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ABSTRACT
Software repositories contain information about source code, soft-

ware development processes, and team interactions. We combine

provenance of the development process with code security analysis

to automatically discover insights. This provides fast feedback on

the software’s design and security issues, which we evaluate on

projects that are developed under time pressure, such as Germany’s

COVID-19 contact tracing app ‘Corona-Warn-App’.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering→ Software libraries and repos-
itories; Software defect analysis; • Information systems→ Data
mining; •Human-centered computing→ Open source software.
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1 INTRODUCTION
Software repositories contain much information besides the source

code itself. Especially for Open Source projects, the team compo-

sition and development process is transparent and traceable and

can be evaluated at any point of time by, for example, continuous

evaluation with regards to security by automated analysis [8].

The COVID-19 pandemic raises challenges for scientists of many

disciplines. Computer scientists and software developers help to

fight the pandemic with software systems, which must be devel-

oped under time pressure [2], with high quality, and with accepted

concepts for data security and privacy.

For example, apps for mobile devices that support contact tracing
of infected persons are useful to identify local COVID-19 hot-spots

and find other persons, who are potentially infected, too. For contact

tracing, several architectures are possible and have been discussed—

sometimes very controversial—in many countries. Two favoured

approaches are centralized and decentralized architectures; both

using Bluetooth Low Energy for contact identification. Apple and

Google developed an Exposure Notification API1 as extension of

their operating systems iOS and Android, which developers of ex-

posure notification apps can use for privacy-preserving contact

tracing. We focus on the German decentralized exposure notifica-

tion app Corona-Warn-App2 (CWA; see Section 2).

Our main contributions towards our vision of an automated,
provenance-driven security audit infrastructure for Open Source soft-
ware are:

• We give an overview of static code analysis, which we use

for our purpose (Section 3).

• We describe our method for querying the development pro-

cess by using provenance (Section 4).

• We outline our ongoing efforts on combining information

from process provenance with static code analysis for some

specific revisions of the source code (Section 5).

1
https://www.apple.com/covid19/contacttracing/

2
https://github.com/corona-warn-app
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2 DEVELOPMENT OF THE
“CORONA-WARN-APP”

The development of the Corona-Warn-App gets special attention

during the COVID-19 pandemic; the development had to be done

in a short time frame: development started in April 2020 and the

app was released on 16
th

June, 2020 for Android and iOS. CWA

is developed by SAP and Telekom using a transparent and open

development process. CWA has a decentralized architecture, ac-

companied by centrally-managed Java-based server applications

to distribute findings about infected users and store test results

uploaded by the laboratories.

CWA development history is publicly available from 12 reposi-

tories (some of them auxiliary), including data since April 29th, for

source code changes (5,624 git commits; Figure 1), issue tracking

(1,397 GitHub issues) and code review (2,144 GitHub pull requests)
3
.

The human team participating in the development is composed of

306 persons authoring code changes. Having into account the short

time span, this amounts to a considerable effort, and suggests that

most of the real activity is shown in these public repositories.

Figure 1: Code commits for the Corona-Warn-App reposito-
ries over time.

The analysis of the software development context for applica-

tions, by retrieving metadata from software repositories, has been

an active area of research since the early 2000s [14, 21]. During

this time several tools have been developed to get some metrics

about the software development process and the team building it.

We use GrimoireLab
4
, a toolset for retrieving data from software

development repositories, store it, and perform some analytics via

its SaaS instance Cauldron
5
to produce statistics for the CWA. In

this case, the context analysis ensures that the data analyzed for

provenance is likely real (e.g., it is not likely that the analyzed

repositories are not “dump repositories”, where code is copied from

time to time, while the real activity happens elsewhere), and gives

an idea of the volume of activity caused by the project. In a more

complete analysis, software development analytics may comple-

ment our provenance analysis by providing insights about how the

different actors behave in the project, and how their contributions

are related and processed.

3
All numbers are for July 20th.

4
GrimoireLab: http://chaoss.github.io/grimoirelab

5
Cauldron: https://cauldron.io

3 CODE AUDIT WITH STATIC ANALYSIS
Static code analysis is a provenmethod for program analysis and can

be used as an early indicator for identifying pre-release defects [11].

Static analysis of program code spans a spectrum of tools, rang-

ing from linters, which check adherence of code to coding standards
on a syntactical level, to full-fledged verification tools, which for-

mally prove properties of the code. Checked properties also cover

multiple aspects of program code, including null pointer errors,

memory-related errors, concurrency bugs, taint-related problems

(i.e., data leaks and injection vulnerabilities). In our analysis, we

static analysis tools for Java, Kotlin, and Android (Table 1).

Table 1: Used static analysis tools.

Static analysis tool Category
Xanitizer taint analysis

infer formal verification

Spotbugs coding rules

Detekt coding rules

Checkstyle linter, coding rules

Flowdroid taint analysis

SonarQube linter, coding rules

Static analysis tools can be integrated at various points in a

developer’s lifecycle, while coding in terms of IDE plugins, when

committing to a developer repository, either in batch mode or at

diff-time, or when conducting quality insurance.

The usability of static analysis is known to be influenced by

factors such as false-positive ratio, understandable and actionable

analysis results, and integration with developer workflow [7, 16].

Experiences in large-scale application of static analysis shows, that

integration with developer workflow and reporting bugs as soon

as possible is important.

For example, SonarCloud found a bug, which was introduced to

the repository “cwa-app-android” by the pull request #876 (Fig-

ure 2)
6
. The bug was found by SonarScanner before the pull request

was accepted and the appropriate line should be deleted. The vari-

able denomination fakeHeader gives a further hint, that this code

lines are probably debug code and should not be part of production

code.

Figure 2: Introduced bug ‘CWE-561 – Dead code’, ‘CWE-570 –
expression is always false’, detected by SonarQube Scanner.

6
Pull request #876 was no longer available at the time of publication. Other issues

found in the repository cwa-app-android by Sonarcloud are here: https://sonarcloud.

io/project/issues?id=corona-warn-app_cwa-app-android

16

http://chaoss.github.io/grimoirelab
https://cauldron.io
https://sonarcloud.io/project/issues?id=corona-warn-app_cwa-app-android
https://sonarcloud.io/project/issues?id=corona-warn-app_cwa-app-android


Towards Automated, Provenance-Driven Security Audit for git-Based Repositories SEAD ’20, November 9, 2020, Virtual, USA

4 PROVENANCE OF REPOSITORIES
Software development is a highly complex process involving a wide

range of responsibilities and people. In addition the complexity of

the software itself grows over time. To cope with this different tools

are used to support the development process. During the entire soft-

ware development process, all these support tools produce several

types of data. These large amounts of data, which are generated

before, during, and after the development of a software, can be

analyzed using provenance [10].
Provenance analysis focusing on the development of open source

software projects provides insight into the interactions of people.

These interactions can fall into different categories. The most no-

table interactions in the development of track and trace software for

COVID-19 are those that scrutinise the nature of the data collected

and stored, which is hard for automated processes alone to evaluate

ethical considerations. This can be evident in the provenance by the

number of people collaborating outside of the development team,

the number of developers, and the issues reported. While these

types of measures cannot guarantee the ethics of the software, it

does provide an indication that it has been evaluated by humans.

4.1 Generating Retrospective Provenance for
git Repositories

To analyze the development process, we extract retrospective prove-
nance [9] from repositories and store it in a graph database for fur-

ther analysis (Figure 3) [15]. To extract provenance from git-based

GitHub

Organization corona-warn-app

git 
Repository

cwa-
server

git 
Repository
cwa-app-

ios

git 
Repository
cwa-app-
android

git 
Repository

cwa-
website

git 
Repository

cwa-
documenta

tion

…

Graph 
Database
Neo4j

Provenance
PROV-JSON

Git*2PROV
prov2neo

Contributors/
Team Query
CYPHER

request
(PyGithub)

MERGE

Figure 3: Extracting provenance from git repositories.

projects we use tools, which crawl the git repositories and addi-

tional information, such as issues or pull requests (Git2PROV [3, 19]

and GitHub2PROV [13]). The provenance is generated as a file in

JSON format and then stored in a Neo4j graph database. We note

that while GitHub already provides visualisations for their hosted

projects, the GitHub2PROV model supports bespoke visualisations

that benefit from complex queries across the model’s graph struc-

ture, which are not achievable using GitHub’s API.

4.2 Using and Analyzing Provenance
To analyze the provenance graph, many visual and analytical meth-

ods exist; including semantic reasoning. For example, we illustrate

querying and using the provenance graph for a simple example

query for the CWA repository “cwa-server”: “Which files have
commits by team members as well as external contributors?”

We generate a Cypher query, that adds information about con-

tributors roles. We retrieve member information via the GitHub API

and store it in Python lists of team members and external contrib-

utors, which we insert in a Cypher template. This Cypher query

creates new directed relations between persons (PROV Agents) and
files (PROV Entities); for example, the relation for team members is:

(:Agent)-[:CONTRIBUTES_TO {role: 'team'}]->(:Entity).
Then we query for files, where team members and external

contributor made changes at any of the files revisions (Listing 1).

The query result is exported, either for visualization or as input for

the static code analysis (Section 5).

Listing 1: Find all files where a team member AND an exter-
nal contributor contributed changes.
MATCH

( team_member : Agent )−[ r1 : CONTRIBUTES_TO { r o l e : ' team ' } ]

−>( f : E n t i t y ) <−[ r2 : CONTRIBUTES_TO { r o l e : ' c o n t r i b u t o r ' } ]

−( e x t e r n a l _ c o n t r i b u t o r : Agent )

RETURN
team_member , f , e x t e r n a l _ c o n t r i b u t o r

5 RETROSPECTIVE CODE ANALYSIS FOR
OPEN SOURCE SOFTWARE PROJECTS

For conducting a security analysis of the CWA and its development

process, we integrate the extracted provenance (Section 4) with

bugs or vulnerabilities as reported by the selection of static analysis

tools (Section 3). In our infrastructure (Figure 4), we therefore

consider individual commit snapshots in the history of the CWA

repositories. According to the respective repository, we run certain

static analysis tools on a snapshot, track their reported findings

and save them into a database for later analysis.

Due to the various involved static analysis tools and their differ-

ing report formatting and output granularity, the tools’ findings

need to be consolidated such that, for example, duplicated findings

can be identified. The tools’ reports are therefore parsed to extract

the locations and types of found bugs or vulnerabilities; the latter is

additionally normalized using the Common Weakness Enumeration
(CWE)

7
and other bug ontologies. Interlinking the tools findings

with provenance information is done via the respective snapshot’s

commit hash.

Graph 
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Neo4j

GitHub
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Security 
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File Paths

Parse 
results

Store results
with commit hashes

Figure 4: Commit-hash related security analysis.

Using the combined information then allows various questions

for researching on the CWA development process and how security

has been addressed. For instance:

• Classical hypotheses of empirical software engineering, like

on the correlation of repository metrics as code churn and

7
https://cwe.mitre.org/
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the number of found vulnerabilities or bugs [12], can be

tested for the CWA case study.

• The usage of static analysis tools can be investigated, answer-

ing questions like how effective certain tools—or combina-

tions thereof—were in uncovering bugs or vulnerabilities [5]

or how understandable and usable their reports were [7].

• Characteristics of the vulnerability management in the CWA

app development process can be analyzed quantitatively,

using metrics like mean time to fix [6], or qualitatively, using

fault tree analysis.

6 RELATEDWORK
Baumgärtner et al. [1] categorized occurring security and privacy

risks of existing contact tracing app solutions from amethodological

point of view. They discussed different architectures, conducted an

experimental study, and created a movement profile of an infected

person with an early version of the DP3T app. A similar work by

Vaudenay [18] describes the data exchange of the decentralized

DP3T solution and possible attack scenarios on the communication,

which is always possible without hyperlocal data. He concludes,

that there are downsides in the design of decentralized apps and

shows improvements. Both works did not focus on the software

development itself.

Sun et al. [17] investigate the security of contact tracing applica-

tions by the use of static and dynamic analysis tools. They criticised,

that not all contact tracing app developers make their code publicly

available.

Wang et al. [20] analyzed the activities of much-contributing

developers to open source projects in an empirical study and looked

also on other repository artifacts besides the code. They investigated

the communication between developers and quality of software

with increasing contribution.

7 CONCLUSIONS AND FUTUREWORK
We described our vision for automated, provenance-driven security

analysis of git-based software repositories. A provenance graph

helps to discover hidden information from software repositories

and pinpoint to code changes where static analysis tools should

applied.

In the future, we apply our method on various software projects

where security of the software product is essential. This includes

developing tools and visualizations for developers to investigate

how software is developed, the processes used, and the details

around how security issues are identified and fixed.

Another future work is to capture code insertions and deletions

of individual commits by diff trees [4]. This would enable us to

enrich the provenance information; not just with the static code

view, via the analysis of commit snapshots, but also with a dynamic

view. As a result, sources and fixes of vulnerabilities identified by

static analysis could be better researched.
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