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Abstract: Forests in Germany cover around 11.4 million hectares and, thus, a share of 32% of 

Germany’s surface area. Therefore, forests shape the character of the country’s cultural landscape. 

Germany’s forests fulfil a variety of functions for nature and society, and also play an important 

role in the context of climate levelling. Climate change, manifested via rising temperatures and 

current weather extremes, has a negative impact on the health and development of forests. Within 

the last five years, severe storms, extreme drought, and heat waves, and the subsequent mass 

reproduction of bark beetles have all seriously affected Germany’s forests. Facing the current 

dramatic extent of forest damage and the emerging long-term consequences, the effort to preserve 

forests in Germany, along with their diversity and productivity, is an indispensable task for the 

government. Several German ministries have and plan to initiate measures supporting forest health. 

Quantitative data is one means for sound decision-making to ensure the monitoring of the forest 

and to improve the monitoring of forest damage. In addition to existing forest monitoring systems, 

such as the federal forest inventory, the national crown condition survey, and the national forest 

soil inventory, systematic surveys of forest condition and vulnerability at the national scale can be 

expanded with the help of a satellite-based earth observation. In this review, we analysed and 

categorized all research studies published in the last 20 years that focus on the remote sensing of 

forests in Germany. For this study, 166 citation indexed research publications have been thoroughly 

analysed with respect to publication frequency, location of studies undertaken, spatial and temporal 

scale, coverage of the studies, satellite sensors employed, thematic foci of the studies, and overall 

outcomes, allowing us to identify major research and geoinformation product gaps. 

Keywords: remote sensing; earth observation; forest; forest monitoring; forest disturbances; 

Germany; review 

 

1. Introduction 

1.1. Forests in Germany: Relevance and Current Challenges 

Forests all over the world provide extremely valuable ecosystem services and contribute 

immensely to human well-being. Services can be grouped into provisioning services, supporting 

services, regulating services, and cultural services (Figure 1) [1–4]. Forests provide raw materials, 

such as wood or plant fiber (construction wood, furniture wood, paper, coal, etc.), direct and indirect 
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food products (herbs, fruits, nuts, honey, mushrooms, game, insects etc.), and chemical substances 

and medicinal products (turpentine, oils, resinate, etc.), as well as oftentimes granting access to pure 

water sources. Forests support habitats for flora and fauna, are home to a large wealth of biodiversity, 

and contribute to soil formation and nutrient cycling. Furthermore, forests support the protection of 

land against erosion, such as coastal erosion along shorelines, or slope erosion in mountainous 

regions. Self-regulating services include water filtration and air filtration, water retention as well as 

flood and drought control, climate change levelling via the fixation of carbon in plants and soils from 

the air and the contribution to pollination and the dispersion of seeds, among others. Cultural 

services include recreation (e.g., walking, hiking, cycling, riding, cross country skiing, hunting, etc.), 

aesthetics, environmental education, and spiritual services [5,6]. 

 

Figure 1. Ecosystem services of forests, subdivided into provisioning services, supporting services, 

regulating services, and cultural services. 

In Germany, around 11.4 million hectares, a share of 32% of the country’s surface area, are forest 

covered. The previously mentioned services demonstrate the enormous indirect value forests play in 

our daily life. However, forests also represent an important economic factor: forests in Germany 

provide income for around two million forest owners, and 125,000 companies in the forestry and 

timber sector employ 1.1 million people - mainly in rural areas. In 2014, the sector generated a 

turnover of 178 billion euros and 55 billion euros in gross value added [7]. 

According to the remote sensing-based Global Forest Watch, Germany lost 754,000 hectares of 

tree cover from 2001 to 2019 equivalent to a 6.0% decrease since 2000 [8]. This loss occurs due to 

settlement and infrastructure expansion (e.g., urbanization, road construction), resource exploration 

(e.g., opencast mining), and agricultural expansion as well as natural hazards (storms, droughts, 

pests, fires, avalanches, etc.) [9]. In recent decades, forests in Germany have been facing a large 

number of challenges, leading to increased attention in public media. 

Severe summer droughts in 2003, 2018, and 2019 have led to stress, a much lower resilience and 

death of many trees. In stands of lower overall tree health, bark beetle infestations spread to a much 

larger extent than in past decades. For 2017 and 2018, over 80% of the forested area in Germany 

showed an increased crown transparency over all species [10]. All these forest disturbances are 

expected to increase and accelerate in the coming years and decades [11]. 
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Due to the alarming damage to over 32 million m³ of timber during the 2018 drought, and 

approximately 105 million m³ of wood damaged during the 2019 drought, national ministries and 

agencies in Germany have called for an action plan to develop counter measures and mitigation 

plans. Measures to be decided upon will be enacted at a federal level by the Federal Ministry of Food 

and Agriculture (BMEL), the Federal Ministry of the Environment, Nature Conservation and Nuclear 

Safety (BMU), and at a federal level state run and private organizations and agencies. These are 

supported by national and federal research institutions, non-governmental organizations (NGOs), as 

well as forestry-related chairs at universities in the individual federal states (see Section 4). 

Common to all players of the institutional landscape in the forest sector is an articulated strong 

demand for reliable, repeatable, and quantitative information on the dynamics and current status of 

Germany’s forest [12]. Information on national and federal forest cover area, forest loss, species 

composition, impacts of drought stress, location, and size of disturbance patches can be assessed in 

situ. However, findings here are usually assessed locally and extrapolated to a federal or national 

scale. Earth observation (EO)-based analyses – if undertaken in a concerted effort at the federal and 

national scale – has a lot to offer with respect to its extensive coverage and the offering of timely, 

quantitative information on the forest resource. 

1.2. Earth Observation-Based Analyses Supporting Informed Decision-Making 

During the last five years, satellite-based EO has entered a new era. Whereas, for many years, a 

continuous, daily, or near daily monitoring of a certain area of interest on our Earth could only be 

undertaken based on low to medium resolution data of satellite sensors such as AVHRR (1 km to 4 

km spatial resolution since the early 1980s), MODIS (between 1 km to 250 m resolution since 1999), 

or MERIS (300 m, only available 2002–2012), higher resolution sensors such as onboard the Landsat 

satellites (30 m spatial resolution) only granted a bi-weekly observation opportunity due to a 

repetition rate of 16 days. The launch of the European Sentinel satellite fleet in 2014 by the European 

Space Agency (ESA) has led to a paradigm shift with respect to EO-based monitoring capacities. 

Based on a combination of higher resolution multispectral sensors such as TM, ETM+, and OLI on 

Landsat-5, 7, and 8 (30 m), the upcoming Landsat 9 mission to be launched in late 2021, and especially 

the European Sentinel satellites, such as Sentinel-2 A and B (10 m to 20 m resolution), Sentinel-3 (300 

m resolution), and synthetic aperture (SAR) sensors, such as Sentinel-1 A and B (10 m to 20 m spatial 

resolution), it is now possible to monitor every place on Earth at high resolution at a near daily 

interval. Next to these satellites, there are also higher resolution sensors available such as Ikonos, 

Quickbird, Worldview, or micro-satellites like those controlled by the Planet corporation [13–15]. 

Whereas SAR (Synthetic Aperture Radar) data is weather independent, cloud cover can be a limiting 

factor for passive remote sensing systems. However, with such a fleet of sensors, even in partially 

cloudy mid-latitude regions such as Germany, it is now possible to generate high spatial resolution 

information products at high temporal resolution and optimally at weekly to monthly intervals. 

Higher spatial resolution-covering and area-covering datasets enable the derivation of 

information products on nation-wide forest cover dynamics and distribution, but also the derivation 

of detailed information products on forest loss, species composition, and changes thereof, forest 

disturbances due to droughts, fires, storms, and plagues, as well as forest recovery and regrowth. 

At the European level, the use of satellite-based forest information has been promoted in various 

ways during the last decade. The Forestry Thematic Exploitation Platform (Forestry TEP) was 

developed in a project contracted by the European Space Agency (ESA) to enable a more effective 

use of Copernicus and other EO data in support of forest ecosystem monitoring and sustainable forest 

management. Within the Forestry TEP, commercial, research, and public sector users in the forestry 

sector worldwide have efficient access to satellite data-based processing services and tools for the 

production of value-added forest information products [16]. 

The Copernicus Land Monitoring System also contains a high resolution forestry layer with 

three types of products available for the years 2012 and 2015: tree cover density, dominant leaf type 

(deciduous, coniferous etc.), and a forest type product following the forest definition of the Food and 
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Agriculture Organization (FAO) [17]. Sentinel-2 data as well as Landsat 8 data was mainly used as a 

primary input data source for the 2015 products [18]. 

However, an examination of EO-based studies and geo-information products available in 

Germany reveals that local and regional studies and EO-based information products prevail, and that 

quantitative information at a federal and even national scale is rarely generated. Federal authorities 

and forest research institutions still use - if at all - remotely sensed forest information rather 

experimentally and do not facilitate operational monitoring. Here, however, lies an exceptional 

potential for timely, repeatable, large scale assessments supporting the traditionally ongoing in-situ 

assessments on the ground. 

The objectives of this review on EO-based monitoring of forests in Germany are to: 

• present a well-rounded, up to date, fact-based introduction to forests in Germany, including 

spatial distribution, composition, management, the institutional landscape, and current 

pressing challenges of societal relevance 

• present the results of an in-depth review and analyses of all EO-based research studies 

focusing on forests in Germany including a categorization on topic, location, extent, spatial 

resolution, temporal interval, thematic focus, and outcome 

• critically discuss what spaceborne EO can contribute to informed decision-making by 

agencies and stakeholders from the forest sector, and what information cannot be provided 

by EO-based analyses 

• identify national-scale research gaps and geo-information-product gaps 

• discuss how a concerted effort of EO-based, national-scale mapping can contribute to forest 

characterization, forest monitoring, and, finally, forest protection and ecosystem 

preservation in Germany. 

2. Forests in Germany 

2.1. Historic Development and Current Status of German Forests 

Today’s forest distribution in Germany is the result of a long anthropogenic land use history. At 

the end of the last glacial maximum, most tree species had retreated to Southern Europe, south of the 

Alps. In the early Holocene, only a few tree species spread northwards with many of them at high 

rates as a response to climate warming [6]. Consequently, the number of tree species in Central 

Europe is rather low [19]. Potential natural vegetation in Germany, however, would be a landscape 

of forests, mainly beech and mixed beech forests, oak forests, and oak-hornbeam-mixed forests with 

coniferous forests in high-altitude environments [5,11]. Due to anthropogenic activity, the vast 

majority of forests were cleared and converted to other land uses with the smallest forest extent 

occurring during the Middle Ages, when the demand for forest products was the highest. At that 

time, land was urgently needed to extend settlements and to grow crops, hence accelerating 

deforestation. After the Little Ice Age with its side-effects such as extreme weather events, diseases, 

and over-exploitation of forest and land resources, people started reforestation. The share of forests 

increased again and reached approximately the extent of today in the 15th century. In 1975, the law 

for the preservation of the German forest came into force (Bundeswaldgesetz) [20]. 

However, forests in Germany are often in unfavourable locations where agriculture is 

unproductive or even impossible: locations with poor soils, stagnant water, or in low mountain 

ranges and alpine terrain, where it is usually difficult to access with rougher climate and often more 

pronounced topography. Figure 2b shows that the share of forests in low mountain ranges and alpine 

terrain is higher than average whereas the forest proportion in lowlands with often favourable soil 

conditions is below average. About 55.5% of German forests are located in areas with slopes larger 

than 5%, and 15.2% are located in areas with slopes larger than 30%. Hence, there is little forest cover 

in Northern, North-western, and Central-east Germany, whereas Central and Southern Germany 

have a higher forest coverage (Figure 2a). 

With respect to the distribution within the 16 federal states of Germany, forested areas cover 

between 11% and 42.3% of the respective federal area. The federal states of Rhineland-Palatinate and 
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Hesse are both characterized by more than 40% of forest cover, whereas states such as Lower Saxony, 

Mecklenburg Western Pomerania, Schleswig Holstein, and the city states of Bremen and Hamburg 

all have less than 25% of forested area, namely between 11% and 25%. In terms of the total forest area, 

Bavaria has the largest forest area with 2.6 million hectares [21] (Figure 3). 

 

 

Figure 2. Forest cover in Germany (a) and elevation distribution of forest compared to Germany (b). 

Data source: Forest cover is taken from the DLM250 (Digitales Landschaftsmodell digital landscape 

model 1:250,000). The elevation histograms are based on TanDEM-X data with 90-m spatial 

resolution. 

 

Figure 3. Forest cover in Germany per federal state in decreasing order of percentage. The left-hand 

part of the figure shows the forest area and total area of each federal state in hectares (SH = Schleswig-

Holstein, NI = Lower Saxony, NW = North Rhine-Westphalia, HE = Hesse, RP = Rhineland-Palatinate, 

SL = Saarland, BW = Baden-Wuerttemberg, MV = Mecklenburg-Western Pomerania, HB = Hamburg 

and Bremen, BB = Berlin and Brandenburg, ST = Saxony-Anhalt, SN = Saxony, TH = Thuringia, BY = 

Bavaria). 
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German forests are dominated by coniferous species with about 54% of the forested area, 

whereas broad leaved and mixed forests contribute to 31% and 13%, respectively [22]. Mixed forests 

are defined as forests in which at least two tree species occupy at least 10% of the area. The most 

dominant tree species is spruce, covering 2.8 million hectares (25% of German forest area), mainly 

dominating in the southern part of Germany, followed by pine, covering 2.4 million hectares (23%) 

with predominant occurrences in the central and north-eastern part of the country. Dominating broad 

leaved species are beech, covering 1.7 million hectares (16%), especially in the western and 

southwestern parts of Germany, followed by oak, covering 1.1 million hectares (11%) distributed all 

over the country’s territory. These four dominant species comprise 75% of Germany’s woodland [10]. 

A total of 51 species or groups of species were recorded during the last national inventory campaign 

in 2012. Out of them, 11 species make up 90% of Germans forests (common spruce, common pine, 

copper beech, sessile oak and English oak, common birch, common ash, black alder, European larch, 

Douglas fir, and sycamore maple) [21]. Figure 4 shows the distribution of the most frequent tree 

species among the federal states. There is a large heterogeneity. For example, Brandenburg and Berlin 

(BB) are dominated by pine (about 70%) whereas Baden-Württemberg (BW) has seven tree species or 

groups of tree species with a share of more than 5%, and Hamburg and Bremen (HB) are dominated 

by deciduous tree species (about 75%). In Figure 4, Oak includes all oak species including northern 

red oak; deciduous long life includes maple species, maple-leaved plane tree, sweet chestnut, ash, 

hornbeam, lime species, walnut species, false acacia, horse chestnut, sorb tree, holly, elm, and white 

ash; deciduous short life includes birch species, wild service tree, alder species, poplar species, bird 

cherry, wild cherry, wild fruit, and all other deciduous tree species are not mentioned separately. 

Spruce includes all species of spruce and other conifers except Douglas fir, pine, larch, and fir. Fir 

includes silver fir, coastal fir, and other firs. Pine includes all species of pine; larch includes all larch 

species (https://www.bundeswaldinventur.de/service/fachbegriffe-und-abkuerzungen/). 

 

Figure 4. Tree species distribution in Germany per federal state. Orange to reddish colours show 

deciduous tree species while yellow to greenish colours show coniferous tree species (data source: 

BWI 2012, https://bwi.info). 

With respect to species’ diversity and composition, over 25% of Germany’s forested area are 

non-natural pure stands (monocultures), about 10% are semi-natural pure stands, about 10% are 

mixed forests with two tree species, 22% are mixed forests with mainly three tree species, and only 

26% are forests with four or more tree species [23,24]. Pine and spruce are often planted in pure 

stands. The degree of cultivation or “naturalness” is classified into five classes: 1 – almost natural, 2 

– semi-natural, 3 – partly semi-natural, 4 – accentuated by silviculture, and 5 – conditioned by 

silviculture. The criteria of this classification are i) – the proportion of tree species of the natural forest 
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community, ii) the proportion of the main tree species of the natural forest community, iii) the 

completeness of the main tree species of the natural forest community, iv) the share of non-European 

tree species (https://www.bundeswaldinventur.de/service/fachbegriffe-und-abkuerzungen/). Only 

15% of German forest can be considered almost natural and another 21% can be considered a semi-

natural forest, 41% are only considered partly semi-natural, 7% are accentuated by silviculture, and 

16% are conditioned by silviculture. In young stands, the share of almost natural, semi-natural, and 

partly semi-natural is 25%, 26%, and 31%, respectively, with 5% accentuated by culture and 13% 

conditioned by culture [21]. Nearly the entire forest in Germany is anthropogenically impacted. Over 

recent years, the share of spruce has constantly reduced, mainly due to storm damage, to be replaced 

by mixed stands that are more natural to most locations and that are more resistant against 

disturbances [24]. In addition, large areas of forest, in particular spruce forest, were severely affected 

by the 2018/2019 droughts, resulting in the unplanned harvest of trees after die-off as a response to 

water stress and insect infestation [25]. The effects of recent droughts as well as storm events will be 

reflected in the next inventory, which is going to take place in 2021/2022. 

The average age of German forests is 77 years. Less than a quarter are older than 100 years with 

oak, beech, and fir having the highest average age (about 100 years) and Douglas fir having an 

average age of only 45 years [21]. The age distribution of deciduous and coniferous trees is shown in 

Figure 5. It can be seen that there is a tendency of increasing the share of deciduous trees. 

 

Figure 5. Age structure of German forests as recorded in the last two inventories (2002 and 2012). Age 

is given in years. Error bars (1 standard error) are depicted in black. 

There are 39 protected forest areas distributed all over Germany – some of them being 

designated as national parks, which is the highest protection level. Among them are the German 

Black Forest, the Bavarian Forest National Park, and the forested areas of the Bavarian Alps. Three 

quarters of these protected forest areas are located in the southern half of Germany. Whereas these 

protected forest areas as well as many other forest areas are state forests or federal state forests 

(owned by the country or the federal state, summing up to 52%), a substantial proportion of forest in 

Germany – namely 48% or about 5.48 million hectares – is privately owned, and half of it has a size 

less than 20 hectares. Figure 6 provides an overview of forest ownership in Germany [22]. It can be 

seen that there are huge differences between federal states. 
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Figure 6. Forest ownership in Germany per federal state in terms of area in hectares and in percentages 

of the forested area [22]. 

2.2. Current Forest Monitoring and Reporting Practice in Germany 

EO is not yet implemented in operational forest monitoring in Germany [23,26]. BMEL is 

responsible for forest monitoring in Germany. According to the German forest act (Bundeswaldgesetz), 

the federal states are responsible for the assessment of German forests, which is to be conducted on 

a decadal basis (German forest act, Bundeswaldgesetz). Forest research institutes of the federal states 

conduct and finance the assessments and prepare regional reporting, whereas the Johann Heinrich 

von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute for 

Forest Ecosystems manages the data and coordinates the method harmonization, analyses, and 

reporting at a national and international level on behalf of the BMEL [26]. 

There are four different branches contributing to the German forest monitoring activities: 1. 

national forest inventory (NFI) (Bundeswaldinventur), 2. national forest soil inventory (NFSI) 

(Bodenzustandserhebung), 3. crown condition survey (CCS) (Waldzustandserhebung), and 4. intensive 

monitoring. The NFSI (level I, based on a systematic sampling grid), the CCS (also level I), and the 

intensive monitoring (level II, based on 68 measurements plots) are embedded in the Europe-wide 

forest monitoring system of the International Cooperative Programme on Forests (ICP Forest): The 

points of the systematic random sampling network in the 16 x 16 km² grid are part of the larger 

European network. Additionally, the measurements of the level II areas in Germany are submitted 

to the European forest monitoring of ICP Forests [27]. Level II monitoring was introduced as an 

integrated part of the ICP Forests under the umbrella of the Geneva Convention on Long-range 

Transboundary Air Pollution (CLRTAP) as an important complement to Level I monitoring (CCS, 

NFSI) in order to investigate ecosystem-based cause-effect relationships in forest ecosystems [26]. 

NFSI, CCS, and intensive forest monitoring at level II are, therefore, important parts of the German 

national forest monitoring programme [28] (see Table 1).  

The accounting of forest properties as demanded by German law is based on a fixed sampling 

scheme and conducted by means of visual assessment of plots and individual trees in the field as well 

as additional field measurements. The specific legislation defines the following parameters to be 

monitored: 1. crown condition, 2. tree growth, 3. needle and leaf analyses, 4. ground vegetation, 5. 

atmospheric fluxes, 6. litter, 7. soil water abundance and content, 8. soil condition, 9. meteorological 

parameters, 10. phenology, and 11. air quality (§1 ForUmV). 

The first NFSI was based on a fixed 16 x 16 km Europe-wide grid corresponding to 420 plots 

where the grid coincides with the forest. Since the second, there are about 1859 NFSI plots distributed 

over Germany based on an 8 x 8 km grid. They were established from 1987 to 1992 and resampled 

after approximately 15 years from 2006 to 2008. A total of 68 level II plots are defined for continuous 
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measurements, which are under responsibility of the Federal States. However, soil analyses at level 

II plots are conducted only every 10 years whereas most parameters are recorded continuously. 

Complementary to the long-term soil assessment and the continuous intensive monitoring at 

level II, each German federal state provides annual reports of crown condition. The most common 

sampling design is a cross cluster with four satellites in which each comprises six trees, indicating a 

total of 24 trees per plot based on the national 16 × 16 km² sampling grid. However, some federal 

states densify the common grid in order to fulfill reporting requirements on a federal state level. The 

monitored parameters focus on defoliation, but discolouration, insect infestation, fructification, and 

others are recorded as well [26]. 

German federal states provide annual reports about forest condition following fixed sampling 

protocols specific for each federal state. The assessment focuses on the crown condition of the four 

major tree species in Germany, pine, spruce, beech, and oak. These annual reports supplement the 

decadal inventories. The reports document fluctuations in crown condition and, hence, forest 

condition over time [10]. 

Extensive monitoring takes place on a decadal basis [26]. The decadal forest inventory program 

(Bundeswaldinventur) aims at assessing large-scale forest properties and forest production potential. 

Parameters related to forest condition are not assessed with this program. Responsibility for the data 

collection is with the federal states. Data collection in the field is conducted by specialists, mostly 

freelancers, who are specifically trained and contracted by the federal states. The parameters required 

to be recorded comprise operating mode, type of ownership, forest structure, tree species, age, tree 

diameter, tree height on selected sample trees, terrain features, special tree characteristics, dead 

wood, and land use before or after forest growth [29]. The sampling design differs among the 

different federal states. Based on a common 4 × 4 km² grid, some federal states use double (2.83 × 2.83 

km²) or four-fold (2 × 2 km²) sample density [21,22,30]. The nodes of the grid are the inventory plots 

with 150 m × 150 m sections. There were three inventories conducted in the past, the first 1986-1989 

in Western Germany, the second 2001–2003 and the third in 2011/2012. The next inventory is 

scheduled for 2021/2022. During the third inventory in 2012, about 60,000 plots were sampled and 

about 150 parameters (terrain, stand, and tree characteristics) of approximately 420,000 trees were 

recorded. 
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Table 1. Current forest monitoring and reporting practice in Germany (References [26,28,31,32]). 

Title Repetition Interval Grid Purpose Recorded Properties Executing Institution 

national forest 

inventory, NFI  

(Bundeswaldinventur) 

 

decadal 

the next NFI is 

scheduled for 

2021/2022 

base: 4 × 4 km² grid; double density: 2.83 

× 2.83 km²; quadruple density: 2 × 2 km² 

 

large-scale inventory and 

wood production 

potential, i.e. an 

economically motivated 

initiative 

approx. 150 parameters (e.g. tree 

species, tree height, diameter, age, 

amount of deadwood) 

data collection by individual 

forest specialists, reporting 

and analyses by Federal 

Research Institute for Rural 

Areas, Forestry and Fisheries 

(Thünen Institut) 

national forest soil 

inventory, NFSI 

(Bodenzustandserhebung) 

 

approx. 15 years 

the last survey was 

conducted 2006-2008 

16 × 16 km² grid corresponding to 420 

plots intersecting with forests in 

Germany during the first inventory; 8 × 

8 km² corresponding to 1859 plots 

 

generatation of reliable 

data on the current state 

and changes in forest soils 

and selected features of the 

forests 

soil chemistry, soil reaction, aqua regia, 

C, N, S, P, 1:2 extraction nitrogen, 

cation exchange capacity, soil water, 

tree growth, ground vegetation, tree 

nutrition (leave/needle chemistry) 

in
d

iv
id

u
al d

ata co
llectio

n
 o

f th
e 1

6 fed
eral states - 

rep
o

rtin
g

 an
d

 an
aly

ses b
y

 th
e F

ed
eral R

esearch
 

In
stitu

te fo
r R

u
ral A

reas, F
o

restry
 an

d
 F

ish
eries 

(T
hü

n
en

 In
stitu

t) 

crown condition survey, 

CCS 

(Waldzustandserhebung) 

 

annual 

16 × 16 km² grid corresponding to 420 

plots at national level; some federal 

states perform the assessment on denser 

grids and assess additional points for the 

monitoring at federal state level (e.g. 4 × 

4 km² or 2 × 2 km²) 

assessment of spatial and 

temporal variation of tree 

vitality; detection of 

drivers and effects of plant 

stress 

crown condition, impact factors (e.g. 

insects) 

intensive monitoring 

continuous 

some parameters are 

assessed 

periodically (e.g. soil 

assessment on 

decadal basis) 

case studies at 68 sites 

understanding cause-effect 

relationships in forest 

ecosystems 

crown condition, impacts factors, soil 

chemistry, soil reaction, aqua regia, C, 

N, S, P, cation exchange capacity, soil 

solution, tree growth, ground 

vegetation, tree nutrition, litterfall, 

deposition, meteorology, air quality 
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3. Major Challenges for Forests in Germany 

Today, at the intersection of climate change adaptation and mitigation, the insurance of raw 

material and energy supply, as well as the preservation of nature and biodiversity, Germany’s forests 

face major challenges. 

3.1. Forest Disturbances in Germany 

Disturbances are relevant drivers of change in forest ecosystems [33]. They alter forest structures 

and functioning, enhancing the heterogeneity of individual forest stands to landscape scales [34,35]. 

So far, there is steady evidence of fluctuating disturbance regimes with climate change, demanding 

forest managers to focus on the resilience of forest ecosystems for these disturbances [36,37]. 

Currently, the main pressures affecting German forests are primarily related to climate change 

[38,39]. The increase of extreme and fluctuating weather conditions will likely affect the frequency 

and severity of abiotic disturbances (e.g., drought stress, forest fires’ occurrence, and windthrow) and 

biotic disturbances (forest pests and disease outbreaks), resulting in modified ecosystems, and, thus, 

decreasing their function and their provision of products and services [40]. 

With some regional differences, there is an overall trend of a decline in healthy forests in 

Germany. At the national level, forests without crown defoliation currently cover only 22% of the 

area with 42% being slightly damaged and 36% being seriously damaged [10]. About 36% and 26% 

of the two dominant coniferous tree species, which are spruce and pine, and about 47% and 50% of 

the two dominating deciduous tree species, including beech and oak, are classified as seriously 

damaged in the latest annual report [10]. The main reasons for short-term deteriorating forest 

conditions are repeated periods of drought and warm conditions, favouring insect infestation [25]. 

Extreme weather events increasingly cause physical damage, e.g., through windthrow, hail, or heavy 

snow [41]. Between 2018 and 2019, damages related to natural hazard disturbances were estimated 

at 2.5 billion EUR [42]. Between January 2018 and March 2018 only, around 1% (114.000 hectares [ha]) 

of Germany’s forested areas were affected by wind storms and bark beetle outbreaks with one-third 

of tree damages attributed to wind storms and two-thirds linked to bark beetle attacks, respectively 

[42,43]. 

Forest management, however, has had a serious impact on long-term conditions and their 

provision of ecosystem services [44]. Despite intensive management to enhance forest resilience and 

reduce natural hazard impacts, forests are susceptible to natural disturbances (anthropological and 

natural) [45–47], which are closely related to changes in climate and human land use. 

3.1.1. Drought and Heat Stress 

According to the International Panel on Climate Change (IPCC), increased heat events and water 

restrictions present key risks for Europe, which will further intensify in the next few decades [48]. 

In 2003, Central Europe experienced the most severe periods of droughts recorded until then. 

The extreme heat wave led to an almost total reduction of water reserves in forest soils, affecting the 

condition of forest stands. The 2003 drought was considered to be the exemplification of a “hotter 

drought” and characterized as the most severe event occurring in Europe during the last 500 years 

[25]. Nevertheless, following the events of 2003, an even larger heat wave impacted Central Europe 

in 2018. Analyses have confirmed that the extreme drought that occurred in 2018 was climatically 

more extreme than the one in 2003 with a greater impact on forest ecosystems in Austria, Germany, 

and Switzerland [25]. In 2018, the mean growing season’s (April to October) air temperature was 

more than 3.3 °C above the long-term average, and 1.2 °C higher than in 2003. The extreme droughts 

and heat waves of 2018 (preceded by less severe droughts in 2017) caused considerable forest damage 

in several parts of Germany. This was observed in young trees with the highest mortality rates 

reported for the Norway spruce and European beech [25,49]. Tree species almost equally 

compromised were Scotch pine, silver fir, and oak. However, the higher rates of mortality on spruce 

trees were projected from reports about previous drought events [50–55]. As a consequence of the 

2018 heat stress, the extent of forest fires was exceptionally high in some parts of Germany [49]. The 
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BMEL estimated that an area of more than 2.450 km² must be afforested to restore the affected forest 

stands [56]. A press release by the Association of German Foresters [57] estimated an economic loss 

up to 3.5 billion EUR since the year 2018. These losses have been estimated based on the accumulation 

of 160 million cubic meters of dead wood [56]. 

3.1.2. Vulnerability Due to Pests and Pathogens 

Insect infestations are recognized as a severe threat with devastating consequences for timber 

markets [58,59]. At the same time – similar to non-biotic disturbances such as wildfires or wind 

storms – insect outbreaks (e.g., European bark beetle, Ips typographus L.) can be considered essential 

for natural ecosystems [60]. Bark beetle infestations have spread across more than 10 million hectares 

in Europe [61,62]. Damage related to bark beetle attacks is expected to increase in the coming years 

as a result of climate change [63–66]. Extended periods of drought and an increased presence of dead 

wood in forest gaps create favourable conditions for bark beetle propagation to rise [64,67–69]. 

Drought enables bark beetle infestations to progress by stressing trees and, thus, enhancing the 

occurrence and severity of these attacks [66,70–73]. In Reference [73], tree damage and dieback by 

bark beetles have been well documented. 

Bark Beetle infestation starts when the temperature rises above 16°C. In Germany, bark beetle 

attacks begin earlier each year when compared to previous infestations, which is a result of warmer 

summers due to climate change. In addition, extended periods of droughts have largely increased 

the spread of insects. The majority of the bark beetle outbreaks took place in North Rhine-Westphalia, 

Hesse, Rhineland-Palatinate, Bavaria, Baden-Wuerttemberg, Saxony, and Thuringia where the 

spruce population is relatively high [43]. Solely in North Rhine-Westphalia, 12 million m3 of forest 

were lost due to bark beetle attacks in 2019. However, Norway spruce has been the most affected tree 

species. Due to its economic relevance for the forest sector, this has led to rising concerns. In addition 

to bark beetle attacks in spruce stands, pines have been weakened by Nun Moths and Pine Moths, 

oaks have been disturbed by Oak Moths, and several mycosis infections have led to damages in forest 

stands [7]. 

3.1.3. Wind Storms and Snow Break Vulnerability 

With increasing frequency and intensity of extreme weather events, heavy storms have become 

more common in Germany. In recent years, forests were affected by storms like “Vivian” and 

“Wiebke” (1990), “Lothar” (1999), “Kyrill” (2007), “Xavier” and “Herwart” (October 2017), and 

“Friederike” (January 2018). As a consequence of the storms of 2017 and 2018, 18.5 Mio. m3 of 

destroyed trees had to be harvested in Germany in 2018, which is almost four times more than in 

2017 [74]. Even higher forest losses were caused in 2007 by hurricane “Kyrill” with wind speeds of 

180 km/h, which led to 31.3 Mio. m³ of dead wood [75]. The risk of windbreak is, by far, higher for 

conifers than for broadleaf trees. Norway spruce is the most prone species, followed by Scots pine, 

European beech, and oak, as well as other deciduous species [76]. Moreover, 22% of the wood, which 

needed to be harvested in 2018 (due to storm damage) included pine and larch, and all remaining 

conifer species, such as spruce, fir, and Douglas fir - amounting to 69%, while broadleaf trees 

constituted only 9% of storm-damaged timber [74]. Furthermore, windthrow risk seems to be related 

to tree height and exposure, and can be higher in thinned and mixed stands with large fractions of 

broadleaf trees[76–78]. Forest injuries due to snow are more seldom compared to wind-related, 

insect-related, and drought-related damages. In Germany, the federal state of Bavaria – where snow 

is more frequent than other parts of Germany [79] – usually shows the highest annual snow-related 

forest damage [74,80,81]. 

3.2. Climate Change Adaptation Strategies 

Increasing dry periods and weather extremes impact Germany’s forests. As long as such weather 

extremes occur in a relatively seldom manner, i.e., or as isolated events, the stability of forests is not 

generally impaired, but climate change and its long-term changes in the frequency or intensity of 
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extreme events could lead to large-scale hazards for forests [82]. At the same time, sustainably 

managed forests can have a positive effect on climate change since they function as a carbon sink. 

Therefore, climate protection and adaptation to climate change is one of the major fields mentioned 

in the German Forest Strategy 2020 [82], and adaptation of forests and forestry is a critical topic in the 

German Adaptation Strategy to Climate Change [83]. German forests will be transferred to climate-

adaptable, near-natural, and sustainably managed mixed forests, which reduce the risk of large-scale 

forest damage, and continue to sequester carbon in the future [49]. In general, research on regional 

climate change forecasts and the impact of climate change on forests will increase for improved 

adaptation planning [82,83]. However, it is already known that one major aspect of climate change 

adaptation of German forests is the conversion to mixed stands and tree species, which are more 

resistant to direct and indirect effects of climate change (particularly spruce, which is, currently, the 

most common and economically the most relevant tree species in Germany). From this vantage point, 

it is not well adapted to the observed and projected changing climatic conditions. 

4. Institutional Landscape in the Forest Sector 

Forestry policy in the EU remains primarily a national competence, even though some European 

measures have an impact on the forests of the Union. As forest inventories are compiled on a national 

level based on the legislation of the respective country, we concentrate on the institutional landscape 

of the forestry sector in Germany. Overall, it is very complex and comprises forest research, forest 

management, forest administration, and forestry itself. 

Above all, federal and state authorities have sovereign tasks and superordinate functions to fulfil 

with regard to the German forest. BMEL is the institution responsible for developing legislations such 

as the law on the conservation of forests and the promotion of forestry (Bundeswaldgesetz) [84] and 

for writing strategy papers such as the Forest Strategy 2020 [82]. Furthermore, the BMEL is committed 

to combating progressive deforestation, illegal logging, and unsustainable forest management, and 

coordinates the international forest policy of the German Federal Government [85]. BMU is a 

Supreme Federal Agency like BMEL and is responsible for legislation development, e.g., law on 

nature conservation and landscape management (Bundesnaturschutzgesetz) and strategies of the 

federal government (e.g., national biodiversity strategy) [86]. BMU is the highest national authority 

in national forest protection policy, and is involved in international forest protection [87]. All 

ministries have subordinate authorities (Nachgeordnete Bundesbehörden) such as the Federal Agency 

for Agriculture and Food, BLE – who e.g., on behalf of BMU and BMEL provide and manage the 

funding tool “Forest Climate Fund” (Waldklimafonds). The funding programs are generally based on 

the research programs of the institutions mentioned here. With its decision to establish the Forest 

Climate Fund, the federal government underlines the importance of German forest ecosystems and 

the positive effects of sustainable forest management and wood use for climate adaptation [88]. 

Furthermore, the German Environment Agency (Umweltbundesamt - UBA) under BMU is the federal 

agency responsible for enforcement of various laws and regulations, e.g., on sustainable forest 

management [89]. One of the main tasks of the German Federal Agency for Nature Conservation 

(Bundesamt für Naturschutz - BfN) under BMU is the provision of a central interface for the transfer of 

scientific findings into the political decision-making process, and for implementation in practice, for 

example, on forest management under climate change [90,91]. 

Implementation of laws and forest management of federal forest stands are the main tasks of the 

authorities on the federal level. For each of the 16 German federal states, the state forest 

administrations comprise the upper and lower forest authorities. The administrative tasks can be 

summarized to the sovereign tasks such as forest supervision, regional development and planning, 

and the consultation of private and corporate forest owners. 

The forest administrations of the federal states are organized in three levels - Ministry of the 

State, and two further levels of state offices (Landesanstalt and Landesamt). In detail, however, the tasks 

of the authorities vary. As an example, for Bavaria [92], the highest forestry authority is the Bavarian 

State Ministry of Food, Agriculture and Forestry. State Offices of Food, Agriculture and Forestry with 

the forestry divisions are the lower authorities. 
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Two federal research institutes conduct national and international forest research - the Federal 

Research Institute for Rural Areas, Forestry and Fisheries under the auspices of BMEL (Thünen-

Institut), which carries out the Federal Forest Inventory (Bundeswaldinventur) [30,93] and, second, the 

Federal Research Centre for Cultivated Plants, Department Forestry under BMEL (Julius-Kühn-

Institut), which studies forest damage factors, such as pests [94]. Federal states such as Baden-

Württemberg operate research facilities, which are subordinate to the Forest Research Institute 

Baden-Wuerttemberg (Forstliche Versuchs- und Forschungsanstalt - FVA). FVA works in various fields, 

such as biodiversity and protection of forests, effects of climate change on forests, and measurements 

and mapping of tree parameters to support and advise the forest management authority of the State 

of Baden-Württemberg (ForstBW). In Bavaria, the special authority (Sonderbehörde) is the Bavarian 

State Institute of Forestry (Bayerische Landesanstalt für Wald und Forstwirtschaft - LWF). Their research 

topics involve, among others, ecosystem service assessment, pest infestations of trees, sustainable 

forest management, and the effect of climate change on the forests. 

Forest-related research institutions at the German universities include faculties, departments, 

research chairs, and forest research institutes. Several universities in Germany own the forest for 

research purposes. German universities and universities of applied sciences offer numerous courses 

in forestry and forest management and combine the programs with environmental and ecological 

research. 

The forest of the University of Wuerzburg, to name only one, was a church donation when the 

university was founded in the 16th century. The production of valuable wood, normal wood use, 

student excursions, and scientific experimental areas are the main uses. Another example is the 

Technical University of Dresden, where the lectures and practical courses take place directly in the 

Tharandt Forest Botanical Garden, where the faculty is located. It was founded in 1811 for research 

purposes and is one of the oldest scientific collections of woody plants in the world. 

An even more heterogeneous picture also emerges for national parks (NPs), whose 

administrations have different official responsibilities that depend, among other things, on the 

federal state. For example, the administration of the NP Bavarian Forest has the status of a lower 

forestry and hunting authority, while the administration of the NP Harz has the status of a lower 

nature conservation authority. The Harz NP has the largest forest NP area in Germany with 24,750 

ha. The Bavarian Forest NP has the second largest forest area with 24,250 ha, but, with 98%, it has the 

largest proportion of forest within the NP when compared to all national parks in Germany [95,96]. 

In summary, the forestry sector in Germany is very diverse, as is the landscape of federal 

foundations, associations, and NGOs, which have not been addressed here, as this is not within the 

scope of this paper. 

5. Methodology of the Review 

For this review, we collected all available research articles investigating forest-related topics by 

means of remote sensing in Germany. The literature search has been conducted based on the 

bibliography database of the Web of Science platform with no restriction on the date of publication. 

We only considered research articles published in peer-reviewed journals. In addition to English 

articles, German citation indexed publications have also been included. We set up the literature 

database for this review in the first quarter of 2020. Therefore, the cut-off date for including new 

publications was 1 April 2020. 

During the literature search, we used the following keywords: forest OR forestry AND remote 

sensing OR earth observation AND Germany. Alterations in the keywords helped to refine the 

search, e.g., replacing Germany with the different federal states ‘Bavaria’/’Thuringia’/’Saxony’/etc., 

or using ‘satellite’/’airborne’/’UAV (Unmanned Aerial Vehicle)’, ‘hyperspectral’/’lidar (Light 

Detecting and Ranging)’/’radar’/etc., ‘Landsat’/’Sentinel’/’Worldview’/etc. instead of remote sensing. 

The search query resulted in a very large number of research articles (n > 200), but still included some 

irrelevant research articles, e.g., studies using only terrestrial-based systems such as terrestrial lidar 

(TLS). Those were excluded. 
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The remaining 166 identified research articles [33,60,97–260] were analysed to extract relevant 

information for this review using the following parameters. 

• General information: 

o Publication year 

o 1st author’s institution, institution category (e.g., federal state research institution), and 

research background (EO, forestry) 

o Publishing journal and journal category (e.g., ecology) 

o Affiliated project and funding / financing (e.g., BMEL) 

o Potential users of results (e.g., timber industry) 

• Site specific information: 

o Name and location of study area including federal state (e.g., Black Forest, Baden-

Wuerttemberg) 

o Spatial coverage of study area (in hectares) 

o Predominant forest type (deciduous, coniferous, mixed) 

o Information on forest management (e.g., protected area) 

• Information about remote sensing data: 

o Platform (satellite, aircraft, UAV) 

o Sensor type (e.g., multispectral) and instrument name (e.g., Sentinel-2) 

o Geometric resolution of EO data (ground sampling distance) 

o Temporal resolution of EO data (mono-temporal or multi-temporal, subdivided in 

mono-annual or multi-annual) 

o Time period observed (e.g., March-October 2007) 

• Information on research: 

o Research topic considered (e.g., forest disturbance) 

o Parameters examined within the study (e.g., tree species) 

o Examined object scale (leave, tree, stand, forest, landscape) 

o Applied methodology (e.g., linear regression) 

o Information about validation and accuracy of results 

The results of this comprehensive literature review will be presented below. Section 6.1 presents 

an overview of the temporal development of the review articles and additional information about the 

first author’s affiliation and funding of the studies. Section 6.2 focuses on the spatial coverage of the 

different studies including the spatial extent and the investigated forest types. The employed remote 

sensing instruments and techniques (Section 6.3) and the temporal resolution of the data sets (Section 

6.4) are followed by Section 6.5, which highlights the addressed research topics and methods applied. 

Finally, additional auxiliary data are presented in Section 6.5. 

6. Results: Present Remote Sensing-Based Forest Research 

6.1. Temporal Development of Publications, Author Affiliation, and Funding of Studies 

The temporal development of the 166 investigated research articles is illustrated in Figure 7. The 

graphic shows very clearly that the number of studies has constantly increased over the last 23 years. 

The majority of the studies have been released within the last decade. Only two articles were 

published in the 20th century. The growth in number is also related to the increased availability of 

remote sensing data (e.g., first Sentinel satellite in 2014). This fact is also reflected in the presentation 

of the journal category with an increasing number of studies published in remote sensing-related 

journals within recent years. The use of EO for various forest-related issues is increasingly being 

investigated by remote sensing specialists. 
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Figure 7. Studies ordered by year of publication. 

Since we are only looking at studies within Germany, the majority of first authors are mainly 

scientists who are employed at German universities or German research institutions (Figure 8). 

Studies were mainly conducted at universities with the majority of authors having a remote sensing 

background. The federal research institutions in Germany shown in Figure 8 are the Bavarian Forest 

National Park, the Forest Research Institute Baden-Wuerttemberg (FVA), and the Bavarian State 

Institute of Forestry (LWF). The term “German state research institutions” stands for, to give one 

example, research centres within the Helmholtz Association. 

 

Figure 8. Number of studies by research institution. 

Considering the funding of the 166 research studies, 11% were financed by federal state 

ministries (mainly Bavaria). Furthermore, 18% of the studies received funding from federal ministries 

(mainly Federal Ministry for Economic Affairs and Energy, BMWi). The German Federal 

Environmental Foundation (DBU) and the German Research Foundation (DFG) funded 9% of the 

published studies. In total, 38% of the research studies have received financial support from various 

German institutions. 

6.2. Spatial Coverage, Spatial Extent, and Investigated Forest Types 
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With respect to spatial coverage, the majority (i.e., 89%) of the investigated studies focused on a 

local to regional scale. Only six out of 166 research papers were covering the German forest area as a 

whole (11.4 million ha), using mainly multispectral data of medium spatial resolution (MODIS and 

AVHRR) to generate information on phenology, vegetation condition (drought, frost damage), or 

biomass. 

Twelve studies were dealing with the total forest area of one or two federal states. Rhineland-

Palatinate, with its 840,000 ha forest area was covered most often (five papers), followed by the city 

state of Berlin (three papers, 29,000 ha forest area), and Baden-Wuerttemberg (two papers, 1.4 million 

ha forest area). We found one paper each for the total forest areas of Bavaria (2.6 million ha), 

Schleswig-Holstein (1700 ha), and Saarland (103,000 ha). Studies on federal scale very often use space-

borne multispectral sensors with a higher spatial resolution as a data source (mainly of the Landsat 

and SPOT families), but also supplementary information based on airborne data. Especially 

information on forest types, tree species and timber volume seem to be of interest on this spatial scale. 

The number of studies per federal state is shown in Figure 9. Most studies were carried out in 

one of the two federal states with the largest forest areas (Bavaria and Baden-Wuerttemberg). 

Bavarian forests were subject to research in 89 out of 166 reviewed articles and 47 papers were dealing 

with one or several forests in Baden-Wuerttemberg. The federal state with the highest percentage of 

forest cover, Rhineland-Palatinate, came out in third place, with its forests mentioned in 23 studies. 

Forests in the city states of Bremen and Hamburg were not investigated at all (apart from nationwide 

studies), forests in Hesse, North Rhine-Westphalia, Saarland, and Schleswig-Holstein once each. 

Figure 9 also shows the location of the most frequently observed forest areas. By far, the most 

studied forest was the Bavarian Forest National Park with its 24,250 ha. It was the only subject of 

research in 57 of the reviewed journal papers (34%) and one of several study areas in two other 

papers, reflecting not only the strong research interest of the national park administration, but also 

its close link to national, European, and international universities. 

Karlsruhe was the second most frequently mentioned test area with 15 contributions, followed 

by the Hainich National Park, Traunstein, Schorfheide-Chorin, Steigerwald, and Black Forest with 

12, 9, 8, 7, and 6 contributions. Swabian Jura, Idarwald, and Freiburg were each listed four times. The 

Hainich National Park was the only subject of research in two studies, but mentioned 10 times as one 

of several study sites, often in the so-called “Biodiversity Exploratories.” The Biodiversity 

Exploratories (Hainich with 130,600 ha, Schorfheide-Chorin with 129,200 ha and Swabian Jura with 

42,200 ha) belong to an infrastructure program financed by the German Research Foundation and 

serve as an open research platform for scientists from all over Germany. 



Remote Sens. 2020, 12, 3570 18 of 43 

 

 

Figure 9. Number of studies per federal state (greenish colours, multiple entries possible), location of 

top study sites (black dots), and largest continuous forest areas in Germany (grey areas). 

Figure 10 shows the extent of all study sites (sometimes several per reviewed papers) in six 

spatial categories. The majority of the study sites (50%) had a spatial extent of between 1,000 and 

100,000 ha. Larger study areas mostly refer to studies at federal state (>100,000–10,000,000 ha) or at 

the national level (>10,000,000 ha). Furthermore, 15% of the study areas looked at study sites of >100-

1,000 ha, 8% of the study areas had a rather small spatial extension of 20-100 ha, and 10% less than 20 

ha. Concerning the latter, most of the studies belonging to this class were dealing with airborne and 

UAV data. Only three out of 19 of these used spaceborne information. 

Furthermore, we also considered the investigated object scale in relation to the size of the study 

areas (Figure 10). For our review, we used the four categories “tree,” “stand,” “forest,” and 

“landscape.” Studies that focused on the detection of single trees [103,140,142,209] were assigned to 

the “tree” class, whereas studies that concentrated on larger contiguous groups of trees such as those 

in conjunction with a disturbance assessment due to windthrow or bark beetle infestation, the 

monitoring of succession, or biomass estimation, were classified as “stand” scale (e.g., 

[60,98,123,167,183], among many others). The class “forest” was assigned to studies that looked at 

entire forest areas, to identify forest types such as Reference [195]. Last but not least, studies were put 

into the class “landscape” if they examined not only forest areas, but also other land cover classes 

with respect to phenological parameters (as green-up) or the vegetation condition in general 

[105,116,121]. 
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Figure 10. Size of study areas in relation to the observed object scale. Note that some studies have 

compared several study sites, which may result in multiple entries per reviewed publication. 

With regard to the object scale, the majority of the studies (64%) derived forest parameters at a 

stand level. However, studies with a relatively small spatial extension of up to 100 ha focused mainly 

on the tree level. In contrast, forest and landscape scale were of greater importance when larger study 

areas at the national level were involved. 

With respect to the investigated forest types, almost half of the studies dealt with mixed forests, 

even though this forest type is not yet very common in Germany (see Section 2). This 

overrepresentation has to do with the fact that a disproportionately high number of studies were 

carried out in the Bavarian Forest National Park, where the three major forest types are all mixed 

forests [142]. Coniferous and deciduous forests were subject to research in one quarter of the studies 

each, leading to an underrepresentation of needle-leaf forests compared to the occurrence of this 

forest type in Germany. 

6.3. Employed Remote Sensing Sensors 

Figure 11 shows the distribution of employed remote sensing platforms and sensor types with 

respect to the investigated object scale of the examined forest parameter. Within the three categories 

of remote sensing platforms (spaceborne, airborne, and UAV), multispectral, panchromatic, 

hyperspectral, thermal, lidar, SAR, stereo, and aerial (RGB, CIR) sensors are distinguished. Airborne 

platforms are the most frequently used and provide the input for 57% of all considered EO-based 

forest studies in Germany. Spaceborne platforms are also used with a comparable frequency of 41%. 

In contrast, UAV platforms with only 2% are hardly used for forestry studies in the publication period 

under consideration, which can also be ascribed to the novelty of this sensor type. In particular, 

airborne lidar and spaceborne multispectral sensors play an important role in the investigation of 

forest-relevant topics. While data from spaceborne platforms is used for all observation scales, 

airborne and UAV platforms are primarily used at the tree and stand level. 
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Figure 11. Number of studies in relation to the platform and sensor type by the object scale 

investigated. Note that studies investigating multiple object scales were counted multiple times. 

Regarding the relationship between the remote sensing platform, the spatial resolution of the 

input data, the size of the study area, and investigated object scale, a direct correlation between these 

parameters becomes apparent, as shown in Figure 12. The higher spatial resolution of data provided 

by UAVs and airborne platforms explains the more frequent use at tree level compared to spaceborne 

platforms. In contrast, spaceborne platforms are more often deployed in larger study areas since they 

can cover large areas cost-efficiently, whereas airborne and especially UAV platforms require a much 

higher effort to obtain information for large areas. Spaceborne platforms providing data with a spatial 

resolution of 1 m up to 1 km are mainly used to investigate forest-related topics at stand or forest 

level for large study areas. Data from airborne platforms with spatial resolution between 0.1 and 10 

m serve as a base for investigations at a tree level and stand level in most cases with study areas in 

the order of 0.1 to 1,000 km². Data from UAV platforms, which offer the highest spatial resolution, 

are mostly used for local studies with single trees as an observation level in study areas smaller than 

0.1 km². 

Under additional consideration of the research topic investigated (Figure 13), it becomes 

apparent that spaceborne platforms and, in particular, multispectral and SAR sensors are used, 

especially in the context of forest disturbance as well as biomass and productivity. Other important 

research topics where spaceborne sensors, in particular multispectral and SAR sensors, are frequently 

applied, encompass the determination of forest cover and type as well as forest structure 

classification. In contrast, topics like biodiversity and habitats, phenology, or plant traits were 

covered less often (<10 studies). Regarding airborne sensors, research on biomass and productivity 

as well as forest structure were most frequently investigated based on lidar sensors as well as aerial 

cameras. The topic “Biodiversity and habitats” was the third most frequent research topic, followed 

by studies on forest disturbance. Less covered topics within the category of airborne sensors are plant 

traits, forest cover and type, or forest phenology. From the literature review, only five studies were 

based on UAV data, implementing research on forest structure, biomass, and productivity, as well as 

biodiversity and habitats. 
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Figure 12. Spatial resolution in relation to platform type and size of study area by object scale 

investigated. Note that, for improved interpretability of the graphic, a jitter effect has been applied to 

separate overlapping points from each other, i.e., x-coordinates and y-coordinates are only 

approximate. Note that studies could be displayed multiple times, if they investigated multiple object 

scales or utilized multiple sensors. 

 

Figure 13. Number of times a given sensor type was used in relation to platform type and research 

topic by sensor type employed. Note that studies could be counted multiple times if they investigated 

multiple research topics or utilized multiple platforms or sensor types. 

6.4. Temporal Resolution 

Looking at the temporal resolution of the EO datasets used, we distinguished between mono-

temporal analyses, those based on data acquired at a single point in time, and multi-temporal 

analyses with further partitioning into mono-annual and multi-annual studies to separate short intra-
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annual time-series from long-term time-series. As discussed in section 6.3, a sizeable number of 

studies utilized multi-source data sets such as lidar and aerial imagery or data from non-contiguous 

test regions, often originating from different acquisition dates. Given that, conceptually, those data 

could have been acquired at the same point in time. Such studies were categorized as mono-temporal. 

Overall, the majority of studies (59%) relied on mono-temporal input data plus another 8% 

which were effectively performing mono-temporal analysis, albeit in multiple years. Additionally, 

15% of studies were based on multi-temporal inputs within a single year, while 18% reported long-

term, multi-annual analyses. That mono-temporal analysis plays such a dominant role that may be 

attributed to the fact that forests, for the most part, are “slow” ecosystems, where changes from year 

to year are incremental. Noteworthy exceptions are questions of disturbance or externally driven 

developments such as phenology. Split-up by application domain (Figure 14), multi-temporal 

analyses are mainly found in studies investigating disturbance, biomass/productivity, forest 

structure, and, by definition, phenology. 

 

Figure 14. Temporal resolution of input data-sources and output products for seven application 

domains. 

Figure 15 shows the investigated time periods and the corresponding temporal resolution of the 

input data-sets. The time-line of EO-based forest studies in Germany begins in 1972 with Landsat 1 

MSS [104]. Beginning in 1985, that is, the launch of Landsat 5 MSS/TM, until the year 2000, German 

forests were investigated or analysed on average in seven studies per year. This period is followed 

by a significant increase in studies in the period 2001 to 2013 with 27 studies per year on average. For 

the following observation period, 2014-2020, there is a slight decrease in the number of studies, which 

is likely an artefact due to yet unpublished, ongoing research activity. 
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Figure 15. Investigated time periods (x-axis) for every publication (y-axis). The dates on the y-axis 

show publication years. 

While mono-temporal analysis remained the most frequent strategy, a notable increase in the 

total number of multi-temporal studies was found since 2017, which was, for the largest part, driven 

by multispectral sensors. Most notably, these were Landsat 5 TM and Landsat 8 OLI, MODIS, 

RapidEye, and Sentinel-2 MSI. Yet multi-temporal lidar and SAR-based studies were also reported. 

Clearly, for Germany’s temperate forest ecosystems, there is significant discriminatory information 

in intra-seasonal variation, such as leaf-off vs. leaf-on conditions, which is exploited by studies of the 



Remote Sens. 2020, 12, 3570 24 of 43 

 

multi-temporal, mono-annual category. Leiterer [175], for example, report significant improvements 

in forest type structure classification by combining leaf-on and leaf-off lidar data, as opposed to using 

a single acquisition. Thirteen publications make use of multi-temporal time series from at least 10 

years. Six studies deal with either forest disturbances [33,139,208] or phenology [116,121,184], which 

are both subject areas where long time series are necessary to statistically back up statements on 

trends and changes. 

Overall, there is some evidence of EO-based studies moving to more timely analysis, which is to 

be expected with the increasingly densified acquisition schedules and improved data accessibility. 

On average, the time-gap between the acquisition date of the last used data-source and the 

publication year is shrinking by 38 days per year. 

6.5. Research Topics 

We have divided the large number of research topics into different categories suitable to cover 

the diversity of studied parameters. The seven categories and the number of studies belonging to 

each of them are shown in Figure 16. 

 

Figure 16. Examined research topic categories. Note that some studies cover different topics, which 

may result in multiple entries. 

6.5.1. Biomass / Productivity 

The majority of publications (47 studies) cover the topic “Biomass/Productivity.” Forest 

productivity includes the estimation of timber volume [236], which is of high economic interest to 

forest management and timber industry, and, thus, strongly demanded information. In addition to 

the economic value, forest growth is also related to the new biomass generated [154] and, therefore, 

to changes in the carbon stock [238]. This information is relevant for assessments of atmospheric 

carbon sequestration and is, thus, needed for further climate action planning. 

Looking at the methods used, it can be seen that most of the studies employ some sort of 

regression analysis between in-situ data and EO data [98,120,165,174,179,228]. A diverse set of 

different algorithms is employed with the most popular algorithms including linear and generalized 

linear models, support vector machines, and Random Forests. Like others, Latifi et al. [170], for 

example, report Random Forest to be the best method for predicting timber volume and biomass. 

In 2014, Fassnacht et al. [128] analysed the importance of sample size, data type, and prediction 

method for remote sensing-based estimations of aboveground forest biomass. They confirmed 

previous findings that the most important factor for the accuracy of biomass estimates is the sensor 

type with lidar yielding the highest accuracies. They also found that the prediction method was 

generally more important than the sample size, but it should be noted that they only considered 

airborne data. Tum et al. [247] used MODIS data to model the forest biomass in Germany and 

concluded that the sample size of 1 km2 resolution is insufficient to describe the heterogeneous small-

scale structure of mid-European forests. 

Many of the studies have the use of digital surface models (DSM) in common, and use digital 

terrain models (DTM) to derive canopy height models (CHM) [154,217,233]. Maack et al. [179] found 
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CHM to be the most important predictor for biomass regression. The parameter stem diameter at 

breast height (DBH) is also often used, especially when it comes to studies targeting stem volume 

[128,171,222,243]. 

One of the latest publications in 2019 by Schumacher et al. [217] uses a combination of multi-

temporal Sentinel 2 images and 3D photogrammetric point clouds to enhance the accuracy of timber 

volume models. Their method resulted in up to 50% smaller standard errors compared to using only 

inventory plots. 

Analyses of biomass and productivity have been mainly conducted in managed forests (e.g., 

Traunstein, Black Forest, and surroundings) (Figure 17). 

6.5.2. Forest Structure 

The second most frequent topic dealt with is “Forest Structure” with 39 publications. Forest 

structure comprises stand structure [126], canopy gaps [137], stand density [248], and vertical forest 

structure (e.g., tree height and tree crown diameter) [240]. Some of the publications are also assigned 

to the topic “Biomass/Productivity” [132], which discusses the relevance of forest structure for 

biomass and productivity. The forest structure is also a very important parameter when it comes to 

biodiversity mapping or the evaluation of habitat suitability. This is why some research studies cover 

both topics [106,153], forest structure, and biodiversity. 

Forest structure can be specified according to canopy closure and vertical layering. Abdullahi et 

al. [99] classified nine classes of forest structure based on X-band InSAR data. For the most part, either 

lidar or radar data was used to derive the forest structure [99,144,175,216]. Tello et al. [240] compared 

forest structure maps estimated by means of radar and lidar and found them to be of similar quality. 

Latifi et al. [168] explored the potential of lidar metrics for describing vegetation cover. They showed 

that the mean height of lidar reflections to be a robust predictor for modelling canopy cover of the 

highest forest layer. When it comes to undergrowth vegetation density mapping, Leiterer et al. [175] 

highlighted the necessity to use leaf-on and leaf-off full-waveform lidar. 

The methods applied in the 39 publications are diverse. Amiri et al. [103] used a top-down 

segmentation in conjunction with lidar data. Different regression analysis methods were applied by 

References [126,142,168,196]. Fischer et al. [132] utilized the forest model FORMIND, (an individual-

based vegetation model that simulates the growth of forests on the hectare scale [261]) to simulate 

the field forest structure and, subsequently, simulate the lidar measurements for correlation analysis 

to find the best remote sensing predictors for the forest structure. One of the few studies relying on 

optical data is using spectral unmixing of forest crown components [118]. 

Concerning the accuracy, Schlund et al. [215] achieved a mean error of less than 1m with a 

TanDEM-X-based canopy height model. 

The forest structure is an essential parameter for many forestry-related aspects and plays a key 

role in sustainable forest management. This importance is mirrored in the fact that the forest structure 

is a research topic addressed throughout Germany in different sites, for different forest management 

regimes and different forest types (Figure 17). 

6.5.3. Disturbance 

Twenty-eight papers deal with disturbances. Among the different disturbance agents, bark 

beetle damage was the most prominent one [60,97,167]. Other disturbances comprise windthrow 

[123,141,239], droughts [105,122,208], frost [160], and fire [199]. 

Bark beetle damage detection often aims at early detection [97,200]. The sensors used to detect 

bark beetle infested areas differ widely including [60,129,173] using hyperspectral airborne data. 

Some studies explored multispectral and thermal spaceborne data [97,163] or a combination of 

multispectral spaceborne data and airborne orthophotos [167,172]. There are also two publications 

that used SAR data ([200], X-band, and [239], L-band). However, early-stage detection was not 

feasible with either L-band [239] or X-band SAR alone but proved to be reasonable in combination 

with optical data [200]. The detection of heavily infested stands also works with only SAR data [239]. 
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Windthrow has pronounced effects on forest structure and is, therefore, often explored with 

active systems such as lidar [204,205] and SAR [211,239]. Most studies rely on high spatial resolution 

data [123,125,141], but even Sentinel-1 C-band with 10-m spatial resolution and ALOS PALSAR-2 

with 30-m spatial resolution are useful in the windthrow detection. In terms of methods, bi-temporal 

change detection is a common technique, which is sometimes applied within an object-based 

framework [123,125]. Hamdi et al. [141] used a CNN deep learning approach to detect storm damage 

with pixelwise classification of multispectral aerial images. Whereas most of the mentioned studies 

addressing windthrow applied a kind of before-and-after comparison, there are a few studies based 

on time series data where storm damage is recorded as one of multiple disturbance agents to 

reconstruct forest disturbance history and recovery [33,221]. 

Forest droughts were assessed with MODIS at a larger scale [105,208]. Dotzler et al. [122] 

explored the potential of EnMAP and Sentinel-2 data for drought detection with higher spatial 

resolution using images simulated from hyperspectral airborne data. All studies used spectral 

indices. The two MODIS-based studies take advantage of the temporal information. Bachmair et al. 

[105] derived vegetation condition index (VCI) and vegetation health index (VHI) [262] from NDVI 

(normalized difference vegetation index) and LST (land surface temperature) time series. 

Reinermann et al. [208] used EVI (enhanced vegetation index) time series. Dotzler et al. [122] used 

spectral indices specifically sensitive to water stress. 

Depending on the disturbance type, sensor and data, timing, and methods, the accuracies vary 

widely. Polewski et al. [204] detected fallen trees in ALS (airborne laserscanning) point clouds with 

97% correctness and 71% completeness. Senf et al. [221] created maps to assess forest disturbance 

dynamics based on Landsat data and achieved overall accuracies ranging from 81% to 93%. Latifi et 

al. [167] mapped bark beetle damages with an overall accuracy of 67%-95%. 

6.5.4. Biodiversity / Habitats 

Twenty-four of the reviewed publications dealt with research questions in the context of forest 

biodiversity. Almost half of the respective papers looked at animal species and habitat suitability 

(e.g., [153] for bats, [186–188] for beetles, [189,190] for birds, and [249] for spiders), while others 

examined plant species diversity in the tree [102] or herb layer [139]. Four studies [102,186,188,218] 

dealt with the identification of dead wood, as it is a biotope for numerous animal and plant species. 

It also functions as a carbon sink, contributing to climate protection until the carbon is released again 

by decomposition processes. 

Forest biodiversity is often linked to structural canopy parameters. Airborne laser scanning has 

proven to be particularly successful in describing a complex three-dimensional vegetation structure 

and, hence, was used by all but one study to derive parameters such as canopy height, gap depth, 

crown area, or canopy surface roughness. Zielewska-Buttner et al. [259] combined structural and 

spectral data to identify and characterize deadwood in order to model habitat requirements of species 

highly specialized on particular types of standing deadwood (e.g., the three-toed woodpecker). Six 

of the studies used spaceborne EO data (Sentinel-1, Landsat 4-7, QuickBird, and RapidEye), airborne 

hyperspectral sensors were employed three times, and airborne and UAV RGB(-CIR) imagery five 

times. With respect to biodiversity in general, several studies support silviculture strategies that 

result in a higher variety of canopy densities and vertical variabilities across forest stands [107]. Bae 

et al. [106] demonstrated the potential of area-wide biodiversity monitoring by remote sensing using 

Sentinel-1 data. In order to do so, they stress the necessity of stratified and standardized collected 

local species data. 

The employed methodologies included decision tree algorithms (e.g., boosted regression trees 

[108] and Random Forest [153,176]), statistical analysis [135,218], and classification techniques (e.g., 

support vector machines [114,245]). 

Concerning the derived quality, Gonzales et al. retrieved an overall accuracy of 86.6% [138] for 

the object-based mapping of forest habitats with lidar and high resolution colour infrared imagery in 

the Bavarian Forest National Park. 

All studies in the context of forest biodiversity covered only local to regional scales. 
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6.5.5. Forest Cover/Type 

Forest cover/type comprises the generation of forest/non-forest masks [109], forest type 

differentiation like the discrimination between deciduous and coniferous forests [124,195,201], and 

tree species classification [131,152,255]. A total of 17 publications could be assigned to this topic area. 

Some of the publications related to forest cover/type mapping used spaceborne SAR data (X-

band, C-band, and L-band). Their thematic detail is restricted to rather coarse classes such as 

forest/non-forest [109,112,241] or deciduous/coniferous forest types [201]. On the other hand, tree 

species mapping was often done with multi-spectral or hyperspectral data [131,152,230] or with lidar 

data [138,157]. In particular, Sentinel-2 proved to be promising in tree species mapping [152,255]. 

Reference [152] achieved 67% overall accuracy for seven tree species based on a single Sentinel-2 

image subjected to a machine learning classifier. Wessel et al. [255] achieved 88% overall accuracy for 

four tree species/types using multi-temporal Sentinel-2 data. All studies on tree species mapping rely 

on high quality reference data. Immitzer et al. [150] found that very high resolution reference data 

should cover roughly 1% of the total area in order to achieve 10%–15% error (RMSE) for mapping 

spruce and pine in Bavaria. 

Among the publications related to forest cover/type and tree species mapping, there is a 

preference for machine learning algorithms such as support vector machines and Random Forest 

[60,109,138,152,219,255]. Even though most of the publications generated hard classifications, there 

are also some papers producing fractional cover estimates, such as deciduous/coniferous fractions 

[219] or pine/spruce fractional cover [150]. 

The work by Stoffels et al. [229] generated forest maps with different levels of detail. They 

achieved high overall accuracies of 93% for a forest/non-forest mask, 91% for a forest type 

discrimination, 84% for the classification of five dominant tree species, and 55% for the species 

development stage estimation, respectively. Their results demonstrated that satellite data can be used 

for the derivation of high-resolution forest information layers for operational forest management. 

6.5.6. Plant Traits 

Eleven papers dealt with different plant characteristics, known as plant functional traits. These 

include leaf chlorophyll content [119], chlorophyll and nitrogen concentration [214,253], leaf water 

content [257], leaf area index (LAI) [191,206,213], and specific leaf area [100,101]. The spatial and 

temporal information on plant traits helps to understand how forest ecosystems are changing. 

Airborne hyperspectral data (HySpex, HyMap) or spaceborne multispectral data (Landsat 7-8, 

Sentinel-2) were the preferred input data basis with vegetation indices often being calculated as an 

intermediate step. Neinavaz et al. [191] combined thermal data with reflectance spectral data of 

Landsat-8 for the prediction of LAI and found out that this combination can increase the estimation 

accuracy of the LAI in a forest ecosystem. In most of the eleven studies, in situ data served as an input 

for validation. 

The employed methodologies include the use of regression analysis [213,214], but also – 

especially when the papers were published in the last five years – radiative transfer models and 

inversion techniques [100,101,206,223,257], Random Forest algorithms [136], and artificial neural 

networks [191]. 

The derived accuracy varied according to the considered parameter. Ali et al. [100] retrieved leaf 

dry matter content and specific leaf area with an RMSE of 4.39% (R² = 0.59) and 4.90% (R² = 0.85), 

respectively, from HySpex data. Gara et al. [136] found Sentinel-2 data to be suitable to estimate leaf 

mass per area (R² = 0.67, RMSE = 65.9 g/cm2), and chlorophyll (r2 = 0.55, RMSE = 0.38 g/cm2), nitrogen 

(r2 = 0.53, RMSE = 1.13 g/cm2) and carbon content (r2 = 0.68, RMSE = 31.9 g/cm2). 

Furthermore, 8 out of the 11 studies related to plant functional traits were undertaken in the 

Bavarian Forest National Park (see Figure 17). 
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6.5.7. Phenology 

Strongly linked to plant traits, but putting more emphasis on the seasonal variation, seven out 

of 166 papers looked at phenological parameters. The latter describe the seasonal rhythms of plant 

development, such as the start of the growing season (green-up date) [121], end of the season, and 

length of the season [184]. If recorded over a sufficiently-long time period, phenology can be a 

sensitive indicator of climatological changes. 

With respect to remote sensing data, the availability of long time series and a frequent revisit 

time (preferably daily) is required for phenological investigations. The reviewed studies mainly used 

AVHRR [116,121] or MODIS data [162,184,185,206], often in the form of derived vegetation indices 

such as NDVI or EVI. Curve-fitting [162,184,185] and wavelet analysis [116] have proven to be well-

suited to extract the desired information from space-borne time-series. For broadleaved species and 

late occurring understory vegetation, Misra et al. [184] found significant correlations between ground 

and EO-derived observations of the start of the season, but also revealed the limitations of a different 

start of season estimation methods and data inherent uncertainties. 

Looking at the achieved accuracies of EO-derived phenological parameters, Senf et al. [220]  

showed an overall strong agreement of Landsat-based estimates of the start of the season with 

ground-based observations of bud-break variability (r = 0.82). 

 

Figure 17. Research topics by study areas. Note that the order of the mentioned topics has changed 

when compared to Figure 16 since some studies were conducted in several research areas. 

7. Discussion 

With respect to our review methodology, we should mention that a few papers might not have 

been included, which could potentially hold additional information. With our geographical focus put 

only on papers dealing with study sites in Germany or all of Germany, we might have missed some 

information provided in European or global studies that include Germany. However, at that scale, 

we do not expect to find much additional detail or more precise findings when compared to the 

national or federal studies. As there were only six studies covering the whole country area, it can be 

expected that studies covering Europe (and Germany then being only a small area within the image 

analyses) would not supply in-depth bio-geophysical parameters allowing for differentiated 

products with respect to the country. We have, furthermore, only analysed studies published in peer-

reviewed journals, which, in turn, explains the high number of publications from universities. The 

administrative sector mainly publishes results in white paper reports, which are not covered within 

our review, as is usually the case with many other scientific literature reviews. 
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There is also an interesting, non-uniform spatial distribution of studied forest sites. For example, 

only one study was conducted on forests in the “Harz,” which is known for the extensive damage 

this region has suffered due to the recent drought years. The literature found in this review is biased 

toward national parks and mixed forests, as a large share of studies was undertaken in the Bavarian 

Forest NP, which also seems to result in a disproportionately strong focus on certain disturbances, 

such as the bark beetle. Nevertheless, such hot spot areas, with their enormous amount of data and 

in-situ information, serve as a laboratory for the further development of ideas and methods (e.g., 

Data Pool Initiative for the Bohemian Forest Ecosystem [263]). 

With respect to the strengths and weaknesses of EO in the forest sector, we underline that forests, 

for the most part, are “slow” reacting ecosystems, where changes from year-to-year are incremental. 

This is why classical field inventories every five years are, in many cases, sufficient for the need of 

local foresters. The “near real-time” promise of EO is of particular interest in the area of forest 

disturbances (e.g., windthrow, avalanches, forest fires, and bark beetle infestations). On the other 

side, longer time-series of EO data allow for monitoring purposes in the fields of forest development, 

regeneration, and changes in phenology. Time-series analysis also plays a major role in the detection 

of drought impacts on forest systems, even though there has been hardly any scientific study 

published. 

The current scientific literature on remote sensing-based forest research in Germany suggests a 

steady increase in the use of EO-based data for different forest-related analyses. This is very likely 

due to an increasing number and suitability (with respect to spatial, temporal, and spectral 

resolution) of available EO sensors and data. Furthermore, it is becoming progressively easier to 

freely access EO data. Data processing literacy is increasing as well. 

The recent increase in the availability of high spatial - high temporal resolution EO data sources 

parallels an observed increase in multi-temporal analyses. Coming with the increased data volume 

are new challenges in terms of storing and processing such data. A number of technical solutions 

including many of which are open-source software, are available, facilitating big EO data analyses 

such as dedicated array data base systems (e.g., SciDB, RasDaMan, OpenDataCube) or distributed 

processing frameworks (e.g., Hadoop map-reduce) and many others. While larger research institutes 

often have in-house expertise and computing infrastructures, the barrier for smaller entities has been 

significantly lowered in recent years through the public availability of cloud-based storage and 

processing services such as Google Earth Engine, Amazon Web Services (AWS), EU Copernicus Data, 

and Information Access Services (DIAS) or the System for Earth Observation Data Access, Processing, 

and Analysis for Land Monitoring (SEPAL). This paradigm shift in EO data analyses toward multi-

source, high-resolution, time-series analyses is expected to also transform EO applications in forestry 

in Germany in the coming years. 

A finding that stands out from our analyses is the fact that there are only very few studies at the 

national level. Although new sensor types and improved data availability (free of charge, sufficiently 

high spatial resolution, and frequent and complete coverage) would allow a continuous monitoring 

of all forests in Germany, it seems that the potential of EO for wall-to-wall monitoring is not yet fully 

exploited. The rather complex institutional landscape in the forest sector can be an explanation for 

this, since actual forest management is usually carried out at a local, regional, or federal state level. 

Another reason may be the fact that the necessary processing infrastructure or knowledge thereof to 

analyse a large amount of data has only recently been established at the research institutes, 

universities, and public authorities. In addition, numerous limitations of EO derived information 

compared to in-situ data still exist. When it comes to the identification of certain tree species (not to 

name understory vegetation or even animal species), EO can either not provide this information at 

all, or not with the same accuracy as in situ data. On the other hand, a complete and regular mapping 

of forest cover in Germany (and also of other parameters such as forest types, biomass estimation, 

forest disturbance such as windthrow, fires, or drought effects, etc.) could already be delivered with 

sufficiently high accuracy. This could then be supplemented with further detailed studies (based on 

higher-resolution EO data or in-situ inventories). Still, a gap exists between the needs and demands 

of forest managers, who usually operate at stand level and are interested in in-depth information on 
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species variety, biodiversity, chemical properties of leaves, and understory temperature, and EO 

scientists working with spaceborne data, which usually has its advantages for large scale mapping 

and monitoring endeavors in a cost-efficient manner. Only one paper did explicitly define and list 

the data and mapping requirements of the federal forest service (of Rhineland-Palatinate) in order to 

provide high-resolution forest information layers derived from satellite data for operational forest 

management [229]. The pilot project confirmed that the operational requirements for mapping 

accuracies can be fulfilled. According to our experience, common language and mutual 

understanding must still be established and improved further.  

In America, for example, remote sensing is an important source of information to support forest 

management [264]. Even though field visits are tedious, labor intensive, and costly, they are the basis 

of the forest inventories especially in large countries such as the United States. EO is used in these 

countries to support sampling-based inventorying activities to a larger extent than in Germany. 

Therefore, remote sensing, especially with time series of freely available satellite data, plays a crucial 

role in complementing ground surveys in these countries [265]. Our results show that the forest-

related scientific output in Germany is, so far, not yet strongly linked and integrated into forest 

inventory programs. However, there is also sufficient evidence that remote sensing is capable of 

providing operational forest information at a national, federal, and local level [229]. 

Furthermore, we expect that novel opportunities will arise when the archives of higher 

resolution satellite data of sensors such as Ikonos, Quickbird, Worldview, or Planet become freely 

available in the future. Data with a spatial resolution of around one meter or better – when combined 

with data of higher spectral resolution (e.g., Sentinel-2) – holds the potential for additional 

information on crown size and shape, species, disturbances, or other forest parameters that might 

even be relevant at the stand level. A large potential lies in the synergistic analyses of all available 

EO data for a specific site – be it optical, multispectral, thermal, or radar data. The analyses of all EO 

data using novel deep learning algorithms on image cubes of complex data – all with their specific 

advantages – will lead to an increased in-depth understanding of the correlation and also causalities 

between signatures and patterns in imagery data and geo-physical and chemical properties within 

our forest stands. 

8. Conclusions 

In conclusion, the review of published research in the field of remote sensing-based monitoring 

of forests in Germany provided an extensive overview of the EO data currently in use, their temporal 

and spatial resolution, and the associated fields of application. In order to relate the findings of the 

review to the observed ecosystem, we described the forest in Germany in detail regarding its historic 

development and current status, the forest management and monitoring practices, the institutional 

landscape in the forest sector, and the present challenges and foreseen climate adaption strategies. 

The main results considering the objectives of this review defined in section 1.2 are summarized 

hereafter. 

• We reviewed 166 research articles published since 1997 mainly in journals associated with 

remote sensing, ecology, or forestry. The publications could be subdivided into seven main 

research topics. In summary, ~27% of all studies focused on parameters related to biomass 

and productivity, ~23% on forest structure, 16% on forest disturbances, ~14% on biodiversity 

and habitats, ~10% on forest cover and forest type, ~6% on plant traits, and ~4% on 

phenology. 

• Considering the spatial extent and coverage of the studies, we found that the majority 

focused on a local to regional scale (~90%) observing parameters mainly at the stand level. 

The review pointed out the existence of several “hot spots” when it comes to the surveyed 

forest areas in Germany. One example is the Bavarian Forest National Park serving as a 

study area in 34% of the reviewed articles. 

• Regarding the employed remote sensing platforms and sensor types, airborne platforms are 

the most frequently used (57%), but they are increasingly being replaced or supplemented 

by spaceborne platforms (41%). Airborne lidar data and spaceborne multispectral data were 
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mostly employed data types for forest studies in Germany. We found a direct correlation 

between the remote sensing platform, spatial resolution of the input data, size of the study 

area, and the investigated object scale (tree, stand, forest, and landscape). 

• Throughout the different research topics, the majority of studies relied on mono-temporal 

input data (67%). Multi-temporal analysis is mainly found in studies investigating forest 

disturbances and phenology. Since 2017, there is a notable increase in multi-temporal 

studies. 

• Looking at the different research topics, the forest structure is an essential parameter to most 

of the forestry related aspects, such as linking canopy closure with habitat characterisation. 

Horizontal and vertical structure information is, therefore, often used as an additional input 

parameter to most of the reviewed studies. 

Overall, the use of remote sensing for forest monitoring has gained more interest during the last 

few years. However, there is still a lack of nationwide studies and forest parameter assessments. In 

order to support forest management and authorities with information from EO, it is necessary to 

further develop robust monitoring methods and implement them at the state or federal level. 

Furthermore, we expect an increased in-depth understanding of the correlation and causalities 

between signatures and patterns in EO data and geo-physical and chemical properties within forest 

stands using novel deep learning algorithms on image cubes combining different types of EO data. 
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