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Abstract.
Myocontrol is unreliable, which hinders its deployment in the clinical practice

and in daily-living activities, and keeps the acceptance level of dexterous
prosthetic devices low. One cause for this is the poor generalization of the
underlying machine-learning models to untrained conditions. This may depend
on the standard data acquisition method, consisting of collecting training data
in an open loop, non-interactively. The problem could be reduced by giving the
user an active role in the training of the prosthesis. This is an emerging trend in
myocontrol of upper-limb self-powered prostheses: that it should be interactive,
involving the user since the beginning and during the whole usage. In this study,
18 non-disabled participants compared one open-loop and two human-in-the-loop
multi-arm-position data acquisition protocols. As opposed to open-loop, during
human-in-the-loop acquisition an acoustic signal urged the participant to hover
with the arm in specific regions of her peri-personal space, de facto acquiring
more data where needed, possibly further mending the limb-position effect. The
three protocols were compared on daily-living-like manipulation tasks performed
with a prosthetic hand. Our results confirm that human-in-the-loop acquisition
outperforms open-loop acquisition both objectively and subjectively, suggesting
that interaction is fundamental to improve myocontrol.

Keywords: human-prosthesis interaction, myoelectric control, prosthetic hand, pattern
recognition
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1. Introduction

The loss of an upper limb can affect the ability to
carry out essential activities of daily living (ADLs) [1].
Even though modern myoelectric prostheses offer the
possibility to restore some of the lost functionalities,
their adoption in clinical applications remains limited.
High rejection rates have been documented for powered
upper-limb prostheses in favor of using passive devices
or, even, no device at all [2]. Among the reasons
for this are the high cost of myoelectric devices and
the unintuitiveness and unreliability of the control
during ADLs [3]. Simultaneous and proportional (s/p)
myocontrol has been investigated in recent years to
favor a natural interaction with prosthetic hands [4].
In s/p myocontrol, a regression-based model is used to
map voluntary muscular contractions into independent
motor commands for the prosthesis’ degrees of freedom
(DoFs). The model is typically trained with labeled
myoelectric signals recorded at the user’s forearm via
surface electromyography (sEMG).

Such approaches are capable of producing models
with considerable predictive power, provided that
the control signal’s characteristics remain similar
between training and testing conditions. However,
sEMG changes due to variations of skin conductivity,
electrode placement and limb position, as well as to
fatigue phenomena and the evolution of the user’s
cognitive capabilities [5].

We hereby focus on the limb-position effect
[6, 7], whose negative impact on online myocontrol
performance has been characterized in multiple studies
[8, 9]. Proposed solutions to this problem include
computing limb-position-invariant features from the
myoelectric signal [10], using prediction models that
are resistant to the noise produced by the arm
movement [11], or acquiring training data in multiple
arm positions. Static and dynamic multi-position
acquisition protocols have been proposed, the first
involving the repetition of target hand gestures in
multiple arm configurations [6], the latter requiring the
execution of predefined arm movements [12, 13]. Both
approaches proved to enhance myocontrol performance
compared to single-position training, and dynamic
training also allowed reducing the duration and the
physical effort required to cover the space of possible
arm configurations [14].

To the best of our knowledge, however, all multi-
position acquisition protocols found in the literature
do not actively involve the user, who traditionally
performs a predefined sequence of arm configurations
or movements without knowing to which extent each of
them contributes to the improvement of the myocontrol
model. As opposed to this, we propose that the
user should be notified in which limb positions more
training data is needed, since such positions are more

problematic for the model. Therefore, we introduce
the concept of user-driven data acquisition as a way
to generate s/p myocontrol models that are robust to
the limb position effect. Closing the myocontrol loop
at some point of the human-robot interfacing chain
involves using different sensory modalities to feed the
user information related to any step of the myocontrol
process [15, 16].

This idea can be seen as a special case of the
human-in-the-loop paradigm [17], in which bidirec-
tional user-prosthesis interaction is enforced. Impor-
tantly, this approach can be seamlessly integrated
within the framework of interactive myocontrol [18,
19, 20], where man-machine bilateral adaptation is put
in place exploiting incremental learning myocontrol.
Sources of information in myoelectric control include
biometric signals measured from the user (biofeedback)
[21], model’s predictions [22], and interaction forces
between the prosthesis and the touched objects [23].
The use of feedback proved beneficial to restore the
sense of touch and proprioception in impaired limbs
[16], to improve realtime regulation of the grasp force,
to help the user develop more effective cognitive mod-
els of the prosthesis controller [24], and to enhance the
sense of trust and embodiment in the prosthesis [25]. In
general, human-in-the-loop myocontrol has been em-
ployed to improve the usability of the prosthesis at run-
time, without directly affecting the underlying control
model. Feedback was first utilized during data acqui-
sition to guide the model building process in the work
of Hahne et al. [22]. They designed a human-in-the-
loop data acquisition strategy in which the user was
encouraged to produce progressively better muscle con-
traction patterns prompted by instantaneous feedback
about the model’s improvement due to the generated
patterns. Their results showed that human-in-the-loop
model training is a key factor for co-adaptive prosthetic
control, allowing both the user and the device to con-
verge to a synergistic control strategy.

The user-driven data acquisition paradigm, here
introduced, aims at improving the robustness of the
myocontrol model with respect to the limb position
effect. It integrates simultaneous dynamic data
acquisition and incremental model building with a
feedback signal related to the usefulness of the recorded
data. The feedback is designed to help the user
identify and collect training data in the areas of the
input space, i.e., arm configurations, where the model
prediction is inaccurate. We compare one standard,
“user-blind” acquisition protocol and two variants of
the novel user-driven data acquisition protocols, all
based on the dynamic acquisition presented in Gigli et
al. [14]. Both user-driven procedures adopt the same
feedback mechanism, but one of them also integrates
an automatic sample selection criterion to discard
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unnecessary training samples and reduce the number
of model updates.

2. Materials and Methods

This study evaluates the effects of using a feedback
signal to guide the acquisition of training data for
myoelectric controllers of prosthetic hands. The
performances of one standard open-loop and two
human-in-the-loop data acquisition procedures were
compared based on the controllability of a prosthetic
hand during a series of realistic manipulation tasks.

2.1. Participants

Eighteen able-bodied persons (aged 26.3 ± 4.6 years,
16 men and 2 women) participated in the experiment.
Twelve participants had no prior experience in
myoelectric control, while six had already used
myoelectric prosthetic hands in previous user studies.
Every participant received an oral and written
description of the experiment and signed an informed
consent form. The study was conducted at the
German Aerospace Center (DLR) according to the
WMA Declaration of Helsinki and approved by DLR’s
internal committee for personal data protection.

2.2. Experimental Setup

The muscular activity of the forearm of the dominant
arm was measured using a Myo armband‡ by Thalmic
Labs placed about 5 cm below the elbow. The bracelet
comprised eight sensors, each recording an sEMG
signal at a sampling rate of 200 Hz. A standard quick-
release prosthetic connector fixed to a wrist/hand
orthotic splint made it possible to anchor the prosthesis
at the extremity of sound limbs. An i-LIMB Ultra
Revolution prosthetic hand§ by Touch Bionics (now
Össur) allowed independent flexion/extension of the
five fingers and abduction/adduction of the thumb
through six motors under direct current control. The
devices communicated via a serial-port-over-Bluetooth
with a laptop used to run the myocontrol software. The
acoustic feedback was reproduced using the speakers of
the laptop. A custom software suite written in the C#
language provided the graphical interface to coordinate
the data acquisition, labeled and processed sEMG
data, generated the feedback signal, and implemented
realtime myocontrol.

The experiment took place in a domestic-
like laboratory environment. We arranged several
household objects on a table, two shelves, and on the

‡ https://support.getmyo.com/hc/en-us/articles/

203398347-Getting-started-with-your-Myo-armband

§ https://www.ossur.com/en-us/prosthetics/arms/

i-limb-ultra

floor. We placed the table 40 cm next to the shelves,
and we regulated its height to match the waist level of
each participant. The shelves were 40 cm and 150 cm
high. The study was videotaped in order to measure
the participant’s performance after the experiment.
Figure 1A shows the experimental setup.

2.3. Incremental model building

The 8-channels sEMG readings were preprocessed in
realtime upon collection. The measurement from each
channel was rectified, computing its absolute value,
and low-pass filtered using a second-order Butterworth
filter with a cutoff frequency of 1 Hz.

The data acquisition software labeled incoming
training samples with the activation commands for
the motors of the prosthetic hand’s fingers. Each
command consisted of a normalized velocity ranging
between 0 and 1, corresponding to extending or flexing
the finger with maximum speed. Since all the hand
gestures considered in this experiment could be realized
by controlling one subset of the fingers with the same
velocity command, the model had effectively 3 DoFs.

Training data was collected only for extreme
velocity commands values, that is, for hand gestures
in which each finger was either fully extended or fully
flexed. Intermediate velocity command values were
excluded because they could lead to inaccuracies in the
recorded data due to the participants’ different reaction
times [26]. Previous works, such as [27, 14], showed
that regression models resulting from this training
procedure still yield effective s/p control.

To provide appropriate feedback guidance during
the data acquisition, it was necessary to incorporate
each training sample into the model quickly upon
collection. Therefore, we trained the s/p control model
using an instance of incremental ridge regression (iRR)
with random Fourier features (RFFs). iRR builds a
regression model incrementally by computing rank-one
model updates when new training data is available.
The iRR formulation allowed us to update the model
and generate predictions with bounded time and space
complexity. RFFs is a nonlinear mapping of the input
space into a high-dimensional feature space obtained
by using sinusoidal basis functions that have randomly
sampled frequencies. By drawing those frequencies
from an adequate probability distribution and choosing
a sufficiently high mapping dimensionality, iRR with
RFF approximates ridge regression with a Gaussian
kernel [27]. Consequently, RFFs extend the capacity of
iRR to perform nonlinear regression while maintaining
the properties of incrementality and boundedness of
the model update. This is relevant in applications that
require online learning of nonlinear regression models
[27, 28, 29, 14]. A detailed description of iRR-RFF and
its use for s/p myoelectric control can be found in [27].

https://support.getmyo.com/hc/en-us/articles/203398347-Getting-started-with-your-Myo-armband
https://support.getmyo.com/hc/en-us/articles/203398347-Getting-started-with-your-Myo-armband
https://www.ossur.com/en-us/prosthetics/arms/i-limb-ultra
https://www.ossur.com/en-us/prosthetics/arms/i-limb-ultra
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The prediction function of iRR-RFF is

ŷ = W · Φ(x) (1)

where x ∈ Rd is an input sample, Φ : Rd → RD is
a nonlinear RFF mapping, W is an M ×D matrix of
scalar weights, and ŷ ∈ RM is the computed prediction.
In this experiment, training pairs {x,y} consisted of
an sEMG measurement and the corresponding velocity
commands for the fingers’ motors. The input and
output dimensionality of the model were d = 8 and
M = 3. The regularization parameter λ of the ridge
regression was set to 1, while the bandwidth γ and
the dimensionality D of the RFF mapping were set
to 0.1 and 300, respectively. The model weights were
initialized to zero before the data acquisition, W =
0M,D.

2.4. Acoustic feedback and sample selection

The idea behind human-in-the-loop data acquisition
is to guide the participant with an appropriate
feedback signal in order to maximize the amount of
informative and non-redundant data collected in a
fixed amount of time. In an online learning problem,
the informativeness of a correctly-labeled training
sample {x,y} for the model can be evaluated based
on the prediction error

ep(y, ŷ) = ‖y − ŷ‖2 (2)

where ŷ is the prediction of the sample using the
model. A small prediction error indicates that the
model can accurately predict the label for that sample
and, therefore, the sample might be redundant for
the model. A significant prediction error, instead,
indicates that the model fails to predict the right label
and may improve by integrating the training sample.
For the sake of clarity, we omit the argument of the
prediction error in the remainder of the paper.

2.4.1. Feedback signal For our purposes, we designed
an acoustic feedback signal with a fixed tone and
variable volume. The volume of the signal ranged
between 0 and a maximum value V and varied
proportionally with the prediction error according to

f(ep) = max

{
0,min

{
ae2p +

V − aθ2u
θu

ep, V

}}
(3)

in which a was a scalar regulating the quadratic
relation between error and volume, and θu was a
threshold related to the prediction error. We set the
values of the parameters to V = 0.5, a = 70, and
θu = 0.05

√
3. The value of θu corresponded to 5 % of

the maximum theoretical value of the prediction error
in our experiment, which was predicting an open hand
gesture instead of a power grasp gesture.

(a) (b)

Figure 1. Experimental setup and arm motion during data
acquisition. (a) The prosthetic system comprised a Myo
armband by Thalmic Labs for sEMG reading, and an i-LIMB
Ultra Revolution prosthetic hand by Össur. The experimental
setup included common household objects placed onto one table
and two shelves. The speakers of the control laptop provided
acoustic feedback. (b) Participants wore the prosthetic system
throughout the data acquisition. Every data acquisition routine
required to perform several target hand gestures while moving
the arm in a predefined trajectory. The motion proceeded
from the circle to the square with the palm oriented downward
and continued in the opposite direction with the palm oriented
upward.

2.4.2. Sample Selection We also used the prediction
error to discard possibly redundant training samples.
We defined a sample selection criterion to update the
model only with those training samples for which

ep ≥ θu (4)

where θu is the update threshold defined before.

2.5. Experimental protocol

Every participant tested all the data acquisition strate-
gies. We counterbalanced possible learning effects by
administering the strategies to the participants in ran-
domized order. We assigned each of the six permuta-
tions of the training conditions to one experienced and
two naive participants picked at random. After each
data acquisition, the resulting myocontrol model was
tested in a sequence of realtime manipulation tasks.
Participants repeated the sequence of tasks three times.
The first two repetitions of the sequence allowed the
participants to familiarize themselves with the pros-
thetic system and the myocontrol model, while the
third one was used to measure the myocontrol perfor-
mance. For this reason, we referred to the third repeti-
tion of the task sequence as a performance evaluation
session.

2.5.1. Data acquisition All the data acquisition
strategies required the participants to perform several
target hand gestures while moving their arm in the
reachable space. We selected three target hand
gestures: namely a power grasp, a resting hand,
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and an index pointing. The selection was based on
their relevance in ADLs, according to the literature
[30]. The target hand gestures were acquired in the
order reported above in every data acquisition. Since
the myocontrol model was built incrementally, the
use of different orders would have possibly led to
incomparable models.

Before the experiment, participants were ex-
plained the data acquisition protocols and were asked
to practice them. Emphasis was put into enforcing
a consistent arm movement across participants and
strategies. Meanwhile, the volume of the speakers was
regulated so to ensure that the feedback was distinctly
audible. Nonetheless, the experimenter supervised the
data acquisition and provided direct guidance when
the participants performed the arm movement at the
wrong pace or ignored the acoustic feedback.

Participants donned the prosthetic system on the
dominant arm at the beginning of the experiment, and
no adjustment of the sensors was allowed after that.
Wearing the prosthesis during the data acquisition
reduced the differences between the training and
testing conditions caused by factors such as the
electrodes’ placement and the weight of the prosthetic
device.

Open-Loop Data Acquisition (OL-DA) OL-DA adapted
the dynamic acquisition presented in our previous work
[14] to the setup of this study. Participants performed
each target hand gesture while moving their arm in a
predefined trajectory. During the procedure, they did
not receive any feedback. The model was built incre-
mentally in realtime with each new training sample,
as detailed in section 2.3. The trajectory uniformly
covered the reachable space of the participant with a
helical movement, Figure 1B. The movement was per-
formed with constant speed from the level of the waist
to the level of the head with the palm oriented down-
ward; it continued in the opposite direction with the
palm oriented upward. This whole sequence was re-
peated twice, without interruptions. The motion lasted
45 s for each hand gesture and took 135 s in total. The
procedure is synthesized in Algorithm 1.

Algorithm 1: Open-Loop Data Acquisition

Input: stream of sEMG samples x

init model to zero;
foreach hand gesture g do

while participant performs g do
acquire new sample x;
update model with {x, label(g)};

end

end

Human-in-the-Loop Data Acquisition (HL-DA) HL-
DA extended OL-DA with the acoustic feedback
detailed in section 2.4.1. The acquisition software
used the incoming training samples to generate the
acoustic feedback and to build the myocontrol model in
realtime. Participants had to perform the desired grasp
and follow the usual arm trajectory while modulating
the arm’s velocity based on the feedback. They
should proceed with the same speed used during open-
loop acquisition when the feedback was not audible
and hover with the arm in the areas where the
feedback intensity increased. Since the feedback was
proportional to the prediction error, this procedure led
the participants to collect more data in critical arm
configurations. The model incrementality prevented
participants from slowing down indefinitely in critical
areas of the reachable space. Training samples were
continuously integrated into the myocontrol model,
which immediately reduced the prediction error and,
consequently, the volume of the feedback signal. The
acquisition of each gesture lasted 45s. Differently from
OL-DA, however, participants were not expected to
cover the whole trajectory twice per gesture. The
procedure is synthesized in Algorithm 2.

Algorithm 2: Human-in-the-Loop Data
Acquisition

Input: stream of sEMG samples x

init model to zero;
foreach hand gesture g do

while participant performs g do
acquire new sample x;
compute prediction error;
generate acoustic feedback;
update model with {x, label(g)};

end

end

Human-in-the-Loop Data Acquisition with Sample
Selection (HLSS-DA) HLSS-DA was obtained by
integrating HL-DA with the sample selection criterion
described in section 2.4.2. All the incoming training
samples were used to generate the acoustic feedback,
but only a limited number of non-redundant samples
were selected and used to build the myocontrol
model in realtime. Participants perceived no
formal difference between the two human-in-the-loop
acquisition routines. The procedure is synthesized in
Algorithm 3.

2.5.2. Realistic myocontrol tasks After every data
acquisition, the resulting myocontrol model was tested
by engaging the participants in a series of five
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Algorithm 3: Human-in-the-Loop Data
Acquisition with Sample Selection

Input: stream of sEMG samples x

init model to zero;
foreach hand gesture g do

while participant performs g do
acquire new sample x;
compute prediction error;
generate acoustic feedback;
if predictionerror > threshold then

update model with {x, label(g)};
end

end

end

manipulation tasks. The tasks were inspired by
realistic ADLs proposed in assessment protocols for
prosthetic control, such as ACMC [31] and SHAP [32].
The tasks are described in Table 1. In the case of
bimanual tasks, we assigned each action of the task
either to the prosthetic hand or the sound hand.

The experimental protocol required the comple-
tion of all the tasks. If an object was dropped during a
manipulation task, the experimenter brought it back to
the place where it had been grasped, and the task con-
tinued from where it failed. The time needed to reset
the position of the object was excluded from the final
evaluation of performance. If repeated instabilities of
the prosthesis hindered the execution of one task, the
experimenter or the participant could suspend the task
and request an additional model update. On-demand
model updates were obtained with shorter versions of
the data acquisition procedure performed at the begin-
ning of the corresponding experimental session. Par-
ticipants were instructed to hold the malfunctioning
hand gesture while randomly moving the arm for 10 s
in the area where the task failed, possibly enforcing
movements of the shoulder, elbow, and forearm.

2.6. Performance evaluation

We evaluated the effectiveness of each data acquisition
procedure based on the duration of the third repetition
of the task sequence. We chose the task execution time
as an objective measure of myocontrol performance
because it is at the base of many clinical assessment
protocols for the hand function [33], it is simpler to
measure than other metrics, and does not require a
trained examiner. Subjective performance measures
were obtained by asking the participants to rate
the controllability of the prosthetic system and the
difficulty of the tasks in a questionnaire at the end of
the experiment. The controllability of the prosthetic
system resulting from each training condition was

reported on a visual analog scale (VAS) ranging from
“very easy to control” to “very difficult to control”.
Similarly, each task’s difficulty was quantified on a
VAS ranging from “very difficult” to “very easy”. We
verified if any of the acquisition strategies resulted in
better controllability or faster task execution compared
to the others, which could indicate a more robust
myocontrol model and, therefore, better training
data. A Shapiro-Wilk test revealed that the task
duration and the results of the questionnaire were
not normally distributed across participants. For
this reason, we used a Freedman test to identify
differences in the average value of the statistics
of the three training conditions. When the test
indicated significant differences, we used repeated post-
hoc Wilcoxon signed-rank tests to compare pairs of
conditions. We set the significance level of all the
tests to α = 0.05, and we controlled the inflation of
the significance level during repeated pairwise tests by
operating a Bonferroni adjustment of the p-value [34].
In this paper, we reported unadjusted p-values (p) for
the Friedman tests and Bonferroni-adjusted p-values
(p̂) for the post-hoc pairwise tests.

3. Results

The performance of the myocontrol model was
measured by the duration of the tasks during the third
repetition of the task sequence, i.e., the performance
evaluation session. Figure 2A reports the duration
of the evaluation session corresponding to the three
data acquisition strategies. A Friedman test, followed
by pairwise post-hoc Wilcoxon tests, revealed that
the evaluation session in the HL-DA condition was
significantly faster than in the OL-DA condition
(average tasks sequence duration of 166.0 s versus 198 s,
W = 19.5, p̂ = 0.012). The average duration of
the task sequence in the HLSS-DA condition, 183 s,
did not differ significantly from those of the other
conditions. Figure 2B and Figure 2C report the
performance of naive and experienced participants.
For every training strategy, experienced participants
completed the evaluation session faster than naive
participants. Although not supported by statistical
evidence, both groups seemed to perform better after
HL-DA compared to OL-DA. The use of feedback
during data acquisition reduced the average duration
of the performance evaluation session by 15 % for naive
participants and by 19 % for experienced participants.
For both groups, the mean duration of the tasks after
HLSS-DA was characterized by high variability, and
its average value was between those of the other two
conditions. Figure 2D describes the performance of
the participants during the individual tasks. Friedman
tests were performed for each task and confirmed
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Table 1. Detailed description of the tasks in each performance evaluation repetition.

Task Name Description

Pour water

A bottle and a jar are placed, respectively, on the lower shelf and
on the table. Grasp the bottlep, unscrew the caps, place the bottle
and the cap on the table. Take the jars, unscrew the lidp, and put
it on the table. Take the bottlep and pour the content into the jar.
Close the jarp and put it on the table. Take the bottlep, close its,
and bring it back to the lower shelf.

Serve food

A pot, a plate containing three tennis balls, and a spoon are laid on
the table. Use the spoonp to bring the balls from the plate to the
pan. Grab the pot by the handle  land tilt it by about 80 degrees,
scoop the balls from the pot to the plate using the spoonp.

Phone and
rolling ball

A telephone is on the table. Dialp a sequence of numbers on the
phone (1 to 9, 9 to 1, 0, “dial”) with an index pointing gesture. A
small ball is on the floor, and a target position is marked on the
floor about one meter away. Use the index pointing gesture to push
the ballp to the target position.

Pegboard
Three wooden shapes from one pegboard game are laid on the lower
shelf, while the base is laid on the higher shelf. Pickp each shape
and stack it to the corresponding peg.

Sweep the
floor

A hand broom and a dustpan are placed on the lower shelf, while a
bowl and some gravels are laid on the floor. Grab hand broomp and
dustpans, sweep the gravels onto the dustpan, empty the dustpan
in the bowl, and bring the hand broom and the dustpan back to the
lower shelf.

p prosthetic hand; s sound hand.

significant differences in completion time for the third
task (χ2(2) = 7.4, p = 0.024). Post-hoc tests,
however, failed to identify differences between any pair
of conditions, which could be caused by the application
of a conservative Bonferroni adjustment to the p-
value. Nonetheless, the average duration of every task
after HL-DA was slightly lower than after OL-DA.
The performances of HLSS-DA remained equivalent to
those of the other strategies.

Figure 3A and Figure 3B show the duration of
the three repetitions of the task sequence for naive
and experienced participants. We referred to these
repetitions as the first and second familiarization
sessions (F1 and F2), and the performance evaluation
session (E). The participants tested the data collection
strategies in randomized orders so to counterbalance
possible transfer learning effects. Therefore, the results

displayed in the figure follow a chronological order
within each training condition but not across different
conditions. In all the training conditions, naive
participants completed the performance evaluation
session around 24 % faster than the first familiarization
session. Friedman tests confirmed that the reduction of
the task completion time during the three repetitions
was significant in every training condition (χ2(2) =
9.5, p = 0.009 for OL-DA; χ2(2) = 18.2, p <
0.001 for HLSS-DA; χ2(2) = 18, p < 0.001 for
HLSS-DA). At the same time, the variability of the
results reduced during the familiarization process.
The IQR shrunk from 208-302.5 s to 181.5-229 s for
OL-DA, from 191.8-282 s to 163.8-197.5 s for HL-DA,
and from 152-327.3 s to 140.3-213.5 s for HLSS-DA.
These results, taken together, indicate that a strong
learning effect took place for naive participants during
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Figure 2. Duration of the tasks in the performance evaluation session. (a) Participants completed the evaluation session
significantly faster in the HL-DA condition compared to the OL-DA condition (p̂ Bonferroni-adjusted). The performance in the
HLSS-DA condition did not differ significantly from those of the other conditions. The same could be observed by either considering
the naive (b) or the experienced (c) participants. (d) The average duration of each task in the HL-DA condition was slightly lower
than that measured after OL-DA, although multiple Friedman tests identified significant differences (p unadjusted) only in the
duration of the third task (dialing a phone number). In the paper, boxplots’ whiskers extend to the most extreme samples within
the first quartile −1.5 IQR and the third quartile +1.5 IQR.

Table 2. Median amount of training samples acquired and used
to build the myocontrol model

Acquisition
protocol

# training samples

OL-DA 27284.5 (IQR 25993-30696)a,b

HL-DA 28439.5 (IQR 25620-30440)a,b

HLSS-DA
26879 (IQR 26654-32696)a

7228.5 (IQR 5345-8646)b

aacquired; bused.

the familiarization process of each strategy. This
learning trend was not as evident among the six
experienced participants. For them, the reduction of
the task sequence duration due to familiarization was
supported by statistical evidence only for the HLSS-
DA condition (χ2(2) = 9.3, p = 0.009). Nonetheless,
the task execution time reduced by approximately 19 %
during the familiarization process for all the training
strategies.

Table 2 details the median number of training
samples acquired by each strategy and the number
of samples that were selected to train the myocontrol
model. The number of training samples comprised the

data acquired during the initial acquisition and during
all the on-demand model updates requested by the
participants. All the strategies acquired a comparable
amount of training samples, about 28000, although
with some variations. The median number of acquired
training samples was approximately 27000 for OL-DA
and HLSS-DA, and 28500 for HL-DA. The median
number of on-demand model updates was equal to 0.5
(IQR 0-2) for OL-DA, 1 (IQR 0-2) for HL-DA, and
0 (IQR 0-3) for HLSS-DA. While OL-DA and HL-DA
used all the training samples to build the myocontrol
mode, HLSS-DA only employed a median of ≈ 7000
samples, roughly corresponding to a quarter of the
acquired data.

Figure 4 shows the perceived difficulty of the
myocontrol tasks, assessed by the participants in the
final questionnaire, and converted into a percentage
from 0 % (“very easy”) to 100 % (“very difficult”). The
ratings seemed to split tasks into two groups. The
relative difficulty of pouring water, serving food, and
sweeping the floor was relatively low, around 20 %
on average. Precision tasks such as dialing a phone
number and completing a pegboard were given a higher
average difficulty, around 40 %. In particular, a
quarter of the participants found it extremely difficult
to dial phone numbers, as they reported a difficulty
level higher than 75 %, more than what was reported
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Figure 3. Effect of learning on the duration of the task
sequence. The three repetitions of the task sequence were labeled
F1, first familiarization, F2, second familiarization, and E,
performance evaluation session. (a) Naive participants showed
a significant reduction in the average task completion time
due to familiarization (p unadjusted). (b) For the experienced
participants, the familiarization with the system significantly
reduced the duration of the task session only in the HLSS-DA
condition.
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Figure 4. Perceived tasks difficulty. On average, participants
found more difficult those tasks that required to manipulate
small objects (completing the pegboard) or to precisely touch
small target areas (dialing a phone number). This result was
only partially supported by statistical evidence (p̂ Bonferroni-
adjusted).

for all the other tasks. A Friedman test confirmed
the existence of relevant differences in the perceived
complexity of the tasks (χ2(4) = 23.1, p < 0.001).
Pairwise post-hoc tests, however, only confirmed that
the sweeping task was easier than the dialing task
(W = 9, p̂ = 0.004) and the pegboard task (W = 11,
p̂ = 0.0012).

The controllability of the prosthetic hand during
the myocontrol tasks, reported by the participants in
the questionnaire, was converted into a percentage
from 0 % (“very difficult to control”) to 100 % (“very
easy to control”). Overall, the use of feedback during
the data acquisition resulted in an improvement of
the controllability level of about 10% compared to
standard open-loop data acquisition (controllability
level of 60 % for OL-DA, 70 % for HL-DA, 71 % for
HLSS-DA), Figure 5A. A Friedman test, however,
did not support this finding with statistical evidence
(χ2(2) = 51, p = 0.19). Naive participants reported
lower controllability for every training condition, by
about 22% on average, compared to experienced
participants. In any training condition, the average
controllability reported by naive participants was
about 22 % lower than that reported by experienced
participants. The ratings of naive participants were
mixed. Although the controllability level was slightly
higher for the human-in-the-loop acquisition strategies
(controllability level of 54 % for the open-loop strategy
and 62 % for the human-in-the-loop strategies), the
spread of the ratings was exceptionally high, especially
for OL-DA (interquartile range, IQR, equal to 28-
71 %). Experienced participants, conversely, reported
sharper improvements in controllability by following
human-in-the-loop training strategies. The average
controllability increased from 74 % for OL-DA to 84 %
for HL-DA, and 87 % for HLSS-DA. The spread of
these results was lower than that observed in naive
participants (IQR equal to 56-88 % for OL-DA, 73-
94 % for HL-DA, and 78-95 % for HLSS-DA). However,
this result was not supported by statistical evidence,
possibly due to the limited amount of experienced
participants.

4. Discussion

We implemented a human-in-the-loop dynamic data
acquisition protocol that used acoustic feedback to
induce the user to hover with the arm in the areas
of the peri-personal space characterized by poor intent
detection, i.e., a discrepancy between the prediction
and the ground truth. In the experiment, we
have compared three data acquisition strategies for
myocontrol, two of which put the participant in
the data acquisition loop, as opposed to the third,
a traditional one, which acquires data from the
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Figure 5. Perceived controllability of the prosthetic hand. (a) On average, participants found that the prosthetic system was easier
to control after each of the HL data acquisitions compared to the OL data acquisition. (b) The ratings reported by the twelve naive
participants were mixed and, on average, lower than those of the experienced participants. This caused the high variability observed
in the overall results and possibly explained the lack of statistical significance. (c) Experienced participants consistently reported
that data acquisition routines with feedback resulted in better controllability of the prosthetic system.

participant in a non-interactive way. Our results
confirm that involving the user in the data acquisition
procedure yields better myocontrol, both objectively,
enabling faster completion of tasks and requiring less
computation space and power, and subjectively, judged
more controllable by participants through quantitative
questionnaires.

Participants completed the sequence of manipula-
tion tasks significantly faster when using HL-DA com-
pared to OL-DA, Figure 2. The performance offered
by HLSS-DA were characterized by higher variabil-
ity and did not differ significantly from those of the
other acquisition strategies. Even though half of the
participants performed equivalently well with HLSS-
DA and HL-DA, the other half showed considerably
worse performance for HLSS-DA. This could be due
to the fact that a model trained with fewer data can
be prone to higher instability in the prediction. Possi-
bly, the sample selection criterion has been too strict
(with HLSS-DA, the system discarded all samples that
determined a prediction error below 5 % of the maxi-
mum prediction error). By relaxing that criterion, the
results should tend to those of HL-DA, therefore, at
least, reducing the variability. However, HLSS-DA al-
lowed for a considerable reduction in the number of
samples used to train the machine, of about three-
quarters of the total on average. This is especially rel-
evant for realtime applications where the myocontrol

model needs to be updated incrementally and there-
fore repeated model updates are requested for batches
of incoming training samples. We then conclude that
HLSS-DA can be used as a second choice over HL-DA,
only when less computational space is available to the
machine learning system. Considering panels B and C
of the same figure, it is apparent that human-in-the-
loop acquisition improves myocontrol performance for
both experienced and naive participants (after a short
familiarization phase), which might denote that even
experienced myocontrol users might benefit from this
system to identify critical areas of the input space. Fig-
ure 2D, finally, suggests that the superiority of human-
in-the-loop strategies is uniform for each task.

As it was predictable, a quite evident learning
effect is present in the performance of all participants,
from the two familiarization phases on to the
experimental one, Figure 3. Interestingly, this trend
characterized naive as well as experienced participants,
albeit less so in the latter case. On the one
hand, this means that the effect of feedback can
be appreciated after a short familiarization with the
system (by inexperienced participants, that is). On
the other hand, automatic guidance during data
collection retains its usefulness over time, since it
provides a direct understanding of the state of the
myocontrol system at runtime, already during the data
acquisition. During the familiarization, participants
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learn to compensate distracting factors that are
inherent in the myocontrol of a prosthetic device,
such as the latency and the weight of the hand, and
the non-intuitive control of the contraction strength
(nonlinear algorithms may not guarantee monotonic
mappings of muscle contraction to grip strength). This
contributes to reducing the variability of the results
and, therefore, helps to observe the effects of interest,
e.g., the effect of different data acquisition procedures.
During the familiarization process, the performance of
naive participants decreased in variability and seemed
to tend to those of experienced participants. However,
the average duration of the task session at the end
of the familiarization process remained slightly higher
for naive participants. This might indicate that their
performance could have improved further with a longer
familiarization.

Data collection with feedback improved the
perceived controllability of the prosthesis by about
10 % on average (Figure 5). However, this result was
not statistically significant, probably due to the high
variability in the results. Naive participants provided
extremely scattered opinions regarding the system’s
controllability; moreover, the average controllability
reported by naives and experienced differed by
about 20 %, which also contributed to the spread
of the overall results. More focused questions
would have been beneficial to reduce this variance.
Nonetheless, the improvement reported by experienced
participants exhibited a clear trend in favor of the
acquisition strategies with feedback. While the average
controllability reported after HLSS-DA was similar
to HL-DA and higher than OL-DA, the myocontrol
performance provided by HLSS-DA lay between the
other two strategies and showed high variability both
for naives and experienced participants. This seems
to confirm, again, that the sample selection criterion
has been beneficial for some of the participants and
disruptive for others, and that its effectiveness requires
an adequate tuning of the parameters.

Notice that the tasks perceived as most difficult
were dialing a phone number and completing the
pegboard game, Figure 4, which required touching
small target areas with a stable pointing index finger
and placing small objects in positions that were
difficult to reach. Interestingly, the only task in
which the improvement between OL-DA and the
other strategies was statistically significant was exactly
dialing the phone number, Figure 2D. Assuming the
tasks’ difficulty to be related to producing a firm hand
gesture in challenging limb positions , then the use of
feedback during data acquisition seems to improve the
myocontrol robustness precisely where it is needed.

Interactivity before and during prosthetic usage
lets the user develop more trust in the prosthesis

through the usage of a friendly interface, dexterous but
straightforward at the same time. In [19] a partially
satisfactory result appear, mainly due, we speculate,
to a suboptimally designed interaction protocol. All
in all, however, the benefits of interaction and of
HL strategies in particular are not guaranteed to
transfer to disabled users and this issue must be furher
investigated. We have dealt with this issue already
in Gigli et al. [14], to which we refer the interested
reader. The proposed acoustic feedback was designed
to identify when the model prediction is wrong based
on the prediction error, thus assuming that the user
stably maintains the ground truth during the data
acquisition. This can be guaranteed for able-bodied
users thanks to proprioceptive and visual feedback of
their hand configuration, but less so for amputees. A
transradial amputee, particularly a naive or distracted
one (in distracting conditions), might struggle to
maintain a consistent muscular activation during the
data acquisition, which could trigger the acoustic
feedback for arm configurations where more data is not
required. That circumstance is potentially disruptive
for the acquisition algorithm since it may lead the user
to acquire more training samples while providing a
wrong muscular pattern or in arm configurations that
do not need to be reinforced with more data. Users
with higher amputation levels could struggle even more
since they might also have problems following the
proper arm trajectory.

This problem might be mitigated by inducing
the user to perform more consistent and repeatable
muscular activations. One could do so by exploiting
bilateral mirrored training or using the prosthetic
hand as a proxy for the missing limb during the
data acquisition [35]. If this sort of training proves
ineffective, then the feedback should be redesigned
based on other metrics. Competences ranging from
psychology to human-machine interfaces design, as well
as a large number of focus groups and user studies, will
be required to solve this problem.

4.1. Conclusion

This work shows the advantages of using interactive
dynamic data acquisition strategies to train robust
myocontrol models. Data acquisition for myocontrol
models is traditionally performed in a non-interactive,
open-loop fashion. We have proposed an interactive in-
cremental data acquisition and model building scheme,
where the myocontrol model is built incrementally in
realtime during the data acquisition, while the partici-
pant receives auditory feedback about the usefulness of
the currently acquired data sample. In our experiment,
data acquisition strategies that guided the participant
to identify and collect more training samples in prob-
lematic areas of the input space yielded better perfor-
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mance, both objective and subjective, and granted the
participant a better understanding of the system.
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