GPGM-SLAM: Towards a Robust SLAM System for Unstructured Planetary Environments with Gaussian Process Gradient Maps

Riccardo Giubilato(1), Cedric Le Gentil(2), Mallikarjuna Vayugundla(1), Teresa Vidal-Calleja(2), Rudolph Triebel(1,3)

(1) German Aerospace Center (DLR), Institute of Robotics and Mechatronics
(2) University of Technology Sydney (UTS), Centre for Autonomous Systems
(3) Technical University of Munich (TUM), Dept. Computer Science

GPGM-SLAM
- Submap-based SLAM system targeted at mobile rovers with stereo cameras [1]
- Tackles the problem of establishing loop closures using Gaussian Process Gradient Maps (GPGMaps) [3]
- GPGM: gradient of submap elevation computed using Gaussian Processes (GP) and SKI (Structured Kernel Interpolation) [2]
- Similarity score between GPGMaps computed online in a Bag-of-Words (BoW) framework using image features computed on gradients
- Pose graph links origins of submaps with Visual-inertial Odometry constraints and validated loop closures

Validation of GPGMap matches
- Candidate GPGMap matches are validated to reject false matches and compute a 4D (x, y, z, yaw) transformation between the original gravity-aligned submap point clouds
- SIFT features are matched between the candidate pair GPGMap1 and GPGMap2
- The RANSAC approach in our previous work [3] is employed to determine an SE(2) transformation between gradient images, without optimizing for scale, which is fixed given the set resolution. The RANSAC model employs also a second error term based on a difference of aligned gradients weighted using the GP covariance
- The affine transformation between gradient images is transformed to the submap domain given the resolution of gradient images
- Point clouds are first transformed using the estimated rototranslation and then aligned in the z direction
- A final ICP refinement constrained to 4D returns the final transformation between the original submaps
- The resulting inter-submap constraint is added to a non-linear pose graph

Loop Closure detection using Bag-of-Words on GPGMaps
- Evaluation of SIFT, SURF and KAZE feature descriptors to compute BoW representation of GPGMaps
- Vocabulary built and tested on a variety of datasets recorded on Moon-like Mt. Etna
- Comparison between BoW vector cosine similarity and overlap (IoU) between submaps using ground truth poses
- SIFT features perform generally better than SURF and KAZE, scoring the highest Area under the Curve (AUC)
- BoW similarity proves to be an useful metric to discriminate candidate matching GPGMap pairs

Online GPGM-SLAM test on a Moon-like scenario
- We test GPGM-SLAM on a recorded sequence on a volcanic environment [4] offering multiple GPGMap matching opportunities
- Challenging environment due to repetitiveness and ambiguity of appearance and structure
- Compare with our previous pipeline based on matching point clouds, selected from geometric priors using 3D features [1]
- GPGM-SLAM detects and validates 3 to 4 submap matches, without relying on geometric priors, while our previous pipeline validates only 1 to 2 submap matches
- Robust Cauchy loss applied to the factors in the non-linear graph nullifies the effect of wrong matches

References

IEEE/RSJ IROS 2020, Workshop on Planetary Exploration Robots