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Outline

• What are short spreading codes? Why are they interesting for acquisition?

• Part 1: statistical acquisition performance models for short codes

• Part 2: signal design – selecting a code length
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Signal Acquisition is a resource-hungry process

• 2-D search grid of code-phase/Doppler-freq.

• Extend spreading code (=PRN code) length➔more code bins

• Extend coherent integration time ➔more Doppler bins

• Generation of test statistics costs memory/energy/time

• Statistical detection problem with possible errors:
• False alarm (satellite is actually not in-view)
• Missed detection (satellite is not detected in the correct bin)
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Some examples
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RX 1: L1 C/A RX 2: E1-C

Signal Coherent
integration

Doppler bins PRN code
length (chips)

Code bins
per chip

Overall
bins

Required
time *

Data (or overlay)
bit rate

Reliability
𝑷𝑫𝑬𝑻(𝑷𝑭𝑨) **

GPS
L1 C/A

4 ms 32
(8 kHz x 4ms)

1023 x1
BPSK(1)

= 32736 0.82 s 50 Hz 82% (5%)

Galileo
E1-C

4 ms 32 4092 x3
BOC(1,1)

= 392832 9.82 s 250 Hz 66% (5%)

*) assuming 40 correlations per ms **) non-assisted, -158.5 dBW / 7x -153 dBW IF



Some examples
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Bit transition in the
middle of coherent
integration interval

RX 1: L1 C/A RX 2: E1-C
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Civil GNSS signals ten years ago … 
➢ Trend in signal design 2000-2010:

"Race for accuracy"
• high bandwidth
• high bit rate (or overlay code, symbols,…)
• long PRN codes

➢ Trend in signal design 2015-ongoing:
"Fast fix/low cost"
• Time/energy per fix
• Snapshot receivers, IoT devices, SpaceNav
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A possible C/A Signal for Galileo: "E1-D"
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• Code length of 341 would reduce the acquisition complexity by a factor of 3

• Is such an acquisition signal still reliable? 

Signal Coherent
integration

Doppler bins PRN code
length (chips)

Code bins
per chip

Overall
bins

Required
time *

Data (or overlay) 
bit rate

Reliability
𝑷𝑫𝑬𝑻(𝑷𝑭𝑨) **

GPS
L1 C/A

4 ms 32
(8 kHz x 4ms)

1023 x1
BPSK(1)

= 32736 0.82 s 50 Hz 82% (5%)

Galileo
E1-C

4 ms 32 4092 x3
BOC(1,1)

= 392832 9.82 s 250 Hz 66% (5%)

Galileo 
E1-D

4 ms 32 341
or less

x1
BPSK(1)

= 10912
or less

0.27 s
or less

50 Hz
or less

???

*) assuming 40 correlations per ms **) non-assisted, -158.5 dBW / 7x -153 dBW IF



Outline

• Why are short PRN codes interesting for acquisition?

• Part 1: statistical acquisition performance models for short PRN codes

• Part 2: signal design – selecting a code length
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A possible C/A Signal for Galileo: "E1-D"

DLR.de  •  Chart 9

• 8 in-view satellites transmitting E1-D (as in Slide 7)
• 𝑘 = 1 to be acquired (-158.5 dBW)
• 𝑘 = 2, . . , 8 interferers (-153 dBW)

• Interference affects some Doppler bins more than others

• Effect becomes more pronounced for
• near-far scenarios
• shorter codes
• lower databit rate

• This effect is known from L1 C/A, but less pronounced



State of the art: fine SSC
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• Spectral separation coefficient (SSC): 𝛽1,𝑘
(𝑖)

= 𝜙1׬
(𝑖)

𝑓 𝜙𝑘 𝑓 𝑑𝑓

• The interference floor 𝐼0
(𝑖)

is a weighted sum of SSCs

𝐼0
(𝑖)

= ෍

𝑘=2

𝐾

𝑃𝑘 𝛽1,𝑘
(𝑖)

, 𝑃𝑘: power of sat 𝑘

• Interference can be modeled as Gaussian noise,

using an effective noise floor 𝑁0 + 𝐼0
(𝑖)

• Two SSC-versions
1. Coarse SSC (low-res. spectrum features: order of MHz) = const.
2. Fine SSC (high-res. spectrum features: order of sub-kHz)

• The results on the left are based on the fine SSC [Heg2019], [Dri2012]
➔ SSCs vary from bin to bin!

Figure: effective noise floor vs. Doppler bin vs. time for a Walker 
(24/3/1) constellation transmitting E1-D (as in Slide 7)



State of the art: fine SSC (cont‘d)
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• Fine SSC is large if the relative Doppler 𝜈𝑘 − 𝜈(𝑖) between the interferer
𝑘 and bin 𝑖 is a multiple of the PRN repetition rate 3 kHz (L1 C/A: 1 kHz)

• Sometimes, several such "Doppler crossings" occur in one bin at the
same time (effective noise floor goes up by 15 dB)

• Straightforward (exact) solution: calculate bin probabilities 𝑝fa
𝑖
, 𝑝det

(𝑖)
in 

Gaussian noise for
• each fine SSC between every bin 𝑖 and every interferer 𝑘
• each possible constellation
• each possible detection threshold

then calculate global probabilities, e.g. 𝑃FA = 1 −ς
𝑖=1
𝑁𝑏𝑖𝑛𝑠 1 − 𝑝fa

𝑖
.

This is too complex for the evaluation of one signal design candidate!



• Given the instantaneous fine SSCs between all signals and bins, the bin 
probability of false alarm would be

𝑝fa
(𝑖)

= 𝑒
−

𝜆

𝑁0+𝐼0
𝑖

𝜆: detection threshold

• Idea: do NOT calculate 𝐼0
(𝑖)

for each bin, but treat it as random variable 
i.i.d. for all bins with distribution

• Calculate the compound bin probability of false alarm, for random

𝑝fa = 𝑒
−

𝜆

𝑁0+𝐼0
(𝑖)

Simplified model: random SSC
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𝐾: number of in-view satellites

How to obtain this PDF: see model usage slides



Compound bin probabilities

• The compound bin probability of false alarm
• is independent of the bin index 𝑖
• is representative for all search bins, but not for any

particular search bin
• is a mixture-Gaussian model (not a line on semilog axis!)

• The global probability of false alarm simplifies to

𝑃FA = 1 − ෑ

𝑖=1

𝑁𝑏𝑖𝑛𝑠

1 − 𝑝fa
𝑖

≈ 1 − 1 − 𝑝fa
𝑁𝑏𝑖𝑛𝑠

➔This facilitates acquisition signal design considerably!

• The bin probability of detection is hardly affected by
interference➔ use an accurate model, e.g. [Dri2007]
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𝑝fa coarse SSC

𝑝fa random SSC

𝑝fa
𝑖 best fine SSC

𝑝fa
𝑖 worst fine SSC

𝑝det max power

𝑝det min power



Outline
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• Part 1: statistical acquisition performance models for short PRN codes

• Part 2: signal design – selecting a code length
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Receiver operating characteristic (ROC) curve
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Code length 341

Bit rate 0 Hz (pure pilot)

Modulation BPSK(1)

Coh. Integration 4 ms

Search bins 32 × 341 = 10 912

Signal of interest −158.5 dBW (minimum)

Interferers 7 × −153.0 dBW (maximum)

Noise floor −204.0 dBW/Hz

Doppler spread −4 kHz … 4 kHz

Target 𝑃DET > 80%

Target 𝑃FA < 5%

Target area



Sensitivity vs. code length
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Here is L1 C/A!

Integration time 4 ms

In-view satellites 8

Power per interferer -153 dBW (max)

Probability of detection > 80%

Probability of false alarm < 5%

Given a scenario…
• tentative code length
• coherent integration time
• number and power of interferers 𝑘 = 2, … , 𝐾

and target global probability …
• of detection
• of false alarm,

what is the required received power for the
satellite signal to be acquired, 𝑘 = 1 ?

Recommended



Conclusion
• New C/A-signals with codes shorter than 1023 (e.g. 341) chips are an option for low-cost acquisition, especially for Galileo

• Self-interference needs to be assessed 

• New model (random SSC & compound bin probabilities) has been developed for accurate global probability of false alarm
 state of the art:

• Coarse SSC: very inaccurate for C/A-signals
• Fine SSC: more accurate, but too complex for acquisition signal design

• 50 Hz bit sequence leads to acceptable sensitivity loss (0.3-0.5 dB as compared with pure pilot)

• Final design options:
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Signal Coh. Int. Doppler bins Code bins Overall bins Required time Bit rate 𝑷𝑫𝑬𝑻 (𝑷𝑭𝑨)

L1 C/A 4 ms 32 1023 = 32736 0.82 s 50 Hz 82% (5%)

E1-D Pure Pilot 4 ms 32 341 = 10912 0.27 s 0 Hz 82% (5%)

E1-D Quasi Pilot 4 ms 32 682 = 21824 0.54 s 50 Hz 81% (5%)
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Thank you for your attention!



Model usage – Step 1: Identify TX and RX parameters
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data (or overlay) bit

𝑁𝑐 chips* 𝑁𝑐 chips 𝑁𝑐 chips 𝑁𝑐 chips 𝑁𝑐 chips 𝑁𝑐 chips ……

……

1 2 3 4 𝑀 − 1 𝑀

𝑁𝑐 chips 𝑁𝑐 chips 𝑁𝑐 chips 𝑁𝑐 chips

1 2 … 𝑁 − 1 𝑁

…

Signal
structure

Local
replica

misalignment

Coherent integration time 𝑇𝑖 = 4𝑚𝑠 = const.

Data bit duration 𝑇𝑏

Signal Galileo E1-C GPS L1 C/A Galileo E1-D

Code length: 𝑁𝑐 4092 1023 341

PRNs per bit: 𝑀 1 20 60

PRNs per integration: 𝑁 1 4 12

TX parameters

RX parameter

Code period 𝑇0

*) fixed chip rate: 1.023 MHz



Model usage – Step 2: Calculate probability density function of fine SSC

DLR.de  •  Chart 20

• Use fine SSC-models for Doppler 𝜈 [Heg2020] and (optionally) delay 𝜏
[Enn2018]

• It is sufficient to consider the intervals

𝜈 ∈ 0,
1

𝑇0
, 𝜏 ∈ 0, 𝑇𝑐

• Bin the resulting fine SSCs to obtain the PDF of the fine SSC

SS
C

-s
ca

lin
g

fa
ct

o
r

Figure top: Fine SSC vs. Doppler for TX parameter M and RX parameter N

Figure right: PDF of (dimensionless) fine SSC for uniform delay/Doppler



Model usage – Step 3: Convolutions

• Weight with the received powers 𝑃𝑘, and perform 𝐾 − 2
convolutions (for 𝐾 − 1 interferers)

𝑓𝐼0 𝐼0 ∗ ⋯∗ 𝑓𝐼0 𝐼0

• Now, the PDF of the interference floor is obtained

• Good alternative: sample the PDF directly from constellation
simulations, using [Heg2020]
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Figure: PDF of interference floor for 𝐾 − 1 interferers
with unit power



Model usage

For more details on this model, stay tuned for our forthcoming journal paper:

C. Enneking, F. Antreich, André L. F. de Almeida
“Receiver Operating Characteristic of GNSS Coarse/Acquisition Signals With Short Codes”, approx. end of 2020.
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