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Abstract
Aerodynamic foil bearings are used in various industrial applications, e.g. in cooling turbines,
small gas turbines or exhaust gas turbochargers, to support light, high-speed rotors under
extreme operating conditions. Air (or another gas) is used as a lubricant in these bearings. In
addition, the possible thermal deformations and production errors can be compensated by a
flexible foil structure between the lubricant film and the bearing housing in air foil bearings.
Since many static and dynamic properties of the lubricant are strongly dependent on the inner
contour of the bearing, the idea of an adaptive air foil bearing (AAFB) is developed to optimize
the performance of the bearing at different operating points. This paper focuses on a
semi-analytical approach based on plate theory and the Ritz method for approximating the static
shape control of a piezoelectrically actuatable AAFB. The main objective of this study is to
consider adaptive bearing shells in calculating the behavior of an AAFB, as they provide
additional degrees of freedom to a passive air foil bearing without adaptivity. Before the final
step is taken, the model presented in this analysis is used for the shape optimization of the
adaptive frame of AAFB in order to achieve the most efficient shape adaption with regard to
target shapes.

Keywords: morphing, mfc, piezoelectric, active vibration control, shape control, air bearing, foil
air bearing

(Some figures may appear in colour only in the online journal)

1. Introduction

Shape control can be considered as an effective solution to
many problems, with the objective to change the geomet-
rical properties of a specific structure. As a result of this fact,
there are many fields of application especially in aerospace
industry, where the performance of a system is optimized with
regard to the operational conditions. This solution becomes
significantly important in cases with fluid-solid interaction
between different part of target design. As an example, a

Original Content from this work may be used under the
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further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

recent study by [1] investigates the design of a high-lift sys-
tem for aircraft wings equipped with an adaptive droop nose.
Both experimental and numerical investigations of this study
show the need to optimize the adaptive mechanism as a func-
tion of structural stiffness and actuation in order to achieve
the most effective advantages of the solution. Further discus-
sions related to the smart morphing can be found in a recently
published book [2]. Air foil bearings (AFB) are well suited
for high-speed rotors and for operation at very high or low
temperatures. Improving the load capacity, the lift-off speed
and the stability limit are the most important challenges with
regard to the development of air foil bearings. The applica-
tion of adaptive strategies in the field of air foil bearing is
described in a recent paper by Martowicz et al [3] to con-
trol the temperature gradient in AFBs. The authors show the
effectiveness of the concept with integrated 36 thermoelectric
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modules on the basis of experimental results. On the other
hand, many of the above design characteristics of air foil bear-
ings are highly dependent on the shape of the bearing inner
contour, which defines a large part of the lubricating film pro-
file. The static and rotordynamic properties of air foil bearings
with different profiles of the bearing inner contour are invest-
igated in numerous studies (e.g. [4–6] and [7]). Such obser-
vations lead to different solutions for active bearing contour
adjustment that benefit from various profiles of the lubricat-
ing film in a single bearing concept [8, 9, 10]. The concept
proposed in [11], which is the focus of the present paper, dif-
fers clearly from the alternative concepts for adaptive bearings
mentioned. In this case, internally contoured piezoelectrics in
patch form are used to actuate the bearing inner contour in
order to compromise between shape control and the required
stiffness for operation. Figure 1.A and figure 1.B compare the
classical air foil bearing of the bump-type with corresponding
adaptive concept, in which an adaptable mechanism is used to
actively manipulate the inner contour of the bearing. A clas-
sic foil bearing consists of a rigid housing and foil structure
(bump-strip and top-foil). In an adaptive air foil bearing, the
foil structure is supported by a flexible shell (or segment) and
joints between the segment and the housing. On the outside of
each supporting shell, there is a piezoelectric patch that gener-
ates the required mechanical strain in the circumferential dir-
ection of each pad to change the shape (radius and center of
curvature) of the bearing clearance on demand.

This study extends the approach primarily investigated in
[12] as a theoretical basis for the modeling and simulation
of adaptive shells of the AAFB, which can be physically
assumed as cylindrical sections of plates with different lay-
ers and materials. The static and dynamic behavior of cyl-
indrical composite plates is the subject of a study done by Kas-
sagne et al [13]. The laminate theory is used in this work in
order to consider the properties of different layers and partly
used stiffeners on cylindrical plates. The mathematical mod-
eling of the static and dynamic response of piezoelectrically
actuated (or sensed) beams and plates is the subject of many
studies. Cheng et al[14] present an analytical model for the
flat composite materials with piezoelectric layers for large
deflections. The same authors [15] propose the Hermite dif-
ferential quadrature as a numerical approach to solve the non-
linear differential equations that apply to the composites. Had-
jigeorgiou et al [16] described shape control of straight beams
using piezoelectric actuators. Koconis et al [17] presented a
paper on shape control of composite plates with embedded
actuators. They consider beams, plates and curved shells. The
calculation is based on polynomial initial functions and the
principle of minimum potential energy. Shivakumar and Ray
[18] modelled flat plates with an integrated piezoelectric layer
using harmonic initial functions for the entire plate. Agrawal
et al [19] applied shape control to antenna reflectors. The
reflector is modeled as a plate which is described by a finite
element model. The achieved change in shape is compared
to the desired shape. The square of the differences between
both shapes yields an error function. The optimum actuator
voltages are found minimizing the error function. Using the
analytical transfer matrix formulation in combination with a
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Figure 1. Schematic representation of (A) classical air foil bearing
compared to (B) adaptive air foil bearing (AAFB) with
corresponding coordinate system and (C) a functional model for
AAFB.

technique to extend the small parameters in [20] it is demon-
strated that neglecting the electromechanical coupling leads to
significant errors in estimating the deformation of a three-layer
actuator. A similar approach, extended for dynamic analysis,
is presented in [21] to findmodal solutions for the piezoelectric
laminated plates with internal electrodes. This paper focuses
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on the modeling of the adaptive bearing segments (consisting
of mechanical and piezoelectric materials) using the laminate
theory (extendable for higher orders) and the Hamilton prin-
ciple. The Ritz approach is used as a numerical basis for the
approximation of the geometric changes due to actuation as
well as external loads. To include the flexure joints between
the bearing shells, a stiffness matrix is calculated from a finite
element model. After verification, the model is used to per-
form parametric studies on the bearing shells, which form the
basis for shape optimization.

2. Theoretical set-up for the model

There are two strong motivations to find an approach to
describe the shape control of adaptive segments of an AAFB
with a precise tool at low calculation cost. First, developing
a numerical tool for the optimization of adaptive shells with
respect to various parameters involved in both active and pass-
ive elements of the AAFB (e.g. type of actuators, thickness and
material properties of the support shells, etc). Secondly, suf-
ficient information on the behavior of adaptive shells under
static and dynamic loads from the hydrodynamic pressure
build-up by reaction forces of the foil structure seems to be
necessary. Figure 1(C) shows a functional prototype for the
actuation of AAFB (without mounting the foil structure) to be
used as an adaptive interface for the shape morphing in adapt-
ive air foil bearings. Three supporting shells with a thickness
of 0.25 mm and a nominal diameter of 39.4 mm, which are
manufactured as a one-piece frame made of stainless steel, are
connected to the rigid housing by resin-printed bending joints.
This allows sliding motion of each connection point between
each pair of shells in a radial direction during actuation by the
attached MFC (Piezoelectric Macrofiber Composite) without
unwanted relative movement and backlash at adjacent points.
Figure 2 shows a schematic representation of a single support
shell and the local coordinate system to adjust the macro vari-
ables such as the deformation field and connect them to the
micro effects such as strain terms and actuation in the piezo-
electric patch. The following assumptions are considered for
the representation of an equivalent model using the plate the-
ory for static actuation in the mechanism:

(a) Each supporting shell is not completely covered with the
bonded piezoelectric patch (consisting of two insulation
layers and the piezoelectric fibers in between) in the cir-
cumferential direction. In contrast, the piezoelectric patch
covers the shell in the axial direction.

(b) It is assumed that the adaptive shells of the functional
model aremanufactured symmetrically with respect to two
perpendicular planes ξ2 − ξ3 and ξ1 − ξ3 (see figure 2)

(c) The displacements at the ends of the shells are small so
that the flexure joints are replaced by corresponding linear
elastic springs.

(d) The piezoelectric fibers (or elements), apart from the type
(with d31 and d33 main effects), extend or contract over the
length of the patches, resulting in a bending moment of the
supporting shells.

Figure 2. Coordinate system and discretization of a single segment
of AAFB with elastic supports and MFC patch for actuation.

It should be noted that, despite the second assumption, the
supporting shells may deform asymmetrically during the oper-
ation due to the non-uniform loading in the circumferential
direction. Thus, in the next section, one half (relative to the
axial coordinate) of each bearing segment is taken into account
when creating the model.

2.1. Definition of stress-deformation relation

The mechanical stress can be related linearly to the electric
field, with subsequent definition of inverse and direct piezo-
electric effects in piezoelectric materials:

{σp}= [Cp]{ϵp}− [ep]
T {Ep} (1)

{Dp}= [ep]{ϵp}+ [ηp]{Ep} (2)

where {Dp} and {σp} are vectors of electrical charge displace-
ment and mechanical stress, {Ep} and {ϵp} are electrical field
strength and mechanical strain, [ep] is the matrix for the dir-
ect piezoelectric effect and [ηp] and [Cp] represent the dielec-
tric constants and stiffness matrix. Due to the relationship
in equation (2) the mechanical strain εp causes an electric
displacement Dp by means of the direct piezoelectric effect,
which is superimposed with the electric displacement due to
the external electric field Ep. It should be mentioned that the
equation introducing inverse piezoelectric effects from equa-
tion (1) can be presented with a different formulation as they
are used in many studies in literature as follows:

{ϵp}= [Sp]{σp}+ [dp]
T {Ep} (3)
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where [Sp] and [dp] represent the matrices of compliance and
piezoelectric strain constants. Seen the other way round, an
external electric field generates a mechanical stress via the
inverse piezoelectric effect, which is superimposed with the
stress due to the mechanical strain in equation (1). The poten-
tial energy in the piezoelectric element consists of elongation
and electrical terms as follows:

Πp =
1
2

ˆ
Vp

({ϵp}T {σp}−{Dp}T {Ep})dVp =

1
2

ˆ
Vp

({ϵp}T [Cp]{ϵp}− 2{ϵp}T [ep]{Ep}−

{Ep}T [ηp]{Ep})dVp (4)

Considering zero matrices for dielectric and piezoelectric
constants in non-piezoelectric layers, the linear strain-stress
equation can be derived, as follows:

{σnp}= [Cnp]{ϵnp} (5)

and the potential energy reduces to the single mechanical
strain term:

Πnp =
1
2

ˆ
Vnp

{ϵnp}T {σnp}dVnp =

1
2

ˆ
Vnp

{ϵnp}T [Cnp]{ϵnp}dVnp (6)

The supporting shells and the actuators, which are the focus
of this work, are geometrically cutouts from thin-walled hol-
low cylinders. A description in cylinder coordinates is there-
fore recommended. In this sense, a geometric description of
adaptive shells in cylindrical coordinates is used. The strain-
displacement (Karman strain) in an orthogonal curvilinear
coordinate system can be expressed as follows [22]:

ϵξ1 =
∂uξ1
∂ξ1

+
1
2
(
∂uξ3
∂ξ1

)2 + ξ3
∂ψξ1
∂ξ1

ϵξ2 =
∂uξ2
∂ξ2

+ ϵξ2,circ+
1
2
(
∂uξ3
∂ξ2

)2 + ξ3
∂ψξ2
∂ξ2

γξ1ξ2 =
∂uξ1
∂ξ2

+
∂uξ2
∂ξ1

+
∂uξ3
∂ξ1

∂uξ3
∂ξ2

+ ξ3(
∂ψξ1
∂ξ2

+
∂ψξ2
∂ξ1

)

γξ1ξ3 = Kξ1(
∂uξ3
∂ξ1

+ψξ1)

γξ2ξ3 = Kξ2(
∂uξ3
∂ξ2

+ψξ2) (7)

Here uξ1,ξ2,ξ3 and ψξ1,ξ2 represent the global displacements
and rotations with respect to the assumed coordinate system.
Moreover, Kξ1 and Kξ2 are shear correction factors. Due to the
large ratio between the length and thickness of different com-
ponents of the adaptive shells, the normal strain in radial dir-
ection is neglected, thus:

ϵξ3 =
∂uξ3
∂ξ3

= 0 (8)

Moreover, the circumferential strain in second term of
equation (7), ϵξ2,circ, results from the uniform radial expansion
in a cylindrical shell:

ϵξ2,circ =
(Rc+ uξ3)−Rc

Rc
=
uξ3
Rc

with:

Rc = R0 V − ts+ ξ3 (9)

The general time-independent displacements at a generic
point of each piezoelectric and non-piezoelectric layer in the
cylindrical reference coordinate system (ξ1, ξ2, ξ3) with respect
to Mindlin–Reissner theory of plates are given by:

{U(ξ1, ξ2, ξ3)}=


uξ1(ξ1, ξ2)+ ξ3ψξ1(ξ1, ξ2)

uξ2(ξ1, ξ2)(
Rc

R0 V−ts
)+ ξ3ψξ2(ξ1, ξ2)

uξ3(ξ1, ξ2)


(10)

The displacement field in equation (10) cannot be used
for the solution of many problems in complicated structures,
because the differential equations of motion cannot be solved
analytically in these cases. Therefore, an approximate descrip-
tion of the displacement field depending on the physics and the
type of the desired solution for a certain field of application is
demanded.

3. Ritz method and approximated displacement
field

The Ritz method is a widely used approach for the approxim-
ated solution of a given differential equation in which an exact
solution is not or hardly achieved. For the application of the
Ritz method, the mathematical problem must be present in a
so-called variation formulation. The Ritz method is based on
approximating the solution with a sum of basic functions. The
functions mentioned in the model have a special role, there-
fore they are separated from the local deformation approach
in equation (10). The previously explained formulation of the
displacement field are general analytics. In accordance with
this, the basic functions defined for the Ritz approach, like
many other weighted residual methods, can perfectly describe
the state of a system for a certain range of initial and bound-
ary value problems, if chosen properly. The approximated dis-
placement field can be defined in the following general form:

uξ1 =
∞∑
m=0

∞∑
n=0

Ûmn
ξ1 f

mn
1 (ξ1, ξ2)

uξ2 =
∞∑
m=0

∞∑
n=0

Ûmn
ξ2 f

mn
2 (ξ1, ξ2)

uξ3 =
∞∑
m=0

∞∑
n=0

Ûmn
ξ3 f

mn
3 (ξ1, ξ2)

ψξ1 =
∞∑
m=0

∞∑
n=0

Ψ̂mn
ξ1 f

mn
1 (ξ1, ξ2)

4
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ψξ2 =
∞∑
m=0

∞∑
n=0

Ψ̂mn
ξ2 f

mn
2 (ξ1, ξ2) (11)

Here Ûmn
ξ1
, Ûmn

ξ2
, Ûmn

ξ3
, Ψ̂mn

ξ1
and Ψ̂mn

ξ2
are unknowns represent-

ing the weighting factor of each basic function. These weight-
ing factors are multiplied by their corresponding basic func-
tions and summed up to define the approximate solution for the
displacement field. It should be noted that the basic functions
are so-called permitted functions. These fulfill the essential or
geometrical boundary conditions, e.g. no curvature occures at
the free edges and are χ times continuously differentiable, if
2χ represents the order of the considered differential equation
with regard to the variables [23] (in this case: ξ1 and ξ2). This
is the case if the solution function is an extremum of a func-
tion [24], e.g. when solving beam and plate models, where
the final solution describes the deformation of the mechan-
ical component. In a static model it is assumed that the beam
or plate is massless and reacts immediately to external forces
with a deformation without transient oscillation. As a result
of this assumption, the kinetic energy is zero. Therefore, only
potential energy and the work of external forces on the system
are considered. In mechanical systems, this variation formu-
lation directly follows the Hamilton principle, which can be
expressed in the following form for static models:

∂L
∂q⃗

= {0} (12)

where the Lagrangian L consists of the potential energy in the
system and the work of external forces:

L(⃗q) =Wex(⃗q)−Πnp,p(⃗q) (13)

If the Ritz approach for the displacement field is used in
equation (12), an expression is obtained for the action depend-
ing on the parameters Ûmn

ξ1
, . . . ,Ψ̂mn

ξ2
. To minimize the left hand

side of the equation (12), after this substitution no variation
(i.e. gateaux derivation) needs to be performed. It is now suffi-
cient to differentiate the action function according to the para-
meters Ûmn

ξ1
, . . . ,Ψ̂mn

ξ2
and to determine the steady-state point.

This condition provides a system of equations with nth equa-
tions for the nth unknowns. The approximated solution in
equation (11) presents itself as the linear combination of the
basic functions, which has the smallest action of all possible
linear combinations of the basic functions. Related to the basic
functions, it is therefore the best possible approximation of
the true solution. The variation problem can now be solved by
solving an algebraic system of equations. For the solution of
such algebraic systems of equations efficient algorithms, such
as the Newton method, are to be used.

As already mentioned, it is assumed that the adaptive shells
(in non-loaded state) have two symmetry planes, namely the
ξ1 − ξ3 plane and the ξ2 − ξ3 plane. The adaptive shells can,
however, deform asymmetrically during operation, since the
shells are externally loaded by asymmetrical reaction forces of
the foil structure caused by an eccentric position of the journal.
As a result, the following conditions must be applied in the

basic functions so that the remaining symmetry plane ξ1 − ξ3
can be correctly considered:

uξ1(ξ1, ξ2) =−uξ1(−ξ1, ξ2)
uξ2(ξ1, ξ2) = uξ2(−ξ1, ξ2)
uξ3(ξ1, ξ2) = uξ3(−ξ1, ξ2)
ψξ1(ξ1, ξ2) =−ψξ1(−ξ1, ξ2)
ψξ2(ξ1, ξ2) = ψξ2(−ξ1, ξ2)

(14)

Assuming a single bearing shell in different main parts, it
can be seen that there are changes in stiffness at the borders
of each section. In addition, actuation with the corresponding
piezoelectric patches is only possible in the section II. Now
the approximation functions for both areas are set up separ-
ately and linked with consistency conditions between any two
different sections of the bearing shell:

uIξ1(ξ1, l
II
ξ2) = uIIξ1(ξ1, l

II
ξ2)

uIξ2(ξ1, l
II
ξ2) = uIIξ2(ξ1, l

II
ξ2)

uIξ3(ξ1, l
II
ξ2) = uIIξ3(ξ1, l

II
ξ2)

ψIξ1(ξ1, l
II
ξ2) = ψIIξ1(ξ1, l

II
ξ2)

ψIξ2(ξ1, l
II
ξ2) = ψIIξ2(ξ1, l

II
ξ2) (15)

Similar conditions have to be considered for the bound-
ary between area II and III at ξ2 =−lIIξ2 . The consistency con-
ditions must be fulfilled by the displacement functions. For
this purpose, these conditions are established and appended
to the expression for energy and external work using Lag-
rangian multipliers. The minimization of the general energy
thus becomes a minimization under secondary conditions. In
addition to the coefficients of the basic functions, the resulting
energy expression must also be differentiated by the Lagrange
multipliers l1 . . . l10 when searching for the energy minimum,
as follows:

∂L′

∂q⃗
= {0} (16)

where:

L′ = L(⃗q)+ l1f
I,II
uξ1

+ · · ·+ l5f
I,II
ψξ2

+ l6f
II,III
uξ1

+ · · ·+ l10f
II,III
ψξ2

.

(17)

Here fI,IIuξ1
, fI,IIuξ2

. . . fI,IIψξ2
(and the same for the consistency

between area II and III) represent the conditions in equation
(14) in a reformed formulation as f = 0. Both polynomials and
harmonic functions are suitable as basic functions for AAFB’s
adaptive shells. However, harmonic functions usually work
with less unknowns and, on the contrary, it is easier to meet
the consistency conditions at the boundaries of different parts
of the adaptive shell using polynomials. Considerations of this
kind lead to the definition of a hybrid approach, in which the
deformation in ξ2-direction is to be determined by polyno-
mial basic functions and the deformation in ξ1-direction by
harmonic basic functions:

fmn1 (ξ1, ξ2) = ξn2 sinαmξ1
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fmn2 (ξ1, ξ2) = ξn2 cosαmξ1
fmn3 (ξ1, ξ2) = ξn2 cosαmξ1

with :αm =
mπ
lξ1

(18)

where m and nth can be considered as the number of dif-
ferent combinations of solutions in equation (11) in axial
and circumferential directions weighted with corresponding
unknown constants. It should be noted that the number of solu-
tion functions in the circumferential direction is also the order
of the polynomial assumed for the hybrid solution. The for-
mulation of the solution in the form considered by weighted
residual methods has the advantage that only a small number
of approximation functions can suffice for a good approxim-
ation quality in order to be able to gain first statements about
the system behavior [23]. Otherwise, it is usually sufficient to
increase the number of basic functions for the approximated
solution in order to achieve the desired solution close to the
exact solution, if the basic functions are mathematically cor-
rect but physically not meaningful [23].

4. Influence of elastic boundary conditions

The energy stored in the elastic suspension can be considered
as potential energy and should be added to the terms of energy
in piezoelectric and non-piezoelectric elements in the single
supporting shell. Back to the schematic representation of a
single support shell in the functional model, the solid joints
react to forces in the circumferential direction of the bearing
shells as well as to forces in the radial direction or to acting
moments. So the bending joints at two ends of each shell can
be simplified with three linear springs, namely in ξ3 direction,
perpendicular to ξ3 and around the ξ1 axis, which reacts to
the forces and in different directions the single corresponding
moment (represented by α in figure 2). In the case of the func-
tional model under investigation, the flexure joints are con-
nected to the shell at both ends via a single connection point.
Based on this and on the basis of the linear elastic assump-
tion for flexure joints, the potential energy of each joint can be
represented in simplified form as follows:

ΠJ =
1
2
{UJ}T [CJ]{UJ} (19)

where
{
UJ
}
is the displacement vector at the end of a single

shell (where the joints are connected). Furthermore, it should
be generally assumed that, a force in one of these three direc-
tions in a solid joint does not only cause a deformation in the
same direction, but also a tilting of the joint and possibly also
a deformation in other directions. Consequently, the stiffness
matrix

[
CJ
]
is not necessarily a diagonal one. There are inher-

ently some further assumptions in the stiffnesses determined
here. The omission of the consideration of stiffnesses in axial
direction of the bearing shells is synonymous with the assump-
tion that there is no potential energy in the deformation of the
bearing shells in axial direction. This can be achieved either by

zero stiffness or by locking the corresponding degree of free-
dom. It is assumed that the second case is a better representa-
tion of reality. Accordingly, further boundary conditions must
be introduced for the bearing shell at the supporting points,
which are formulated below. It should be mentioned that, lI,IIIξ2
is the angle at which the bearing shell connects to the elastic
support:

uξ1(ξ1, l
I,III
ξ2

),ψξ1(ξ1, l
I,III
ξ2

) = 0 (20)

The determination of the stiffness matrix must be carried
out individually for each different type of joint. The elastic
suspension and the local coordinate system on the right and
left side are shown in figure 3. In order to determine the com-
pliance of the flexure joints, forces in the radial direction and
in the circumferential direction are applied to the connection
points for the bearing shells in the FEM simulation (ANSYS
Workbench 18.1). In addition, the connection points are loaded
with a torque to individually observe the tilt angle of the lead-
ing edge of the joint. It should be noted that the angle α rep-
resents the same angle of inclination as the ends of the bear-
ing shell, since it is assumed that the support shells are com-
pletely connected to the joints at the end points without any
slip effect. The compliance matrix is calculated in the first step
using deformations extracted from FEM model. This matrix
is the inverted stiffness matrix, which relates the deformation
terms of the allowed degrees of freedom to the vector consist-
ing force terms and torque acting on mentioned DOFs, as it
follows:

{
UJ
}
=



uRξ2(ξ1, l
I,III
ξ2

)

uRξ3(ξ1, l
I,III
ξ2

)

ψRξ2(ξ1, l
I,III
ξ2

)

uLξ2(ξ1, l
I,III
ξ2

)

uLξ3(ξ1, l
I,III
ξ2

)

ψLξ2(ξ1, l
I,III
ξ2

)


=
(
SJ
)
6×6

×



FRξ2
FRξ3
MR
ξ2

FLξ2
FLξ3
ML
ξ2

 (21)

where
[
SJ
]
is the compliance matrix of the flexure joint (con-

taining direct and coupled terms), FR,Lξ2 and FR,Lξ3 are tangen-

tial and radial forces and MR,L
ξ2

torques acting respectively on
the right and left sides of the joint. Since the forces must be
specified component by component in the global Cartesian
coordinate system, the angle ϕ shown in figure 3 is required
to calculate the individual force components. Two 10 N force
vectors in radial and tangential directions of the joint (FR,Lξ2 =

FR,Lξ3 = 10 N) end and a 10 Nmm torque (MR,L
ξ2

= 10 N.mm)
around axial direction are applied in the model. To determine
the compliance matrix, the resulting deformation must first be
calculated for the individual loads. Since this deformation is
specified in the global coordinate system, it must first be trans-
formed into the local coordinate system. The angle change
α is calculated using the analytical geometry and a reference
edge. The principle is shown in figure 3 The figure shows the
enlarged connection point for a bearing shell. The angle of
rotation can be calculated from the angle between the two vec-
tors a⃗1 and a⃗2. The vector a⃗1 is the distance vector between the
two considered edge points A and C before the deformation.

6
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The vector a⃗2 denotes the distance between the edge points B
and D in the deformed state. The following equation applies
to the angle:

α= ψRξ2(ξ1, l
I,III
ξ2

) = acos(
a⃗1.a⃗2

|a1| . |a2|
) (22)

The tilt angle on the left hand side of the joint can be achieved
in the same way. After defining the terms of the joint displace-
ment matrix, the compliance matrix can be calculated from
equation (21). The calculated compliance matrix is almost
symmetrical, but numerical deviations cause a slight asym-
metry. Hence, before inversion into the stiffness matrix, the

compliance matrix is symmetrized by the summation of ori-
ginal compliancematrix and it is transposedmatrix: 2[SJ]new =
[SJ] + [SJ]T. When calculating the matrix, the units have to
be considered very carefully. Different entries in the matrix
have different units and must therefore be multiplied by other
factors when converting to SI base units. Inverting the compli-
ance matrix results in the stiffness matrix [CJ], as it follows:

[CJ] = 103× (23)


0.6130Nm −0.5192Nm −0.7542 N −0.3288Nm 0.4996Nm 1.0451 N
−0.5192Nm 0.7639Nm 1.5978 N 0.4996Nm −0.6587Nm −1.3155 N
−0.7542 N 1.5978 N 4.2740 N.m 1.0451 N −2.3155 N −2.5795 N.m
−0.3288Nm 0.4996Nm 1.0451 N 0.6130Nm −0.5192Nm −0.7542 N
0.4996Nm −0.6587Nm −1.3155 N −0.5192Nm 0.7639Nm 1.5978 N
1.0451 N −1.3155 N −2.5795 N.m −0.7542 N 1.5978 N 4.2740 N.m

 (24)

As assumed, coupling stiffnesses occur that combine a
deflection in each direction with a force in another. Looking at
the joints as external work generators (or as absorbers for the
energy derived from bearing shells), the Maxwell-Betti law of
reciprocal deflections is fulfilled in terms of both the compli-
ance and the stiffness matrix. In other words, the work that is
defined by a force acting on an individual degree of freedom
of the joint (e.g. the ξ2-direction) and the deflection caused
in another (e.g. the ξ3-direction) corresponds to the work per-
formed in reverse direction.

5. Results and discussion

The main objective of an AAFB is to benefit from differ-
ent bore contours in a single bearing and actively modify
the shape. For the AAFB, two target shapes are generally
considered, each offering corresponding advantages for vari-
ous operating conditions, namely the circular and non-circular
contour. In the tribology of AFBs, the non-circular bore shape
is usually referred to as the preloaded configuration due to the
hydrodynamic preloading effects of the lubricating filmwithin
this configuration. The radius of the bearing inner contour with
preloaded shape (based on the classical preload model [7] [5])
can be mathematically described as follows:

RBCS(θ) = r+ c0 − rp cos(θ− θp) (25)

where r is the radius of journal, c0 and rp are nominal clearance
and preload factor of the bearing and θp is called pivot angle.
The AAFB both in circular and preloaded configurations is
shown in figure 4 assuming a constant length of each sup-
porting shell in circumferential direction. The model presen-
ted in previous sections is used for the motivations, which
are explained in the introduction. The deliberate structure of

the model for discussing the results in the next sections is
shown in figure 5. The functional model is assumed to be a
system consisting of three supporting shells and three elastic
supports between each pair. A single bearing shell is discret-
ized into three sections, namely two parts, the two ends of
the shells exposed with piezoelectric patches (Sections I and
III) and a part in between completely covered by the actuator
(section II). The considered material properties of the actu-
ators and the shell are listed in table 1. The calculated stiff-
ness matrix of the flexure joints in previous section is used
to couple the discussed degrees of freedom of ending parts
(sections I and III) of the adjacent shells. The terms of poten-
tial energy for each part of each shell of equations (4) and
(6) and flexure joints of equation (19) are coded, related to
strain terms of equation (7) and displacement fields described
by the Ritz method. The adhesive layer between actuator and
shell is assumed to be ideally thin and stiff. Furthermore, the
use of first order shear deformations with independent terms
(ψξ1 and ψξ2) in equation (10) has no significant effect on the
radius change of the bearing shells with investigated dimen-
sions, as already observed in [12]. As a result, the simula-
tions performed for this paper are limited to the Kirchhof Plate
Theory (ψξ1 = ∂uξ3/∂ξ1 and ψξ2 = ∂uξ3/∂ξ2) for reasons of
calculation time efficiency. The terms for potential energy
and consistency conditions of equation (15) (all consisting of
unknown vectors describing the displacement fields) are added
to the Lagrangian in equation (17). Finally, the change of the
total energy of the system (right hand side of equation (13))
with the use of Newton method is considered to be as close to
zero as possible, which leads to the numerical definition of the
unknown vector and thus to the displacement with regard to
the local coordinate system of each shell. Local deformations
are later recalculated in the global coordinate system of the
bearing.

7
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Figure 3. The flexure joint of the functional model.

0
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π/3

π/2

2π/3
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θs

θe

RBCS

r

Figure 4. Bearing polar coordinate system and the definition of
actual clearance of an AAFB with a non-circular configuration based
on the classical preload model compared to the target circular shape.

Figure 6 shows the result of a convergence study carried
out on the hybrid solution shown in equation (18) with respect
to the order of the polynomial part by showing the absolute
radius change of the supporting shells of the functional model
(in relation to the local coordinate system of the shell) as a
function of the actuation voltage. In this case two first modes
in axial direction (m = 0 : 1) and up to six first modes in
circumferential direction (n = 0 : 5) are considered for the
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Figure 5. Set-up of the model for the investigated AAFB in a
three-pad configuration.

consideration of displacement fields. As can be seen, the cubic
polynomials can be used for further investigations, since third-
degree polynomials provide a satisfactory reliability for the
whole range of applicable voltage with a very low computa-
tional effort compared to the higher degrees. In the next step,
figure 7 shows the change of the shell radius under consider-
ation and neglect of non-linear strain terms in equation (7).
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Table 1. Material properties of supporting shell, MFC-actuator used
in the functional model investigated in this study.

Parameter Value

Young’s modulus (shell) 193 [GPa]
Poissons ratio (shell) 0.31 [−]
Initial thickness (shell) 0.25 [mm]
Initial radius (shell) 20.641 [mm]
Width (shell) 40 [mm]
Young’s modulus (actuator), E1 18 [GPa]
Young’s modulus (actuator), E2 15.9 [GPa]
Young’s modulus (actuator), E3 13.5 [GPa]
Shear modulus (actuator), G12 9 [GPa]
Shear modulus (actuator), G31 6.75 [GPa]
Shear modulus (actuator), G23 5.515 [GPa]
Poissons ratio (actuator), ν12 0.31 [−]
Poissons ratio (actuator), ν31 0.31 [−]
Poissons ratio (actuator), ν32 0.31 [−]
Initial thickness (actuator) 0.3 [mm]
Width (actuator) 40 [mm]
d33[25] 400 [ pCN ]

Based on this, no significant deviation of the geometric prop-
erties of the investigated functional model can be observed. At
the end of applied voltage range there is a detected influence
of non-linear terms which can be interpreted as a dedication of
the applied energy to the non-linear terms (quadratic deform-
ation in radial direction with respect to circumferential and
axial coordinates) and thus a reduction of the radius change
in general. Accordingly, the non-linear terms are disregarded
in the further analysis of this study in order to save calculation
time. Furthermore, figure 7 also shows the radius change from
experimental efforts in [11] resulting from periodic measure-
ments when actuating the actuators with a 2 Hz input signal.
The applicable radius change of the bearing shells simulated
in this section shows a good agreement with the experimental
results. However, the slightly non-linear behavior observed in
practical tests may be due to non-linearity in joints or the hys-
teresis effect in piezoelectric actuators, which requires further
investigation. The change of radius with respect to the bearing
global coordinate system for different actuator input signals
(and no external loading of the mechanism) is shown in the
polar coordinate system of the bearing in figure 8. In addi-
tion, the same results are shown in figure 9 for the three target
shapes of AAFB (r= 18.9 mm) from [11] to compare them
with the simulated results of the functional model for different
actuation voltages. Starting from the slightly non-circular geo-
metry, actuating the piezoelectric patches with the maximum
negative voltage leads to a deformation of the bearing shells
that corresponds in good approximation to the strongly non-
circular geometry. However, actuating the mechanismwith the
maximum applicable voltage results in an over-circular shape
where the radius of each shell is smaller than that of the cir-
cular target shape (rp < 0). In order to better understand how
the adaptive interface is able to adapt an actual shape close to
the target shapes and possibly improve the shape adaptation,
an optimization procedure is discussed in the next section. The
result can be a roadmap to better understand the circumstances,

under which the shape control strategy for an AAFB can be
perfectly implemented.

5.1. Shape optimization

5.1.1. Influencing parameters. As can be seen in the previ-
ous work [12], the modulus of elasticity of the shell material
and the geometric parameter of the supporting shells can influ-
ence the solution shape control in an AAFB. In addition to the
bearing shells, the mechanical stiffness (and damping) prop-
erties of the joints can influence the amount of energy con-
sumed to generate the required strain for the nominal shape
control. These parameters determine the global stiffness ratio
between actuator and bearing shell and thus also the deform-
ation achievable during actuation. The shape optimization in
this study refers to the adaptation of influencing variables to
perform the shape change from an actual shape as close as
possible to the intended shape. The main focus of the shape
optimization study in this section is on the properties of the
support shells. If the deformation is intended to adopt a cer-
tain shape into which the bearing shell is to be placed, a local
variation of the stiffness ratio can be regarded as an option in
addition to the global variation of the stiffness ratio. Since the
material properties cannot be varied locally, a local variation
of the shell thickness is to be used to adjust the stiffness ratio.
In line with this, the shell thickness is assumed to be variable
with respect to the circumferential coordinate ξ2. As a meas-
ure to describe this variation, a parameter called convexity κ
is introduced, which describes the thickness variation. A shell
that is thicker in the center than in the elastic support area is
called a convex shell. Conversely, a shell that is thicker in the
elastic support area than in the center is called a concave shell
or a negative convex shell. The thickness variation with the
coordinate ξ2 is described by the following equation:

ts(ξ2) = t0 ·

(
1+κ ·

(
1− ξ22

(lIξ2)
2

))
(26)

The equation shows that a convexity of κ= 0 results in a bear-
ing shell with a constant thickness ts(ξ2) = t0. A convexity
of κ= 1 means that the bearing shell in the middle (ξ2 = 0)
is twice as thick as in the suspension (ξ2 = lIξ2 and ξ2 = lIIIξ2 ).
A convexity of κ=−1 would mean that the bearing shell
achieves a thickness of ts(ξ2 = 0) = 0 in the middle. This does
not make sense, since the bearing shell would then disinteg-
rate into two parts without an applied piezo actuator, so the
convexity cannot reach the lower limit of κ=−1. However,
there are no upper limits to the convexity. A single bearing
shell with different values of convexity is shown in figure 10.

5.1.2. Definition of deviation and optimization algorithm:.
The goal of shape optimization is to achieve a deformation
during actuation that corresponds as closely as possible to a
given target deformation. The specified target deformation is
determined by the following function:

wtarget(θ) = RBCS
target(θ)−RBCS

0 (θ) (27)
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Figure 6. Convergence study on the polynomial part of hybrid solution function.

−500 0 500 1,000 1,500

−250

−200

−150

−100

−50

0

50

100

Vact [V ]

Δ
R

0V
[µ

m
]

without non-linear terms
with non-linear terms
results from experiments done in [11]

Figure 7. Radius change of a single supporting shell in unloaded state as a function of actuation voltage, with and without considering the
non-linear terms in equation (7)

Here RBCS
target and RBCS

0 represent the desired (each one
of previously investigated configurations in [11]) and ini-
tial profile function with respect to the bearing coordin-
ate system. On the other hand, a similar function must
be presented to quantify the difference between the initial
and actual shape of the bearing shells for each operating
voltage in terms of optimization variables (thickness and

convexity):

wis(θ) = RBCS
act (θ,Vact,κ, t0)−RBCS

0 (θ) (28)

Here RBCS
act specifies the actuated profile of the bear-

ing shells for each optimization variable related to the bear-
ing coordinate system. Before performing the optimization, a
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Figure 8. Actuated radius (with respect to the bearing coordinate system) of the AAFB with lightly non-circular shape in unloaded state for
different actuation voltage.
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Figure 9. Radius of target shapes during conceptual design of the AAFB [11] (with respect to the bearing coordinate system) .

measure of the deviation between the given and the desired
deformation has to be specified. Such a deviation measure
maps the given deformation to a simple numeral. Mathemat-
ical norms can be applied to the difference between the desired

deformation and the deformation achieved during actuation.
The H2-norm is chosen for the evaluation of divergence in
this paper taking into account the following mathematical
definition:
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Figure 10. A single supporting shell considering different values
for convexity.

H2 =

(ˆ θe

θs

(wtarget(θ)−wis(θ,Vact,κ, t0))
2 dθ

) 1
2

(29)

For an optimal approximation, the formulated norm must
reach the possible minimum value. Since the determination of
a minimum is an extreme value problem, the norm function
must be differentiable with respect to the optimization vari-
ables for the entire scope of investigation. In the calculation of
the ideal shape, external loads were neglected. By considering
only linear expansion terms, the calculation effort is further
minimized without causing significant losses in calculation
accuracy. The shape optimization starts with the calculation of
the deformationwis depending on the operating voltageVact for
a given parameter set. The error between the intended deform-
ation wtarget and the actual deformation wis is then calculated
using the H2-norm from equation (29). This deviation error
is still dependent on the control voltage. The algorithm then
continues searching for the control voltage where the error is
minimal. It should be noted that the control voltage must be
limited to the input signals applicable by the used actuator. If
the control voltage determined in this way is used in the prin-
tout for the calculation of deviation, the minimum error for the
given parameter set results from shell thickness and convexity.
Repeating this process results in an optimization surface that
reflects the relationship between the deviation error and the
optimization parameters. Within this optimization range it is
now possible to search for the parameter set with the smallest
error, i.e. the best match between wis and wtarget.

5.1.3. Optimization results. The optimization results regard-
ing the AAFB with initially circular and goal-oriented, lightly
non-circular configurations are shown in figure 11. With a
small shell thickness, the deformation tends to be greater, so
that the error between the actual deformation and the nominal
deformation is smaller, but no optimum shape control can be
achieved. Therefore, the optimization algorithm tries as far as
possible to achieve a configuration close to the target shape
that leads to the actuation with minimum voltage allowed by
the MFCs (−500 V). The most important step towards shape
optimization for the discussed goal is therefore to increase the
deformation of the bearing shells. To achieve this, the shells
must be bent open, which requires contraction of the actuat-
ors for which the MFC actuators used require a higher negat-
ive voltage signal. The piezoelectric effect, however, limits the
operating voltage in the negative range with respect to repol-
arization effects (and in the positive range by the breakdown
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Figure 11. Optimization surface for shape adaptation from circular
to lightly-preloaded AAFB with.
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Figure 12. Optimization surface for shape adaptation from
lightly-preloaded to circular AAFB with regard to convexity and
thickness.

voltage), which should be avoided. Alternatively, d31 actuat-
ors can be used for the circular configuration as this solution
would allow the actuators to operate in a wider range of pos-
itive control voltages.

Another promising approach is to make better use of the
operating range of the piezo actuators already in use by man-
ufacturing the bearing shells in the non-circular state. They
would then be deformed back into a circular shape by means
of a positive voltage signal. In the positive voltage range, the
control limit is 1500 V , so the triple voltage range can be
used. In line with this, figure 12 depicts the optimization sur-
face and required voltage for an optimal shape change from
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Figure 13. Optimization surface for shape adaptation from
lightly-preloaded to strongly-preloaded AAFB with regard to
convexity and thickness.

Table 2. Bump-foil parameters for the simulation.

Parameter Value

Foil thickness 0.101 [mm]
Bump half length 1.778 [mm]
Bump height 0.508 [mm]
Bump pitch 4.57 [mm]
Number of bumps 9 [1/Pad]
Young’s modulus 213 [GPa]
Poissons ratio 0.29 [-]

lightly-preloaded to circular target configuration. It is an inter-
esting observation, that the shape adaptation from a lightly-
preloaded configuration to circular form is more accurate for a
shell thickness below 0.2 mm and inaccurate for a thicker sup-
porting shell compared to the shape control in opposite direc-
tion. This observation shows that depending on how local stiff-
ness (or mass and damping in dynamic case) is distributed, the
applied work on the structure by piezoelectric patches results
into an entirely different actual shapes (in this case a deterior-
ated shape control for thicker shells).

A further optimization analysis is performed on the lightly
preloaded configuration with regard to the strongly preloaded
configuration as the target form. The results of this study are
shown in figure 13. As can be seen, in this case a perfect shape
adaptation is possible for each convexity and for the thickness
equal to and smaller than 0.25 mm (thicker than 0.1 mm). As
the thickness increases, the convexity must be reduced in order
to adapt the bearing shells optimally to the strongly preloaded
shape. When calculating the ideal shape in this study, external
loads are neglected. However, a similar analysis can be carried
out for a specific scope of application, taking into account the
loads occurring in the entire operating range.

5.2. Results of AAFB performance in operation

The iterative calculation method for an operative state is
schematically shown in [11]. In detail, the calculation tool
starts from the assumption of a predefined eccentric position
of the journal and begins with the calculation of the hydro-
dynamic pressure, taking into account the undistorted clear-
ance. The static behavior of the AFBs under a given load
and at any speed can be simulated by the iterative solution
of the Reynolds differential equation derived at the bearing
plane with θ and Z as circumferential and dimensionless axial
coordinates, compressible gas flow assumption for an ideal
gas, as follows:

∂

∂θ

(
P0H0

3 ∂P0

∂θ

)
+

∂

∂Z

(
P0H0

3 ∂P0

∂Z

)
= Λ

∂

∂θ
(P0H0)

(30)
in contraction with the film thickness function:

H0 = h0/c0 = C(θ,P0)+ ϵcos(θ− γ)+U0 (31)

where P0(=
p0
pa
) is the dimensionless static pressure, H0 is the

static dimensionless gas film thickness andΛ is the dimension-
less rotational speed also known as bearing or compressibil-
ity number. Moreover, C(θ,P0) is the profile of radial clear-
ance (for the centric position of the journal) from equation
(25) in a non-dimensional form, which is mainly focused in
current work to be actively adjusted by suggesting an adaptive
strategy. It should be noted that the bearing radial clearance
in an AAFB also changes due to the load conditions related
to the hydrodynamic pressure in the air foil bearing as the
main system, as the rigid bearing housing is replaced by an
adaptive mechanism to actuate the bearing inner contour. In
addition, ε is the non-dimensional eccentricity of the journal
with respect to bearing in-plane coordinates and U0 is the nor-
malized deflection of the foil structure under the static pres-
sure load in radial direction (modeled according to the NDOF
approach [26]). In addition, pa is the ambient pressure used
to represent the equation (30) in dimensionless format. Fur-
ther details of the physics behind AFBs are not the main topic
of this paper (see [11]) and the focus is on the adaptive inter-
face of the AAFB. The same three-pad AAFB investigated in
[11] using measured stiffness coefficients is considered during
the investigation in this section. Initial design parameter of the
AAFB with 40 mm bearing length and 38 mm diameter (in
circular configuration) are listed in table 2. The model intro-
duced in previous sections considering the flexure joints with
calculated stiffness matrix is used here in order to calculate
the deformation of three segments of the preloaded AAFB
to consider the actual clearance. Accordingly, an additional
loop is added to the calculation code to update the clearance
under the influence of reaction forces of the bump strip on
the supporting shells extracted from the NDOF model. It is
assumed that the bearing shells are in a lightly non-circular
configuration (with rp = 285 µm and c0 = 335 µm) in the
non-activated state (Vact = 0 V). Figure 14 shows the change
in bearing non-circularity of preloaded AAFB with adaptable
supporting shells at 20 krpm under 5 N static load (half the
rotor weight) after convergence has been achieved. Based on
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Figure 14. Initial and deformed clearance of AAFB with preloaded configuration, ω= 20 krpm.
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Figure 15. Initial and deformed clearance of AAFB with preloaded configuration, ω= 120 krpm.

the observations from both models, the preload effect of the
predominantly loaded bearing shell is reduced in relation to
the effective pressure profile built-up. However, this effect is
significantly lower for the results from the model presented
in this chapter compared to the rigid-body model. In contrast,
the tilting effect simulated by the current model is the domin-
ant type of deformation that occurs with the bearing shells in
operation. In detail, in this model the external work is largely
applied for deformation in bearing shells. In contrast, when
using the model presented in this paper, a larger amount of

electrical energy, converted by actuators into strain energy, is
directed to the joints, since the joints are modeled with a stiff-
ness matrix of 6× 6, resulting in a larger tilting effect and less
deformation of the shells. For further investigations figure 15
shows the initial and deformed clearance for a higher rotational
speed. The tilting effect at higher operating speeds is increased
in view of the stiffening effect occurring in the air film, which
leads to increased reaction forces during deformation of the
bearing shells in an area where the main shell supports the act-
ive bumps.
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6. Conclusion

A semi-analytical model is developed and discussed in
this study to estimate the AAFB performance considering
the adaptive interface. The presented model benefits from
weighted residual approaches with a compromise between
accuracy and computing time to mathematically consider the
physical analysis of the adaptive shells. The comparison of
simulated results on the actuated deformation of the func-
tional model with experimental observations from previous
studies ca n be regarded as proof for the plausibility of
assumed approximate basic functions for the specific scope of
the investigation. Accordingly, the model presented can effi-
ciently consider the physical behavior of the adaptive inter-
face and further optimize it for practical application with
small loads and low-frequency dynamic excitations and other
boundary conditions considered in this work. As a remark-
able result, it should be noted that the shapes aimed for in
conceptual studies of a solution with regard to shape control
cannot always be achieved in practice due to physical limita-
tions. With the help of an efficient mathematical model of the
adaptive interface, however, it is possible to optimize the vari-
ous electromechanical parts involved in the concept in order
to achieve maximum percentages of the advantages of ideal
target shapes. In this context, a method for shape optimization
with focus on the functional model is discussed to investig-
ate the ability of the mechanism to efficiently change actuated
shapes between different initial and target shapes previously
presented in concept studies. This study continues with the
variable local stiffness of the bearing shells by locally chan-
ging the thickness, as an example of shape optimization. The
shell thickness and convexity are then used as optimization
variables that are set for optimal shape control between the
target shapes. The results of the AAFB operational simula-
tion show that the dynamic and static operating conditions can
influence the design objectives of the shape morphing vice
versa. These effects need to be accurately identified, taking
into account not only the nominal shape of the mechanism but
also the efficiency of the solution for loaded operating condi-
tions.

Nomenclature

c0 Nominal radial clearance m
[CJ] Stiffness matrix of flexure joints -
[Cp,np] Stiffness matrix -
[dp] Matrix of piezoelectric strain con-

stants

pC
N

{Dp} Vector of electrical charge displace-
ment

C
m2

[ep] Matrix of direct piezoelectric coef-
ficients

N
Vm

{Ep} Vector of electrical field strength V
m

fireac Reaction forces of bump foil Nth
h0 Gas film thickness in steady-state

condition (LC)
m

Kξ1,ξ2 Shear correction factor -
p0 Pressure in steady-state condition

(LC)
Pa

r Journal radius m

R0 V Shell radius before actuation (LCS) m
∆R0 V Change of shell radius with respect

to R0 V (LCS)
m

RBCS
0 Shell radius before actuation (BCS) m
RBCS
act Actual shell radius after actuation

(BCS)
m

RBCS
target Target shell radius (BCS) m
rp Preload m

[Sp] Compliance matrix of piezoelectric
materials

m2

N

T Kinetic energy Jth
ts Shell thickness m
uξ1,ξ2,ξ3 Displacement terms of bearing

shell with respect to local coordin-
ate system

m

Us Displacement vector of bearing
shell with respect to local coordin-
ate system

m

Vact Actuation voltage V
Wex External work Jth
ε Dimensionless eccentricity in

steady-state condition (LC)

e
c

{ϵp,np} Vector of mechanical strain -
[ηp] Matrix of dielectric constants (Per-

mittivity)

C
Vm

θp Pivot angle of the pad or lobe rad
κ Convexity factor -
{σp,np} Vector of mechanical stress N

M2

ω Rotor angular frequency rad
s

Π Strain energy Jth
x, y Bearing in-plane coordinates m
z Bearing coordinate in axial direc-

tion
m

θ Bearing coordinate in circumferen-
tial direction

rad

ξ1, ξ2, ξ3 Shell local coordinates in axial, cir-
cumferential and radial directions

m
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