× n input matrix
Y: label matrix
W: weight matrix
phi(X): mapping function as described in equation 5.6
IandID: identity matrices
lambda: regularization parameter (= 1)

The processor performance depends on: clock cycle, clock cycles per instruction, and
instruction count [79]. Hence to calculate the number of instructions executed during training
the following formula is applied:

Tapp = Ninstr × CPI × Tclk (6.1)

with:
Tapp: Time of the train function
Ninstr: Number of instructions in the program
CPI: Clock cycles per instruction
Tclk: One clock period

The time complexities for both Ridge Regression (RR) as well as Ridge Regression Random
Fourier Features (RRRFF) came out to be as follows:

• RRRFF : O(dDm) + O(D2m)

• RR: O(d2m)

where:
d: Number of channels (8 for Myo and 288 for TB)
D: Number of random Fourier features
m: Number of samples (at 200 Hz) & for 2 seconds. Hence, total 400 samples

Observations from complexity graphs

Based on the time values observed and the time complexities calculated, correlation graphs
are plotted using MATLAB. The graphs contain both normalized as well as non-normalized
figures for both RR and RRRFF and all combinations.

• Ridge Regression:

1. From the graphs of Ridge Regression, it can be observed that the complexity
calculations show a linear behavior because ’d’ (number of channels) is constant
and ’m’ (number of samples) increases linearly with the number of actions e.g. for
1 action, 8 channels, 5 repetitions the time complexity is: O(d2m) = 8× 8× 400×
5× 1
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Figure 6.1.: Complexity comparison of RR and RRRFF

2. From the timings obtained from the Profiler the same linear behavior is seen (see
figure 6.1). Hence the calculations are verified.

• Ridge Regression Random Fourier Features:

1. The graphs of RRRFF show that the complexity calculations have a linear behavior
because ’d’ (number of channels), as well as ’D = 300’ (number of Fourier features),
is constant and ’m’ (number of samples) increases linearly with the number of
actions e.g. for 1 action, 8 channels, 5 repetitions we have: RFF: O(dDm) +

O(D2m) = 8× 300× 400× 5× 1 + 300× 300× 400× 5× 1

2. But from the values obtained from Profiler, we see a sudden rise at the end of each
graph (see figure 6.1).

a) To analyze this, the value of RRRFF for 8 channels, 5 repetitions, 17 actions
for the different number of Fourier features, that is, D=100 and D=500 were
calculated and the same jump as in case of D=300 was seen (see figure 6.2).

b) To analyze further, the value of RRRFF for 8 channels, 5 repetitions, 17 actions
this time with D=8 and without the phi(X) function, that is, the mapping
function from the code (see figure 6.2) was computed. Thus, now it simply
multiplies and calculates the inverse of the matrix. So now it is expected to
have the same time values as obtained for a similar configuration in case of
RR only. Interestingly, the same timings were obtained in both cases and thus
the conclusion is that the mapping function takes more time as the number
of actions goes on increasing in the case of RRRFF, which justifies the sudden
jump in the graph.
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Figure 6.2.: RRRFF complexity comparison with and without mapping function phi(X)

6.0.2. Choice of microcontroller

In this section, the Million Instructions Per Second (MIPS) of the host computer will be
calculated. The laptop used encompasses an Intel i7 7700HQ processor with 4 cores and
running at a max frequency of 3.80GHz/core.

As per the Export Compliance Metrics provided by Intel [80] and the formula for GFLOPS
as follows:

GFLOPS = CPUclk( in GHz)× #cores× IPC× #CPUsockets

where:

IPC: Instructions per clock cycle
CPI: Clock cycles per instruction

Substituting the values,
179.2 = 3.8× 4× IPC× 1

IPC = CPI−1 = 11.789 =⇒ CPI = 0.0848

CPI(per processor) = 0.0848× 4 = 0.36

Therefore, effective MIPS = 11.789× 3.8GHz = 44798.2 MIPS @3.8 GHz

Calculations of Ninstr for RR and RRRFF

Using the above value for MIPS, the number of instructions for the training operation in
various configurations were calculated:
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1. RR with Myo Band:

a) 8 channels, 3 repetitions, 7 actions
4ms× 44798.2MIPS = 179.1928 M instructions (M = million)

b) 8 channels, 3 repetitions, 17 actions
10ms× 44798.2MIPS = 447.98 M instructions

c) 8 channels, 5 repetitions, 7 actions
7ms× 44798.2MIPS = 313.5874 M instructions

d) 8 channels, 5 repetitions, 17 actions
18ms× 44798.2MIPS = 806.367 M instructions

2. RRRFF with Myo Band:

a) 8 channels, 3 repetitions, D=300, 7 actions
10175ms× 44798.2MIPS = 4, 55, 821.685 M instructions

b) 8 channels, 3 repetitions, D=300, 17 actions
63462ms× 44798.2MIPS = 28, 42, 983.368 M instructions

c) 8 channels, 5 repetitions, D=300, 7 actions
16996ms× 44798.2MIPS = 7, 61, 390.2072 M instructions

d) 8 channels, 5 repetitions, D=300, 17 actions
371762ms× 44798.2MIPS = 1, 66, 54, 268 M instructions

e) 8 channels, 3 repetitions, D=100, 7 actions
8182ms× 44798.2MIPS = 3, 66, 538.8724 M instructions

f) 8 channels, 3 repetitions, D=100, 17 actions
291079ms× 44798.2MIPS = 1, 30, 39, 815.26 M instructions

3. TB (from dummy signal) with RR:

a) 320 channels, 3 repetitions, 7 actions
2388ms× 44798.2MIPS = 1, 06, 978.10 M instructions

b) 320 channels, 3 repetitions, 17 actions
6502ms× 44798.2MIPS = 2, 91, 277.8964 M instructions

c) 320 channels, 5 repetitions, 7 actions
4181ms× 44798.2MIPS = 1, 87, 301.2742 M instructions

d) 320 channels, 5 repetitions, 17 actions
10375ms× 44798.2MIPS = 4, 64, 781.325 M instructions

Based on these Ninstr we can determine the approximate training time required for popular
embedded boards.

1. With ST µC @800 MIPS:

• RR RFF with Myo Band
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a) 8 channels, 3 repetitions, D=300, 7 actions
4, 55, 821.685 M instructions/800 MIPS = 9.49 minutes

b) 8 channels, 3 repetitions, D=300, 17 actions
28, 42, 983.368 M instructions/800 MIPS = 59 minutes

c) 8 channels, 5 repetitions, D=300, 7 actions
7, 61, 390.2072 M instructions/800 MIPS = 15.86 minutes

d) 8 channels, 5 repetitions, D=300, 17 actions
1, 66, 54, 268 M instructions/800 MIPS = 5.78 hours

e) 8 channels, 3 repetitions, D=100, 7 actions
3, 66, 538.8724 M instructions/800 MIPS = 7 minutes

f) 8 channels, 3 repetitions, D=100, 17 actions
1, 30, 39, 815.26 M instructions/800 MIPS = 4.5 hours

• TB with RR:

a) 320 channels, 3 repetitions, 7 actions
1, 06, 978.10 M instructions/800 MIPS = 2.228 minutes

b) 320 channels, 3 repetitions, 17 actions
2, 91, 277.8964 M instructions/800 MIPS = 6 minutes

c) 320 channels, 5 repetitions, 7 actions
1, 87, 301.2742 M instructions/800 MIPS = 3.9 minutes

d) 320 channels, 5 repetitions, 17 actions
4, 64, 781.325 M instructions/800 MIPS = 9.68 minutes

2. With ESP32 @600 MIPS:

• RR RFF with Myo Band

a) 8 channels, 3 repetitions, D=300, 7 actions
4, 55, 821.685 M instructions/600 MIPS = 12.66 minutes

b) 8 channels, 3 repetitions, D=300, 17 actions
28, 42, 983.368 M instructions/600 MIPS = 78 minutes

c) 8 channels, 5 repetitions, D=300, 7 actions
7, 61, 390.2072 M instructions/600 MIPS = 21.14 minutes

d) 8 channels, 5 repetitions, D=300, 17 actions
1, 66, 54, 268 M instructions/600 MIPS = 7.71 hours

e) 8 channels, 3 repetitions, D=100, 7 actions
3, 66, 538.8724 M instructions/600 MIPS = 10.18 minutes

f) 8 channels, 3 repetitions, D=100, 17 actions
1, 30, 39, 815.26 M instructions/600 MIPS = 6.03 hours

• TB with RR:
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a) 320 channels, 3 repetitions, 7 actions
1, 06, 978.10 M instructions/600 MIPS = 2.97 minutes

b) 320 channels, 3 repetitions, 17 actions
2, 91, 277.8964 M instructions/600 MIPS = 8.09 minutes

c) 320 channels, 5 repetitions, 7 actions
1, 87, 301.2742 M instructions/600 MIPS = 5.20 minutes

d) 320 channels, 5 repetitions, 17 actions
4, 64, 781.325 M instructions/600 MIPS = 12.9 minutes

3. With RPi3 @2441 MIPS:

• RR RFF with Myo Band

a) 8 channels, 3 repetitions, D=300, 7 actions
4, 55, 821.685 M instructions/2441 MIPS = 3.11 minutes

b) 8 channels, 3 repetitions, D=300, 17 actions
28, 42, 983.368 M instructions/2441 MIPS = 19.41 minutes

c) 8 channels, 5 repetitions, D=300, 7 actions
7, 61, 390.2072 M instructions/2441 MIPS = 5.19 minutes

d) 8 channels, 5 repetitions, D=300, 17 actions
1, 66, 54, 268 M instructions/2441 MIPS = 1.89 hours

e) 8 channels, 3 repetitions, D=100, 7 actions
3, 66, 538.8724 M instructions/2441 MIPS = 2.50 minutes

f) 8 channels, 3 repetitions, D=100, 17 actions
1, 30, 39, 815.26 M instructions/2441 MIPS = 1.48 hours

• TB with RR:

a) 320 channels, 3 repetitions, 7 actions
1, 06, 978.10 M instructions/2441 MIPS = 0.73 minutes

b) 320 channels, 3 repetitions, 17 actions
2, 91, 277.8964 M instructions/2441 MIPS = 1.988 minutes

c) 320 channels, 5 repetitions, 7 actions
1, 87, 301.2742 M instructions/2441 MIPS = 1.27 minutes

d) 320 channels, 5 repetitions, 17 actions
4, 64, 781.325 M instructions/2441 MIPS = 3.17 minutes

Note that all these values are related to the training function written in C#. Due to the
computational overhead of C#, it was decided to shift to the fast and efficient low-level C
language. Also, most embedded platforms work with C rather than C#.
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6.0.3. Translating C# program into C

The C programming language is adopted for system development because it produces code
that runs almost as fast as the code written in assembly language. C outperforms other
popular languages (e.g C#, python, etc) in terms of both speed and memory usage but at the
cost of more code length [81]. Most microcontrollers on the market are programmed in C
due to its efficient low-level implementation capability. Hence, the training function from
Interactive Myocontrol was rewritten in C using the freely available GNU Scientific Library
(GSL) [82]. It is a numerical library with Basic Linear Algebra Subprograms (BLAS) support
as well as a variety of other functions. The X matrix (20352× 8) or sensor values from Myo
and Y matrix (20352× 9) or label matrix obtained for RRRFF with 17 actions and 3 repetitions
of each and D=100 at first is stored in a text file on the PC and then read using GSL file
operations. The results for training using GSL v2.5 are displayed in table 6.1.

Programming language Time RAM usage
C# 5 minutes 650 MB
C 25 seconds 54 MB

Table 6.1.: Execution time required for 17 actions, 8 channels and 3 repetitions with RRRFF
(D=100) and Myo on desktop (Intel Xeon)

The reason for this speedup is because C# has a lot of overhead (e.g garbage collection [83],
etc.) and libraries included before compilation whereas C is lightweight. Using this fact it
was decided to choose a low-performance controller in the thesis and hence the first board
bought was LPCXpresso 4367, a Cortex M4/M0 based microcontroller with 154kB SRAM,
1MB dual flash bank, clock frequency of 204 Mhz and dedicated floating-point unit (FPU)
(see figure B.1).

6.0.4. Cross compilation of GSL library

The GSL library works on systems with an operating system but the microcontroller uses bare-
metal programming i.e without OS. Therefore, to port the code onto the LPC4367 (ARMv7
architecture) controller, it was necessary to cross-compile the library for arm− none− eabi−
gcc toolchain. This specifies that the target is ARM architecture, has no vendor, no operating
system and complies with ARM embedded application binary interface. The host and target
systems are both set as arm− none− eabi and optimization level, which tells the compiler to
generate faster codes, is set as O3. Detailed steps for cross-compilation are explained in the
Appendix A.1.

Initially, the GSL library was used at O0 optimization level, X and Y matrices were not
specified in the RRRFF code and D was 300. This led to an overflow, during compilation, of
the flash bank as 100.27 % of 512 kB was used up. Storing the X and Y matrices on an SD
card was proposed but for real-time use, this would not be feasible. So the next case was
to try with smaller dimensions of RFF with D=20, the number of sensor channels d = 11,
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X and Y matrices of size 11 ×11 both were specified in the code. The overall optimization
was set at Os (optimize for size). This required 71.15% memory usage. During runtime, a
Hardfault was detected which was due to memory constraints of the LPC4367 board. GSL
uses dynamic memory allocation and hence a new board, Keil MCB1800 (see figure 4.1), with
external SDRAM of 16 MB was purchased. Now a final test version of the GSL code for 2
actions, 2 repetitions, and D=300 was implemented on the new board. X and Y matrices of
size 1604 × 8 and 1604 × 9 were stored in the FlashB, consuming 41.61% of 512kB while
the code used up to 71.12% of Flash A (512 kB). The optimization level of code and library
was at O3. 16MB of external SDRAM was reserved for heap and 14.37% of SRAM(40kB)
was exhausted. The weight matrix W (300 × 9) was produced with an execution time of 6.5
minutes. The table 6.2 summarizes these points.

Matrix D Library Flash SRAM SDRAM Remarks
X: 20352× 8
Y: 20352×9

300 GSL (O0) 100.27% 10.14% -
Without X, Y on

LPC4367
X: 11×11
Y: 11×11

20 GSL (Os) 71.12% 9.29% - X, Y on LPC4367

X: 1604×8
Y: 1604×9

300 GSL (O3)
A: 71.15%
B: 41.61%

14.37% 100% X, Y on MCB1800

X: 11×11
Y: 11×11

20 DSP (O3) 16.55% 8.10% -
X, Y on LPC4367,

gaussian & uniform
distribution of GSL

X: 11×11
Y: 11×11

20 DSP (O3) 9.75% 6.51% -
X, Y on LPC4367,

custom gaussian &
uniform distribution

X: 1596×8
Y: 1596×9

20 DSP (O3) 25.55% 2.71% -
X, Y on LPC4367,

custom gaussian &
uniform distribution

X: 1604×8
Y: 1604×9

100 DSP (O3) 30.76% 6.48% 24.75%
X, Y on MCB1800,
custom gaussian &

uniform distribution

Table 6.2.: Different RRRFF configurations trials on LPC4367 and Keil MCB1800

6.0.5. Jump from GSL to CMSIS-DSP

Due to excessive memory usage of the GSL library, the ARM specific CMSIS-DSP library
(chapter 4) was examined further. It is an optimized library built at optimization level O2
and supports many mathematical functions. The first version of the RRRFF code developed
using CMSIS DSP library was with the number of RFF D=20, the number of sensors d=11,
and O3 optimization level. The Gaussian distribution and uniform distribution functions,
required for the mapping function in RRRFF (see equation 5.6), were not readily available
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from CMSIS and hence these functions were imported from the GSL library. Here, 16.55%
flash memory was used and SRAM usage was 8.10%. However, using custom Gaussian and
uniform distribution functions for RRRFF led to improvement with only 9.75% flash usage
and 6.51% SRAM usage. This again justifies the memory hunger of GSL. The second version
tried was with 2 actions 2 repetitions, D=20, d=8 and O3 optimization where 25.55% flash
and 2.71% SRAM was used. Finally, 2 actions 2 repetitions, D=100, d=8 utilized 30.76% of
flash, 24.75% SDRAM for storing matrices and 6.48% SRAM (refer table 6.2). Here a bug was
found in the CMSIS-DSP library which allows only smaller matrices to be multiplied. To
overcome this limitation, custom matrix multiplication functions were used in place of the
ones from CMSIS DSP. Two approaches were compared, one with only custom multiplication
function and other functions e.g. inverse of a matrix from the DSP library and the second one
was using all custom written functions i.e without any DSP functionality. A comparison of
execution times can be seen in figure 6.3 and in table 6.3. The SDRAM usage varied between
12% - 86% & Flash usage between 30% - 56%. Note that the MCB1800 does not have an FPU
and therefore the performance of CMSIS-DSP libraries is not optimum.

Figure 6.3.: Graphical view of execution times of different RRRFF configurations for rest,
power and point on Keil MCB1800

6.0.6. The final implementation

Due to the previously mentioned problem of matrix multiplication in CMSIS-DSP, the final
version of the code includes implementation of RR as well as RRRFF without the DSP library.
Optimization level is kept at O3 and all values are stored as floats instead of doubles to lower
memory requirements. All the matrices required to store intermediate results are globally
declared and stored as zero-initialized data using the __BSS macro, by NXP, in the external
RAM of 16 MB. This code can train on 3 actions, 3 repetitions (rest, power, point) with the
number of Fourier features D=300 at maximum for RRRFF before overflowing the memory.
The X matrix for Myo (8 channels), preprocessed with a first order Butterworth filter, and
TB (288 channels) is transferred from the Myocontrol software with the help of a special
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Configuration X Matrix Y Matrix
CMSIS DSP Without library

D=100 D=300 D=100 D=300
2 actions

2 repetitions
1606× 8 1606× 9 28.28 sec 3.57 min 26.20 sec 4.31 min

2 actions
3 repetitions

2405× 8 2405× 9 42.35 sec 4.97 min 38.32 sec 5.944 min

3 actions
2 repetitions

2405× 8 2405× 9 42.23 sec 4.97 min 38.32 sec 5.94 min

3 actions
3 repetitions

3603× 8 3603× 9 62.29 sec 8.04 min 56.07 sec 7.5 min

Table 6.3.: Execution times of different RRRFF configurations for rest, power and point on
Keil MCB1800

device driver written in C# which uses the USB protocol. Initially, the UART protocol was
experimented but to transfer a matrix of 400 × 8 i.e one repetition took about 1.5 minutes due
to lower bandwidth. Hence a switch from UART to UART-over-USB protocol was made which
facilitated sending this data volume in 450-500 milliseconds with the help of handshaking.
This was possible because USB 2.0 High Speed supports bandwidths up to 480 Mbps. Data
from each repetition for each action is received into the microcontroller and stored in a
dynamically allocated memory of the corresponding size. Each float value is converted into
a four-byte array on the PC, transmitted over USB and converted back into float value in
the MCU. Around 9% of the SDRAM is reserved for the heap to store these matrices. The
remaining memory is used for the intermediate buffers.

Switch Operation performed
Joystick UP Record data for 1 repetition of REST

Joystick DOWN Record data for 1 repetition of POWER
Joystick LEFT Record data for 1 repetition of POINT

Joystick PRESS Train for selected actions
Push Button 1 Start predicting
Push Button 2 Stop predicting

Table 6.4.: MCB 1800 joystick configurations

A menu is shown on the console interface and the joystick along with push buttons are
used to select actions, train the algorithm and then predict in real time (see table 6.4). LEDs
are used to indicate the status of training. The overall details of final version of RR and
RRRFF can be seen in the table 6.5.

The predicted values from the MCU are sent back over USB to the interactive Myocontrol
software and further sent to a virtual 3D hand model (Fig.6.4 ), developed in python and
blender, via the UDP protocol.
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Matrix size D Optimization Flash SRAM SDRAM Train Time
X: 3600× 8
Y: 3600×9

100 O3 12.17% 13.83% 96.77% 56.07 sec

X: 3600× 8
Y: 3600×9

300 O3 12.17% 13.83% 96.77% 7.5 min

X: 1800× 288
Y: 1800×9

RR only O3 9.88% 13.80% 45.71% 3.81 min

Table 6.5.: RR and RRRFF final implementation details on Keil MCB1800. First two entries
are with Myoband and RRRFF learning while the last entry is with Tactile Bracelet
and RR only.

6.0.7. Dataset and MCU Training Procedure

This is a gesture recognition system that can ease the daily life of amputees. The fact that the
amputee would be utilizing the prosthetic hand only for himself/herself makes it sensible to
record data from the amputee itself rather than collecting a generalized dataset. Hence, in
this study, for testing the different regression implementations, the actions were recorded and
trained for the respective subject only. The Myo or TB is worn on the right arm by the subject
and just on the muscle below the elbow as described in chapter 3.

An overall sketch of the training procedure is as follows:

1. Wear the bracelet firmly on your right arm.

2. Run the RR or RRRFF code on the microcontroller.

3. Start the Interactive myocontrol software on the PC.

4. Use the joystick (refer 6.4) to record data from each repetition for Rest, Power, Point
actions.

a) If max repetitions (= 3), due to MCU memory constraints, is reached, then the
MCU will display a "Max repetitions reached" message on the console.

b) If not, go to step 4.

5. Then press the Joystick to train on these actions.

a) If data is not recorded previously: "First record the data" message is displayed.

b) Otherwise select the actions to train on with the help of the joystick again.

6. Once the training is complete, start predicting on the 3D hand model by pressing push
button 1 or stop with the help of push button 2.
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Figure 6.4.: 3D hand model for prediction. The white hand is the stimulus to follow when
recording training data whereas orange hand is used for real-time prediction.
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Neural networks can model complex problems and are a better choice for pattern recognition
applications [70], [71]. From the literature survey, it follows that neural networks show
commendable performance for classification tasks and therefore can also be applied for hand
gesture identification. This chapter demonstrates the use of ANNs in combination with
muscular force sensors, or in other words, the tactile bracelet for more robust classification.
The embedded implementation of vivid NN models on the low-performance Cortex M3
board along with suitable and efficient NN libraries is also presented here.

7.1. Multilayer Perceptron

The theory of MLPs is already documented in chapter 5. The dataset, similar to regression,
was recorded from an individual subject on which the algorithm has to be trained and tested.
In the MLPs, the input data is fed as a vector. Two models were developed, one for the Myo
Armband and the other for the Tactile Bracelet. Although the Myo is not in focus for this
study, a quick overview of different models tested with it is shown.

All the neural networks are defined in Python using the Keras library, pandas and Scikit-Learn
modules. For all Python and Keras models, unless mentioned otherwise, the data (each
sample vector) is sent from Interactive Myocontrol software via UDP port to the python
program for prediction and then the predicted output is directly transmitted to the 3D hand
model (refer figure 6.4) again over UDP. The arm is kept in a stable and fixed position for
data acquisition and prediction phase to minimize the limb position effect and improve
classification accuracy.

7.1.1. Case 1: MyoBand

The data is recorded with the Myo, placed on the right arm, for 6 gestures, namely, rest,
power, point, tridigital, wrist flex and wrist extension with 5 repetitions of each. The dataset
is a matrix of ≈ (12000× 8) dimension. Each sample is a 1× 8 vector which is fed as input
to the MLP. The dataset is shuffled randomly and then split into three subsets: Training set,
Validation set, and Test set. The Training and Test sets are divided into the ratio of (70:30) %
respectively while the validation set is 25% of the training set. The training set is used to fit
the model, validation set to evaluate the trained model and optimize the model parameters
accordingly. Validation is carried out after every epoch in Keras. Finally, the trained model
is evaluated against the test set which the model has never seen before. (Note that in all
learning curves shown here the naming "test" is used for "validation".)
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The dataset is already preprocessed inside the interactive myocontrol by a 1st order But-
terworth filter with a cut off frequency of 1.5Hz [84] to remove high-frequency noise. No
separate preprocessing was done in the python program.

Recording the correct data is of utmost importance in machine learning. Two datasets
were recorded, one is with some hinges attached to the Myo for a firm grip on a skinny
arm whereas the other without them. The Principal Component analysis tool was used to
visualize the datasets. Dataset 1 (figure 7.1) is without hinges and Dataset 2 (figure 7.2) is
with hinges. Both PCA explain 92% variance with 3 components. It is clear that the data
without the hinges is not very well separated like Dataset 2.

Figure 7.1.: Myo dataset 1 Figure 7.2.: Myo dataset 2

Without Preprocessing

The first model defined with dataset 1 has one input layer with 8 neurons and relu activation,
one hidden layer with 20 neurons and relu activation, and an output layer with 6 neurons and
softmax activation. Stochastic Gradient Descent (SGD) is used as the optimizer with a learning
rate of 0.0001, categorical crossentropy loss, Earlystopping mechanism [85] monitoring the
validation accuracy, 5 epochs and batch size of 4. The training data is shuffled randomly
before each epoch. The test accuracy is 98.35% and loss is 26.53%. The learning curves are
shown in figures 7.3 and 7.4. Its Confusion matrix is shown in appendix (fig. B.2). This model
was unable to predict correctly despite its high accuracy as the learning was not sufficient
and not converged.

The second model defined with dataset 2 is similar in structure to the first except that the
learning rate of SGD is 0.00003, no Earlystopping to allow convergence of loss, 15 epochs
and a batch size of 2. The test accuracy is 100% and loss is 8.426%. A good loss decay was
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Figure 7.3.: Myo accuracy for dataset 1 Figure 7.4.: Myo loss for dataset 1

obtained and the curves are shown in figures 7.5 and 7.6. Its Confusion matrix is shown in
appendix (fig. B.3).

Figure 7.5.: Myo accuracy for dataset 2 Figure 7.6.: Myo loss for dataset 2

With Standard Scaler Preprocessing

Most machine learning algorithms perform badly if the input features do not follow a
Gaussian distribution i.e. zero mean and unit variance [85]. StandardScaler is a preprocessing
technique offered by scikit-learn to standardize features by removing the mean and scaling to
unit variance. A sample x is standardized as:

z = (x− u)/s

where u is the mean and s is the standard deviation of the training samples.
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Considering this fact, the next model developed with the Myo dataset 2 used a two-level
preprocessing. The first preprocessing occurs due to the Butterworth filter in the interactive
myocontrol software and the second step with the StandardScaler in python. This 1× 8
preprocessed input is then fed to the feed-forward structure defined previously with one
input layer, one hidden layer, and an output softmax layer. Adam optimizer is chosen in this
case with a learning rate of 0.0001, 6 epochs and batch size of 2. Adam is an improved version
of the traditional stochastic gradient descent [86], [85] and is more practical to use [87]. The
overall test accuracy and loss values are 100% and 2.123% respectively. The corresponding
graphs can be seen in figures 7.7, 7.8 and B.4.

Figure 7.7.: Myo acc with preprocessing Figure 7.8.: Myo loss with preprocessing

As perceived, with StandardScaler, the learning converges much faster than previous
models and the predictions are also better.

7.1.2. Case 2: Tactile Bracelet

Data is recorded and split as per the Myo version. The dataset is ≈ (5500× 288) matrix for
6 actions and 5 repetitions of each. The PCA of the dataset with 3 components describing
81.28% variance is shown in figure 7.9. The tactile bracelet has 9 modules with 32 force
sensors each: total 288 values. This 1× 288 vector serves as the input to the NN model. The
input samples are preprocessed with the Standard Scaler and then given to the MLP with one
hidden layer of 30 neurons. The Adam optimizer with a learning rate of 0.00002, 20 epochs
and batch size of 2 is enforced. The test accuracy is around 98% and loss is 11.27%. The
learning curves are depicted in figures 7.10, 7.11 and B.5.

Another modification of this model is to use StandardScaler followed by feature reduction
using PCA corresponding to 98% variance i.e with 59 components as input. The architecture
is the same as the previous TB model and Adam optimizer with a learning rate of 0.0001, 6
epochs and batch size of 2 is utilized. The overall accuracy is 99.94% and loss is 2.52%. The
related curves are 7.12, 7.13 and B.6.
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Figure 7.9.: Tactile Bracelet’s dataset for vectorized input

Figure 7.10.: TB accuracy with preprocessing Figure 7.11.: TB loss with preprocessing

In general, the real-time predictions on the virtual hand model seem more stable with the
TB compared to the Myo. Thanks to TB’s higher resolution.
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Figure 7.12.: TB accuracy with PCA and Stan-
dardScaler

Figure 7.13.: TB loss with PCA and Standard-
Scaler

7.2. Convolutional Neural Network with Tactile Bracelet

The tactile bracelet gives intensities of different pressure points on the forearm thus creating
a pressure/force map. This image can be visualized in figure 7.14. In the previous MLP
models, this property of the tactile bracelet was not exploited since the data was fed as a
flattened array. As convolutional neural networks deal with inputs that are images, they allow
for a more efficient implementation of the network with reduced parameters [73]. Thus the
relationship among the pixels can be preserved which gives CNNs the potential for becoming
better hand gesture classifiers.

Figure 7.14.: Tactile bracelet showing different pixel intensities during Power action. Red
signifies highest intensity and dark green the lowest. Only 9 modules of 8× 4
pixels are connected. The 10th module to the extreme right is disconnected.

The final milestone of this research is to implement the CNN on the Cortex M3 microcon-
troller with the help of CMSIS NN libraries. This library currently supports finite layers (refer
chapter 4) and hence the CNN architecture is also kept simple. The architecture of the CNN
used here is depicted in figure 7.15.
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7.2.1. Python Model on the PC

One of the example datasets, preprocessed with StandardScaler, and used for the CNN can
be envisioned in figure 7.16. The data from 6 actions with 5 repetitions of each is split in
the same sets and same ratios as the previous MLP models. The filtered dataset from the
interactive Myocontrol is first converted from a 1× 288 vector to 8× 36 matrix using the
following function:

static double[,] FromVectorToMatrix(double[] arr, int row, int col)
{

double[,] result = new double[row, col];
for (int i = 0; i < 288; i++)
{

result[i % row, i / row] = arr[i];
}
return result;

}

Listing 7.1: Vector to Matrix example

where row = 8 and col = 36.

Figure 7.15.: The CNN Architecture used in this study

Then each image matrix in the dataset is standardized to a normal distribution and fed to
the CNN. This process is also followed during the real-time prediction.

The CNN model in figure 7.15, defined in Keras, consists of a 2D convolutional layer with
4 filters and a kernel size of 2× 2, the activation is rectified linear unit and input shape is
(8, 36, 1). The next layer is a Maxpooling layer with a pool size of 2× 2 followed by a fully
connected layer with 100 neurons and Relu activation. The CNN concludes with a softmax
layer for converting the predictions into probabilities. The Adam optimizer is used with a
learning rate of 0.0001, categorical crossentropy as the loss function, 20 epochs and batch size
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Figure 7.16.: PCA visualisation of the CNN dataset with 90.2% variance

of 100. The overall model test accuracy is 100% and the test loss is 2.91%. The related learning
curves are pictured in figures 7.17, 7.18 and the confusion matrix is represented in 7.19.

Figure 7.17.: CNN accuracy on PC Figure 7.18.: CNN loss on PC
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Figure 7.19.: CNN confusion Matrix

7.2.2. Caffe model

Caffe is a deep learning framework [88] developed at Berkeley AI Research by Yangqing Jia.
It focuses on easy model descriptions, speed, and modularity. Models and optimizers can
be defined as text files i.e. without any hard-coding. Therefore most neural networks for
embedded implementations are defined in Caffe.

For porting the CNN onto the ARM Cortex M3 processor, the dataset is preprocessed using
StandardScaler and stored in HDF5 format as required by Caffe. The Keras CNN model,
described in the previous section, is rewritten in Caffe and stored as mynet.prototxt file and
the solver/optimizer is defined in a solver.prototxt file. The solver parameters are as follows:
Assuming a total of 5500 data points and the train-test split is 80:20 % then, training samples
are 4400 and test samples are 1100. With a batch size of 100 to iterate over 4400 training
samples, 44 iterations are required. Note that this is just one epoch of Keras. And for 20
epochs the max iterations in the Caffe solver file is set as 880. Validation must be carried out
after each epoch i.e after every 4400 samples and so 11 test iterations are needed for traversing
1100 test samples @100 samples/iteration. The final model accuracy and loss values are
reported after 880 iterations. The optimizer chosen is Adam with a learning rate of 0.0001.
The solver mode is set as CPU to run the program on the CPU only. The sample model and
solver definitions are shown in Appendix A.2.

A python script is written that automatically reads the dataset generated from Interactive
Myocontrol, preprocesses it, converts it to HDF5 format, then defines the model and the
solver in Caffe, and finally generates the trained model file with a .caffemodel extension. The
CNN graph connectivity in Caffe is shown in figure 7.20.
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Figure 7.20.: Caffe CNN graph

7.2.3. Implementation on the MCU

The MCB1800 board uses bare-metal programming and therefore it is essential to translate
the Caffe model into an equivalent C code to run on the microcontroller. Also, the Caffe
model (≈ 117KB) which contains the weights, biases, and activations will not fit directly into
the microcontroller memory. Fixed-point quantization helps to avoid the costly floating-point
computations and reduces the memory footprint for storing both weights and activations,
which is critical for resource-constrained platforms [50]. Therefore quantization of input
data, weights, biases, and activations from float 32 bit to integer 8 bit (or Q7 format) is done.
The dataset in our problem is quantized to Q2.5 format meaning that 2 bits are used for the
integer part and 5 bits for the fractional part.

To obtain the C program with CMSIS NN function calls from a trained Caffe model the
following steps are performed in Python [89]:

1. Identify the network graph connectivity by parsing the Caffe model prototxt file

2. Quantize weights and activations to integer 8-bit

3. Generate optimized C code using CMSIS-NN Functions

ARM has readily provided two Python scripts: "nn_quantizer.py" for quantizing the model
and "code_gen.py" for generating C code.

The quantizer code needs mynet.prototxt file which contains the Caffe model definition
with valid paths to the HDF5 dataset and the trained model file (.caffemodel). The network
graph connectivity is parsed and the Caffe model is quantized to 8-bit weights/activations
layer-by-layer incrementally with minimal loss in accuracy on the test dataset [89]. Then the
network graph connectivity and quantization parameters are stored into a pickle file (.pkl).

The code generator program reads the quantization parameters and network graph connec-
tivity from the pickle file and generates the C code consisting of NN function calls. Currently,
only convolution, innerproduct, pooling (max/average) and relu layers are supported [89].
The original ARM python script had some limitations regarding the order of layers to parse, so
the program was modified accordingly to be compatible with the CNN Caffe model definition
tested in this thesis. This script produces three files: weights.h, parameters.h (consisting of
quantization ranges) and main.cpp containing the network code.
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These 3 files can then be imported into the MCUXpresso IDE. Inside the interactive
myocontrol, a separate function is defined to preprocess the input sample image as per the
StandardScaler formula and quantize it to integer 8-bit (Q2.5) to reduce the overhead on
the MCU side. Additionally, an integer 16-bit quantization function is also available. The
quantized data samples (8× 36) from Interactive myocontrol software are sent directly to the
MCU via USB protocol for NN inference and the predicted values are communicated back to
the C# program and further to the 3D hand model.

The CMSIS NN library was acquired from the demo programs in the eIQ library supplied
with NXP’s i.MX series processors. Although only square-shaped images were supported
by the library originally, some modifications were made to the library functions to make it
work with non-squared images. By pressing the Push Button 1 and 2 on the MCU board,
prediction can be started and stopped respectively. The MCU model was then able to classify
rest, tridigital, wrist flex, and wrist extension. Point and power were misclassified as tridigital.

7.2.4. Implementation on the Neural Compute Stick 2

As discussed in Chapter 4, the OpenVINO toolkit is the default software that provides
different functions to get started with the Intel NCS2 on the Windows PC. The following
procedure is obeyed to perform inference with the NCS2:

1. Connect the stick to the PC and set up OPENVINO environment variables

2. Preprocess the dataset and train the CNN using Keras APIs in Python and save the
model as a single .h5 file.

3. Load the .h5 file and freeze the graph to a single TensorFlow .pb file.

4. Run the OpenVINO mo_tf.py script, which is a TensorFlow model optimizer, to convert
the .pb file into an intermediate graph readable by the NCS2. The input shape is set
as [1, 8, 36, 1] and the datatype is set to floating-point 16 (FP16) to gain extra speed up
when inferencing. Two files are generated: .xml and .bin files.

5. Load the model XML and BIN files with OpenVINO inference engine and make a
prediction.

The same code snippet used to interface interactive myocontrol with the CNN python
program on the PC to send input samples via UDP and prediction back to the 3D hand model
is applied with the NCS2 program for real-time predictions.

7.3. A Generalised Neural Network

As a test case, it was tried to develop a general CNN model for the hand gesture recognition
application with the tactile bracelet. At first, the foam on the TB was renewed and then the
data was recorded from 3 female and 3 male subjects for a first dataset containing: rest, power,
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point, tridigital, wrist flex, and wrist extension and the second one with rest, power, tridigital,
wrist flex, wrist extension, wrist pronation, wrist supination and five repetitions of each. The
two datasets can be seen in figures 7.21 and 7.22 with ≈75% variance.

Figure 7.21.: Generalised CNN Dataset 1 Figure 7.22.: Generalised CNN Dataset 2

Both datasets are trained with the same previous CNN architecture. The trained model
was then used for prediction on a subject whose data was unseen by the model. The model
accuracy with the first dataset without pronation and supination was 99.43% and loss was
about 6%. For a new subject, it was observed that power, wrist flex, and extension were
detected by this model with more stability than rest, point and tridigital. The corresponding
accuracy and loss curves are shown in figures 7.23, 7.24 and B.7. With the second dataset, the
model performed poorly due to close resemblances among the classes except for power.

The misclassifications with both datasets could be mainly due to variations in muscular
sizes and activations among different people. Some may also lack a particular muscle of
interest. However, this methodology was not examined in depth due to time constraints.

An overview of all neural network models analyzed are listed in table 7.1 and their
accuracies and losses are compared in figure 7.25. In general, from the table, it can be
reported that standardizing the dataset to a Gaussian distribution results in improved loss
values. For the combination of MLP with the Myo and SGD, it is noted that high accuracy
values are attained but still, the loss is not converged enough thereby suggesting to train
the model for more epochs. This can be because the input dataset consists of small decimal
values and the gradients change very fast due to the smaller batch size and therefore the
learning rate must be kept low. But with an Adam optimizer, faster convergence of loss
curve was observed in all cases. Also, due to the smaller batch size, the model learns from

54



7. Neural Network Workflow

Figure 7.23.: Generalised CNN Accuracy Figure 7.24.: Generalised CNN Loss

specific examples before updating the weights and hence cannot track the variable behavior
of the dataset properly. Moreover, the instability of sEMG signals must also be considered
and the smaller resolution of the Myo. Moving to the tactile bracelet, the MLP with reduced
components using PCA plus StandardScaler shows significant improvement in loss values
even with less number of epochs. CNN with TB uses a higher batch size thus making it
capable of learning the variations in data in an improved manner which is not possible for
the MLPs. Thus high accuracy values can be achieved while keeping the generalization error
low. Due to the high density of the TB more training epochs are needed.

NN style Sensor Optimizer
Batch
Size

Epochs
Learning

Rate
Accuracy Loss

Remarks/
Preprocessing

MLP
Dataset 1(7.1)

Myo SGD 4 5 0.0001 98.35% 26.53% Early Stopping

MLP
Dataset 2(7.2)

Myo SGD 2 15 0.00003 100% 8.42% -

MLP
Dataset 2(7.2)

Myo Adam 2 6 0.0001 100% 2.12%
Standard

Scaler

MLP TB Adam 2 20 0.00002 98% 11.27%
Standard

Scaler

MLP TB Adam 2 6 0.0001 99.94% 2.52%
PCA +

Standard Scaler

CNN TB Adam 100 20 0.0001 100% 2.91%
Standard

Scaler
General

CNN
TB Adam 100 20 0.0001 99.43% 6%

Standard
Scaler

Table 7.1.: An overview of different NN implementations
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Figure 7.25.: Accuracies and losses for different neural networks
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8. Results and Observations

This chapter presents the results of regression and neural network models examined in this
research. They provide a comparative overview for Ridge Regression and Convolutional
Neural Networks and their implementation on embedded hardware like the Cortex M3
microcontroller and the Intel Neural Compute Stick 2.

The analysis of memory footprint, training and inference speeds of the Ridge Regression
algorithm on the microcontroller are listed in table 8.1. For the MCB 1800, Flash A and
B are 512KB each, SRAM is 40KB and SDRAM is 16MB. Data were recorded for different
configurations of (rest, power, point) on the author’s right arm with the help of Tactile Bracelet.
The 3D hand model is used for predictions. A similar dataset was created for the Ridge
Regression with Random Fourier Features using the Myo Armband and implemented on the
MCB1800 board which yields the results as per table 8.2. As expected from the static analysis
of the regression methods in chapter 6, the RRRFF take more time to train as the number
of Fourier features increase due to the high dimensional feature mapping. The memory
requirements for both RR and RRRFF are similar except for the higher SDRAM usage in
case of RFF because of the computations required for the mapping function. No significant
improvement regarding prediction quality was observed with D=100 and D=300 concerning
rest, power and point gestures. Inference speeds remain the same for RR as well as RFF.

Configuration
Memory Training

Time
(180×288) X Matrix

Transfer Time
(1×288) Vector
Transfer Time

Inference
TimeFlash A Flash B SRAM SDRAM

2 actions 2 repetitions

9.88% 0% 13.80% 45.71%

2.19 min

5.6 sec 50 ms 20-30 ms
2 actions 3 repetitions 2.84 min
3 actions 2 repetitions 2.82 min
3 actions 3 repetitions 3.81 min

Table 8.1.: Memory requirements and execution times of different RR configurations for rest,
power and point actions on Keil MCB1800 with the Tactile Bracelet

Configuration
Memory Training Time (400×8) X Matrix

Transfer Time
(1×8) Vector

Transfer Time
Inference

TimeFlash A Flash B SRAM SDRAM D=100 D=300
2 actions 2 repetitions

12.17% 0% 13.83% 96.77%

26.20 sec 4.31 min

450 ms 30 ms 20-30 ms
2 actions 3 repetitions 38.32 sec 5.94 min
3 actions 2 repetitions 38.27 sec 5.93 min
3 actions 3 repetitions 56.07 sec 7.5 min

Table 8.2.: Memory requirements and execution times of different RRRFF configurations for
rest, power and point actions on Keil MCB1800 with the Myo Band

Implementation of the CNN architecture, defined in chapter 7, on the Cortex M3 board and
Intel Neural Compute Stick 2 for the dataset with (rest, power, point, tridigital, wrist flex,
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and extension) actions, which were recorded from the author’s right arm with the TB using
integer 8-bit and 16-bit quantization (for MCB1800), and floating-point 16-bit quantization
(for NCS2), are put together in tables 8.3 and 8.4 respectively. The frames per second (fps)
value is calculated as reciprocal of the inference time. Memory requirements are compared
concerning the size of the saved model and weight, biases, activations in Keras, Tensorflow
and OpenVINO IR graph: XML and BIN files.

Configuration
Memory Training

Time
X Matrix

Transfer Time
(1×288) Vector
Transfer Time

Inference
TimeFlash A Flash B SRAM SDRAM

6 actions 5 repetitions
(8 bit)

14.46% 0% 15.63% 0% N/A N/A 50ms 30ms

6 actions 5 repetitions
(16 bit)

20.07% 0% 20.85% 0% N/A N/A 50ms 30ms

Table 8.3.: Memory requirements and execution times of different CNN configurations for
rest, power, point, tridigital, wrist flex and extension actions on Keil MCB1800 with
the Tactile Bracelet

Configuration
Memory Training

Time
Inference

TimeKeras Tensorflow XML BIN
6 actions 5 repetitions

(FP16)
276 KB 86 KB 7 KB 42 KB N/A 22.3ms (fps=44.729)

Table 8.4.: Memory requirements and inference time of CNN model for rest, power, point,
tridigital, wrist flex and extension actions on Intel Neural Compute Stick 2 with
the Tactile Bracelet

The table 8.5 depicts the output of the CNN running on a Windows 10 host CPU in Python
and using Keras library. Model and weights are saved as .json and .h5 respectively using
standard Keras functions.

Configuration
Memory Training

Time
Inference

TimeKeras model Keras weights
6 actions 5 repetitions

(FP32)
2 KB 100 KB 16.02 sec 10.6ms (fps=94.178)

Table 8.5.: Memory requirements and inference time of CNN model for rest, power, point,
tridigital, wrist flex and extension actions on Intel i7 dual core CPU with the Tactile
Bracelet

Finally, to evaluate the ridge regression and CNN methods on the PC, a quick data recording
session of 30 minutes each was performed on 3 male and 2 female subjects. The details of
the procedure can be found in the appendix A.3. All of them wore the TB on their right
arm and recorded data for 6 actions and 5 repetitions of (rest, power, point, wrist flex, and
extension). Both the algorithms were compared on the PC by calculating the Normalised
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Root Mean Squared Errors (nRMSE) for all the subjects (refer table 8.6). Figure 8.1 shows a
better visualization of the comparisons. Though a direct comparison between regression and
classification is not possible, to understand the performance of both methods, the CNN’s
output was converted to represent regression using a linear activation instead of softmax in
the last layer. The NRMSE for the RR was calculated considering only a 5-DOF vector to
remove redundancy from the original 9-DOF vector. In all subjects, although the NRMSE for
the convolutional network is less than RR the fact that regression predictions track the hand
in a more realistic sense cannot be overlooked.

Subject Gender Age Weight (kgs) (Height (m)
Hand

Dominance
Forearm circumference

at Rest (cm)
Forearm circumference

at Power (cm)
Hand

activities
NRMSE

RR CNN
1 F 21 63 1.57 right 25.5 26 Daily 0.1147 0.0842
2 F 27 61 1.61 right 24.8 25.3 Daily 0.2544 0.1917
3 M 25 70 1.7 right 26 26.8 Daily 0.2421 0.1342
4 M 27 90 1.8 right 32 32.5 Gym 0.1058 0.1004
5 M 25 54 1.6 right 22 22.5 Daily 0.1124 0.0652

Table 8.6.: Comparison of normalised root mean square errors for various subjects in Ridge
Regression (RR) and CNN running on the PC with the Tactile Bracelet

Method
Memory
hunger

Inference
Speed

Training
#actions

supported
Coding

Predictions
robustness

QUALITY
INDEX

RR on MCU 3 2 1 3 1 2 2.00
CNN on MCU 1 2 5 1 4 3 2.67

CNN on Intel NCS2 2 2 5 1 2 1 2.17
CNN on PC 4 1 1 1 2 1 1.67

RR on PC 5 1 1 1 3 1 2.00
MLP on PC 2 1 1 1 2 4 1.83

Table 8.7.: Performance Index of different methods with Tactile Bracelet

Furthermore, to evaluate the ease of the process of defining the individual models to their
implementation on the embedded platform, every method was giving a score from 1-5 for
each criterion (using "lower the better" policy) listed in table 8.7. The Quality Index is then
useful to determine how well each method performed. This index is calculated as an average
of the scores obtained by each method in every criterion. Figure 8.2 gives a graphical view
of the table 8.7. The CNN on PC ranks first due to easy access to ML libraries, smoother
set up on the PC, a large volume of available memory and robust predictions. On similar
grounds, the MLP on PC ranks seconds for its poor prediction stability. Both RR on PC
and RR on MCU methods rank third due to high memory usage in Visual Studio during
training in the former and a limited number of actions supported with intermediate memory
consumption in the latter. CNN on Intel NCS2 shows comparable performance to its PC
equivalent method but no training possibility brings it down to number four. CNN on MCU
requires less memory footprint than other methods yet it gets the last position due to two
reasons: firstly, because of the inefficiency in detecting point and power actions and secondly
due to the tedious implementation process from training the model in Caffe, using python
scripts for quantization plus C code generation and finally importing it in the MCU.
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Figure 8.1.: Normalised Root mean square errors (NRMSE) in Ridge Regression (RR) and
Convolution neural network (CNN) for 5 subjects

Figure 8.2.: Performance Index of different ML algorithms investigated with Tactile Bracelet
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9. Discussion

This research proposes a further investigation into the practical usage of Force myography for
a multi DOF prosthesis control on a low cost and efficient embedded platform. It is essential
to jot down a couple of points.

Myocontrol based prosthetic devices can be a potential replacement for upper limb ampu-
tations. It uses electrical signals of the muscles to control the prostheses. The sensors used
to measure these signals must be able to extract distinct and repeatable patterns reliably.
Traditional methods depend on surface electromyography for signal recording. However,
the disadvantages of sEMG are well known to the scientific community. Apart from the
problems related to the electrode placements and lift off, the quality of EMG signals is also
degraded due to sweating, crosstalk, fatigue and electrode skin impedance changes [90], [40],
[42]. Force myography seems to be a viable alternative for this. FMG sensors detect the
deformations of the residual limb via pressure and the signals are not affected by conductivity
of the skin or by fatigue. But still, the problems related to electrode placement, good contact
with the skin and position of the arm (limb position effect) persist. Every person has a
different muscular structure and may lack a particular muscle of interest. These deformations
in the skeletal muscles can be problematic for the detection of activation patterns. Having
said that, the advantages of FMG uphold its value. The signals of FMG have less oscillatory
behavior and the signals are better separated in the input space [47]. Many other studies also
show that the use of FMG allows for the classification of a relatively high number of hand
and wrist movements with remarkable accuracy.

Regression and Artificial Neural Networks are the two ML algorithms worked upon in
the scope of this thesis. It indicates that the ridge regression with the tactile bracelet works
well rather than using the computationally expensive ridge regression with random Fourier
features with the Myo band. From the results, it is evident that RR with Tactile bracelet
requires less memory footprint compared to the RFF version with Myoband. The training
time increases linearly with an increasing number of actions and repetitions in case of RR
whereas there is a steep jump in training time for RFF as the number of Fourier features is
increased. This was also inferred from the complexity analysis of RFF in chapter 6. Also, the
SDRAM is completely used up for RFF to store intermediate matrix multiplication results
and any further functionality seems difficult to add. To the best of my knowledge, most
regression-based hand prostheses control have been trained on a PC or a smartphone and
only the inference is done with the help of a microcontroller [19]. However, within this thesis,
a working microcontroller-based regression training has been implemented for recognition
of 3 actions with 3 repetitions of each yielding recognition accuracies around 99-100% and
within 20-30 milliseconds. Also, no windowing technique was used [43] and therefore there
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is a negligible delay between data acquisition and prediction.

A vital role is played by small efficient libraries for the microcontroller. The GSL library, in
C, gave a speedup by a factor of 12 for RFF training with 17 actions and 3 repetitions of each
on the PC. This was mainly due to the optimized C kernels. But on the microcontroller, GSL
seemed to be a bad choice due to its dynamic memory allocation requirements. Keil’s very
own CMSIS-DSP libraries are designed efficiently for ARM architectures but have some bugs.
Hence, using the custom matrix multiplication and inversion functions seemed relevant for
our application and surprisingly have performed well. Even though floats were used instead
of doubles there is almost no degradation in the prediction quality.

From past research [22], [10], [16], [22], [25], it can be seen that NN tend to perform
better than most ML algorithms due to their ability to learn complex features on their
own. NNs have outperformed other classical approaches not only in prosthetic control
strategies but also in other fields like autonomous driving [91], [92], etc. Therefore, the first
multiplayer perceptron was examined with the Myoband. Due to the small fractional numbers
in the dataset, the network was kept simple with minimum neurons without degrading the
performance. Moreover, the final aim was to implement it on the microcontroller so it is
essential to keep the network small so that it fits inside the controller’s memory. As a pilot
study, the MLP was evaluated with 2 datasets, one where the Myo firmly fits the author’s arm
and the other when it is slightly loose due to thin arm. It was observed that the classifications
with a firm fit were better than the other case. This implies that the dataset must be recorded
in an appropriate manner and by keeping the arm in a stable position during experimentation.
And also we must not forget about the instability of Myo signals. Extracting the right features
is equally important for good learning in NNs. Hence, appropriate preprocessing tools must
be used before actually showing data to the model. Here the dataset was brought into a
normal distribution with some preprocessing as most NNs assume the input data to be
normally distributed [85]. And as expected the loss converged must faster thereby giving
more stable predictions.

But our main interest lies with the Tactile Bracelet. The TB with 288 FSRs generates a
1×288 row vector which is fed as an input to a feedforward neural network with one hidden
layer. This small architecture makes sense since the output from the TB are doubles values
(e.g. 0.113525391) and also the gradient takes tiny steps to reach the optimum. Hyper-tuning
helped to adjust the parameters and fix the layers for the models defined in chapter 7. The
learning rate was kept small. The standard scalar preprocessing was used to standardize the
dataset. From the PCA analysis, it was seen that power and wrist movements have better
separability than rest, tridigital and point. The pointing gesture decreases the prediction
performance. Using the reduced features by PCA analysis in addition to standard scaling
also gave comparable results to using standard scaling alone. Besides, the high resolution of
TB gave superior stability during predictions in contrast to the Myo.

The way to unleash the potential of the TB is to exploit the high-density FMG images
clicked by the 288 pressure sensing cells (in our case) further with the power of CNNs. A
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simple convolutional network was chosen after a few trials. The Adam optimizer seemed to
converge better than stochastic gradient descent. The relationship between adjacent pixels
helps to unveil important properties of the muscular signals which helps to gain superior
performance than the MLPs. Again the recording of a correct dataset is an important task.

The PC version of the CNN was tested with 5 subjects and 6 actions. This network is
capable of achieving accuracies up to 100% with models and weights weighing only about
100KBs. The pointing gesture was detected with better stability than previous vectorized
versions. For the implementation of this model on the MCU, a lot of pre-setup was needed:
Caffe installation, defining the model in Caffe and conversion to C using the python scripts
by ARM. This is an additional effort compared to the regression implementation on the MCU.
Also, there seems to be no NN training possibility at the moment on the embedded hardware.
The CMSIS-NN functions help to do efficient computations. However, it was observed that
the quantization of data, weights, activations and biases from float 32 bit to integer 8 bit (Q7
format) didn’t perform well for this particular application. The analysis of datasets both
before and after quantization showed no difference in the PCA suggesting that the problem
is during the quantization of weights and activations. Due to the smaller scale available
to represent each class i.e. (-128, +127) compared to the float 32 range and saturation of
results, precision is lost. Though the quantization should affect the accuracy of the model by
a negligible amount in image classification tasks as per ARM, it should be noted that the TB
image is not actually grayscale in integer range (0, 255) and thus the loss in accuracy is not
acceptable for this particular case. With a few trials on the MCU, it was still manageable to
detect rest, tridigital, wrist flex and extension but the performance is poor compared to its
PC or Caffe version where all actions including point are detected with good stability. The
16-bit quantization model performed even worse than the 8 bit model on the MCU. However,
this experiment was done only on the author and was involved in operating the PC after
recording the data to implement the code on the MCU for testing. Thus it can be due to hand
movements that the signals were disturbed and hence the poor performance. Regarding the
speed, it can be said that the prediction time (30 ms) on the MCU was almost equivalent to
the experiment on the high-performance Nvidia TX2 even with a simpler CNN [12]. Also, the
power consumption will be lower for the Cortex M processors as opposed to the TX2. One
reason for this is that no OS and only bare-metal programming is used and no energy-hungry
component like the GPU is needed.

Using a dedicated neural accelerator like the Intel neural compute stick is a pioneering
approach for hand movement recognition applications. The CNN model was implemented
in a much easier and cleaner way into the NCS2 with a floating-point 16 quantization. It
yielded equivalent performance to the PC based model and outperformed the MCU version
(without an FPU) as well. However, the inference time on the CPU was faster than the stick
because only a simple model was being tested and the full potential of the SHAVE cores was
not utilized. With a more complex CNN, the performance benchmarks stated by Intel imply
that the optimized model on the stick will perform much better and efficiently than on the
PC. Also, the models stored on the stick require only about 50KBs which is less than the PC
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counterpart.

Keeping a threshold of 20 predictions (i.e. if a particular action is predicted for 20 consecu-
tive counts then only show it on the virtual hand model) helped to remove intermediate noise
caused by fast finger movements or misclassifications thus giving stable gestures. However,
it must be said that classification accuracies tend to decrease with the inclusion of finger
movements along with wrist actions [43].

The TB consists of a foam between the sensor cell and the skin. As the bracelet is shape
conformable, a settling time of 15 mins needs to be kept so that the foam settles on the hand.
But after recording data for another 15 minutes, the foam takes time to adjust itself to the
shape of the muscle activations and thus the prediction may take about 4-5 seconds to detect
a gesture correctly which is a drawback for the TB (for instance, doing power and coming
back to rest would not happen instantly but would need about 4-5 seconds due to foam
deformity). Also, the tightness of the bracelet on the arm affected its signals unlike the "one
size for all" Myo. In the case of TB, wires are prone to breaking and frequent disconnections
were observed, the foam was too sensitive at the edges of the sensor modules thus creating
an offset. Some modules would have to be discarded for a thin person resulting in reduced
resolution. The USB cable caused discomfort for subjects when testing, unlike the Myo which
uses Bluetooth protocol for communication with the PC.

The final experiments were recorded with 2 female and 3 male subjects belonging to the
same age group (25-27 years) and the same dominant hand. All the experiments were carried
out with RR and CNN running on the PC. The normalized RMSE values were calculated
in the case of each subject and for both learning strategies to examine their performance. A
direct comparison between regression and classification is however not possible. In one sense
the lower errors in CNN indicate that CNNs are less susceptible to noise than regression
which could be because the integrity of the pressure pixels is maintained.

The real-time hand gesture predictions on the MCU or Neural stick could not be performed
for other subjects except the author due to time restrictions considering other critical situations
at the time. However, an embedded solution with a good compromise between prediction
accuracy, energy, and cost efficiency is possible with the demonstrated methods. To rate the
different methods, a score was assigned based on different criteria for each method. The
PC based CNN is the best shot to develop a CNN from scratch compared to others due to
the use of high-level languages, high-end processor and better library support. The RR on
MCU is as easy to implement as on the PC. CNN on the Intel stick is at an intermediate level
while the CNN on MCU has a lower index overall because of the extra overhead to retrain
the algorithm in Caffe, manually run quantization scripts and convert the model and weights
to C and finally import the codes into the MCUXpresso IDE and run it.

A generalized CNN was also examined wherein the data recorded for 6 subjects can be
used for prediction with a new person although every individual has different muscular
activations. Surprisingly the model was able to predict wrist flex, wrist extension and power
mostly for all unknown volunteers. But detecting rest, tridigital and point actions were quite
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challenging.

As far I know, this is the first attempt to train and predict hand gestures on low-performance
and energy-efficient microcontrollers with tactile myography or high-density force myography
(HD-FMG). Overall accuracies in most cases were between 99-100% and losses between 2-5%.
All in all, HD-FMG serves to be a viable replacement or a companion to sEMG.
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In this research, a real-time hand gesture recognition model based on Tactile Bracelet has been
presented. FMG signals, which are more stable than EMG, are extracted with the help of TB.
The recorded data is normalized to a Gaussian distribution which showed better performance.
A regression-based machine learning algorithm and a Convolutional Neural Network is
implemented on a low performance embedded processor. For prediction by the CNN, a
threshold was kept so that when a recognized label reaches the threshold of activation times
then only the prediction can be seen on the 3D hand model. This helps for debouncing and
improves prediction stability. The inferences of CNN and RR model are expected within
20-30 ms which is acceptable for real-time predictions. Recognition accuracy in most cases
reaches 100%. The pros and cons of different methodologies and the sensors have also been
listed. So far the TB seems to be a good solution for performing superior gesture recognition
than the Myo.

More complex CNN architectures can be investigated in the future and could outperform
the inference speeds on the PC. Also, a better processor with an onboard floating-point unit
can help to significantly speed up the computations. The structural design of the TB can
be improved further and more pressure sensing cells can be installed to get a more dense
picture of the muscle activations thereby improving the system’s ability to recognize finger
movements.

In a nutshell, it is possible to develop low cost and efficient prosthetic devices with the use of
low-performance processors along with efficient and optimized ML libraries. Hopefully, the
device-specific libraries (like CMSIS) would also add new functionalities and support more
layers in due course of time allowing us to implement complex preprocessing techniques and
ML algorithms on the embedded platform. Perhaps, with additional memory on MCU, even
more gestures can be classified. Point gesture could be detected with higher accuracy using
the CNN approach. Other ML libraries like TensorFlow-Lite also could be an alternative. It is
expected that ARM develops a better portation process for the Keras and TensorFlow models
to the microcontrollers.

Neural network training on the MCU might also become a reality with rapid developments
in the semiconductor industry and it cannot be denied that a generalized machine learning
algorithm with suitable feature extraction can be developed for use by any person without
the need to retrain again and again. These techniques can be applied not only in the medical
industry but also for other domains like space, automobiles and many more where power,
area, and cost are critical properties.
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A. General Addenda

The following sections contain extra details for further reference.

A.1. GSL Cross Compilation procedure

1. Download following files to Linux desktop:

a) Download gsl-2.5 file from ftp://ftp.gnu.org/gnu/gsl/

b) Download gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2 file from
https://developer.arm.com/tools-and-software/open-source-software/de
veloper-tools/gnu-toolchain/gnu-rm/downloads

Type the following commands in the Linux terminal:

2. apt-get update

3. apt-get upgrade

4. sudo apt remove binutils-arm-none-eabi gcc-arm-none-eabi libnewlib-arm-none-eabi

5. sudo apt-get install make

6. cd Desktop

7. cd gsl-2.5

8. make clean

9. tar –xjvf gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2

10. export PATH=$PATH:/home/username/Desktop/gcc-arm-none-eabi-8-2018-q4-major/bin/

11. CFLAGS="-Wall -O0 -g3"

12. CFLAGS+=" -mcpu=cortex-m4 -mfloat-abi=soft"

13. CFLAGS+=" –specs=nosys.specs"

14. export CFLAGS

15. ./configure –host=arm-none-eabi –target=arm-none-eabi

16. make
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17. make check (will fail but continue with next step)

18. make install

GSL files must be in /usr/local/include & pkgconfig + libgsl.a + libgslcblas.a in /usr/local/lib

Important: Whenever user changes from/to root privileges need to repeat step 10

A.2. Caffe network and solver definitions

Model Definition (mynet.prototxt)

layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
include {

phase: TRAIN
}
hdf5_data_param {

source: "C:\\caffe_myexamples\\cmsis_nn_data_1\\train_myo.txt"
batch_size: 100

}
}
layer {

name: "data"
type: "HDF5Data"
top: "data"
top: "label"
include {

phase: TEST
}
hdf5_data_param {

source: "C:\\caffe_myexamples\\cmsis_nn_data_1\\test_myo.txt"
batch_size: 100

}
}
layer {

name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
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num_output: 4
kernel_size: 2
weight_filler {

type: "xavier"
}

}
}
layer {

name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"

}
layer {

name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {

pool: MAX
kernel_size: 2
stride: 2

}
}
layer {

name: "ip1"
type: "InnerProduct"
bottom: "pool1"
top: "ip1"
inner_product_param {

num_output: 100
weight_filler {

type: "xavier"
}

}
}
layer {

name: "relu2"
type: "ReLU"
bottom: "ip1"
top: "ip1"

}

69



A. General Addenda

layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
inner_product_param {

num_output: 6
weight_filler {

type: "xavier"
}

}
}
layer {

name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {

phase: TEST
}

}
layer {

name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"

}

Solver Definition (solver.prototxt)

train_net: "C:\\caffe_myexamples\\cmsis_nn_data_1\\mynet_auto_train.prototxt"
test_net: "C:\\caffe_myexamples\\cmsis_nn_data_1\\mynet_auto_test.prototxt"
test_iter: 11
test_interval: 44
base_lr: 9.999999747378752e-05
display: 44
max_iter: 880
lr_policy: "fixed"
momentum: 0.8999999761581421
snapshot: 880
snapshot_prefix: "C:\\caffe_myexamples\\cmsis_nn_data_1\\snapsot\\"
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solver_mode: CPU
momentum2: 0.9990000128746033
type: "Adam"

A.3. Data recording procedure

1. Have the subject read and sign the information sheet and consent form

2. Explain the subject about the different gestures to be recorded

3. Put on the bracelet on the participant’s arm in a firm position

4. Record 5 repetitions of 6 actions each
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B. Figures

B.1. LPCXpresso 4367 from NXP

Figure B.1.: LPCXpresso 4367 from NXP [93]

This Cortex M4 based board was initially used as a starting point for implementing the
regression model on the MCU. But after discovering its memory limitations, the Keil MCB
1800 board was bought.

B.2. Confusion Matrices
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Figure B.2.: Confusion matrix for Myo dataset 1

Figure B.3.: Confusion matrix for Myo dataset 2
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Figure B.4.: Confusion matrix for Myo dataset 2 with preprocessing

Figure B.5.: Confusion matrix for TB vectorized dataset with preprocessing
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Figure B.6.: Confusion matrix for TB vectorized dataset with PCA and StandardScaler

Figure B.7.: Generalised CNN Confusion Matrix with dataset 1
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