GNSS Acquisition Performance of Short Spreading Codes

Christoph Enneking, Felix Antreich, André L. F. de Almeida

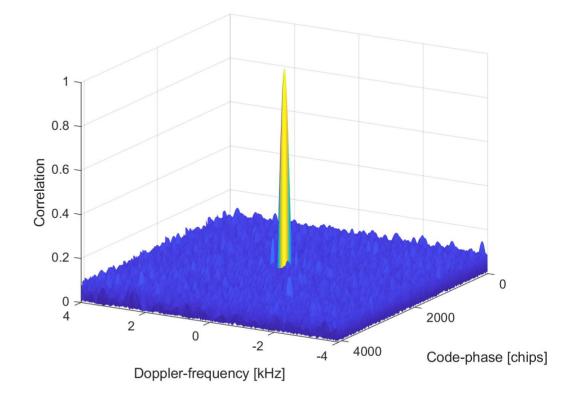
German Aerospace Center (DLR)
Instituto Technológico de Aeronautica (ITA)
Federal University of Ceará (UFC)

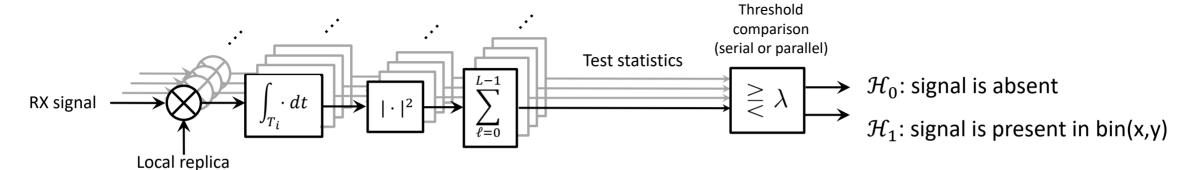
Outline

- What are short spreading codes? Why are they interesting for acquisition?
- Part 1: statistical acquisition performance models for short codes
- Part 2: signal design selecting a code length

Signal Acquisition is a resource-hungry process

- 2-D search grid of code-phase/Doppler-freq.
- Extend spreading code (=PRN code) length → more code bins
- Extend coherent integration time → more Doppler bins
- Generation of test statistics costs memory/energy/time
- Statistical detection problem with possible errors:
 - False alarm (satellite is actually not in-view)
 - Missed detection (satellite is not detected in the correct bin)

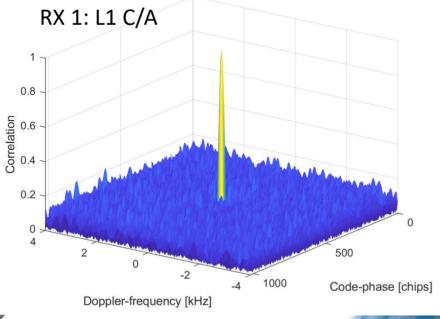


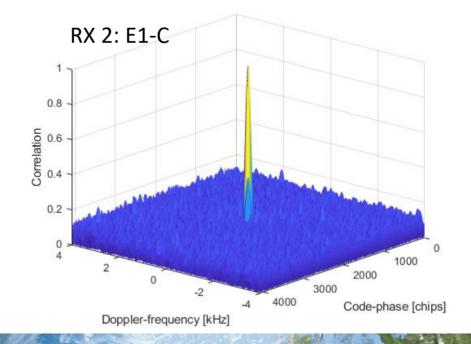


Some examples

*) assuming 40 correlations per ms **) non-assisted, -158.5 dBW / 7x -153 dBW IF

Signal	Coherent integration	Doppler bins	PRN code length (chips)	Code bins per chip	Overall bins	Required time *	Data (or overlay) bit rate	Reliability $P_{DET}(P_{FA}) **$
GPS L1 C/A	4 ms	32 (8 kHz x 4ms)	1023	x1 BPSK(1)	= <u>32736</u>	0.82 s	50 Hz	82% (5%)
Galileo E1-C	4 ms	32	4092	x3 BOC(1,1)	= <u>392832</u>	9.82 s	250 Hz	66% (5%)

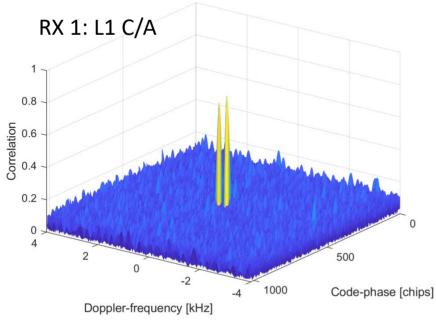


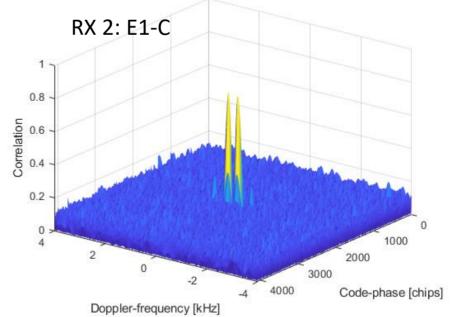


Some examples

*) assuming 40 correlations per ms **) non-assisted, -158.5 dBW / 7x -153 dBW IF

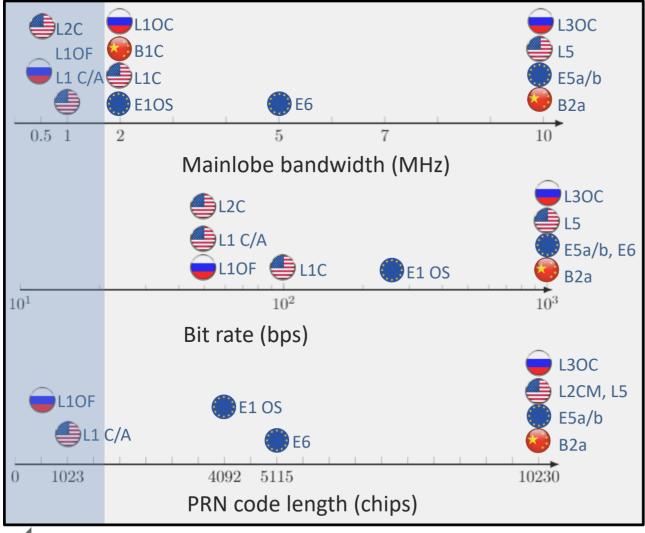
Signal	Coherent integration	Doppler bins	PRN code length (chips)	Code bins per chip	Overall bins	Required time *	Data (or overlay) bit rate	Reliability $P_{DET}(P_{FA}) \ **$
GPS L1 C/A	4 ms	32 (8 kHz x 4ms)	1023	x1 BPSK(1)	= <u>32736</u>	0.82 s	50 Hz	82% (5%)
Galileo E1-C	4 ms	32	4092	x3 BOC(1,1)	= <u>392832</u>	9.82 s	250 Hz	66% (5%)





Bit transition in the middle of coherent integration interval

Civil GNSS signals ten years ago ... and today!



- Trend in signal design 2000-2010:
 "Race for accuracy"
 - high bandwidth
 - high bit rate (or overlay code, symbols,...)
 - long PRN codes
- Trend in signal design 2015-ongoing: "Fast fix/low cost"
 - Time/energy per fix
 - Snapshot receivers, IoT devices, SpaceNav

A possible C/A Signal for Galileo: "E1-D"

*) assuming 40 correlations per ms **) non-assisted, -158.5 dBW / 7x -153 dBW IF

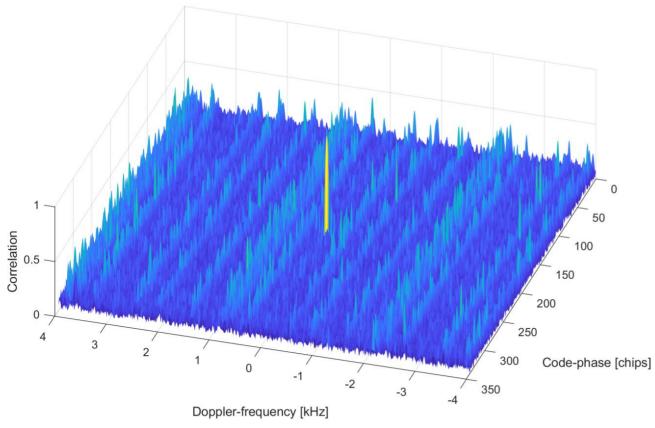
Signal	Coherent integration	Doppler bins	PRN code length (chips)	Code bins per chip	Overall bins	Required time *	Data (or overlay) bit rate	Reliability $P_{DET}(P_{FA})$ **
GPS L1 C/A	4 ms	32 (8 kHz x 4ms)	1023	x1 BPSK(1)	= <u>32736</u>	0.82 s	50 Hz	82% (5%)
Galileo E1-C	4 ms	32	4092	x3 BOC(1,1)	= <u>392832</u>	9.82 s	250 Hz	66% (5%)
Galileo E1-D	4 ms	32	341 or less	x1 BPSK(1)	= <u>10912</u> or less	0.27 s or less	50 Hz or less	???

- Code length of 341 would reduce the acquisition complexity by a factor of 3
- Is such an acquisition signal still reliable?

Outline

- Why are short PRN codes interesting for acquisition?
- Part 1: statistical acquisition performance models for short PRN codes
- Part 2: signal design selecting a code length

A possible C/A Signal for Galileo: "E1-D"



- 8 in-view satellites transmitting E1-D (as in Slide 7)
 - k = 1 to be acquired (-158.5 dBW)
 - k = 2, ..., 8 interferers (-153 dBW)
- Interference affects some Doppler bins more than others
- Effect becomes more pronounced for
 - near-far scenarios
 - shorter codes
 - lower databit rate
 - This effect is known from L1 C/A, but less pronounced

State of the art: fine SSC

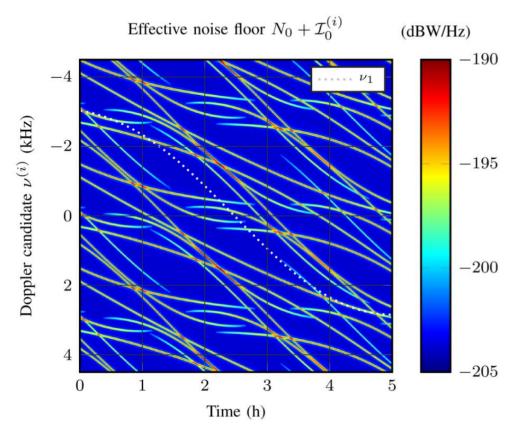


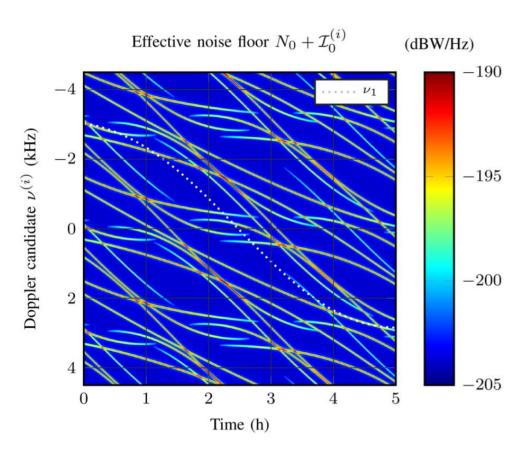
Figure: effective noise floor vs. Doppler bin vs. time for a Walker • (24/3/1) constellation transmitting E1-D (as in Slide 7)

- Spectral separation coefficient (SSC): $\beta_{1,k}^{(i)} = \int \phi_1^{(i)}(f)\phi_k(f)df$
- The interference floor $I_0^{(i)}$ is a weighted sum of SSCs

$$I_0^{(i)} = \sum_{k=2}^K P_k \, \beta_{1,k}^{(i)}$$
, P_k : power of sat k

- Interference can be modeled as Gaussian noise, using an *effective noise floor* $N_0 + I_0^{(i)}$
- Two SSC-versions
 - 1. Coarse SSC (low-res. spectrum features: order of MHz) = const.
 - 2. Fine SSC (high-res. spectrum features: order of sub-kHz)
- The results on the left are based on the fine SSC [Heg2019], [Dri2012]
 → SSCs vary from bin to bin!

State of the art: fine SSC (cont'd)



- Fine SSC is large if the relative Doppler $v_k v^{(i)}$ between the interferer k and bin i is a multiple of the PRN repetition rate 3 kHz (L1 C/A: 1 kHz)
- Sometimes, several such "Doppler crossings" occur in one bin at the same time (effective noise floor goes up by 15 dB)
- Straightforward (exact) solution: calculate bin probabilities $p_{
 m fa}^{(i)}$, $p_{
 m det}^{(i)}$ in Gaussian noise for
 - each fine SSC between <u>every bin</u> i and every interferer k
 - each possible constellation
 - each possible detection threshold

then calculate global probabilities, e.g. $P_{\rm FA} = 1 - \prod_{i=1}^{N_{bins}} \left(1 - p_{\rm fa}^{(i)}\right)$.

This is too complex for the evaluation of one signal design candidate!

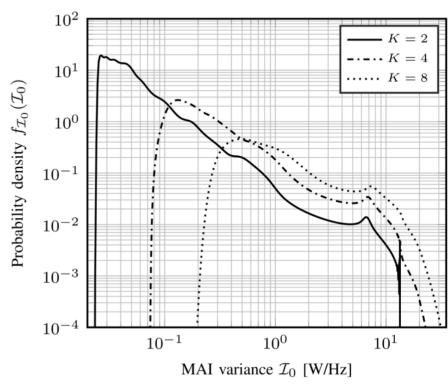
Simplified model: random SSC

• Given the instantaneous fine SSCs between all signals and bins, the bin probability of false alarm would be

$$p_{\mathrm{fa}}^{(i)} = e^{-\frac{\lambda}{N_0 + I_0^{(i)}}}$$
 λ : detection threshold

- Idea: do NOT calculate $I_0^{(i)}$ for each bin, but treat it as random variable i.i.d. for all bins with distribution $f_{\mathcal{I}_0}(\mathcal{I}_0)$
- Calculate the *compound* bin probability of false alarm, for random \mathcal{I}_0

$$p_{\rm fa} = e^{-\frac{\lambda}{N_0 + \mathcal{I}_0}}$$



K: number of in-view satellites

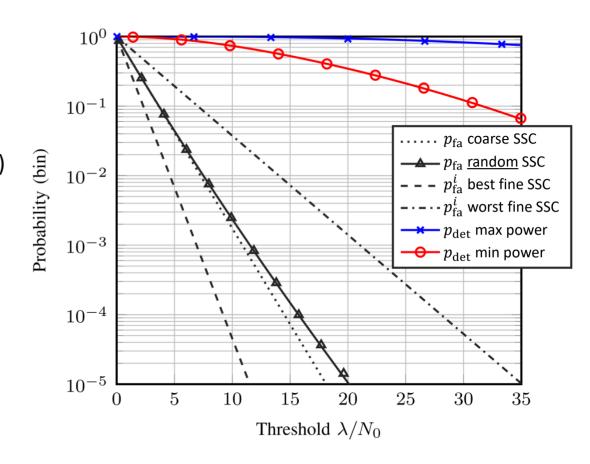
How to obtain this PDF: see model usage slides

Compound bin probabilities

- The compound bin probability of false alarm
 - is independent of the bin index *i*
 - is representative for all search bins, but not for any particular search bin
 - is a mixture-Gaussian model (not a line on semilog axis!)
- The global probability of false alarm simplifies to

$$P_{\text{FA}} = 1 - \prod_{i=1}^{N_{bins}} \left(1 - p_{\text{fa}}^{(i)}\right) \approx 1 - (1 - p_{\text{fa}})^{N_{bins}}$$

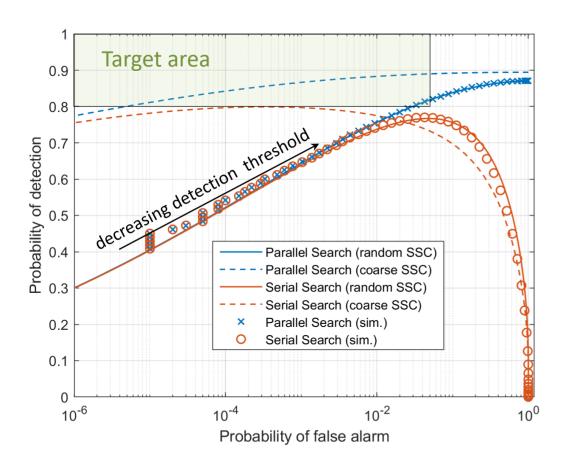
- → This facilitates acquisition signal design considerably!
- The bin probability of detection is hardly affected by interference → use an accurate model, e.g. [Dri2007]



Outline

- Why are short PRN codes interesting for acquisition?
- Part 1: statistical acquisition performance models for short PRN codes
- Part 2: signal design selecting a code length

Receiver operating characteristic (ROC) curve



Code length	341
Bit rate	0 Hz (pure pilot)
Modulation	BPSK(1)
Coh. Integration	4 ms
Search bins	$32 \times 341 = 10912$
Signal of interest	-158.5 dBW (minimum)
Interferers	7 imes -153.0 dBW (maximum)
Noise floor	−204.0 dBW/Hz
Doppler spread	−4 kHz 4 kHz
Target $P_{ m DET}$	> 80%
Target $P_{ m FA}$	< 5%

Sensitivity vs. code length

Given a scenario...

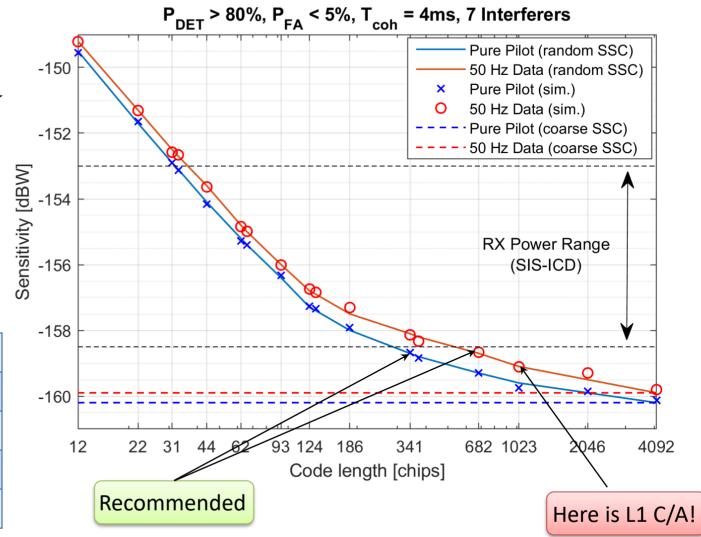
- tentative code length
- coherent integration time
- number and power of interferers k = 2, ..., K

and target global probability ...

- of detection
- of false alarm,

what is the required received power for the satellite signal to be acquired, k = 1?

Integration time	4 ms
In-view satellites	8
Power per interferer	-153 dBW (max)
Probability of detection	> 80%
Probability of false alarm	< 5%



Conclusion

- New C/A-signals with codes shorter than 1023 (e.g. 341) chips are an option for low-cost acquisition, especially for Galileo
- Self-interference needs to be assessed
- New model (random SSC & compound bin probabilities) has been developed for accurate global probability of false alarm state of the art:
 - Coarse SSC: very inaccurate for C/A-signals
 - Fine SSC: more accurate, but too complex for acquisition signal design
- 50 Hz bit sequence leads to acceptable sensitivity loss (0.3-0.5 dB as compared with pure pilot)
- Final design options:

Signal	Coh. Int.	Doppler bins	Code bins	Overall bins	Required time	Bit rate	$P_{DET}\left(P_{FA}\right)$
L1 C/A	4 ms	32	1023	= <u>32736</u>	0.82 s	50 Hz	82% (5%)
E1-D Pure Pilot	4 ms	32	341	= <u>10912</u>	0.27 s	0 Hz	82% (5%)
E1-D Quasi Pilot	4 ms	32	682	= <u>21824</u>	0.54 s	50 Hz	81% (5%)

References

[Heg2020] C. Hegarty, "A simple model for GPS C/A-code self-interference", ION Navigation, Jan. 2020.

[Dri2012] C. O'Driscoll, J. Fortuny-Guasch, "On the determination of C/A code self-interference with application to RFC analysis and pseudolite systems", *Proc. Int. Tech. Meeting Inst. Nav. ION/GNSS*, Nashville, TN, Sep. 2012.

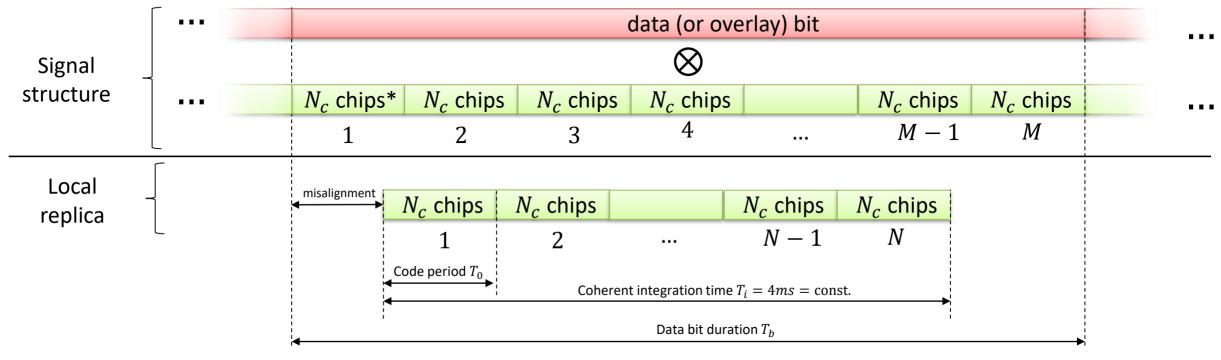
[Dri2007] C. O'Driscoll, "Performance analysis of the parallel acquisition of weak GPS signals", PhD Thesis, National University of Ireland, Cork, 2007.

[Enn2018] C. Enneking, F. Antreich, André L. F. de Almeida, "Gaussian Approximations for Intra- and Intersystem Interference in RNSS", *IEEE Comm. Letters*, Jul. 2018.

[Enn2019] —, "Pure Pilot Signals for GNSS: How Short Can We Choose Spreading Codes?", ION ITM 2019, Reston, Virginia, Jan. 2019.

Thank you for your attention!

Model usage – Step 1: Identify TX and RX parameters

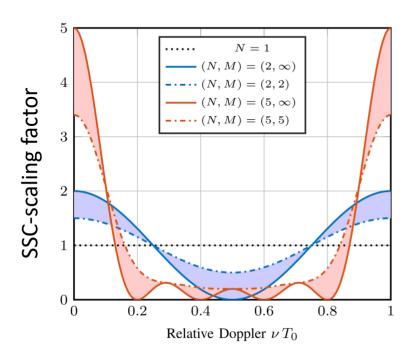


	۲
TX parameters	
RX parameter	{

Signal	Galileo E1-C	GPS L1 C/A	Galileo E1-D	
Code length: N_c	4092	1023	341	
PRNs per bit: M	1	20	60	
PRNs per integration: N	1	4	12	

^{*)} fixed chip rate: 1.023 MHz

Model usage – Step 2: Calculate probability density function of fine SSC



- Use fine SSC-models for Doppler ν [Heg2020] and (optionally) delay τ [Enn2018]
- It is sufficient to consider the intervals

$$\nu \in \left[0, \frac{1}{T_0}\right], \tau \in [0, T_c]$$

• Bin the resulting fine SSCs to obtain the PDF of the fine SSC

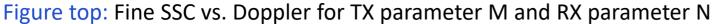
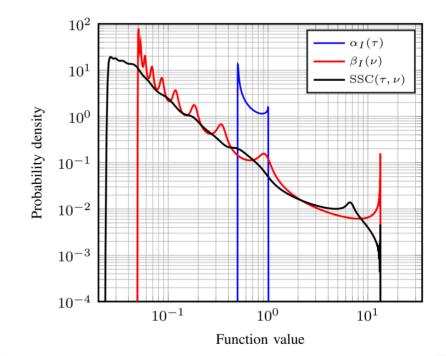


Figure right: PDF of (dimensionless) fine SSC for uniform delay/Doppler



Model usage – Step 3: Convolutions

• Weight with the received powers P_k , and perform K-2 convolutions (for K-1 interferers)

$$f_{I_0}(I_0) * \cdots * f_{I_0}(I_0)$$

Now, the PDF of the interference floor is obtained

• <u>Good alternative</u>: sample the PDF directly from constellation simulations, using [Heg2020]

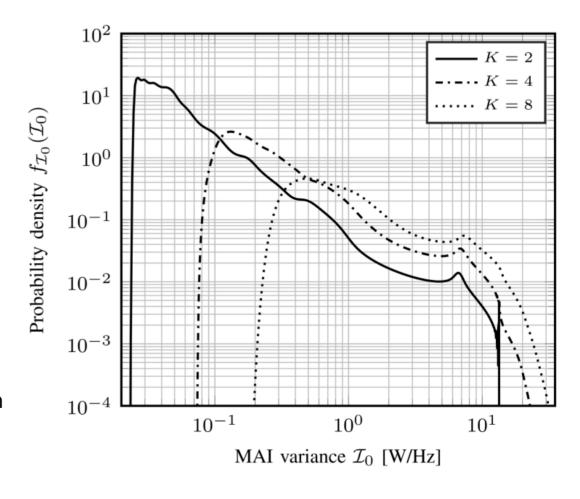


Figure: PDF of interference floor for K-1 interferers with unit power

Model usage

For more details on this model, stay tuned for our forthcoming journal paper:

C. Enneking, F. Antreich, André L. F. de Almeida "Receiver Operating Characteristic of GNSS Coarse/Acquisition Signals With Short Codes", approx. end of 2020.

Acknowledgment

This work has been carried out within the framework of the project "R&D for maritime safety and security and corresponding real time services" led by the Program Coordination Defence and Security Research within the German Aerospace Center (DLR).

