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Abstract— An active-passive microwave retrieval algorithm for 

simultaneous determination of soil surface roughness parameters (vertical 

RMS height (𝒔) and horizontal correlation length (𝒍)) is presented for bare 

soils. The algorithm is based on active-passive microwave covariation 

including the improved Integral Equation Method (I2EM) and is tested with 

global SMAP observations. Estimated retrieval results for 𝒔 and 𝒍 are 

overall consistent with values in the literature, indicating the validity of the 

proposed algorithm. Sensitivity analyses showed that the developed 

roughness retrieval algorithm is independent of permittivity for 𝛆𝐬 > 10 [-]. 

Furthermore, the physical model basis of this approach (I2EM) allows 

application of different autocorrelation functions (ACF), such as Gaussian 

and exponential ACFs. Global roughness retrieval results confirm bare 

areas in deserts such as Sahara or Gobi. However, the type of ACF used 

within roughness parameter estimation is important. Retrieval results for 

the Gaussian ACF describe a rougher surface than retrieval results for the 

exponential ACF. No correlations were found between roughness results 

and the amount of precipitation or the sand and clay fractions, which could 

be due to the coarse spatial resolution of the SMAP data. The extension of 

this approach to vegetated soils is planned as an add-on study.  
 

Index Terms— correlation length, I2EM, radar, radiometer, 

RMS height, SMAP 

 

I. INTRODUCTION 

A. Motivation for surface roughness estimation 

The estimation and monitoring of geophysical parameters via earth-

observation satellites is crucial for improving our understanding of 

global environmental and hydrological processes. Soil roughness is 

an essential parameter in physical processes related to water, energy, 

and nutrient flow and exchange, since it characterizes the boundary 

between the pedosphere and atmosphere [1]. Soil roughness 

influences microwave signals from soil surfaces and contributes to 

measurements from active as well as passive sensors. Both radar 

backscatter |𝑆𝑃𝑃|2 [dB] and microwave emission 𝐸𝑃 [-], based on 

brightness temperature 𝑇𝐵𝑃 [K], are sensitive to surface roughness. 

While |𝑆𝑃𝑃|2 is mostly dominated by soil moisture and soil surface 

roughness, 𝑇𝐵𝑃 is a function of soil moisture, soil surface roughness 

and the effective surface temperature over bare soils [2], [3].  

Despite its importance for environmental applications, soil 

roughness has played a minor role in land parameter retrieval with 

microwave remote sensing in recent decades [4], [5]. For instance, 
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soil roughness is an important parameter in land surface modeling of 

soil erosion applications, because it defines the soil surfaces that 

represent “the interface between the eroding soil body and the erosive 

agent” [6], [1], [3], [5]. 

Retrieval of geophysical parameters such as soil roughness or soil 

moisture is mainly performed at lower frequencies, like at L-band 

(1.4 GHz). Lower frequencies are typically used due to the high 

sensitivity of active and passive microwave L-band signatures to soil 

moisture (under vegetation). Moreover, C-band (~ 6 GHz) and higher 

frequency bands are less applied because of the reduced sensitivity of 

higher microwave frequencies to underlying soil moisture and soil 

roughness as vegetation canopies become denser [3], [7], [8]. Further, 

the operational monitoring of soil moisture content on global scales 

has been mainly performed continuously with passive microwave 

sensors. Passive microwave sensors are used predominantly since soil 

roughness and vegetation hold a stronger influence on backscatter 

than on soil-emitted brightness temperature [9].  

The primary disadvantage of passive-only retrievals is the coarse 

spatial resolution of microwave radiometers in orbit (> 40 km), which 

is sufficient for large-scale applications, such as global climate 

modelling. Yet, for weather forecasting and agricultural yield 

management, soil moisture information of at least 10 km spatial 

resolution is desired [10]. Active microwave sensors provide a higher 

spatial resolution than passive microwave sensors. Unfortunately, 

studies in recent years have shown that estimations of geophysical 

parameters on the basis of radar-only retrievals are prone to errors. 

This might be due to two reasons: Firstly, there are difficulties in 

quantifying all occurring scattering effects [9], [11-13], and secondly, 

the impact of terrain and vegetation morphology are often not 

considered adequately in radar retrievals due to their complex 

structures [9]. Thus, the combination of both active and passive 

sensor systems can improve monitoring of geophysical parameters, 

such as soil surface roughness, by leveraging the advantages of both 

sensors while overcoming their individual limitations. 

Currently, the existing soil moisture retrieval algorithms for a joint 

processing of radar and radiometer microwave satellite data are the 

change detection method [7], [14], [15] and the Soil Moisture Active 

Passive (SMAP) optional [10] and the SMAP baseline [10], [16] 

downscaling algorithms. In all of these algorithms soil roughness is 

considered only as a secondary effect. Therefore, soil roughness is 

corrected either by collecting multi-configuration data (variety of 

frequency and/or polarization) or by optimizing it within the 

parameter retrieval algorithm until the model predictions coincided 

with the actual measured data. However, Saatchi et al. noted that for 

a precise monitoring of soil moisture, accurate determination of 

surface roughness is key to correctly deriving soil moisture 

information from radar data [17]. 

B. Parameterization of Surface Roughness in Remote Sensing 

The two fundamental parameters describing soil surface roughness 

are the standard deviation of the surface height variation (or vertical 

RMS height), with its related autocorrelation function (ACF), and the 

horizontal correlation length [8]. Due to the non-standardized naming 

convention, the terminology for both parameters is ambiguous. 

Common parameterizations for the vertical RMS height are 𝑆𝐷, 𝜎 or 

𝑠 [4], [8], [18], [19], and for the horizontal correlation length 𝐿𝐶 or 𝑙 
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[2], [20]. In this study, the standard deviation of the surface height 

variation is denoted by 𝑠 [cm], with its related ACF [-], and the 

horizontal correlation length by 𝑙 [cm], which is the naming 

convention already used, e.g., in [1], [8], [21], [22]. 

For the sake of completeness, it should be mentioned that passive 

microwave retrievals often refer to a different roughness parameter. 

They are using a radiative transfer model to simulate effects of 

surface roughness on measured brightness temperature 𝑇𝐵𝑃 [4]. This 

model is the analytical zero-order solution to the Radiative Transfer 

equation, commonly referred to as the tau-omega (𝜏 − 𝜔) model [23], 

or the L-band Microwave Emission of the Biosphere (L-MEB) model 

[19]. Within these models, soil emission is calculated based on a 

semi-empirical approach first proposed by Wang & Choudhury 1981 

[24], known as 𝐻𝑄𝑁 [20] or 𝐻 − 𝑄 model [25]. Wang & Choudhury 

[24] pointed out that the Fresnel equations can be used to describe the 

reflectivity of a smooth but not a rough soil surface. In the latter case, 

scattering of the incident wave occurs in many directions and the 

reflected parts “in the specular direction would be lower than the 

Fresnel reflectivity” [24]. To account for this fact, the soil roughness 

loss factor, ℎ = 𝐻𝑅  · 𝑐𝑜𝑠𝑁𝜃, was introduced [4] to consider 

reflectivity losses caused by increasing surface roughness. Here, a 

different roughness parameter, called 𝐻𝑅 [19], is used to characterize 

roughness effects on passive microwave signatures.  

In this study, we determine the vertical RMS height and the 

horizontal correlation length of a surface, and can link ℎ with 𝑠 by 

𝐻𝑅 = (2 · 𝑠 · 𝑘)2, where 𝑘 [cm-1] is the wave number (𝑘 =  2𝜋 𝜆⁄ ) 

[4], [18], [19], [26]. In the 𝐻𝑄𝑁 model, the parameter 𝑄 is called the 

polarization mixing factor which accounts for differences in values 

between the horizontal and the vertical polarization. Lastly, within 

the 𝐻𝑄𝑁 model to describe the reflectivity of a rough surface, the 

parameter 𝑁 accounts for multi-angular and dual-polarization 

measurements which is set equal to two in most studies [20], [24].  

In addition to 𝑠 and 𝑙, a third roughness parameter is important for 

some surface models, such as the improved Integral Enhanced 

Method (I2EM). This parameter is called the roughness slope 𝑚, 

which can be calculated by 𝑚 =  𝑠/𝑙. The slope 𝑚 should in general 

for L-band be lower than 0.3 [8] or 0.4 [27] in case of single 

scattering and bare soil surfaces with moderate RMS heights [28].  

When remotely sensing soil surfaces, the roughness of one surface 

always depends on the wavelength of the observation system. Hence, 

𝑠 and 𝑙 are estimated in wavelength units and have to be scaled by the 

wave number 𝑘 to the units of meters. Because of this wavelength 

dependence, it is important at which scale surface roughness is 

observed. Depending on the wavelength and the incidence angle of 

the microwave sensor, it can be observed at small, medium or large 

scale. In general, with decreasing wavelength or increasing incidence 

angle, roughness is observed at smaller scales. In the field of 

microwave remote sensing, surface roughness is mainly observed at 

centimeter scale, since “[a]t microwave frequencies, the wavelength 

is on the order of centimeters to a few tens of centimeters” [8]. 

The objective of this study is to simultaneously determine the 

vertical (𝑠) and horizontal (𝑙) components of soil surface roughness 

through the combination of active and passive microwave data. 

C. Advantage of Active and Passive Microwave Signature 

Combination 

As an example of how the joint use of radar and radiometer can 

improve soil moisture estimations, Fig. 1 shows overlays of radar-

only and radiometer-only cost functions along permittivity 𝜀𝑠 and 

roughness parameter s. 

Similar to Akbar et al. the computed backscatter 𝛥 |𝑆𝑃𝑃|2 (radar-

only) and emission 𝛥 𝐸𝑃 (radiometer-only) spaces are displayed for a 

vector of unknowns (x̅ = [𝜀𝑠, 𝑠, 𝑙]) [29]. 𝜀𝑠 ranges from 2.6 to 50 in 

0.1 steps, 𝑠 values from 0.05 cm to 10 cm, and 𝑙 values from 1 cm to 

21 cm, each in 0.1 cm steps. In Fig. 1, we assume 𝑙 = 14 cm and plot 

𝛥 |𝑆𝑃𝑃|2 < 30 dB and 𝛥 𝐸𝑃 < 0.01 [−] to emphasize model 

predictions in the vicinity of the true test point (red circle), which is 

the global minimum of the cost function. The results for the 

horizontal polarization (cf. Fig. 1A) and the vertical polarization (cf. 

Fig. 1B) are shown individually since “scattering polarization 

behaviors are different” [29]. 

It can be understood from Fig. 1 that the possible range of valid 

permittivity values that yield 𝛥 |𝑆𝑃𝑃|2 ≅ 0 extend over the entire 

range of initial 𝜀𝑠 values. This holds true for both polarizations. The 

possible range of values for 𝑠 spans from 1.2 cm to 5 cm. In the case 

of the radiometer, the possible range of permittivity values is slightly 

reduced and extends from 14 to 50 for the horizontal polarization (cf. 

Fig. 1A) and from 14 to 30 for the vertical polarization (cf. Fig. 1B). 

However, the range of possible values for 𝑠 now covers the entire 

range of initial 𝑠 values (from 0.05 cm to 5 cm). Therefore, if only 

radars or radiometers are used, it is not clear which pairs (𝜀𝑠, 𝑠) lead 

to most accurate estimates. This disadvantage is further amplified by 

the presence of measurement noise. 

By combining radar- and radiometer-only cost functions, the search 

space for optimum parameter values is significantly reduced, since 

the complementary physics of backscatter and emission limits the 

possible parameter search space. Consequently, lower retrieval errors 

can be achieved compared to retrievals only based on one sensor. The 

combined approach effectively reduces the susceptibility of radars to 

permittivity and the susceptibility of radiometers to roughness. 

 

 

Fig. 1.  Overlay of radar-only (𝛥 |𝑆𝑃𝑃|2 = ||𝑆𝑃𝑃|2(𝑥̅) −  |𝑆𝑃𝑃|2
𝑇𝑟𝑢𝑒|

2
 [dB]) 

and radiometer-only (𝛥 𝐸𝑃 =  |𝐸𝑃(𝑥̅) − 𝐸𝑃 𝑇𝑟𝑢𝑒
|2 [-]) cost functions modelled 

with I2EM assuming a Gaussian ACF: (A) Overlay for horizontal polarization, 

(B) Overlay for vertical polarization. Red circles are the true test point (global 

minimum) at input parameters 𝜀𝑠 = 15 [−], 𝑠 = 2 𝑐𝑚 and 𝑙 = 14 𝑐𝑚. Study 

similar to Akbar et al., 2017 [29]. 
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II. DATA 

Data for this study come from the NASA SMAP mission [3]. This 

mission was launched in 2015 with the aim to exploit synergies 

between active and passive instruments at L-band frequency. It is the 

first soil moisture dedicated space-borne mission developed to 

provide moisture products from active and passive microwave 

satellite data [3], [30]. Unfortunately, the SMAP radar went out of 

service in July 2015 after only three months of operations, but the 

SMAP radiometer continues to deliver high-quality data [29]. Due to 

the radar failure, the investigation period with SMAP data in this 

study is limited to the period from 14th of April until 7th of July 2015.  

The data used in this study are the SMAP L1B Radar Half-Orbit 

Time-Ordered low resolution backscatter |𝑆𝑃𝑃|2 [31], the SMAP L1C 

Radiometer Half-Orbit Time-Ordered Brightness Temperatures 𝑇𝐵𝑃 

[32], the physical soil temperature 𝑇𝑆 and soil moisture obtained from 

the SMAP L3SM_P products [33], all posted on a 36 km Equal-Area 

Scalable Earth-2 (EASE-2) grid [34], [35]. 

In order to guarantee analyses exclusively over bare soils we filter 

the global surface roughness results for vegetation, water or snow. 

We used the vegetation optical depth (VOD) posted on a 36 km 

EASE-2 grid from the SMAP dataset processed with the multi-

temporal dual-channel retrieval algorithm (MT-DCA) [35], and the 

surface condition quality flags for snow and frozen ground from the 

SMAP L3 Radiometer Global and Northern Hemisphere Daily 36 km 

EASE-Grid Freeze/Thaw State [36] for filtering.  Pixels with VOD 

greater than 0.06, with more than one day covered by snow or frozen 

ground during the investigation period, or with more than 5% water 

fraction are masked out. 

III. METHODS 

Simultaneous acquisition of radar (|𝑆𝐻𝐻|2 and |𝑆𝑉𝑉|2) and 

radiometer (𝑇𝐵𝐻 and 𝑇𝐵𝑉) measurements allows concurrent 

estimation of up to three unknown parameters – roughness 

parameters 𝑠, 𝑙 and permittivity 𝜀𝑠 (cf. sec. I.A.). 

In this bare surface study, we concurrently determine 𝑠 and 𝑙 by 

first relating backscatter and emission through the 𝑝-polarized 

smooth surface reflectivity term 𝑟𝑃 [23], [37]. This specific linkage 

enables isolating 𝑟𝑃 as a function of permittivity 𝜀𝑠.  

Soil emission can be written as function of a roughness loss term, 

𝑓𝑒(𝑠, 𝑙), and 𝑟𝑃 [23], [37]: 

 

𝐸𝑃 = 1 − 𝑓𝑒(𝑠, 𝑙) · 𝑟𝑃(𝜀𝑠).                           (1) 
 

Likewise, the total surface backscatter can be expressed as the 

product of another roughness loss term 𝑓𝑠(𝑠, 𝑙) and 𝑟𝑃 [38]: 

 

|𝑆𝑃𝑃|2 = 𝑓𝑠(𝑠, 𝑙) · 𝑟𝑃(𝜀𝑠).         (2) 
 

By isolating the smooth surface reflectivity term 𝑟𝑃(𝜀𝑠) in (1) and 

(2), we can link emission with backscatter in the absence of 

vegetation through active-passive microwave covariation 𝛽𝑃−𝑃𝑃 [38]: 

 
𝑓𝑒(𝑠,𝑙)

𝑓𝑠(𝑠,𝑙)
=  

𝐸𝑃−1

|𝑆𝑃𝑃|2 =
𝑇𝐵𝑃 𝑇𝑆⁄ −1

|𝑆𝑃𝑃|2 = 𝛽𝑃−𝑃𝑃(𝑠, 𝑙),    (3) 

 

where 𝑇𝑆 is the surface physical temperature within the top 5 cm of 

the soil [2]. 

In (3) 𝛽𝑃−𝑃𝑃 is referred to as the covariation parameter, for 

respective polarization 𝑃. The specific form of (3) allows us to 

calculate 𝛽𝑃−𝑃𝑃 based on physical models of bare surface backscatter 

and emission, 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 [-]. Coincidentally, 𝛽𝑃−𝑃𝑃 can also be 

calculated from quasi-simultaneously acquired active and passive 

microwave measurements, henceforth 𝛽𝑃−𝑃𝑃 
𝐷𝑎𝑡𝑎 . The only limiting 

factor is that both sensors (radar and radiometer) must have the same 

spatial resolution in order to observe roughness at the same scale. 

For surface roughness estimation, we calculate 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 and 𝛽𝑃−𝑃𝑃 

𝐷𝑎𝑡𝑎  

based on simulated and data-based backscatter and emission, 

respectively. Then, we minimize the absolute difference between 

model prediction 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 and the calculated observations-driven 

𝛽𝑃−𝑃𝑃 
𝐷𝑎𝑡𝑎  for 𝑠 and 𝑙 estimation. To ensure valid roughness estimation, 

we used the roughness slope with 𝑚 < 0.3 as a threshold (cf. sec. 

I.B.). This condition is also used as validity criterion for the Small 

Perturbation Model (SPM) [8] which is embedded in I2EM when L-

band frequency is applied. The details for modelled and data-based 

covariation parameters are as follows. 

A. Model-based Retrieval of Active-Passive Microwave Covariation 

𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 is calculated by forward simulations of surface emission 

(𝐸𝑃) and backscatter (|𝑆𝑃𝑃|2) using (3). To proceed, we first defined 

a valid range of values for 𝑠 ∈ [0, 5] cm in 0.25 cm steps, and 

𝑙 ∈ [1, 40] cm in 1.0 cm steps. The third input parameter is soil 

permittivity and ranges from 𝜀𝑠 ∈ [2, 50] in 1.0 steps. Furthermore, 𝑠 

and 𝑙 are calculated using both Gaussian and Exponential ACFs.  
In this study we simulate backscatter and emission values with the 

I2EM to calculate 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 [8]. The reason for employing the I2EM is 

its physical basis for backscatter and emission based on 𝑠 and 𝑙, 
frequency 𝑓, incident angle 𝜃 and permittivity 𝜀𝑠 [8], [39], [40]. 

Because of its analytical formulation, I2EM is preferred over 

computationally more expensive numerical methods, such as the 

Numerical Maxwell Model in 3-D (NMM3D) [41]. 

B. Data-based Retrieval of Active-Passive Microwave Covariation 

The covariation parameter, calculated with SMAP data inserted in 

(3), is called data-based covariation parameter 𝛽𝑃−𝑃𝑃 
𝐷𝑎𝑡𝑎  [-]. In this 

study, 𝛽𝑃−𝑃𝑃 
𝐷𝑎𝑡𝑎 , is calculated based on SMAP observations specified in 

section II. 

IV.  SENSITIVITY ANALYSIS 

As mentioned above, we eliminate the smooth surface reflectivity 

term as a function of permittivity 𝜀𝑠 in order to solve for two 

unknowns at the same time, the surface roughness parameters 𝑠 and 𝑙. 
𝜀𝑠 is hence only an input variable for the simulations of backscatter 

and emission. In order to evaluate the permittivity dependence of our 

proposed covariation-based retrieval algorithm, we compared the full 

range of physically reasonable 𝜀𝑠-values with the estimated model-

based covariation parameter 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙, computed with NMM3D as well 

as I2EM (cf. sec. III.A.). As shown in Fig. 2, 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 remains nearly 

constant over the entire range of permittivity values for both 

employed models except for small permittivity values. 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 

changes only for 𝜀𝑠 lower than approx. ten, representing arid and 

hyper-arid soils. The reason for this is found in the formulation of 

covariation with emission over backscatter (cf. (3), sec. III.). The 

backscatter falls exponentially to very low values for these small 

permittivity values, which in turn causes larger dynamics in 

covariation. However, for 𝜀𝑠 > 10 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 is insensitive to 

permittivity dynamics. Consequently, the retrieval algorithm is 

independent of permittivity variations in case of non-arid soils. 

V. RESULTS 

This section presents the roughness results obtained from SMAP 

observations using the proposed covariation-based active-passive 

algorithm (cf. (3), sec. III.). Additionally, the results for varying 

ACFs are compared and analyzed in the context of changing weather 

and soil conditions. 

A. Results of Surface Roughness Parameter Estimation 

In the following, the retrieval results for the roughness parameters 

𝑠 and 𝑙 are presented. Note that the proposed approach only applies to  
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Fig.  2.  Influence of soil permittivity 𝜀𝑠 on covariation parameter 𝛽𝑃−𝑃𝑃

𝑀𝑜𝑑𝑒𝑙 modelled with NMM3D or I2EM assuming a Gaussian ACF, 𝑠 of 0.5 cm, 1.5 cm and 3 

cm and the ratio 𝑙/𝑠 of 4 cm, 7 cm and 10 cm. (A) NMM3D results for 𝛽𝐻−𝐻𝐻
𝑀𝑜𝑑𝑒𝑙, (B) NMM3D results for 𝛽𝑉−𝑉𝑉

𝑀𝑜𝑑𝑒𝑙, (C) I2EM results for 𝛽𝐻−𝐻𝐻
𝑀𝑜𝑑𝑒𝑙, (D) I2EM results for 

𝛽𝑉−𝑉𝑉
𝑀𝑜𝑑𝑒𝑙. The y-axes are interrupted since 𝛽𝑃−𝑃𝑃

𝑀𝑜𝑑𝑒𝑙 increases to large negative values for very smooth surfaces. 

bare surfaces. These regions are located almost exclusively in North 

Africa, Asia or Australia. For reasons of better readability, we will 

therefore only display results for this sub-region. 

Figure 3 illustrates the median of estimated 𝑠 and 𝑙 for the sub-

region Africa-Asia-Australia, which were calculated assuming a 

Gaussian ACF. The results for 𝑠 are between 0.35 cm and 7 cm, with 

a majority of the values (~72.3%) between 0.35 cm and 2.5 cm. The 

lowest values for 𝑠 are found within the Sahara, and the highest 

values at the edges of deserts (e.g. Sahara, Gobi) or in the Arabian 

Peninsula due to increasing vegetation cover (e.g. shrublands) or 

rocks (cf. Fig. 3A). The results for 𝑙 range between 1.75 cm and 20.5 

cm, with correlation lengths mostly (~86.4%) of 6 cm to 16 cm. The 

lowest values for 𝑙 are estimated, for example, in the Sahara or in the 

southern part of Australia. The highest values for 𝑙 are found in the 

northwestern part of Australia as well as in Kazakhstan and Mongolia 

(cf. Fig. 3B). 

Comparing the roughness estimates calculated assuming either a 

Gaussian (cf. Fig. 3) or an exponential ACF (cf. Fig. 4), the 

roughness patterns for the two ACFs generally appear similar. 

However, results for the Gaussian ACF are higher for 𝑠 and lower for 

𝑙 compared to the results for the exponential ACF. About 72.3% of 

all 𝑠 values assuming a Gaussian ACF are between 0.35 cm and 2.5 

cm, whereas over 82.2% of all 𝑠 values are located in the same range 

when assuming an exponential ACF. In addition, over 86.4% of 

values for 𝑙 are located between 6 cm to 16 cm for the Gaussian ACF, 

but only 60.2% are located in that same range for the exponential 

ACF, since overall larger 𝑙 values are retrieved (cf. Fig. 4). 

In summary, comparisons between both types of ACFs for the 

retrieved 𝑠 values show overall smaller 𝑠 in case of an exponential 

ACF (cf. Figs. 3A, 4A). For 𝑙 it is the other way round, since 

correlation lengths are lower if a Gaussian ACF is assumed (cf. Figs. 

3B, 4B). 

Based on estimated roughness results for 𝑠 and with 𝑁 = 2 (cf. sec. 

I.B.), the roughness loss factor ℎ is calculated assuming a Gaussian 

ACF (cf. Fig. 5A) or an exponential ACF (cf. Fig. 5B). The values 

for ℎ are in the range between 0 and 2. As can be seen in Fig. 5, 

assuming a Gaussian ACF, the majority of values (~79.7%) are 

located between 0 and 1.5 with a peak between 0.6 and 0.7 (cf. inset 

of Fig. 5A). 

 

 
Fig. 3.  Temporal median (April-July 2015) of estimated surface roughness 

parameters 𝑠 and 𝑙 from SMAP observations for the sub-region Africa-Asia-

Australia assuming a Gaussian ACF. (A) Vertical RMS height 𝑠, (B) 

Horizontal correlation length 𝑙. 
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In case of an exponential ACF, approx. 86.1% of all values for ℎ 

are located in the range between 0 and 1.5. However, its peak is also 

between 0.6 and 0.7, whereas the magnitude is dropping significantly 

towards higher values. Hence, overall lower values for ℎ are obtained 

assuming an exponential instead of a Gaussian ACF. By definition, 

the spatial patterns of ℎ are equivalent to the ones of 𝑠 (cf. Fig. 3-5). 

 
Fig. 6.  Comparison of the normalized power spectra [-] for the Gaussian 

(black line) and exponential (blue dashdot line) autocorrelation functions 

(ACF) at L-band (red dashed line) along wave number k [cm-1], calculated 
based on (9) and (10) of [42]. 

For a more detailed investigation of the differences between the 

results of both ACFs, we analyzed their power spectra, as described 

in [42]. Defined as “a measure of the amplitude of each Fourier 

component scattered by a rough surface” [43], the power spectrum 

explains the surface type assumed for the ACF. We calculated the 

respective power spectrum for both ACFs along different wave 

numbers according to [42] and normalized them by their respective 

amplitude to allow direct comparisons. 

Fig. 6 shows the normalized power spectra of both ACFs and the 

case for L-band (𝜆 = 21 cm) as a red dashed line. The roughness 

values calculated with an exponential ACF stay below the level of the 

values calculated with Gaussian ACF. Hence, the Gaussian ACF 

describes a rougher soil surface, whereas the exponential ACF 

describes a smoother soil surface at L-band, according to presented 

retrieval results displayed in Fig. 3 and 4. 

B. Comparison of Surface Roughness Estimates with Precipitation 

and Soil Conditions  

Analyses are performed to investigate possible correlations 

between estimated roughness parameters and external factors such as 

weather or soil conditions. 

We used data from the Yanco Agricultural Institute, Bureau of 

Meteorology, Australia [44] to investigate the influence of 

precipitation on soil surface roughness.  

In Fig. 7 we compare the daily in situ precipitation measurements 

and the corresponding SMAP soil moisture [33] values with 

roughness retrieval results at the Yanco test site, Australia. It can be 

seen that soil moisture and precipitation follow each other and 

correlate, as expected. However, both show no correlation with the 

SMAP-based results for 𝑠 and 𝑙, regardless the type of ACF (cf. Fig. 

7). This lack of correlation between roughness results and 

precipitation was also tested between roughness and soil moisture for 

the entire sub-region Africa-Asia-Australia (not shown here). 

Analysis of temporal correlation between the change of estimated 

roughness parameters 𝑠 and 𝑙 and the SMAP soil moisture dynamics 

show no significant correlation, whereby the most frequent value in 

the analyzed histograms is zero with a standard deviation of 0.14. 

In addition, the estimated roughness patterns were compared with 

VOD from SMAP MT-DCA retrievals [35] and sand or clay fractions 

of soils from [45], both posted on the 36 km EASE-2 grid. 

 
Fig. 4.  Temporal median (April-July 2015) of estimated surface roughness 

parameters 𝑠 and 𝑙 from SMAP observations for the sub-region Africa-Asia-

Australia assuming an exponential ACF. (A) Vertical RMS height 𝑠, (B) 

Horizontal correlation length 𝑙. 

  

Fig. 5.  Temporal median (April-July 2015) of estimated roughness loss factor 

ℎ for the sub-region Africa-Asia-Australia based on surface roughness 

parameters 𝑠 from SMAP observations. (A) Gaussian ACF, (B) Exponential 
ACF. 
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Fig. 7.  Daily precipitation measurements from the Yanco agricultural 

institute, Bureau of Meteorology, Australia [44] (bright blue bars) and soil 

moisture from SMAP [33] (dark blue stars) in comparison with retrieval 

results for surface roughness parameters 𝑠 and 𝑙, based on SMAP 

observations, assuming a Gaussian ACF (black bars) or exponential ACF 
(gray bars), at the Yanco weather station (NSW, 34.60°S, 146.42°E). 

 
Fig. 8.  Comparison of estimated surface roughness parameters 𝑠 and 𝑙 with 
vegetation optical depth (VOD) [-] [35], both from SMAP observations for the 

sub-region Africa-Asia-Australia. (A) Gaussian ACF, (B) Exponential ACF. 

Fig. 8 shows that retrieval results for 𝑠 are slightly increasing until 

VOD class 0.015 to 0.03 and then slightly decrease. In contrast, 

results for 𝑙 are slightly decreasing until VOD class 0.015 to 0.03 and 

then slightly increase. Despite the overall similar distribution 

patterns, the value ranges for both ACFs are significantly different 

for roughness parameter 𝑙, with much larger ranges for the 

exponential ACF. However, no influence of vegetation could be 

observed at higher VOD values. In extended analyses up to VOD of 

1.12 (not shown here), we get higher values for 𝑠 and lower values 

for 𝑙. Reason for this is that with increasing vegetation canopy we 

rather get a mix of signal effects from ground (roughness) and 

vegetation. The value ranges of estimated 𝑠 and 𝑙 for all VOD classes 

from 0 to 0.06 thus confirm the effective filtering before estimating 

the surface roughness parameters (cf. Section II.). 

 
Fig. 9.  Comparison of estimated surface roughness parameters 𝑠 and 𝑙 
retrieved from SMAP observations with sand fractions from [45] for the sub-

region Africa-Asia-Australia. (A) Gaussian ACF, (B) Exponential ACF. 

Lastly, we compared surface roughness results with the sand and 

clay fractions used as ancillary data within the SMAP parameter 

retrievals [45]. Fig. 9 shows that the overall distribution patterns are 

quite similar for both employed ACFs. Similar to results displayed in 

Fig. 8, the value ranges are larger for the exponential ACF than for 

the Gaussian ACF. It can be seen that estimated 𝑠 peaks for the 

smallest sand fraction (0-10%). On the contrary, results for estimated 

𝑙 are lowest for the smallest sand fraction. Additionally, the overall 

dynamic of 𝑙 along increasing sand fractions (from 20% to 90%) is 

very low with absolute differences in median values of only 0.75 cm 

(Gaussian ACF), and 2.5 cm (exponential ACF) (cf. Fig. 9). In 

summary, the value ranges for 𝑠 are similar for both ACFs, whereas 

the ranges for 𝑙 assuming an exponential ACF are approximately two 

to three times larger than for the Gaussian ACF. However, the 

variation between sand fractions is reasonable and does not show a 

distinct correlation between roughness parameters and sand fractions. 

When comparing the roughness results with clay fractions (not shown 

here), the most significant finding is that there is no correlation 

between clay fractions and the soil surface roughness parameters, 

similar to the case for sand fractions. Another finding is that there are 
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no estimates of 𝑠 and 𝑙 for clay fractions greater than 70%. The fact 

that no roughness results overlap with clay fractions greater than 70% 

is consistent with the global distribution of clay fractions from the 

Harmonized World Soil Database (HWSD) [46]. 

VI.  DISCUSSION 

Our covariation-based approach requires equivalent spatial 

resolution for radar and radiometer acquisitions in order to observe 

roughness at the same scale. Most spaceborne radar sensors provide a 

much higher resolution than radiometer sensors. In the case of the 

SMAP mission, the radar had a spatial resolution of ~3 km until its 

failure, whereas the radiometer has a resolution of ~40 km [3]. Since 

our approach is limited to simultaneously acquired polarimetric 

active/passive microwave datasets with comparable spatial 

resolutions, data suitable beyond this study include the airborne 

PALS datasets [14], [47] or the spaceborne AQUARIUS data [48]. 

Despite these limitations in acquisition and resolution, our roughness 

retrieval technique outperforms any ground-based sensing method in 

terms of acquisition time and spatial coverage.  

The covariation-based approach including the forward model I2EM 

for the retrieval of 𝑠 and 𝑙 provides the possibility of employing 

varying ACFs and the simultaneous estimation of both roughness 

components with centimeter precision. By using the I2EM we 

extended the valid restrictions for possible surface roughness scales 

compared to, for instance, the SPM, and the applicability also for a 

broader range of frequencies [8]. The study from [39] showed that the 

I2EM is in good agreement with the SPM at low frequencies and with 

the standard Kirchhoff model (KM) at high frequency regions. 

Within the proposed approach, we consider the two commonly 

applied ACFs of Gaussian and exponential type for characterization 

of the soil surface. Previous studies by [21] and [49] showed that for 

rather smooth bare surfaces the correlation function is close to the 

exponential ACF, whereas for very rough surfaces it is close to the 

Gaussian ACF. Especially for surface roughness of agriculturally 

managed soils, parameterization is more complex and variable, since 

the ACF is affected by the characteristics of tillage, spanning several 

roughness scales. Nonetheless, also for agriculturally managed soils 

most studies confirm an exponential ACF for smooth and Gaussian 

ACF for very rough surfaces (e.g. after plowing) [21], [50], [51]. 

Moreover, previous studies pointed out that surface roughness 

parameters are close to an exponential ACF when sensing over bare 

soils at L-Band [11], [25], [52]. Comparison of roughness results 

outlined the differences between both ACFs. We estimated values for 

𝑠 mainly in the range between 0.35 cm and 2.5 cm and for 𝑙 between 

6 cm to 16 cm, assuming a Gaussian ACF. For the assumption of an 

exponential ACF we estimated overall lower 𝑠 and higher 𝑙 values.  
Thus, the exponential ACF describes a smoother roughness pattern 

whereas the Gaussian ACF describes a rather rough surface 

roughness pattern, equivalent to literature [21], [50], [51]. Ogilvy and 

Foster [43] investigated in a numerical study Gaussian and 

exponential correlation functions of theoretically generated random 

rough surfaces. They found that the exponential ACF tends to 

correlate roughness on a fine scale due to a rapid loss of correlation. 

By contrast, the Gaussian ACF decreases more slowly over distance 

and hence tends to correlate roughness not on a very fine scale [43]. 

Their explanation for varying roughness correlations was found to be 

the shape of the respective power spectra. In the case of the 

exponential ACF, it is a Lorentzian transform of the correlation 

function, whereas in the case of the Gaussian ACF it is given by the 

Fourier transform of the correlation function [43]. Hence, the 

influence of the employed ACF type is distinct and the assumption of 

Zhixiong et al. that for homogeneous agricultural fields the ACF is 

unrelated to surface roughness conditions cannot be confirmed here 

[53]. 

In this study, we also presented results for the roughness loss factor 

ℎ, which is the prominent parameter used in passive microwave 

retrievals based on the 𝐻𝑄𝑁-model [20], [24] (cf. sec. I.B.). Results 

for ℎ are located mainly between 0 and 1.5 with most values between 

0.6 and 0.7, independent of the employed type of ACF. In the 

literature, typical values for 𝐻𝑅 are located between 0 and 1.7, 

depending on the type and amount of vegetation canopy [20]. These 

correspond to ℎ values between 0 and 1 (cf. sec. I.B.). Values for 𝐻𝑅 

greater than 1 are only estimated for forests, with typical values for 

grass or open shrublands mostly around 0.4 [20], which equals an ℎ 

value of 0.23. With our covariation-based approach, where ℎ peaks 

between 0.6 and 0.7, we are apparently overestimating ℎ since our 

study areas are limited to bare soils only. Nonetheless, similar studies 

which are estimating the single scattering albedo 𝜔 directly instead 

within the 𝜏 − 𝜔 model are also retrieving higher values compared to 

theoretical definitions [54]. Hence, we directly retrieve 𝑠 and 

subsequently ℎ, with estimated roughness values for ℎ fitting to the 

expected smooth to moderately rough bare surfaces. 

For detailed analyses of globally retrieved roughness patterns from 

SMAP observations, we compared results for 𝑠 and 𝑙 with sand or 

clay fractions. From those analyses it can be understood that for our 

study setup the respective sand or clay fraction of a soil shows no 

distinct influence on 𝑠 and 𝑙. However, we compared all roughness 

results retrieved from SMAP observations at once. This means that 

we do not consider different types of soils. Thus, comparisons of 

roughness results with individual major soil types to account for sand 

or clay dominated soils is needed to investigate the relation between 

surface roughness and specific soil types in more detail [55]. 

VII. SUMMARY AND CONCLUSIONS 

This study presents a covariation-based active-passive microwave 

retrieval algorithm for simultaneous estimation of vertical and 

horizontal soil surface roughness components (𝑠, 𝑙) from bare soils. 

Within this approach we use radar and radiometer data from both 

horizontal and vertical polarizations with equivalent spatial resolution 

to calculate the active-passive microwave covariation for each 

individual radar-radiometer acquisition pair (no time series needed). 

This way, the approach enables a simultaneous retrieval of both 

roughness parameters (𝑠, 𝑙) over a larger area (compared to in situ 

measurements).  

Results show that the proposed approach leads to valid retrievals of 

𝑠 and 𝑙, with consistencies of more than 90% between model 

simulations and roughness results. 

By conducting a series of sensitivity tests, it was found that the 

influence of permittivity (soil moisture) on our covariation-based 

approach is only significant for arid soils with εs < 10 (cf. sec. IV). 

We also tested the effectiveness of our filtering of data, in order to 

ensure analyses exclusively over bare soils, based on VOD values. 

Since no influence of vegetation could be observed at higher VOD 

values we concluded that the filtering prior to the estimation of 

roughness results for vegetation was successful.  

Moreover, no significant correlation between precipitation and 

surface roughness parameters could be found despite the often 

applied assumption that soil surface roughness smoothens with 

precipitation. One reason could be that this assumption only applies 

to agricultural managed soils after tilling. Furthermore, results outline 

that changes in surface roughness are not correlated to changes in soil 

moisture. Similar to correlations between estimated roughness 

patterns and precipitation or soil moisture, no correlation could be 

found between roughness parameters and sand or clay fractions. The 

reason for the lack of correlations in all correlation analyses might be 

that we investigate global roughness patterns from SMAP 

observations with ~36 km spatial resolution where precipitation 

effects might be nondominant in the recorded signal. 

Detailed investigations regarding the influence of the assumed type 

of ACF revealed that both Gaussian and exponential ACF describe 

different types of roughness patterns, and our conclusions are 
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consistent with previous studies. Hence, the employed type of ACF 

for surface roughness estimation is crucial and must be considered 

carefully. 

In summary, the retrieved roughness parameters have the potential 

to improve soil moisture estimates, even from satellite data and for 

global scales. This supports soil moisture estimation for 

hydrometeorology or climate research. 

The proposed technique for surface roughness retrieval from 

combined active and passive microwave signatures is currently 

limited to bare soils. In order to enable the estimation under vegetated 

soils, our covariation-based algorithm needs to be updated for 

vegetation-based scattering as well as emission [38]. 
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