
DLR-IB-RM-OP-2020-97

Pose Estimation by Detection and 
Tracking of Artificial Markers for 
Planetary Exploration

Master‘s Thesis

Patrick Krömer



Freigabe: Der Bearbeiter: Unterschriften

Patrick Krömer

Betreuer:

Jongseok Lee

Der Institutsdirektor

Prof. Alin Albu-Schäffer

Dieser Bericht enthält 91 Seiten, 46 Abbildungen und  3 Tabellen

Institut für Robotik und Mechatronik
BJ.: 2020

IB.Nr.: DLR-IB-RM-OP-2020-97

MASTERARBEIT

POSE ESTIMATION BY DETECTION AND

TRACKING OF ARTIFICIAL MARKERS

FOR PLANETARY EXPLORATION

  Ort: Oberpfaffenhofen   Datum: 29-10-2020   Bearbeiter: Patrick Krömer   Zeichen: 

ohh
Digital signiert von 
alin.albu-schaeffer@dlr.de
DN: 
CN=alin.albu-schaeffer@dlr.de
Grund: Ich bin der Verfasser 
dieses Dokuments
Ort: hier den Ort der Signierung ein
Datum: 2020.10.29 21:02:
55+01'00'
Foxit PhantomPDF Version: 10.1.0

alin.albu-s
chaeffer@

dlr.de



FACULTY OF CIVIL ENGINEERING AND
GEODETIC SCIENCE
LEIBNIZ UNIVERSITY HANNOVER

Master’s Thesis in Navigation and Field Robotics

Pose Estimation by Detection and
Tracking of Artificial Markers for

Planetary Exploration

Patrick Krömer
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iv



Abstract

This thesis presents a new approach of indirectly tracking an static AprilTag with a
monocular camera. The method developed, yields a metric pose estimation of the marker
even when it leaves the cameras field of view. This was accomplished by using a keyframe-
based direct odometry that was enriched by a spherical motion stereo algorithm in order
to perform a 3D-to-2D tracking. The proper scaling of the transformation is achieved by
a fusion of the depth maps from the marker and the motion stereo. Furthermore an error
model was developed, which yields an uncertainty estimation for every pose, to allow the
merging of pose estimations from other sources.
The work was done with consideration of an application to support a landing approach of
a micro aerial vehicle in a real scenario. The results that were obtained during this work
are promising to further develop this approach.

Keywords: Pose Estimation, Artificial Marker, Direct Sparse Odometry, Tracking,
Spherical Motion Stereo
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Chapter 1

Introduction

The present thesis was carried out within the Perception and Cognition department of
the Institute of Robotics and Mechatronics at the German Aerospace Center (DLR) in
collaboration with the Institute of Photogrammetry and Geoinformation at the Leibniz
University Hannover. At the Institute of Robotics and Mechatronics (RM) research is done
on robots that can be used in places that are inaccessible or hard-to-reach for humans,
like other planets or also terrestrial areas that were affected by natural disasters. This
type of application sometimes requires a high degree of autonomy. While investigating
how this can be made possible, the work at RM involves observing human behaviours in
order to mimic them on a functional level to implement them in a robot. The Perception
and Cognition department fulfils the task of environmental perception and the processing
of the measured data to derive useful information for certain tasks; e.g. navigation or
interaction with the environment.
The topic of this thesis is the estimation of the location and orientation of a camera to an
stationary artificial marker by first detecting that marker and from then on tracking its
relative pose to the camera. For the perception of this marker and the further tracking,
a monocular camera is used. A possible scenario in which this topic is discussed is the
deployment to an micro aerial vehicle (MAV). The MAV could be part of a robot team
that is employed for planetary exploration. Since the robots in this team would be
far away from human access, they have to perform some tasks autonomously, such as
mapping the environment or, regarding a MAV, the landing on a platform. A current
research project at the DLR, which demonstrates such a scenario and is a use case for
this topic, is the Helmholtz Future Project ARCHES (e.g. Schuster et al. (2019); see also
www.arches-projekt.de). Its focus is on creating a collaborative team of heterogeneous
robots which are able to explore areas that are difficult to access for humans. Figure 1.1
shows a rover and the MAV Ardea that are part of ARCHES and were used for preliminary
studies that were carried out at the beginning of the work. The thesis was done in close
cooperation with the team that works on this project.
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Chapter 1 Introduction

Figure 1.1: The multicopter Ardea standing on the landing-platform of the Lightweight Rover
Unit (LRU) (Credits: DLR; CC-BY 3.0).

1.1 Perception and Cognition

For us humans, at and up-to a certain age, it is easy to navigate from one point to another
relying on our sensors — like ears, eyes and the vestibular system — and the backend
processing of the sensor output in our brain. To apply this biological trained methods to
machines on the contrary, is a highly complex task and of paramount interest not just
for research purposes in the robotic community. As the demand for mobile autonomous
robots that act in a shared space with humans keeps growing, the sensors formerly used
for sensing the robots state in a constrained area have to be able to perceive information
from a highly dynamical environment. There are several types of exteroceptive sensors
that can accomplish this task (and are also used in stationary robots), such as: cameras,
laser scanners (lidar), sound navigation ranging (sonar) and radio detection and ranging
(radar). This thesis only focuses on cameras, as the approach should be as general as
possible which is facilitate by using a sensor that is cheap and widely used. To be more
specific, a monocular camera will be used because it can also be employed on a very small
robot that does not allow the installation of a stereo camera due to the fact that the
baseline between the two cameras would be too small for useful stereo vision.
A lot of work was already done in the field of image processing which goes back to the early
years of analogue photogrammetry. In 1840, before the term photogrammetry was coined,
the french geodesist Arago used camera images to measure the shape of a landscape
(Maybank, 1993). In the following years the process of land surveying was leveraged by
photographs and maps were made with the help of aerial images. The fundamentals on
which the photgrammetry is based on were already applied to perspective hand drawings
and the roots of that principles even go further back in time, since they are basically
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Chapter 1 Introduction

based on geometric assumptions.
A second branch of research which has a similar scope as photogrammetry, is computer
vision. Although computer vision originated from research in biology and artificial
intelligence, they have a lot of similar approaches nowadays. The main difference between
them is only the underlying idea. Photogrammetry originated from the requirement to
derive information from single images whereas most tasks in computer vision deal with
consecutive image sequences as provided by video cameras.

1.2 Landing Spot Estimation

The cooperation of robots will be of importance for future planetary exploration activities.
The National Aeronautics and Space Administration (NASA) for example, is already
planning to launch the rotorcraft lander Dragonfly (Lorenz et al., 2018), as part of the
mission with the same name, to explore Saturn’s largest moon Titan. Dragonfly is a
lander that is big enough to carry solar panels for recharging itself, whereas a micro aerial
vehicle (MAV) like Ardea has to deal with the restrictions in terms of flight duration due
to its low payload. It cannot carry enough batteries or solar panels for recharging to make
a extensive exploration flight.
A solution to that problem, if the drone is part of a multi-robot team, is to land it on
a wireless charging pad that is mounted on a rover (Brommer et al., 2018). A possible
execution of this idea is shown in figure 1.2 and was given as a guiding principle that
accompanies the entire thesis. This approach involves an accurate estimation of the
position and orientation — in robotics often referred as pose — of that landing spot, which
can be obtained by using artificial markers that are placed on the rover and which get
captured in a camera image. However, approaching the pad in a stop and go manner by
detecting the marker can be time consuming and is dependent on a continuous presence
of the marker in the camera image if no further sensor or image based method is used to
estimate the position and orientation of the MAV. Therefore the scope of the thesis is to
elaborate a concept that fulfils the given requirements and which could be used to enrich
a landing approach with the necessary information about the orientation and location of
the landing platform.
The methodical approach that was chosen to follow this guideline is based on the
decomposition of the overall problem. The central element of this approach has been
identified as the estimation of the relative position and orientation from a camera to a
point-of-interest (marked by an artificial marker). Furthermore, although the marker is
theoretically movable, it is assumed to be static for the duration of the landing approach
and therefore also for the concept described here. The initial estimation of that pose
is obtained by a detector that identifies the marker in an image and leverages its prior

3



Chapter 1 Introduction

Figure 1.2: An image from the simulated dataset that was produced during the work on this
thesis and shows the rover Curiosity with a landing platform mounted on top of it.
The platform is marked by the black and white pattern, which is called an AprilTag.

knowledge of the parameters of this marker to calculate the pose.
The last and major part of the task, the tracking, is included by an indirect tracking
approach. Since the marker is not moving, using one of the classic filter methods is not
necessarily required to track it. This makes it possible to use the additional information
that is located in the image areas around the marker instead of just focusing on the small
area of the tag. For this purpose a keyframe-based visual odometry that uses 3D-to-2D
point correspondences is included to the work. A depth map that is obtained by the fusion
of a depth map calculated by using the tag position and one that is calculated using a
motion stereo approach, yields the depth information, which the visual odometry needs
for creating keyframes.
These individual parts are then combined into an overall concept, in which a monocular
visual odometry was used as a framework that was enriched by a motion stereo algorithm
and an interface for receiving external information from the marker detector. By combining
the pose estimation coming from the marker detector with the relative pose coming from
the modified visual odometry, a combined estimation of the markers current position and
location can be made.
It is therefore possible to indirectly estimate the markers pose even when it cannot be
directly measured by the detector, provided that an initial detection is available. The
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Chapter 1 Introduction

methodologically interesting option that arises from this concept is that not only the tag
is tracked, but also a monocular visual odometry with properly scaled pose estimations is
developed.

1.3 Related Work

While researching on how to establish a working approach for the given task, several
different topics from robotics, photogrammetry and computer vision were taken into
consideration as solution. Work already done by others and related to that topics are
referred and briefly explained below. In addition, it is explained which areas are of special
interest for this thesis and therefore will be deepened in the following chapters.

1.3.1 Artificial Marker

An artificial (or fiducial) marker is an object of known size and shape that is place into
a scene as a benchmark. When taking an image of the scene with the artificial object
inside, the absolute location and orientation of the object to the camera or vice versa
can be estimated (Hartley and Zisserman, 2003). This principle is used by the AprilTag
detector of Olson (2011), of which meanwhile a revised third version exists (Krogius,
Haggenmiller, and Olson, 2019). The drawback of this type of detectors is that they
become slow when applied to images with a high resolution as pointed out in the work
of Lee et al. (2020). Lee proposed a marker tracking algorithm with a visual-inertial
odometry that estimates the pose of the tag, if no markers are detected. The approach uses
multiple markers for resolving ambiguities and works with the ARToolKitPlus detector
(Wagner and Schmalstieg, 2007). AprilTags are also used to yield a ground truth for
visual datasets that were recorded in large outdoor areas, where it would be difficult to
establish a traditional method which is based on camera arrays (Pfrommer et al., 2017).
There are also several other algorithms that make use of artificial markers, and differ in
speed, robustness and accuracy. In this work, the decision was made in favour of the
AprilTag mainly because the pose estimations provided by its algorithm are among the
most accurate (Abbas et al., 2019) — an example of it is shown on top of the rover in
figure 1.2.

1.3.2 Pose estimation

For continuously estimating the ego-motion of a camera (pose), there are many approaches
and developments. Some of them reach far back in time, but still today, it is a research
area of high interest as the amount of recent works shows.
The principle of continuous pose estimation that is used in this work belongs to the
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branch of monocular visual odometries. A further subdivision inside that area can be
done by separating them into feature-based and appearance-based methods which differ
in the way they extract information from the images. Each of them also can use a
different principle of tracking those points over time. Either it is by tracking the points in
consecutive images (Howard, 2008) or by tracking the points relative to a keyframe (Engel,
Koltun, and Cremers, 2018a). The latter belongs to the appearance-based methods
whereas the former is a feature-based visual odometry. A recent development of the direct
sparse odometry (DSO) of Engel was done by Fontan, Civera, and Triebel (2020), who
extended the approach by a information theory driven selection of the points to reduce
their amount. This has the benefit that the runtime of the algorithm is reduced while
also eliminating outliers.
If the focus of estimating the ego-motion is extended to simultaneously creating a map of
the environment, the method is called simultaneous localisation and mapping (SLAM).
VO and SLAM both belong to the much older structure from motion (SfM) concept,
which targets the problem of simultaneously estimating the motion of the camera while
using that motion to estimate three-dimensional object points (structure) from the
two-dimensional image points. While SLAM is used synonymous to SfM, visual odometry
is a particular case of SfM, where the pose estimation is emphasised (Scaramuzza and
Fraundorfer, 2011).
AprilTags were already used in simultaneous localisation and mapping (SLAM) approaches
for loop closing together with a visual odometry and a pose graph optimisation by
Pfrommer and Daniilidis (2019) and Munoz-Salinas, Marin-Jimenez, and Medina-Carnicer
(2019). To work properly, the SPM-SLAM by Munoz-Salinas, Marin-Jimenez, and
Medina-Carnicer (2019) needs at least two tag detections in one image and the TAG-SLAM
by Pfrommer and Daniilidis (2019) needs previously known locations of the tags.

1.4 Scope of the thesis

The scope of this thesis is to present a proof-of-concept for the tracking of an static
artificial marker. This was accomplished by an indirect tracking of the marker by
modifying the Information-Driven direct RGB-D Odometry of Fontan, Civera, and Triebel
(2020) as described in chapter 3. This visual odometry was chosen after researching about
the different types of VO and a careful consideration of the respective advantages and
disadvantages. The final decision to choose this odometry depended on the advantages of
fast tracking by reducing the number of points without great loss of accuracy and the
planned future use of this VO in the multi-copter Ardea. The approach was then tested
on the simulated dataset described in section 3.3, which also was created during the work
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on this thesis. The results of these tests are presented and evaluated in chapter 4.
To sum up, in this work a method is developed which fulfils the requirement to track an
artificial marker and also provides an extension for an existing visual odometry. The whole
concept uses only a monocular camera and a physical artificial marker. Furthermore,
a model for estimating the error is developed which yields a uncertainty for each pose
estimation and makes it possible to evaluate the estimations. This uncertainty can be
used when merging pose estimations from different sources or, within the fictitious setup
of a landing approach, to estimate the probability of a successful landing.
This thesis extends the aforementioned works by a setup that requires only one sensor
and one AprilTag for the pose estimation. Due to the implemented motion stereo it is
also suitable for aerial vehicles that operate at further away distances from the ground,
where stereo cameras normally cannot yield a good depth estimation due to the relation
between the baseline of the cameras and the distance to the object.
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Fundamentals

In this chapter the fundamentals necessary to follow the statements in this work are
provided. The first section deals with the mathematical and geometrical fundamentals
necessary for understanding and describing the motion of an object trough the three-
dimensional space. The following sections focus on methods of image processing that were
used in the implementation of the approach.
In section 2.4, which elaborates the operation principles and applications of visual odometry,
a more detailed insight into the two most commonly used methods is given. Although
one method was ultimately preferred to the other, it was an essential part of the work
process to understand both methods fundamentally in order to then choose the more
appropriate one. Section 2.5 introduces AprilTag, an artificial marker that is widely used
in robotics and is followed by the explanation of motion stereo in section 2.3. Finally
a brief presentation of an unmanned aerial vehicle that was used as template for the
experimental realisation is given in section 2.6.

2.1 Transformations

The arbitrary motion of an object in the three-dimensional space R3 can be defined as a
function f that maps the object from R3 to R3 as represented in equation (2.1) (Blanco
Claraco, 2010).

f : R3 → R3 (2.1)

R3 is the Cartesian product of the real n-space Rn for n = 3 which is also denoted as the
Euclidean space (eqn. (2.2)).

R3 = R× R× R (2.2)

The objects where the focus is on are rigid, thus the function f must preserve the structure
of an object when it is mapped. Therefore the function f is a homomorphism and because
the rigid body motion can be reversed, more precisely an isomorphism. The motion of
an object in 3D-space has 6 degrees of freedom (DoF) and consists of a rotation and a
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translation, together denoted as Euclidean transformation (Hartley and Zisserman, 2003).
Let us first focus on the rotations.
As Blanco Claraco (2010) notes, three-dimensional rotations can be expressed as a set
of 3 × 3 matrices that belong to the special orthogonal group SO(3) which is a subset
of the general linear group GL(3,R) (eqn. (2.3a)). The members of this group fulfil
all the conditions mentioned in equation (2.3). The vector elements of the matrix are
orthogonal to each other, which means that a square matrix multiplied by its transpose
yields the identity matrix In (eqn. (2.3b)) and that its transpose is equal to its inverse
(eqn. (2.3c)). Furthermore the determinate has to be 1 (eqn. (2.3d)), as this is the property
of a orthogonal matrix that is a pure rotation without reflection, also known as proper
isometry.

R ∈ SO(3) ⊂ GL(3,R) (2.3a)

R ·RT = RT ·R = I3 (2.3b)

R−1 = RT (2.3c)

det(R) = 1 (2.3d)

As an example a point x1 = (x1 y1 z1)T that is mapped to a point x2 = (x2 y2 z2)T

is considered. This is done by applying the mapping function f = R21 to point x1 as
shown in equation (2.5), following the linear maplet in equation (2.4).

x 7→ R · x, x ∈ R3, R ∈ SO(3) (2.4)

x2 = R21 · x1 (2.5)

To map the resulting point x2 back to x1, it can be multiplied to the inverse respectively
transpose of R21:

x1 = R−1
21 · x2 = RT

21 · x2 = R12 · x2 (2.6)

Including translations to this expression in order to describe a 6 DoF transformation T is
not straightforward, since three-dimensional translations are non-linear transformations
in R3. They follow the maplet in equation (2.7) which shows that the application of a
translation to a given vector x is the addition of the transitional vector v0 to that given
vector x.

x 7→ x + v0, x,v0 ∈ R3 (2.7)

In order to include translations to the linear expression, the expression is extended by
one dimension to the so called homogeneous coordinates (Möbius, 1827). That means
that the three-dimensional point x1 is extended by a homogeneous coordinate. In most
applications this always will be the unity (eqn. (2.8a)). The advantage of this extension is

9



Chapter 2 Fundamentals

that the translation becomes a linear transformation and the whole 6 DoF transformation
T can be expressed as shown in equation (2.8b).

(
x2

1

)
= T

(
x1

1

)
(2.8a)


x2

y2

z2

1

 =


R

tx

ty

tz

0 0 0 1




x1

y1

z1

1

 (2.8b)

This is equal to a matrix multiplication with R followed by a vector addition of t:

x2 = Rx1 +
(
tx ty tz

)T
(2.9)

Because the transformation now can be expressed as a matrix multiplication which is
subject to the associative property, multiple transformations can easily be connected
instead of executing them one after the other (eqn. (2.10)).

f(g(h(x))) = (f ◦ g ◦ h)(x) (2.10a)

f(x) = Ax, g(x) = Bx, h(x) = Cx (2.10b)

A(B(Cx)) = (ABC)x (2.10c)

In equation (2.8b) a invertible 4× 4 matrix was presented, which by definition belongs
to GL(4,R) and not GL(3,R), but in the particular case of the so defined set of
transformation matrices T (along with the group operation of matrix product), they
form the group of affine rigid motions which, with proper rotations, is denoted as the
special Euclidean group SE(3) (Blanco Claraco, 2010). SE(3) is, as well as SO(3), a
Lie group and this group is often referred to as poses with 6 DoF. Figure 2.1 shows an
example of how two adjacent poses can be combined to one pose with respect to the world
frame (X,Y, Z). The transformations that are consider here always consist of a rotation
and a translation. For the translation, there is always an unambiguous expression in the
form of a 3-dimensional vector, where the rotation can be described in different ways. The
four most common ones are:

1. The just described rotational matrices,
2. Euler angles,
3. quaternions and
4. the axis–angle representation.
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(a) The pose p1 (b) The pose p2

(c) The pose p as composition of pose p1 and p2

Figure 2.1: The composition of the two 6D poses p1 and p2 leads to p (reprinted and modified
from Blanco Claraco, 2010).
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For presenting results, the Euler angles are well suited, because it is easier to
understand their representation, whereas rotational matrices, although including redundant
information are well suited for combining different transformations. The equivalences
between the different representations, their transformations among each other and their
uncertainties and drawbacks are extensively elaborated in the work of Blanco Claraco
(2010).

2.1.1 Errors in transformation

There are several possibilities to express the error of a transformation, for example by
splitting them up in two separate transformation or by directly adding the error of every
parameter to it. The representation of errors in translation and rotation used in this
thesis is defined as shown in equation (2.11).

T =
(

∆RR0 t0 + ∆t
0 1

)
=
(

(1 + [∆r]×)R0 t0 + ∆t
0 1

)
(2.11a)

=
(

R0 + [∆r]×R0 t0 + ∆t
0 1

)
(2.11b)

=
(

R0 t0

0 1

)
+
(

[∆r]×R0 ∆t
0 1

)
(2.11c)

T is the erroneous transformation that was measured or estimated, ∆R and ∆t the errors
in rotation respectively translation, R0 and t0 the true rotation respectively translation
and [∆r]× the cross-product operator for small rotations that builds a 3×3 skew-symmetric
matrix from a 3× 3 vector like shown in equation (2.12a).

R '


1 −∆Φ ∆Θ

∆Φ 1 −∆Ψ
−∆Θ ∆Ψ 1

 =


0 −∆Φ ∆Θ

∆Φ 0 −∆Ψ
−∆Θ ∆Ψ 0


︸ ︷︷ ︸

[∆r]×

+


1 0 0
0 1 0
0 0 1

 (2.12a)

2.2 Image Processing

2.2.1 Pinhole Camera Model: Simplify the Capturing of Light

The pinhole camera model is a simplified model of the working principle of a camera.
It describes the relationship between three-dimensional object points and its projection
on the two-dimensional image plane. In this model it is assumed that the centre of the
camera is a pinhole and all light-rays that are captured on the image plane have to pass
that point. It is a description of the natural phenomenon that occurs when light enters a
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Figure 2.2: The pinhole camera (reprinted from Gillies, 2015).

dark room that just has a small point shaped opening and a image of the outside scene is
projected upside-down at one of the walls as shown in figure 2.2. This is also known as
camera obscura.
In a real perspective camera that opening is a lens that is used to amplify the intensity of
image points by focusing light that emerges in different directions from one object point
to its corresponding image point on the image plane. As already mentioned, the pinhole
camera model is just a simplification because it does not take into account that a lens
can cause distortions and a camera has a limited aperture. However this is a widely used
model that can be used in most cases as approximation of the real process.
The geometrical relations between the object point X and its corresponding image
point x are shown in figure 2.3. The relation between those two points is expressed by
equation (2.13), where f is the focal length of the camera and (X,Y, Z)T are the three
coordinates of the object point in the camera frame.

(X,Y, Z)T 7→ (f X
Z
, f
Y

Z
, f)T (2.13)

Figure 2.3 also shows that the image plane is defined to be in front of the camera centre
in the pinhole model. This convention is made, because it is more convenient to have
the same signs on both sides of the central projection mapping function (eqn. (2.13)).
The relation of the object point to the image point can also be expressed as a matrix
multiplication when using homogeneous coordinates (eqn. (2.14)).


fxX

fyY

Z

 =


fx 0 0 0
0 fy 0 0
0 0 1 0



X

Y

Z

1

 (2.14)
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Figure 2.3: The pinhole camera model (reprinted from Hartley and Zisserman, 2003).

In most cases the focal lengths in x-direction fx and in y-direction fy are equal, because
the pixel on the image plane are quadratic. To express the image points in the image
frame, the expression in equation (2.14) has to be extended by a translation part (px, py)T,
because the origin of the image coordinate frame is defined as the lower right corner (when
looking from the camera centre to the image plane) of the image plane in this example.
This yields equation (2.15) with the camera calibration matrix K (eqn. (2.16)) as part of
the projection matrix. The calibration matrix is shown with all five intrinsic parameters.
In most applications the skew symmetric parameter s which denotes the skew coefficient
between the x- and y-axis is zero. The parameters in the matrix K are determined by
performing a camera calibration.


fxX + Zpx

fyY + Zpy

Z

 =
(

K 0
)

X

Y

Z

1

 (2.15)

where

K =


fx s px

0 fy py

0 0 1

 (2.16)

If the inverse of the calibration matrix K is applied to the image point x it yields the
point x̂ which is the image point x expressed in normalised coordinates.

2.3 Spherical Motion Stereo

Motion Stereo is a case of stereo matching, where the motion that is expressed by a
transformation T between two camera positions is used to calculate the relative distances
of object points to the camera centre. The essential matrix E which describes the relation
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Figure 2.4: Mapping a spherical image to equirectangular images results in vertical parallel
epipolar lines (reprinted from Pathak et al., 2016).

between two corresponding image points, can be calculated like shown in equation (2.17).

T =

 R t
0 0 0 1

 (2.17a)

E = R[t]× (2.17b)

[t]× =


0 −tz ty

tz 0 −tx
−ty tx 0

 (2.17c)

Together with the known camera calibration matrix K and the epipolar constraint shown
in equation (2.18) can then be solved to find corresponding points in the images.

x2
TK−TEK−1x1 = 0 (2.18)

where x1 and x2 are corresponding points in the two images and K−TEK−1x1 describes
the epipolar line in image 2 on which the corresponding point x2 can be found. A pair of
corresponding image points are two points in two different images that are the projection
of the same object point to the respectively image plane. The point at which all epipolar
lines intersect is the epipole, which also corresponds to the translation direction (Hartley
and Zisserman, 2003). If the motion is a pure translation perpendicular to the camera
z-axis, the epipole is at infinity and all epipolar lines are therefore aligned parallel to
each other. This makes the search for corresponding points much easier, because the

15



Chapter 2 Fundamentals

Figure 2.5: The input images for the spherical motion stereo algorithm.

epipolar lines do not have to be calculated for every point individually. Furthermore it is
possible to use the horizontal shift of corresponding points to determine the distance of
the corresponding object point to the camera. This horizontal shift is called disparity in
computer vision and is also known as horizontal parallax (Kraus, 2007). The disparity is
inversely proportional to the depth.
From the disparity d = ul − ur of the horizontal location of the point pl in the left
respectively the point pr in right image, the distance Z of the object point to the image
plane can be calculated with equation (2.19) where B is the baseline between the two
images.

Z = f ·B
d

(2.19)

If the Transformation between the two images is not known by scale, also the distance Z
will only be estimated up-to scale.
It is also possible to determine the shift of a pixel in two tilted images by taking the
horizontal and vertical parallax into account. This can be done, if only the depth
information of a few points are of interest, whereas it requires much more computational
effort if a dense depth map should get estimated. It is therefore the usual way to rectify the
images before starting the stereo matching. However, if the motion is mainly in z-direction
of the camera, the epipoles in both images are at almost the same position and rectifying
the image using cartesian coordinates will fail due to shifting the epipole to infinity also
would make the images infinitely large. Abraham and Förstner (2005) suggested a method
that is similar to Pollefeys, Koch, and Van Gool (1999) uses spherical coordinates and
works for movements in all directions. This method works by first mapping each of the two
images to a sphere so that the two resulting epipolar-axis are aligned. The spherical images
are then mapped to an equirectangular image as shown in figure 2.4. Corresponding
points are then vertically aligned. The disparity and depth map are determined in this
representation before the image is mapped back to cartesian coordinates. An example of
this process is shown in figure 2.6 for the input images in figure 2.5.
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Figure 2.6: The equirectangular mapping of the two images (1), the calculated disparity map
(2) and the resulting depth map in cartesian coordinates (3). Note the noisy depth
values close to the epipole (green) above the rover. The equirectangular images were
rotated by 90◦ for presentation purposes.

2.4 Visual Odometry

Odometry is a technique to incrementally measure the travelled distance and direction of
a moving object with an internal sensor. The word originates from the two greek words
hodós, which means path and métron, which means measurement. In a car for instance,
the odometer keeps track of how many kilometres the car travelled altogether, but it
will not show the current position and orientation to a reference frame. To allow for the
estimation of the current position and orientation - in robotics and computer vision also
often just called pose - odometry makes use of more than just simply summing up all
distances. Odometry for a car could make additional use of the steering angle or the
difference in covered distance of the right and left wheel. In shipping navigation a similar
concept is applied with the help of a compass and the measurement of velocity of the ship.
The velocity integrated over time yields to the travelled distance. Both aforementioned
methods are a type of dead reckoning where the full path of the agent is getting integrated
over time.
The expansion of this term to visually measurable movements was first mentioned by
Srinivasan et al. (1996). Srinivasan discovered that ”bees possess a visually driven
‘odometer’”, which makes use of the optical flow they perceive when flying. However,
the concept is much older than the term. One of the first human-made applications of
this method was carried out by Moravec (1981) for the Stanford AI Lab cart (figure 2.7).
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Figure 2.7: The Stanford AI Lab cart with the camera (white tube) on the slider on top of the
cart (reprinted from Moravec, 1980).

He used digital cameras to find corresponding pixels in consecutive images by matching
them. The slider stereo system he designed for this purpose took several overlapping
images at every position and looked for correspondences in the following images at the
new position. The main purpose of this system was to enable the cart to avoid obstacles
when planning the path, but it fulfills all requirements to be a visual odometry. Later,
this technique was evaluated by NASA that implemented it in their rovers for the Mars
Exploration Program (Cheng, Maimone, and Matthies, 2005). The definition of the name
for the meanwhile proven method was set after the publication of Nistér, Naroditsky,
and Bergen (2004), who have strongly contributed to the enabling of visual odometry for
real-time applications. To understand how a full trajectory of a vehicle’s egomotion is
estimated just by incrementally measuring distances, in the following a small excursus
is given about one of the first implementations in a robot, the wheel-based odometry
(Everett, 1995). Finally, the connection between this odometry and the visual odometry
in terms of modern computer implementations is established.

Excursus: Wheel Odometry To calculate the trajectory of a wheel-based vehicle
using odometry, its kinematic model and the related parameters are needed; some of
them are constant and others change over time. As a theoretical example let’s consider
a differential wheeled robot with 3 degrees of freedom (DOF), which moves in the two
dimensional space due to two separately driven wheels with the radius r as described
by Borenstein, Feng, and Everett (1996). This robot has non-holonomic constraints,
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because it cannot drive directly to every possible point on the two-dimensional plane. For
a location that is not directly in line with its orientation, the robot first has to turn and
then is able to drive to that location. For simplicity, it is assumed that the time is discrete,
otherwise the linear velocity of the wheels and the rotational velocity of the centre would
have to be integrated over time.
The pose of the robot at time k is denoted as Pk = (xk yk Θk)T (figure 2.8). The two
motors each have a wheel encoder that send pulses mL,k and mR,k if the motor rotates.
C is the resolution of the encoder that determines how many pulses per full rotation are
getting sent and n is the gear ratio of the reduction gear between the motor and the wheel.
From equation (2.20) one gets the travel distance ∆UL,k and ∆UR,k for the left and right
wheel respectively.

∆UL,k/R,k = 2 · π · r
mL,k/R,k · C · n

(2.20)

From the two travel distances ∆UL,k and ∆UR,k the linear displacement ∆Uk of the centre
between the two wheels can be calculated with equation (2.21a) and the changed heading
∆Θk can be calculated with equation (2.21b), where b denotes the wheelbase.

∆Uk = ∆UR,k + ∆UL,k
2 (2.21a)

∆Θk = ∆UR,k −∆UL,k
b

(2.21b)

The following equation (2.21) yields the robots position and orientation Pk+1 at time
k + 1 from the previous pose Pk at time k.

xk+1 = xk + ∆Uk+1 cos Θk+1 (2.22a)

yk+1 = yk + ∆Uk+1 sin Θk+1 (2.22b)

Θk+1 = Θk + ∆Θk+1 (2.22c)

Similar to this concept, in visual odometry the shift of pixels in consecutive images is used
to estimate the motion of the camera. One of the core issues of visual odometry is to find
corresponding pixels in two different images that show the same scene. A prerequisite
that the two images must meet, is that they have an overlap of same objects in the scene,
and that the angle from which they were taken is not too large. At the latest when the
angle is 180◦ in most cases much earlier, although showing the same object, it will not be
possible to find correspondences. There are three main systematic approaches to solve
this task: feature-based, appearance-based and a hybrid of the two preceding ones. All of
this have in common that the goal is to find the hidden model parameters X from the
measurements Y. X contains the parameters for the camera motion and the model of the
world and Y contains the noisy measurements. The correlation of these two vectors can
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Figure 2.8: Geometrical relation between two successive poses of a differential-wheeled robot
(reprinted from Chen et al., 2017).

be expressed in a probabilistic model that estimates the unknown model parameters X so
that the likelihood for perceiving the measurements given those parameters is maximised
as represented in equation (2.23).

X∗ := argmaxx P (Y | X) (2.23)

2.4.1 Feature-based Method

This method is also referred as indirect method because the raw sensor measurement of
the pixel is getting processed before it is expressed in the measurement matrix Y. The
process involved in this is the feature extraction. To get a feature, the first step is to find
key-points in the image. These are points that are distinguishable from the majority of all
other points in the image. This applies for instance to primitive geometrical shapes like
edges but even more so to corners. After that, the second step is to describe the feature
so that it can be found in another image. Finally, the last step is to match the features
from two different images.
In general a good feature is based on a key-point that is repeatable like the aforementioned
corner but also reliable in terms of uniqueness in the whole image. Corners of repetitive
geometrical structures like on a chess-board for example would only meet one of those
conditions. Research in this field of detection already started in the 70s with Schmidt
Jr. (1971), who implemented an algorithm in the Stanford cart that enabled it to follow
a white line on the ground. The later work of his follower Moravec1980 on the same
robot, yielded to one of the first corner detectors. Upon the work of Moravec, Harris,
Stephens, et al. (1988) developed a corner-detector that is still used today and a standard
detector in the most recent OpenCV library (Bradski, 2000). A modification of the
Harris-Corner-Detector is the detector of Shi et al. (1994). Förstner and Gülch (1987)
provided a different approach for the detection of corners by using tangential lines. The
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Figure 2.9: Visual explanation of Moravec’s corner detector. All six boxes show the same Image
I with different positions of the window W . The upper and lower picture each form
a pair. The first image pair shows a flat region, where shifting the window does not
result in changes of intensities in any direction. Image pair two shows the window on
a edge, where only a shift along the line will not change the value. In image pair
three the window is on a corner; at this position, a shift in any direction will change
the value.

corner is estimated at the point that has the least squared distance to all of the lines. This
approach can estimate corners to sub-pixel accuracy and is especially useful for detecting
smooth corners.

Feature Keypoint Selection Moravec (1980) proposed a method that compares the
measured intensities inside a fixed sized window to the intensities inside that window when
it gets shifted into one of eight directions that are evenly distributed in 45◦ angles around
the initial position. The goal is to find a position (x, y) of the window W inside the image
that will yield to a large change E for all small shifts (∆x,∆y) of the window, because
this condition applies to corners. Three possible positions for a 3-by-3-pixel window inside
an Image I are shown in figure 2.9. For simplicity and without the loss of generality, the
method is shown in the following for a two-dimensional greyscale image. In equation (2.24)
the sum of squared differences between two window positions is calculated by summing
up the squared changes of intensity I(xi + ∆x, yi + ∆y)− I(xi, yi)) for all pixels (n = 9)
inside the window.

E(∆x,∆y) =
n∑
i=1

xi,yi∈W

[I(xi + ∆x, yi + ∆y)− I(xi, yi)]2 (2.24)
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Morovec’s corner detector is anisotropic, because it uses a box filter which only considers
shifts into eight different directions and which assumes that the displacement is in full
pixels each (∆x,∆v ∈ Z). Harris, Stephens, et al. (1988) improved Morovec’s detector
by extending it to displacements in all directions and by any small length. If a Gaussian
filter is used, the detector becomes isotropic. The term for the intensity change can be
approximately linearised for small shifts by a Taylor series expansion up to the first order
as shown in equation (2.25).

Ix = ∂I

∂x

Iy = ∂I

∂y

I(x+ ∆x, y + ∆y) ≈ I(x, y) + Ix∆x+ Iy∆y (2.25)

Ix and Iy are the gradients of the image I at (x, y). Inserted in equation (2.24) this yields
to equation (2.26) where the intensities at the initial position of the patch get cancelled
out.

E(∆x,∆y) ≈
n∑
i=1

xi,yi∈W

[Ixi∆x+ Iyi∆y]2 (2.26)

This can be written in matrix form as shown in equation (2.27).

E(∆x,∆y) ≈
n∑
i=1

xi,yi∈W

[(
Ixi Iyi

)(∆x
∆y

)]2

(2.27a)

=
n∑
i=1

xi,yi∈W

(
∆x ∆y

)( I2
xi

IxiIyi

IyiIxi I2
yi

)(
∆x
∆y

)
(2.27b)

=
(
∆x ∆y

) n∑
i=1

xi,yi∈W

(
I2
xi

IxiIyi

IyiIxi I2
yi

)
︸ ︷︷ ︸

structure tensor M

(
∆x
∆y

)
(2.27c)

The eigenvalues λk and corresponding eigenvectors xk of M define the direction respectively
the amount of change for E. For the displayed positions in figure 2.9 it means that max λk
and minλk are small for the flat area, max λk � minλk for the edge and for the corner
max λk ≈ minλk and both are large as shown in figure 2.10. The response function R

presented in equation (2.28) makes use of this circumstance.

R = det(M)− k · tr(M)2 (2.28a)

= λ1λ2 − k · (λ1 + λ2)2 (2.28b)
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where k is an empirical determined constant which can be adjusted to either achieve
higher precision or recall. Normally k is in the range [0.04, 0.06]. For a bigger k, the
precision is higher with less false positives but at the cost of some missed corner-points;
for a smaller k, the recall is higher which leads to more corner-points and also to a higher
rate of false positive detections.

From the value of R one can conclude the following:

• if |R| is small, the pixel belongs to a flat area,
• if R < 0, the pixel belongs to an edge,
• if R is large, the pixel belongs to a corner.
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Figure 2.10: Relation between the two eigenvalues λ1 and λ2, here depicted as α and β and what
statement can be made on the basis of this about the point at which these values
were calculated (reprinted from Harris, Stephens, et al., 1988).

Shi et al. (1994) presented a different way to calculate the response by directly evaluating
the minimum of the eigenvalues as shown in equation (2.29). It is more efficient in most
cases, because no quadratic term needs to be calculated.

R = det(M)
tr(M) (2.29a)

= λ1λ2
λ1 + λ2

(2.29b)

To use this function, only points where the eigenvalue minλk is bigger than a certain
threshold must be considered. Shi and Tomasi state that this method for tracking corners
between two images is superior to the Harris detector in situations where the displacement
is not the same for all pixels, but is rather represented by a affine motion vector field.
Another corner detector is the Features from accelerated segment test (FAST, Rosten and
Drummond (2006)), where intensities along a circle around the pixel are getting evaluated
as shown in figure 2.11. If at least a certain amount n of adjacent pixels are brighter or
darker than the pixel in the centre, the point is considered a corner. A value for n higher
than 12 should be chosen according to Rosten and Drummond (2006). This approach is,
as the name suggests, faster than the methods presented above, because it only compares
values instead of doing matrix multiplications or solving squared terms.
All the aforementioned detectors belong to the category of corner detectors, but there is

a second category of detectors, which detects blobs. Blobs are regions in an image that
are different from its surrounding in terms of texture, colour and intensity. Instead of
using a response function, these methods calculate the Difference of Gaussian (DoG) to
find keypoints. Figure 2.12 shows how SIFT (Scale-Invariant Feature Transform) (Lowe,
2004) - a famous representative of blob detectors - uses the DoG to calculate keypoints.
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Figure 2.11: The intensities of the 16 pixels along the circle around the point p are getting
compared to the intensity of pixel p. The Image shows an example for 12 contiguous
pixels that are brighter than the centre (indicated by the dashed line). Therefore,
the pixel p indicates a corner (reprinted from Rosten and Drummond, 2006).

Figure 2.12: The left cluster of images shows the original grey-scale image that was smoothed
by Gaussian filters with different sigmas (left to right) and down-sampled each
by a factor of 2 per row (from top to bottom). The right cluster of images shows
the difference of Gaussian (DoG) of two successive Gaussian-smoothed images
(reprinted and modified from Siegwart, Nourbakhsh, and Scaramuzza, 2011).

The main advantage of blobs over corners is that they are more distinctive and can be
re-detected better after a change in scale. On the other hand, corners yield a better
localisation and are faster to compute (Siegwart, Nourbakhsh, and Scaramuzza, 2011).
The choice of a suitable detector always depends on the task for which it is to be used and
requires thorough consideration. A more detailed comparison of feature detectors in terms
of properties and performance can be found in Siegwart, Nourbakhsh, and Scaramuzza
(2011).

Feature Description The second step after finding feature keypoints, is to describe
them so they can be found in a new image. The simplest way for that is to take the pixels
in the patch around the feature and store their intensity and position. The downside of
this descriptor is that it is very sensitive to changes in lighting conditions or viewpoint
changes. A more robust descriptor, called the Census transform, was presented by Zabih
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and Woodfill (1994). Instead of taking the intensities in the patch directly, they are first
compared to the intensity of the feature point and depending on whether they are larger
or smaller, they are assigned the value 0 or 1. The values are then combined into a binary
vector. Another well-proven descriptor is that of SIFT. The SIFT descriptor divides the
area around the feature point in 16 boxes of equal size and constructs a histogram of the
gradient directions inside every box. The histograms, each with eight bins for every box,
are stacked into one vector. The resulting 128-element vector for the feature is normalised
to unit length to make it more robust to changes of perspective and lighting conditions.
As Fraundorfer and Scaramuzza (2012) state, this concept works well and the “SIFT
descriptor proved to be stable against changes in illumination, rotation, and scale, and
even up to 60◦ changes in viewpoint.”
There are several other descriptors, of which Oriented FAST and Rotated BRIEF (ORB)
(Rublee et al., 2011) should be especially emphasised because of its efficiency and
wide application (Mur-Artal, Montiel, and Tardos, 2015). Compared to SIFT, ORB
is outperformed in terms of accuracy in the most scenarios, but the calculation and
matching of features is much faster (Tareen and Saleem, 2018; Karami, Prasad, and
Shehata, 2017). As the name suggests, ORB is based on the achievements of FAST and
BRIEF (Binary Robust Independent Elementary Features) (Calonder et al., 2010). It
calculates the FAST features for a multi-scale image pyramid to make it more robust to
changes in scale and then calculates the intensity centroid for every corner. The idea
behind the intensity centroid is that the geometrical centre of a corner is offset to its
intensity centre. The calculation of the intensity centroid after Rosin (1999) is shown in
equation (2.30), where the centroid C is determined from the standard moments mpq of
the image intensities I(x, y).

mpg =
∑
x,y

xpyqI(x, y) (2.30a)

C =
(
m10
m00

,
m01
m11

)
(2.30b)

The orientation of the vector between the corner’s centre O and the centroid C can thus be
calculated with the quadrant-aware version of arctan, the atan-function equation (2.31).

Θ = atan(m01,m10) (2.31)

With the known orientation, the features can be rotated to a unified direction to make
the matching process more robust to rotations.
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Figure 2.13: The image shows 1000 SIFT feature points with their corresponding descriptor
(coloured circle). The descriptor indicates the orientation and scale of the feature.

Feature Matching To match two features, their descriptors have to be compared
for similarity. If the descriptor contains the intensity of surrounding pixels, the sum
of squared differences (SSD, equation (2.32)) or the normalised cross correlation (NCC,
equation (2.33)) between two vectors is a suitable metrics. If the metrics yields a value
that is below or above a certain threshold, it can be assume that the two descriptors
represent the same point and match them.

SSD(x, y) =
∑
x,y

[f(x, y)− w(x, y)]2 (2.32)

NCC(x, y) = 1
n

∑
x,y

1
σfσw

· f(x, y) · w(x, y) (2.33)

where:

w(x, y) : the function of the patch around the feature in image I1

f(x, y) : the function of the region in the image I2 with the same size as w(x, y)
n : number of pixels in w and f

σw : standard deviation of w
σf : standard deviation of f

In case that the intensities have previously undergone a censure transformation, the
resulting binary vector is compared with the vector of a feature from another image and
if the Hamming distance between those two is below a certain threshold, the features
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Figure 2.14: Two images of the same rover from different locations with matched ORB-features.
Not all matches are correct, which is visible for example through the diagonally
crossing lines.

get matched. An example for matched ORB features, which also make use of a binary
descriptor, between two images is shown in figure 2.14. The process of matching is usually
done by comparing all descriptors of the second image with the first image and merging
the features with the most similar descriptors. Since this may result in multiple features
from the second image matching one feature from the first image, the check is also done
in the opposite direction. Then only those pairs are matched that have each other as
the closest solution in both directions. For SIFT, the comparison of the two vectors is
performed using the Euclidean distance between them, and the match is only accepted
if the distance to the second closest feature is bigger than a certain threshold to inhibit
ambiguous assignments.
This method of brute-force matching is very demanding in terms of computational
complexity because the matching function f grows quadratic with the number of features
n (f ∈ O(n2)). The complexity can be reduced by invoking an ordered structure with
indices like a search tree which makes use of the arrangement of features in the image and
links adjacent ones. Another way is to predict the position of the feature in the new image
and search only in a limited area around the predicted area for a matching descriptor.
This can either be done by projecting the corresponding three-dimensional object point
to the new image with a known transformation to the previous one or, if there is just
two-dimensional information from the images and the transformation between them, by
looking for the matching feature on the epipolar line. An alternative method to separately
finding features in two images and matching them is to search the features from the first
image in the second image. This approach is known as tracking and works best when
the transformation of successive images and their discrepancy in for example the lighting
conditions is small, so that the feature in the second image is of similar appearance and
at a similar position as in the previous image. The Kanade-Lucas-Tomasi tracker (Lucas,
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Kanade, et al., 1981; Tomasi and Kanade, 1991) is an attempt to make the tracking more
robust to changes of the features over long trajectories by applying an affine-distortion
model to them.

2.4.2 Appearance-based Method

This method is also referred as direct method because the raw sensor measurements of
the pixels are directly used as the measurements Y in equation (2.23). The central
characteristic of this method is that it bypasses most of the heuristic feature extraction
methods mentioned above, as it takes the intensity measurement of the sensor. This has
two main advantages: first, most of the costly computations are not necessary and the
direct methods are therefore well-suited for real-time applications on low performance
computers. Second, it is possible to use information from the whole image and not just
from some distinctive feature points as the comparison of the point selection between the
Direct Sparse Odometry DSO (Engel, Koltun, and Cremers, 2018b) in figure 2.15 and
SIFT in figure 2.13 clearly shows. The previously mentioned KLT-tracker can still keep
up with the first advantage but is inferior in terms of combining these two properties in
one algorithm (Kerl, Sturm, and Cremers, 2013). However, this does not mean that the
KLT is generally inferior to the DSO.
The DSO as well as the Information-Driven Direct RGB-D Odometry (ID-RGBDO)
(Fontan, Civera, and Triebel, 2020) do not minimise the geometric error of the projected
image points as is is done within the algorithms of the feature-based methods. Instead,
the photometric error is minimised, which is the difference in intensities between two
corresponding points. The new concept of modern direct odometries takes brightness
parameters into account while minimising the error, this has the advantage to earlier
methods that the approach is more robust to changes in lightning condition and sensor
noise. The equation used for the minimisation is shown in equation (2.34)

Epj :=
∑

p∈Np

wp

∥∥∥∥(Ij [p′]− bj)− tje
aj

tieai
(Ii[p]− bi)

∥∥∥∥
γ

(2.34)

Where Ii is the reference frame and Ij is the current frame that is tracked in relation to
Ii. ti,j are the exposure times of the respectively image and ai,j and bi,j are brightness
parameters for the frames. p is a point which is defined by a small patch that includes
8 image points. ‖·‖γ is the Huber norm, which is a loss function that is more robust in
the presence of outliers as the standard squared error loss function. After the minimum
is found, the transformation between the images can be calculated with equation (2.35),
where p′ is the projected point of p in ti,j .

p′ =
∏

c
(R

∏−1
c

(p, dp) + t) (2.35)
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Figure 2.15: The image shows 1000 points that were used by DSO during tracking.

where (
R t
0 1

)
:= TjT−1

i (2.36)

and ∏c is the projection of a three-dimensional point to the image plane. dp is the inverse
depth of the point p. As seen in the equations above, the DSO uses a descriptor in shape
of a small patch around the measured pixel and relies on the tracking of frames relatively
to a keyframe instead of consecutive images. This has the advantage that the drift due
to the continuous integration of transformation is kept within limits and the uncertainty
has not propagated from the start to the end, but just from keyframe to current frame.
The difference of the ID-RGBDO to the DSO is the point selection before minimising
equation (2.34). Before solving this equation, the points are selected by their potential
contribution to the enhancement of the pose estimation.
This overview of the different methods and their differences will not be deepened at this
point, as the basis for a well-founded decision in favour of a method can be made from
it, and the further development of a visual odometry is not part of this thesis. For a
more detailed explanation of visual odometry, it can be referred to the two tutorials by
Scaramuzza and Fraundorfer (2011) and Fraundorfer and Scaramuzza (2012) which were
also consulted for this section.
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2.5 AprilTag — A fiducial marker

AprilTag is the name of a visual fiducial (lat. fiducia - ”trust”) system that was developed
by (Olson, 2011). The system consists of two major parts: a physical part, which is a
black and white squared marker and a software part in implementation of a detection and
decoding algorithm. The marker that also just by itself is referenced as AprilTag, is shown
in figure 2.16. It consists of multiple macro-pixels that encode information similar to the
two-dimensional relative of the barcode, the QR-code. The tag is chosen to be black and
white due to the high intensity gradient between these two colours; this makes it easier to
detect the lines that compose it. A proper detection of the tag and the distinction from
the rest of the scene is essential for the further processing. The name 36h11 stands for
the family of the tag, which means for that example that the tags payload consists of 36
macro-pixels and all tags inside that family have a hamming distance of 11 to each other.
The idea behind this has been used for a long time for the calibration of cameras with a
checkerboard pattern and was extended here by a coding and a new approach for robust
corner estimation. Similar methods have already been carried out before by Abidi and
Chandra (1995), for example.

Figure 2.16: AprilTag of family 36h11 with ID 2.

One of the key-ideas behind using this marker system is that there is an object of known
size in a scene which can be used to calculate the metric position and orientation of a
camera in relation to that object. This can e.g. be used to enhance the performance of an
augmented reality scene or - as in the case of this thesis - as a landmark labelling a point
of great interest to a UAV. An additional application of the tag is to give orders to robots
by showing AprilTags with a specific ID to them; after recognising the tag, the robot
will perform a preconfigured task in accordance to that ID. The name of the artificial
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marker originates from the APRIL Robotics Laboratory at the University of Michigan, in
which the system was developed. APRIL is an acronym that derives from the topics the
laboratory deals with: Autonomy, Perception, Robotics, Interfaces, and Learning. The
connection between the physical tag an the algorithm is facilitated by a camera. More
precisely an image taken of the AprilTag, placed as an artificial object in the scene, is
sent to the detector, which then searches for valid tags that appear in the image. The
first part of the detector is an algorithm that finds four-sided regions in the image, which
applies, among other things, to the planar tags. In a second step, a decoding algorithm
analyses the payload of the region. If it is a valid tag, it should contain a binary encoded
ID that is composed by macro-pixels as shown in figure 2.17.
AprilTag is not the first approach that deals with this type of fiducial markers, but has
become one of the most widely used in the robotics community, besides ARTag (Fiala,
2005), and was also adapted for NASA’s AprilNav (Schuler, Studier, and Bryan, 2018).
A predecessor and inspiration to the AprilTag development was ARToolKit (Kato and
Billinghurst, 1999), one of the first marker-based systems whose further developments are
still used for augmented reality applications. There are several other system that - just to
name a few - use circles (Bergamasco et al., 2011) instead of squares or leverage colours
and their distinctive representation in an RGB image (Degol, Bretl, and Hoiem, 2017).
AprilTag is now in its third version (Krogius, Haggenmiller, and Olson, 2019) and supports
flexible layouts like nested tags or roughly circular shapes. Furthermore, the detection
algorithm for the quads was improved in terms of increased detection rate, and reduction
of the amount of computing time needed for detection (Wang and Olson, 2016). The
latter improvement is mainly due to the developments in AprilTag 2.
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Figure 2.17: The regions of an AprilTag. The actual size (print size) of the tag is larger than
the visible part. It contains - from outside to inside - a 1 macro-pixel wide white
border, following a 1 macro-pixel wide black border and the data cells (red) around
the centre. The tag size is defined by the exterior side of the black border.

Finding an AprilTag The full process of the AprilTag detection with the intermediate
steps is shown in figure 2.18. The input image has to be in greyscale, therefore the RGB
image has to be converted (figure 2.18b) before it is sent to the detector. Then an adaptive
threshold, which depends on the neighbourhood of the pixel, is applied to make it binary
(figure 2.18c). The next step is to find edges that have opposite-coloured neighbours and
segment them based on of their colour. The connected components are then segmented
(figure 2.18d) using the union-find algorithm and the borders of different coloured regions
are determined (figure 2.18e). Afterwards, four lines are fit to the points of every border,
which will define a quad (figure 2.18f). This is done by using the principal component
analysis (PCA) (Pearson, 1901) to calculate the best fit of a line through neighbouring
points with the same orientation. The corner points are then estimated by the intersection
of two lines. The line fitting and corner estimation step is the computationally most
expensive part, although it already was reduced in complexity from O(n4) to O(n) for n
points by using a precomputed statistics (Wang and Olson, 2016). Not every cluster will
yield a valid quad therefore the ones with poor properties are rejected. The valid ones
though, are candidates for the decoding algorithm (figure 2.18g) which tries to decode the
payload in all four possible orientations. If a valid ID was found inside a quad, the lines
and their intersections that define the borders respectively the corners are refined on the
original image. Initially those lines were computed using the thresholded image, but by
using the image gradients in the new image that are along the edges of the quad, a more
accurate line that therefore yields more accurate corner points, can be fitted (figures 2.18h
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(a) Original image (b) Input image (c) Threshold

(d) Segmentation (e) Clusters (f) Fitted Quads

(g) Decoding (h) Detected AprilTag (i) Detailed view of (h)

Figure 2.18: The detection process with the main steps. The original image (a) has to be
externally converted to greyscale (b) before sending it to the detector. The first step
inside is the conversion to a binary image (c) by applying an adaptive threshold.
Then connected black or white regions are segmented (d) and a consecutive border
around those segments is drawn (e). The next step consists of fitting lines to those
borders and constructing so called quads (f). All those quads are candidates for the
decoding algorithm that tries to read the tag’s payload (g). The final solution is a
proper detected AprilTag (h), whose edges are refined using the gradients in the
input image (b) again. Image (i) shows a magnified section of (h) to demonstrate
the quality of the line fit.
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and 2.18i). The edge refinement step improves the accuracy of the pose estimation and
was the standard procedure for fitting the quads in the first AprilTag detector before
abandoning it in favour of the aforementioned faster method (Wang and Olson, 2016).
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2.5.1 Estimating the Pose

The AprilTag is a planar surface and therefore also its corner points. The relation to
the camera can therefore be expressed by a planar homography. Using this method, the
projection becomes less complex, because of the reduction of the dimension from 3D
to 2D. The concept can be illustrated by the relation of the projection matrix M and
the homography H for the case of coplanar points (eqn. (2.37)). The red highlighted
elements in the matrices get eliminated because they just add a 0 to every new element of
the resulting matrix when multiplying the respective matrices. Note that the projection
matrix M is a 3× 4 matrix which is obtained by multiplying the two matrices above the
bracket.
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assuming fx = fy and multiplying the matrices this yields to the homography H
(eqn. (2.38)). 
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The homography is calculated by the Direct Linear Transformation (DLT) where the
parameters are solved by the following similarity relations between the points (Hartley
and Zisserman, 2003).

x1 = h11u1 + h12u2 + h13
h31u1 + h32u2 + h33

(2.39a)

x2 = h21u1 + h22u2 + h23
h31u1 + h32u2 + h33

(2.39b)

where x = (x1, x2) and u = (u1, u2) are the image- respectively the marker coordinate
frame. The missing elements from the rotational matrix can be restored by normalising
the two column vectors and then calculating the cross product of them. This can be done
because of the orthonormal properties of a rotation matrix. The resulting rotation matrix
is then corrected by computing the polar decomposition.
After this step, the payload of the tag is decoded to obtain the identification number. The
number is encoded as a binary pattern that is unique in all orientations. As this feature
is not relevant in this work, the elaboration on the working principle is not outlined.

2.5.2 Pose-ambiguity Problem

In situations where the projected four corner points are close to each other in the image,
the homography cannot be solved unambiguously. This occurs when the tag is far away
from the camera, tilted at a large angle or physically small in general. The solution of the
error function can then yield a wrong minimum and it is possible that the orientation of
the tag is not estimated correctly. However, this affects mainly the rotation and not the
translation (Schweighofer and Pinz, 2006), which means that it is of lower importance for
the algorithm outlined in this thesis.
The arrangement of the corner points is shown in figure figure 2.19a. Figures 2.19b
and 2.19c show the object-space error function for different distances and rotation angles
of the tag in respect to the camera. It can be seen that in figure 2.19b the value of the
error function for a distance of ‖t‖ = 10 and an angle α = 60◦ is also very close to 0 for
the negative angle α = −60◦. With increased noise the solution can become ambiguous
and might lead to a wrong pose estimation.
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(a) Perspective projection of four corner points.

(b) Distances ‖t‖ (c) Rotation angles α

Figure 2.19: The schematic projection of the corner points of the AprilTag to the image plane
(a). The object-space error Eos for varying viewing distances ‖t‖ at a fixed rotation
angle of α = 60◦ (b) and varying rotation angles α (c). All three figures are reprinted
from Schweighofer and Pinz, 2006.
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2.6 Micro Aerial Vehicle: Ardea

Figure 2.20: The Micro Aerial Vehicle Ardea (Credits: DLR; CC-BY 3.0).

Ardea (Lutz et al., 2020) is a small hexacopter, more specifically a Micro Aerial Vehicle
(MAV), which was built by the DLR to take part in collaborative robotic missions and
autonomously complete tasks, such as the exploration of uncharted and difficult to access
regions (Müller et al., 2018; DLR, 2020a). Ardea is equipped with four cameras that are
used for visual odometry (VO) and stereo matching. As declared by Lutz et al. (2020) in
their publication about Ardea, the MAV relays on the visual odometry to compensate for
the drift that is caused by the integration of the IMU measurements. The VO uses the
depth maps from the stereo matching but these maps cannot be calculated when Ardea is
standing on the ground. Therefore the state estimation module has to be stopped shortly
before the landing. For this thesis, mainly the arrangement and the specifications of the
cameras shown in figure 2.21 are of interest that are used for the creation of the simulated
dataset in section 3.3.
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Figure 2.21: The camera mounting on Ardea (reprinted and modified from Lutz et al., 2020).
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Indirect Tracking of the AprilTag or
Monocular Visual Odometry with Global
Scale

This chapter describes the procedure that leads to the set of solutions presented in this
thesis. The goal kept in mind for the realisation, is a successful landing approach, in
which it is important to have a high accuracy of the pose estimation as well as an reliable
estimation of how certain this estimation is. In order to obtain these estimates at a
high frequency, after careful consideration a direct visual odometry was chosen as a
framework for indirectly estimating the pose of the AprilTag. The recently developed
ID-RGBDO (Fontan, Civera, and Triebel, 2020) is well suited for this purpose, because
it uses information theory to keep the points for pose estimation low and thus works
very efficiently. The indirect tracking has the advantage that the pose of the AprilTag in
respect to the camera can be estimated even if the tag is occluded or not even in the image
and detection with the detector would therefore be impossible. Since the ID-RGBDO is a
RGB-D based odometry, it receives a dense depth-map (D) and a RGB-image as input,
as shown in figure 3.1. The method presented here, involves only a monocular camera
with no depth sensor, and as the approach is to remain purely monocular, no additional
sensors can be included. Therefore, the only option is to determine the depth values from
the RGB images.
For a single image that is possible by placing a planar object with a known size (like
the AprilTag) in the scene before taking the picture. Calculating the two-dimensional
homography between the object and the image plane, as described in section 2.5, the
position of the object in the camera frame can be estimated and the depth for all points on
the plane can be calculated by its position and orientation. A second method to obtain a
depth image is by using two overlapping images with known transformation between them.
The motion stereo algorithm described in section 2.3 can be applied to those images and
yields a depth image by triangulating pints that appear in both images. One limitation

41



Chapter 3 Indirect Tracking of the AprilTag
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Figure 3.1: The ID-RGBDO in- and output as a classical direct RGB-D visual odometry.

that must be taken into account is that the classical rectification approach used in stereo
matching cannot be applied here, since the direction of movement is mainly in the direction
of the camera z-axis due to the conditions of the camera position and the flight behaviour
of the drone. The images were first mapped into spherical coordinates using an already
partially existing approach and then the classical search for point correspondences on
parallel epipolar lines was performed. In the following, this method and the corresponding
implementation in the ID-RGBDO is referenced as a module named Motion Stereo.
Figure 3.2 shows the advancements to the ID-RGBDO that were explored and implemented
during the thesis, to enable it to work monocular and with proper scale. The figure also
serves as a visual guidline for the following explanations. The ID-RGBDO is a apperance-
based odometry that estimates the motion between two images by projecting 3D intensity
points from a key-frame to the current image and minimising the photometric error
of the pixels. The three-dimensional key-frame is obtained by merging the RGB- and
depth-image. That means the odometry only needs depth information for the key-frames
and then runs a 3D-to-2D motion estimation algorithm.
As a result, the odometry must be able to trigger the Motion Stereo internally if its
evaluation of the tracking signals that the current key-frame does not have enough
correspondences with the current frame. With the depth image from the Motion Stereo
and the current frame, a new key-frame is created. The creation of a key-frame can also
be initiated externally by the Depth from AprilTag module. It publishes a locally dense
depth map of the tags planar surface to the odometry. If this happens, the Motion Stereo
is triggered as well and the two depth maps are merged. This merging process marks the
point at which the scale is integrated to the odometry. Since the depth values coming
from the AprilTag are absolute metric depths and the Motion Stereo only provides depths
up to scale, the values of the two maps have to be unified. This is done by a scale factor
β for the Motion Stereo depth values which converts them into absolute metric values.
The factor β is determined by comparing the depth values located in the area where the
tag is projected to the image plane. A more detailed explanation about this algorithm is
given in section 3.1.
The next step is the combination of the poses that are published by the odometry and the
AprilTag detector. The poses coming from the odometry are in respect to a start position,
which is either the origin 0 or as in this case a keyframe KF . They get incrementally
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Figure 3.2: The advanced development of the ID-RGBDO to a monocular visual odometry with
global scale from an AprilTag and the 6 DoF pose combination module. All changes
and extensions are highlighted in red.

integrated and the resulting relative transformation KFTf is from the current frame f to
that starting frame KF . If this transformation is inverted, it yields the pose of the start
frame in the current frame. This transformation is then concatenated with the pose from
the AprilTag detector to obtain the tag pose in respect to the current frame as shown
in equation (3.1). In this way it is possible to estimate the pose of the tag even without
detection. Chapter 3 depicts the relation between those three transformations.

fTAT = KFT−1
f

KFTAT = fTKF
KFTAT (3.1)

Their respective uncertainties are also included in the determination of the new absolute
pose, by adding the uncertainty of the inverted transformation from the odometry to
the initial pose uncertainty of the tag. The error propagation law is used to combine
the covariance matrices. This is done by calculating the respectively Jacobian matrices
J, which are the first order partial derivatives of the parameters in the transformation
matrix and multiplying them from both sides to the covariance matrix that should get
propagated. Following the definition of this transformation matrices with errors included,
as presented in section 2.1.1, this yields to the following expression in equation (3.2)

fΣAT = KFJf fΣKF (fJKF )T + fJKF KFΣAT (fJKF )T (3.2)
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fTAT

KFTAT
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KFTf

f
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Figure 3.3: The transformations between the different coordinate frames, where KF is the key-
frame to which the odometry is performing the 3D-to-2D-matching with the current
frame f and AT is the coordinate frame of the AprilTag. The axis are defined as
follows: x-axis is red, y-axis is green and z-axis is blue.

3.1 Integration of Motion Stereo and AprilTag into the
Odometry

This section describes the practical implementation of the previously elaborated theoretical
approach. The explanations depend on the processes shown in figure 3.4 and should
be read with reference to this representation. The focus is mainly on the areas and
connections marked in orange, since the other parts were used but not analysed in depth.
The spherical motion stereo algorithm explained in section 2.3 is implemented in the
Motion Stereo module which is part of the ID-RGBDO-MSAT (ID-RGBDO MotionStereo-
AprilTag) as shown in figure 3.4. The creation of a keyframe with this method is shown
as pseudocode in algorithm 1.
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Figure 3.4: Detailed layout of the ID-RGBDO-MSAT.

It is a central element for realising the generation of a keyframe by providing a dense
depth map. The Motion Stereo receives two greyscale images. One of them is the most
recent frame and the other is one of the key-frames which is selected by the best suiting
transformation between it and the current frame. The selection mechanism calculates the
transformation between the current frame and all keyframes (in this thesis, 7 keyframes
were stored) and returns the image that has a ratio higher than 1

30 and lower than 1
between the translation of the frame and the median depth of the last generated depth
map.
This value turned out to yield good results and is also geometrical funded because the
measured disparity for far away objects gets smaller if the baseline decreases and if the
movement close to the ground is too large, there cannot be found many correspondences
in the images. However, if no keyframe fulfils this requirement, the fallback is to use the
previous one. While this procedure allows to estimate the ego-motion of the camera up to
scale, it is not the application in this work. It can be seen as an additional property that
was established during the work on the whole project.
Besides the internal triggering of the keyframe creation, there is a second — and more
relevant — way of initialising this process. If an AprilTag is detected, the Depth from
AprilTag module calculates a locally dense depth map of the tags planar surface and
triggers the addKeyframe function inside the ID-RGBDO, which starts the operational
sequence described above. The difference this time, is that the Merge Depth module does
not simply forward the depth image DMS of the motion stereo, but uses the additional
information of the AprilTag depth image DAT and merges both images. This is done by
creating a binary mask from DAT and applying it to the DMS . This process exposes the
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areas of DMS in which the depth values estimated for the area of the marker are located.
The median is calculated from the points in this cropped image D∗MS and the points in
DAT . The quotient of the median of DAT and D∗MS is used to determine the scaling factor
s for DMS (eqn. (3.3)).

s = median(DAT )
median(D∗MS) (3.3)

The median is used instead of the mean, because it is more robust to outliers which occur
commonly in the depth image estimated by motion stereo if the epipole is close to the
marker.
The depth map from the AprilTag detection is calculated by constructing a plane from

(u1, v1)

(u2, v2)

(u3, v3)

(u4, v4)

Figure 3.5: The four corner points (ui, vi) restrict the area for possible marker points.

the normal vector n and the support vector p. The support vector corresponds to the
estimated translation between the camera and the marker and the normal vector is the
orientation of the markers z-axis to the camera frame. The corner points of the marker in
the image define the sector in which all image points (and also some points outside) of
the tag are located as shown in figure 3.5. All the points inside the rectangular area are
then checked for their position in relation to the lines that define the markers edges. If
a point is inside, the line from the camera centre to it is used to calculate the puncture
point with the plane. This yields the depth value for the map.
The ID-RGBDO is a software that is still being developed; therefore some changes had
to be made in its internal processes, which are not discussed further due to the lack of
methodological relevance for this work.
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Algorithm 1 ID-RGBDO-MSAT algorithm - setting a keyframe
Input: sequence of frames I, keyframe stack KFs . AprilTag must be present
Output: a keyframe (corresponding greyscale- and depth-image)

1: for-loop represents progressing time and frame is the most recent image:
2: for frame in I do
3: procedure AprilTagProcessing(frame, SpecsAT )
4:
5: function AprilTagDetector(frame) . external program
6: Runs on frame, detects visible AprilTags and calculates the spatial

transformation between the AprilTag and the camera + the ID of the
tag. The specifications SpecsAT of the physical tag have to be known.

7: return camTAT , IDAT . AprilTag in the cameras coordinate frame
8: end function
9:

10: if AprilTag was found then
11: function DepthFromAprilTag(camTAT , SpecsAT )
12: 1. define a rectangular area A0 around the tag using the 4 corner points
13: 2. check which point in A0 is also inside the tag area AAT :
14: for point P0,m inside A0 do
15: if P0,m is inside AAT then
16: calculate 3D location (x, y, z)m in camera frame of point P0,m at

location (u, v) in image frame
17: get distance in z-direction from (x, y, z)m
18: NOTE: not the euclidean but the z-distance is used
19: depthAT (u, v)← z . z-value is stored at location (u, v)
20: end if
21: end for
22: return depthAT
23: end function
24: isAprilTag ← true
25: end if
26:
27: end procedure
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28: procedure tracking(frame) . unchanged procedure of the ID-RGBDO
29:
30: if isKeyframe(frame) or isAprilTag(frame) then
31: function addKeyframe(KFs, frame)
32:
33: search for second frame to run MotionStereo:
34: function searchSuitingFrame(KFs, frame)
35: for KFi in KFs do
36: calculate KFiTframe . spatial transformation between frames
37: if minV alue ≤KFi Tframe ≤ maxV alue then
38: return KFi . matching keyframe from KFs
39: end if
40: end for
41: end function
42:
43: get a depth image from the two frames:
44: function MotionStereo(KFi, frame, KFiTframe)
45: 1. rectify KFi and frame with known transformation KFiTframe

46: 2. calculate disparity di for corresponding pixels
47: 3. calculate depthMS from the disparities di with stereo matching
48: return depthMS

49: end function
50:
51: merge the two depth images:
52: function TagMotionDepth(depthMS , depthAT )
53: depthAT comes from the AprilTagProcessing procedure
54: 1. compare amount of pixels Pj in the area of the AprilTag in both

depth images
55: if ∑j=1 P

MS
j /

∑
j=1 P

AT
j > 0.1 then

56: 2. calculate median M of all depth values in both images:
57: 3. calculate factor F for adjustment of the depth values in depthMS :
58: F ←MAT /MMS

59: else
60: F ← 1
61: end if
62: return depthMERGED ← depthMS · F
63: end function
64:
65: return newKeyframe← [depthMERGED, frame]
66: end function
67: end if
68:
69: end procedure
70: end for
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3.2 Error of AprilTag detections

An evaluation of the AprilTag detector system has already been done by several people
during the last decade (Vetter, 2015; Nissler et al., 2016; López-Cerón and Cañas, 2016;
Sagitov et al., 2017; Liang et al., 2018; Abbas et al., 2019; Kunz et al., 2019). Vetter
(2015) proposed a empirical error estimation by shifting each of the corner points by
1 px in 4 directions, which results in 44 = 256 possible combinations for a rectangle. He
then estimates the pose for every combination using a PnP solver and takes the largest
deviation from the arithmetic mean as error. In addition to that approach, he offers
another heuristics in shape of a precomputed look-up table in which the errors of 40000
AprilTag detections from different angles and distances are stored. Those values were
obtained by a simulation. The results of this error model applied to a real-world SLAM
problem are shown in table 3.1. The part of his work which is important for this thesis
is the the quadratic error model. In table 3.1 the error of that model and the empirical
model are highlighted for comparison. What emerges from this comparison is that both
models give similar estimates of the error for that scenario. The model, which makes use
of the online computation of the 256 possible corner points that emerge from shifting the
detected points, is much worse, than the other methods. This is not surprising, since the
assumed inaccuracy in detection was chosen too large. The corner points of the AprilTag
are estimated in principle analogous to the procedure for a camera calibration and are
defined by the intersection of two straight lines. Hartley and Zisserman (2003) states that
an error of less than 1

10px is achieved if points are measured that way.
The geometric error in the measurement of the corner point and the geometric error in the
object point derived from it have the following linear relation w · d = f∆ (figure 3.6). The
effect of this error on the marker pose, although is not linear. There are analytical methods
that solve for the uncertainty of planar homographies (Negahdaripour, Prados, and Garcia,
2005), but an analytical estimation of the combined error for the whole detection process
would go beyond the capabilities of this work. Instead of considering each source of error
(fig. 3.7) individually and setting up a complex model, an error estimation is used here
that has proven itself in other works.
Schuster (2019), who adopted Vetters model in his work, endorses that the heuristic error
model can be simplified to a model where (co-)variances scale quadratic with the distance.
However, this simplification has one disadvantage: positions in which a pose ambiguity is
likely to occur are underestimated and a significantly too small error is indicated. This
issue is not so relevant for the task presented here as an pose ambiguity occurs only at
a far distance to the tag and not at close range, when a good pose estimation of the
landing spot is relevant for the orientation of the MAV. Another examination of the
AprilTag and its accuracy was done by Kunz et al. (2019), who investigated its use in
the context of medical applications. He proposed to use AprilTags to track and estimate
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Figure 3.6: The linear relation between the error d of the corner point xi and the resulting error
∆ of the object point Xi at a distance z = ω (reprinted from Hartley and Zisserman,
2003).

the position of patients during computer assisted surgeries. The hardware used for this
scenario exceeds the capabilities of a MAV in terms of resolution and computational power,
but the cause of the error and the resulting error estimation is similar in both applications.
Kunz concluded that the marker size required to determine the 6 DoF pose with constant
accuracy increases linearly with the distance to the camera. As the size of the marker is
defined by the length of its edge, the area of the tag increases quadratic when doubling
the size; thus he comes to a similar conclusion as Vetter (2015) and Schuster (2019).
Equation (3.4) was therefore modified from the one mentioned by Schuster, because
Schuster just takes the distance d into account; instead of the ratio between distance and
tag size l as Kunz points out.

Σquadratic = Σconstant(1 + d

l
)2 (3.4)

where:

Σconstant = 10−6 ·



25 0 0 0 0 0
0 25 0 0 0 0
0 0 25 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3


(3.5)

The values for the standard deviation of the rotation and translation are also inspired
by Schuster and were just slightly adjusted after some comparison of their consistency
with the empirical data obtained by the synthetic dataset. The initial values of Schuster
were chosen that high, so that they also include the ambiguities but therefore yield an
overestimated uncertainty for all detection at a close range. The variances shown in
equation (3.5) have the units cm2 for the distance and rad2 for the angles and correspond
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Table 3.1: Total error of 3D positions for SLAM trajectories (length: 106 m using different error
models for the AprilTag detection of tags and computation of pose estimations. The
tags were used as static landmarks. All values taken from Vetter (2015); the empirical
error model is denoted as EEM.

error [m]
Estimation method max. avg. RMS
constant model 1.26 0.35 0.48
quadratic model 0.34 0.15 0.17
EEM (online only) 8.49 1.06 1.96
EEM (pre-computed only) 0.33 0.13 0.14
EEM (online + pre-computed) 0.33 0.13 0.14

to a standard deviation of 0.5 cm respectively 0.1◦ when converted. This values would
have to be changed if another camera is used, because they also depend on the focal
length and camera resolution.
Jin, Matikainen, and Srinivasa (2017) also examined the AprilTags performance and the
effect of detection errors on the pose estimations by simulating 10000 detections. He came
to the conclusion that the rotational error is much higher relative to the absolute value
than the translation error.
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Figure 3.7: Overview of the AprilTag detection system and the possible errors that may occur
during the process (reprinted from Schuster, 2019).
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3.3 Simulated Dataset

For testing the concept and evaluating its performance, a synthetic dataset was created
by using the open-source 3D computer graphics software Blender 2.82 (Blender Online
Community, 2020). The scenario is inspired by a exploratory flight of the MAV Ardea
in a barren desert and models a potential manoeuvre for landing on a rover. The rover
used in the scene is an already existing 3D model of NASAs Curiosity rover (JPL). The
parameters of the virtual camera were also adapted from one of Ardea’s four cameras;
the one facing downwards with an angle of 30◦ between the z-axis of the camera and the
vertical axis of the body-frame. This camera was chosen, because it allows to detect the
AprilTag from further away even if the MAV is flying at a low altitude and is therefore
best suited for this landing approach. An overview of the scene and a close-up to the rover,
which has a size of 2.9 m × 2.7 m × 2.2 m, is shown in figure 3.8. The relevant camera
parameters can be seen in table 3.2. The duration of the flight is 53.3 s and consist of 640
RGB images, with corresponding depth maps. All images were blurred with a gaussian
point spread function of kernel size 3× 3 to simulate motion blur and off-focus. Ground
truth data was generated both for the absolute pose of the camera in the world frame and
for the relative pose of the camera to the AprilTag.

Figure 3.8: Overview of the scene (left) and a detailed view of the rover with the AprilTag on
top (right), which marks the MAVs landing spot.
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Table 3.2: The parameters of the virtual camera used in Blender.

Parameter Value

focal length: fx 396.79 px
fy 396.79 px

principle point: px 333.00 px
py 253.00 px

resolution: w 666.00 px
h 506.00 px

field of view: αh 80.01◦
αv 65.04◦

Figure 3.9: The 42.52 m trajectory (blue) of the MAV from frame 300 to 640 in spatial view.
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Results

In this chapter, the performance of the ID-RGBDO-MSAT is evaluated on the synthetic
dataset. To provide a basis for a comparison, first the output of the AprilTag detector
as well as the ID-RGBDO in its pure form is compared with the ground truth data.
Afterwards, the new method is compared to that results and the ground truth. All visual
odometry measurements of the ID-RGBDO or rather the ID-RGBDO-MSAT were taken
by tracking 256 points in between consecutive images. The definition of the angles follow
the following definition: Ψ is a rotation about the x-axis (pitch), Θ is a rotation about
the y-axis (yaw) and Φ is a rotation about the z-axis (roll).

4.1 Pose Estimations for separate execution of the
AprilTag detector and ID-RGBDO

In this chapter, the results from the aforementioned approaches are presented. They were
obtained with the simulated dataset. The sometimes different scaling of the y-axis in the
figures must be taken into account when comparing the measured values.
In figures 4.1 and 4.2 the AprilTag detector is compared to the ground truth of the
AprilTag and in figure 4.3 the difference between the respective parameters is shown. The
section depicted in the diagrams does not show the whole trajectory, because the first tag
detection occurred at frame 437. Especially in figure 4.3, the deviation of the detector
from the ground truth in the beginning of the section can be seen. The estimations from
the AprilTag detector approaching the true values over time and the estimation error
in the last 20 frames is less than 1 cm, which is apparent in the magnified view on the
right side of the figure. For the frames around 500 there is no tag detection, because
the camera is panned back to simulate a disturbance during which the view to the tag is
interrupted. In figure 4.2 in the second diagram on the left side, the pose ambiguity is
clearly visible, as Θ has a variation of more than twice the nominal angle value during
the first detections. The pose ambiguity can also be seen in the plots of the other two
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Figure 4.1: The accuracy in location of the AprilTag detector estimations compared to the ground
truth. The different scaling of the y-axis must be taken into account when comparing
the measured values.

angle estimations Ψ and Φ, albeit not as prominent as for Θ. The position estimation in
figure 4.1 is not affected by this ambiguity, because the centre of the tag stays at almost
the same position for both solutions. The estimated values of the angles approach the
true values over time and the estimation errors are smaller than a tenth of a degree in the
last frames. The frequency of detections shown in the aforementioned figures does not
represent the frequency at which the detector runs in the setup with the ID-RGBDO and
was just run on all images for the purpose of evaluation.
Figure 4.4 shows the estimation errors of the ID-RGBDO when it is provided the simulated
depth maps as input. The estimations of the position are closer than 4 cm to the true
value for all three directions during the whole experiment. The errors of the angular
estimation of Φ rises to a maximum of ∆Φ = 0.18◦ in the last part of the test, where the
camera is close to the ground and there is a rotation around its z-axis. The estimation
errors of Θ decrease for that section, which most likely is just a coincidence and not a
correlation. Analogues figures to those of the previously presented absolute position and
orientation measurements of the AprilTag detector, but for the ID-RGBDO can be found
in the appendix.
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4.2 Pose Estimation with the ID-RGBDO-MSAT

For the interaction of the AprilTag detector, the ID-RGBDO and the Motion Stereo, two
different methods were evaluated and compared, which differ in the initialisation of the
ID-RGBDO-MSAT. The pose estimations in figures 4.5 to 4.7 show the results of the first
approach, where the initialisation of the ID-RGBDO-MSAT was done with one simulated
depth image to generate the first keyframe with an absolute scale. As seen in figure 4.7
the errors rise over time, which is due to the consecutively integration of poses. The error
for the translation in z-direction rises to a maximum of ∆z = 25.4 cm just before the end
of the trajectory.
Figures 4.8 to 4.10 show the outcome of the second approach, where the ID-RGBDO-MSAT
receives no external information about the scale and estimates the depth map for the first
keyframe from stereo matching with frame 280. The transformation and the depth image
are only estimated up to scale and therefore the trajectory is not scaled properly. It is
just a coincidence that the trajectory is not further away from the ground truth, because
the baseline is normalised to 1 when no absolute transformation between the two images
is known. That means, the real translation between frame 280 and frame 300 is larger
than 1 m but not by too much.
At frame 437 the first measurement of an AprilTag is taken into account and the depth
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Figure 4.5: The accuracy in location of the ID-RGBDO-MSAT estimations when running with
depth maps estimated by motion stereo compared to the ground truth. The odometry
was initialised with one simulated depth map. The first detection of an AprilTag is
marked with a vertical blue line. The different scaling of the y-axis must be taken
into account when comparing the measured values.

images estimated by motion stereo are scaled. This effect is clearly visible in the location
errors shown in figure 4.10. After the tag is involved into the visual odometry, the error
does not get much bigger till the end of the scene, which can be seen by the parallelism of
the trajectories after the detection. The angles are as expected not affected by the wrong
scale, which can be seen in figures 4.8 and 4.9. For this approach, the internal bundle
adjustment of the ID-RGBDO-MSAT was not used, because it would cause irrational
adjustments when combinig the differently scaled depths.
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4.3 Estimating the AprilTag pose with ID-RGBDO-MSAT

The final approach is to express the pose of the AprilTag and its uncertainty in the current
frame. It is based on the previously presented approach with the ID-RGBDO-MSAT
being started with a motion stereo estimation, and extends it by the combination of the
absolute pose estimation of the tag with the relative pose estimation from visual odometry
and the respective covariances. The estimation of poses and their uncertainties is shown in
figures 4.11 and 4.12. The middle of the three blue lines is the estimation of the AprilTag
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Figure 4.11: The location estimation for the tag with the standard deviation.

pose for all frames, and the upper and lower blue line are the corresponding standard
deviation σk with k ∈ {x, y, z,Ψ,Θ,Φ} of that estimation. The red crosses indicate a
measurement of the AprilTag detector and mark the estimated pose. The error bars
around the crosses are the standard deviation of the pose estimation from the detection
process, which together with the uncertainty of the odometry makes up the outer blue
lines. The dotted line is the ground truth for the AprilTag in the camera frame. For the
two first tag detections no reliable estimation can be made, as the error is not covered by
the model. Therefore this approach works at a distance of approximately 30× the tag-size,
which corresponds to 30 · 0.4 m = 12 m in the presented setup, and is slightly below the
maximum detection distance of the tag.
In both figures, but more evident in the two plots on the left side in figure 4.11, it is
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Figure 4.12: The rotation estimation for the tag with the standard deviation.

displayed around frame 500 how the error increases when a tag detection is missing and
decreases again when a tag is detected. The standard deviation of the pose estimation in
the final frame is σx,y,z < 2 cm for the distances and σΨ,Θ,Φ < 1◦ for the angles.
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4.4 Runtime of the ID-RGBDO-MSAT

The program currently still consists of various modules that can only be used together
offline. In everyday use, the AprilTag 3 detector alone forms the basis for comparison in
terms of running speed, although it has significantly fewer capabilities. In the following the
running times for the individual program sections for one frame are shown in section 4.4.
The values can be taken as a first starting point for possible improvements. The times
were measured several times and averaged.
The estimation of the depthmap from the AprilTag detection increases with the size of
the tag in the image. The AprilTag detection on the other hand is faster when the tag is
larger. That means this combined steps duration is almost the same all the time. The
bottleneck of the algorithm is the estimation of the depthmap with the motion stereo
algorithm. In a real world scenario with ARDEA, this step would be computed by a
field-programmable gate array (FPGA), which is already on board of the multicopter.
The duration for tracking and point selection is done by the ID-RGBDO and was not
changed during this thesis. It is only listed for completeness and comparison.
All runtimes were measured by taking only the processing (CPU) time and not the actual
wall time. This makes it easier to compare the values when not using multi-core processing.
The system it was tested on is a notebook with an Intel Core i5-8265U.

Table 4.1: Average runtime (CPU) per frame of the different modules of ID-RGBDO-MSAT. All
values listed are in milliseconds.

runtime [ms]
computation step max. min. avg.
AprilTag detection 70 28 55
estimating depthmap (AT) 57 14 25
estimating depthmap (MS) 723 220 345
combining depthmaps 29 23 26
tracking & point selection 724 573 604
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Conclusion

5.1 Discussion and Interpretation

The requirement to develop a method that can be used to track a planar marker and
then test it against a data set was met. On the way to this approach, many things were
preliminary tried and discarded. The idea to include an Extended Kalman Filter for the
direct tracking, was among the first things that came up. The here presented method
however is more versatile and profits significantly from the idea of the indirect tracking.
As shown in the results chapter, the method yields a good estimation of the markers
current pose. What is noticeable form comparing the last approach with the accuracy of
the AprilTag is that the error estimation is not optimal, because it still estimates the
error higher than the measured one. However, it should be borne in mind that this data
was collected using a simulated data set, in which the marker may be better detected
than in a real application. Since this approach is to be pursued further, it was therefore
necessary to consider the eventuality of a real experiment in advance. The design of the
error model was therefore based on this application.
The integration of a stereo matching algorithm that works in all directions of motion
and, because it has no fixed baseline, can also be used in different scales has been a great
challenge, but has produced very good results.
In summary, this work has touched on many areas and has deepened some of them. In
the process, some ideas for possible extensions have been developed, which are briefly
outlined below.

5.2 Outlook

Since this approach has so far mainly been a proof-of-concept, it would be interesting to
see if it would prove itself in a real-world scenario, running on Ardea for example. To
accomplish this, first steps have already been taken by preparing some of the modules for
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use with the Robot Operating System (ROS) (Quigley et al., 2009), which is a framework
for structured communication between heterogeneous hardware and software parts, as it
is often the case with robots.

5.2.1 Speed up Tag Detection by Tracking

The second approach focused on the acceleration of the detection process of the AprilTag
itself. As confirmed by own empirical studies on the AprilTag detector, the segmentation
algorithm is the slowest phase in our detection scheme (Olson, 2011). There have been
already works concerning this, which tried to change the line detection approach (Romero-
Ramirez, Muñoz-Salinas, and Medina-Carnicer, 2018). A typical approach to track an
object would be the employment of an Extended Kalman Filter (EKF) or an particle filter
(Thrun, 2002). Both filters can be used to track and estimate the 6 degree of freedoms
(DoF) of the AprilTag by predicting its position in the next image and then combining its
prediction with the actual measurement. The difference between them is that the EKF
uses a parametric Gaussian model for the state prediction, whereas the particle filter is a
non-parametric filter which uses random state samples for the prediction. An approach
for using a particle filter for tracking an AprilTag was done by Wang et al. (2017). With
a prediction of the markers pose, the image could be cropped to the estimated area which
yields to a faster detection. As Olson states, the correlation between amount of pixels
and duration of detection is linear.
The worst case scenario would be that the detector has to run twice; first just on the
preselected area and if it fails to find a proper tag, a second time on the whole image. That
would increase the computational effort and therefore cause the opposite of the desired
goal to speed it up. In order to prevent this from happening as much as possible, the
region should thus be chosen generous enough; but on the other hand not too generous,
as this would prolong the calculation unnecessarily.
If the AprilTag is close to the camera, the benefit from defining a region of interest will
not be as big as if the tag is far away, therefore the parameter to define the search area
should be adjusted dynamically and depend on the size of the tag and its distance to the
camera.

5.2.2 Changing the model

Instead of the AprilTag it could also be possible to use another object detection module
that is based on a 3D model and estimates the 6D position to the camera either via point
set registration with an ICP (Pomerleau, Colas, and Siegwart, 2015) or a neural network
(Sundermeyer et al., 2018).
There are also neural network based approaches that estimate a dense depth map from a
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single image (Eigen, Puhrsch, and Fergus, 2014; Godard et al., 2019). A great advantage
of the classical methods in comparison to a neural network is that they do not contain a
black box (Nelles, 2001) and uncertainties of the pose can be estimated by propagating
measurement errors. A general methodology for estimating reliable uncertainties for
the output of deep neural networks has not yet been developed to the knowledge of
the author, although there are some recent approaches that show promising results
(Loquercio, Segu, and Scaramuzza, 2020; Lee and Triebel, 2020). The challenge here
would be to have the necessary hardware on a MAV. In most cases these approaches
exceed the capabilities provided by a small aerial vehicle in terms of computational power
and energy consumption, as things stand today.
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Appendix

I Measurements
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Figure 5.1: The accuracy in location of the ID-RGBDO measurements when running with
simulated depth maps compared to the ground truth. The different scaling of the
y-axis must be taken into account when comparing the measured values.
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Figure 5.2: The accuracy in rotation of the ID-RGBDO measurements when running with
simulated depth maps compared to the ground truth. The different scaling of the
y-axis must be taken into account when comparing the measured values.
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