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Tag der mündlichen Prüfung: 29. Januar 2020





To Di.





‘‘There is pleasure in recognizing old things

from a new viewpoint.’’

Richard P. Feynman





vii Acknowledgments

Acknowledgments

I developed my doctorate in the Department of Structural Mechanics at the DLR

Institute of Composite Structures and Adaptive Systems in Braunschweig, cooperating

with the Faserinstitut Bremen e.V. located at the Universität Bremen. Funding was

also granted by the ESA NPI program, contract No. 4000119184/17/NL/MH/GM. All

the support, financial or otherwise, is gratefully acknowledged.

Like all students who dared to follow this path, I am not solely responsible for

achieving such a distinctive accomplishment. Many others helped and inspired me to

go further with my numerous tasks, just as many others gave me emotional support to

endure the journey. Altogether, I had three productive and amusing years, and in the

next paragraphs, I will externalize my gratitude to everyone involved.

Firstly, I would like to thank my Doktorvater Professor Dr.-Ing. Richard Degenhardt

for accepting me as a Ph.D. student and these three years of guidance and friendship.

Richard helped me continuously here in Germany, regardless of what I needed. I always

felt motivated and, since day one, our working collaboration was running smoothly. I

cannot thank him enough for this unique opportunity—it was an honor.

Professor Dr. Mariano Andrés Arbelo deserves special recognition. Mariano is

the main person behind the methodology investigated within the scope of this thesis;

besides, he also indicated to me this Ph.D. position and participated actively in technical

discussions and all publications during the development of the doctoral thesis.

Dr.-Ing. Jochen Albus from ArianeGroup also deserves special recognition for

sharing his unique expertise and suggesting the study that became the most prominent

contribution of this doctoral thesis. The presence in the doctoral committee and the

collaboration in our scientific papers are also highly appreciated.

I am grateful to all other members of the doctoral committee, Professor Dr.-Ing.

Axel Siegfried Herrmann, Professor Dr.-Ing. habil. Christian Mittelstedt, Dipl.-Ing.
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and Dr. Mauŕıcio Vicente Donadon.

My deepest gratitude goes to my parents for encouraging me over the years. I

am fortunate to have such a supportive family that made numerous sacrifices, always

prioritizing a good education for my sister and me. I am very proud of being somehow

like you both.

Finally, I would most of all like to thank my wife Diany for sharing this adventure in

Germany with me. Undoubtedly, of everyone involved, she made the most considerable

sacrifices. I will always be indebted to her for the support, love, and patience during

these years.

Felipe Franzoni

Braunschweig, August 2019



ix Abstract

Abstract

This thesis explores an empirical vibration correlation technique for predicting

the buckling load of imperfection-sensitive cylindrical shells. As the title implies, the

research addresses analytical, numerical, and experimental aspects of the mentioned

methodology.

Within the scope of the analytical work, the emphasis is given to provide an ana-

lytical foundation for the referred technique. Firstly, the equations describing the free

vibrations of an axially loaded cylinder are revisited through a linearized theory of shells.

Subsequently, the reviewed equations are rearranged, expressing a parametric form of

the applied load as a quadratic function of a parametric form of the loaded natural

frequency. Afterward, the typical static behavior of an imperfection-sensitive structure

is evaluated, establishing the link between the minimum magnitude of the parametric

form of the applied load and the effective knockdown factor of the experiment.

Towards a numerical verification based on finite element models, two theoretical

cylindrical shells are defined. At first, the critical buckling load and the fundamental

natural frequency for different load levels are determined and compared to the analytical

results for verifying the numerical models. The finite element models are then extended

contemplating geometric nonlinearities, more realistic boundary conditions, and three

magnitudes of a measured mid-surface imperfection. These numerical results are

considered for analyzing the variation of the natural frequency in the surroundings of

buckling and verifying the vibration correlation technique.

Finally, the applicability and the robustness of the methodology are further validated

through three experimental campaigns. Five cylindrical shells, being three of them

nominally equal, were tested. The test program covered different buckling test facilities,

internal pressure levels, and in-plane imperfections. Besides, each specimen was tested

for buckling for comparing the corresponding estimated and experimental buckling

loads. The experimental work corroborates that the evaluated vibration correlation

technique provides appropriate and conservative estimations for imperfection-sensitive

cylindrical shells considering different design details and test conditions.
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xi Zusammenfassung

Zusammenfassung

In der vorliegenden Dissertation wird mit der Vibration Correlation Technique eine

Methode verifiziert, durch deren Anwendung die Beullast einer imperfektionssensitiven

Kreiszylinderschale zerstörungsfrei bestimmt werden kann. Diese Arbeit diskutiert

analytische, numerische sowie experimentelle Aspekte der genannten Methode.

Im Rahmen der analytischen Betrachtungen liegt der Schwerpunkt auf der analyti-

schen Bestätigung der genannten Technik. Zunächst werden die Gleichungen, die die

freien Schwingungen eines axial belasteten Zylinders beschreiben, durch eine linearisier-

te Schalentheorie hergeleitet. Anschließend werden die Gleichungen neu geordnet, um

eine parametrische Form der aufgebrachten Last als quadratische Funktion der Eigenfre-

quenz, ebenfalls parametrisch dargestellt, auszudrücken. Nachfolgend wird das typische

statische Verhalten einer imperfektionssensitiven Struktur ausgewertet, um einen

Zusammenhang zwischen der minimalen Größe der parametrischen Form der aufge-

brachten Last und dem effektiven Knockdown-Faktor des Experiments herzustellen.

Die numerische Verifikation erfolgt anhand von Finite-Elemente-Modellen zweier

zuvor definierter theoretischer Kreiszylinderschalen. Dazu werden die kritische Beul-

last und die erste Eigenfrequenz für verschiedene Lastniveaus bestimmt und mit den

analytischen Ergebnissen zur Verifizierung der numerischen Modelle verglichen. Diese

werden dann unter Berücksichtigung von geometrischen Nichtlinearitäten, realistische-

ren Randbedingungen und drei Werten der radialen Abweichungen der Schalenhaut von

ihrer Mittelfläche weiter untersucht. Die numerischen Ergebnisse bilden eine Grundlage

zur Analyse der Änderung der Eigenfrequenz in der Umgebung des Beulens und zur

Überprüfung der in dieser Arbeit betrachteten Methodik.

Schließlich werden die Anwendbarkeit und die Robustheit der Methodik durch drei

experimentelle Kampagnen validiert. Es werden Testergebnisse von fünf zylindrischen

Schalen, von denen drei nominal gleich sind, diskutiert. Die Tests werden in unter-

schiedlichen Versuchseinrichtungen durchgeführt. Die experimentell ermittelte Beullast

der Schalen dient als Referenz für den Vergleich mit der entsprechenden Abschätzung.

Die Diskussion umfasst ferner verschiedene Innendruckniveaus und extern aufgebrach-

te axiale Imperfektionen in der Schalenmittelfläche. Die experimentellen Ergebnisse

bestätigen, dass die diskutierte Technik realistische und konservative Abschätzungen

für verschiedene Schalenkonfigurationen und Testrandbedingungen liefert.
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1 Introduction

1 Introduction

The ‘‘perplexing’’ behavior of thin-walled cylindrical shells under axial compression

has driven a considerable effort in many fields of applied mechanics since the beginning

of the 20th century [1]. From the first formulations [2–4], the scientists noticed that the

inherent imperfections of the specimens could lead to a high discrepancy between the

theoretical buckling load PCR, calculated for the perfect cylinder, and the experimental

buckling load PEXP, as illustrated in Figure 1.1.

Axial shortening ua

L
o
a
d
P

P

P

ua

PCR

PEXP

Figure 1.1: Typical load-shortening curve of a cylindrical shell.

Different shell theories were proposed accounting for the initial imperfections, for

example, see [5, 6]. However, the first appropriate one, representing the imperfection-

sensitive behavior from the experiments, was developed by Koiter in his pioneering doc-

toral thesis [7]. In summary, Koiter’s general theory of stability proposes an asymptotic

formula for the initial postbuckling predictions of elastic systems under conservative

loading being accurate enough only for sufficiently small imperfections amplitudes [8].

At the same time, a reliable methodology was needed for sizing cylindrical shell

structures taking into account the imperfection-sensitive aspect [9]. Nevertheless, there

were limitations for measuring and representing the effects of the initial imperfections

into the developed shell theories leading to ‘‘dramatic disagreements’’ [10]. Koiter [11]

summarized that, in the period between the beginning of the 20th century and the 1970s,

‘‘the buckling theory and experiments have not co-existed in harmony’’.

In this scenario, the empirical lower-bound method based on extensive experimental

campaigns, known as NASA SP-8007 [12], was consolidated as the main reference

for sizing imperfection-sensitive cylindrical shells during the 1960s. This guideline
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expresses the design buckling load PD as γPCR, where γ is the knockdown factor

(KDF) covering the worst-case scenario of the load-bearing capacity. For an isotropic

unstiffened cylinder, it is calculated as [12]:

γ = 1− 0.901

[
1− exp

(
− 1

16

√
R

h

)]
(1.1)

whereR and h are the middle surface radius and the thickness of the isotropic unstiffened

cylindrical shell, respectively. This lower-bound approach provided successful shell

designs for several generations of aerospace projects [9] being intensively employed up

to the present (2019).

Nowadays, the consensus is that the NASA guideline [12] is overly conservative for

most of the well-constructed cylindrical shells [13]. Consequently, there is a worldwide

effort for the development of novel approaches exploring the current status of computing

capabilities and experimental techniques, for instance, see [14–19]. The energy barrier

against buckling, as introduced in [20, 21] and recapitulated in [22], is gaining more

attention being explored for the same purpose in [13, 23–26].

Nevertheless, even considering the present computing capabilities and the effective-

ness of the mentioned methodologies, the reasons for performing a buckling test in the

computational era enumerated by Singer [27] in the 1980s are still coherent. This is

true, especially for certification tests of full-scale shell structures, where the final design,

including complicated stiffening and load diffusion elements, is verified, providing a

better understanding of the buckling behavior and the primary factors affecting it [28].

As an example of the relevance of such experiments, the ongoing NASA’s Shell

Buckling Knockdown Factor project is performing buckling tests of real-scale specimens.

The project intends to investigate the effects of the scale on the buckling of large launch

vehicle barrel components and to correlate the data obtained from sub-scale test speci-

mens to full-scale ones [29]. Figure 1.2 shows the preparation of a full-scale cylindrical

shell for one of the buckling tests performed in the course of the referred project [30].

Noticeably, thin-walled cylindrical shells dominate the design of launch vehicles.

Figure 1.3 presents a cutaway view of the upcoming Ariane 6 developed and manufac-

tured by ArianeGroup under the authority of ESA, in which the shell-dominant design

is illustrated [31]. In such applications, the operational load envelope, combined with

the simultaneous lightweight and high-performance requirements, recurrently leads to

a buckling-critical shell design [9].
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Figure 1.2: Preparation of a full-scale cylinder for a buckling test [30].

Main Stage (Vulcain 2.1)

Solid Booster (P120C)

Upper Stage (Vince Engine)

Lower Satellite

Upper Satellite

Sylda

Fairing

Figure 1.3: Cutaway view of the upcoming Ariane 6 [31].
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Considering the destructive or terminal nature of the buckling experiment [32],

including also the long production and test preparation cycles of barrel components, a

specimen exclusively allocated to the static qualification test is required. Hence, there

are inherent financial and time-consuming interests in the development and validation

of nondestructive methods to obtain the in-situ buckling load from the prebuckling

stage, permitting the use of the same specimen in another qualification test.

Typically, these methods consist of tracking the response of the structure at different

axially applied load levels for extrapolating the instability point from the measured

data. A consolidated methodology is the Southwell plot [33]; however, for structures

exhibiting a complex buckling behavior, like curved panels and cylindrical shells,

alternative approaches are preferable as the vibration correlation technique (VCT) [32]

and the lately published probing technique [34].

In this thesis, the focus will be given to the VCT applied to cylindrical shells. Firstly,

the research will present analytical support, based on a linearized theory of shells, for

an empirical methodology addressing such structures [35]. Afterward, a numerical

assessment of two theoretical isotropic cylinders will take geometric nonlinearities and

more realistic boundary conditions into account; besides, this assessment also lays the

foundation for a systematic approach for defining a VCT experiment.

Furthermore, the status quo of the applicability and robustness of the mentioned

technique will be further validated through three experimental campaigns. The experi-

ments, conducted utilizing state-of-the-art techniques, considered five specimens and

three buckling test facilities. The analytical, numerical, and experimental results will

be employed to verify the VCT as a reliable nondestructive experimental procedure for

estimating the buckling load of imperfection-sensitive cylindrical shells.
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2 State of the art

During the first half of the past century, several researchers were addressing the

‘‘apparently different’’ problems of vibration and elastic stability simultaneously [36–39].

Many investigations studied both phenomena for understanding the effects on the

vibration response triggered by the local or global instabilities, as revisited in [32, 40–42].

In this chapter, an overview of a relevant part of this literature, dedicated to estimating

the buckling load from the vibration measurements, is provided.

Nondestructive experimental procedures for estimating the buckling load from the

prebuckling stage are under development from the 1930s until the present. Over the

years, different techniques were proposed built on indirect measurements as, e.g., the

Southwell plot established on the static response [33], the VCT based on the vibration

response [32, 39], and the probing technique [34, 43], which experimentally quantifies

the landscape of the energy barrier against buckling [21, 22].

The review starts with a brief discussion of the Southwell plot [33] in Section 2.1.

After that, focusing on the VCT, Section 2.2 gives historical background and the recent

developments on columns and plates. Subsequently, Section 2.3 revisits the state-of-

the-art techniques concerning imperfection-sensitive structures. Although part of the

VCTs assesses the actual boundary conditions for improving an initial model [32, 44],

this review contemplates the direct methods, as classified in [32].

Section 2.4 sums up the probing technique, which was formulated recently in [34, 43]

and verified numerically in [45]. Closing the chapter, Section 2.5 explores the main

results of the work published in [46]. The recapitulated study consists of a numerical

assessment of three existing VCTs based on ten unstiffened composite laminated

cylinders tested for buckling in [15]. In this section, the emphasis is given on the dynamic

behavior in the surroundings of buckling and the applicability of the evaluated VCTs.

2.1 The Southwell plot

The Southwell plot is a nondestructive method for predicting the buckling load based

on measurements of the lateral deflection of the structure. The original methodology

establishes that the inverse slope of the plot W/P versus W , where W is the maximum
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deflection, yields the buckling load expressed as PCR = cotα. The derivation of

the method and most of its extensions are available in [28]; additionally, Figure 2.1

illustrates the simplest form of the Southwell plot, whereW0 is the initial deflection.

W

W
/P

α

Best-fit
Experiment

W0

W0 W

P

P

Figure 2.1: Schematic view of the Southwell plot.

The practicality of the method was promptly verified by Southwell considering the

columns tested in [47] substantiating since then its effectiveness as a nondestructive ex-

perimental procedure to predict the buckling load of real structural components [28, 48].

For instance, Fisher [49] experimentally validated the technique for solid rectangu-

lar spars under combined axial and transverse loading, which is typically found in

aeronautical applications.

Ramberg et al. [50] experimentally investigated axially loaded stiffened panels

obtaining good results for the stringers attached to the panels regardless of their failure

mode. Donnell [48] considerably extended the Southwell plot addressing columns on an

elastic foundation and a flat panel with one free edge and three hinged edges (including

the two loaded ones); moreover, the author demonstrated that the method is valid for

any nth theoretical buckling load.

Lundquist [51] proposed a generalized form of the Southwell plot based on incremen-

tal deflections due to incremental loads, in which the main issue of the original work,

i.e., measuring the initial deflection W0, was overcome. A small initial curvature causes

the deflections to remain relatively small with the load; therefore, another important

extension was made in [52], where the author derived the equations considering an

intentional eccentricity to compensate for the initial curvatures.

In 1989, Singer [53] readdressed the extended Southwell plot for inelastic buckling

available in [54]. The author recapitulated the experimental results and the errors of

the new predictions were below 9%. Concerning lateral-torsional buckling of columns,
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Stratford et al. [55, 56] suggested that a modified form of the Southwell plot was

needed. Nevertheless, Mandal and Calladine [57] demonstrated that the classic form is

appropriate, being the modified method suitable only for unrealistic cases.

Concerning plates, Donnell confirmed in [48] that the Southwell plot could not be ex-

actly applied because of the nonlinear extensional strains. Analyzing the demonstrated

equations, also available in [28], the method is applicable only if the deflections are

considerably smaller when compared to the thickness of the plate, or if the bent surface

is a developable surface as obtained for a plate simply supported on three borders

(including the two loaded ones) and free on the fourth [48].

During the 1960s and 1970s, several authors extensively investigated the applicability

of the Southwell plot, vide [58–62]. Walker [58] performed theoretical and experimental

investigations considering eccentrically loaded plates and thin-walled sections validating

the method successfully. Horton et al. [59] broadly reviewed the application for columns

and plates, concluding that the methodology should be valid for plates with deflections

less than one-half of its thickness.

Datta and Carlson [60] achieved a good correlation for rectangular aluminum plates

with aspect ratio 0.2 and 0.4; however, for specimens with aspect ratio 0.6 and 0.8,

the deviations were around 15%. Spencer and Walker [61] validated a variation of the

method based on a defined pivotal point obtaining straight-line plots for examples that

the Southwell plot had exhibited nonlinear curves. Likewise, Datta [62] successfully

tested a rectangular plate under partial edge loading and mixed boundary conditions.

The suitability of the method was also broadly explored considering stiffened

cylindrical and conical shells. For example, several experimental campaigns were

conducted at Technion during the 1960s and at the beginning of the 1970s [63, 64],

where the slope and the intercept methods, as applied for spherical shells in [65], were

used. The results endorsed that the method is more appropriate for structures whose

postbuckling behavior is not far from the neutral stability [32].

Craig and Duggan [66] introduced a stiffness criterion, which is equivalent to the

Southwell plot, for evaluating unstiffened cylindrical shells. The authors combined the

axially applied load with lateral forces applied perpendicularly to the surface of the

specimen. This procedure triggered the effects of initial imperfections at lower load

levels improving the estimations, for which the errors were below 1% for an axial load

level equal to 76% of the actual buckling load.

Among other specimens, Horton et al. [67] also investigated unstiffened circular and

elliptic cylindrical shells obtaining reliable estimations through the stiffness criterion
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as the deviations were 1.1% and -3.0%, respectively. In recent years, the Southwell

plot and its derivatives are still being explored for determining the buckling load of

shell-like structures; for example, Ghazijahani and Zirakian [68] evaluated ten conical

shell structures obtaining reliable estimations.

2.2 VCT for columns and plates

The concept of relating the axially applied load to natural frequencies for identifying

the buckling load, to the best of the author’s knowledge, appeared at the beginning

of the 20th century being accredited to Sommerfeld [36]. In this experimental work,

the author verified that the first natural frequency of a clamped-free column with a

variable mass at the free end decreases approaching zero as the mass was increased up

to the amount required to buckle the structure.

In the following decades, the analytical formulation between the applied load and

the squared natural frequency was established for several structures. Among others,

the work developed by Massonnet [37, 38] is considered the foundation of the VCT [32].

The author demonstrated that the linear relationship between the applied load and

the squared loaded natural frequency holds for simply supported beams, plates, and

cylindrical shells, for which the vibration and buckling modes are identical [32]:

f 2 + p = 1 (2.1)

where f = ω̄mn/ωmn, being ω̄mn the loaded natural frequency and ωmn the unloaded

natural frequency, both associated with the same vibration mode specified by m axial

half-waves and n circumferential waves (for cylindrical shells), and p = P/PCR, being

P the axially applied load.

In the early 1950s, the above-defined equation was considered at the California

Institute of Technology for direct estimations of the buckling load, establishing the

classic VCT [39, 69–71]. The technique consists of plotting the experimental data

in the classic characteristic chart, i.e., f 2 versus p, and adjusting a linear best-fit

relationship. Afterward, from this relationship, the buckling load is extrapolated as the

load level where the loaded natural frequency is equal to zero.

The described procedure is straightforward for evaluating column structures. In

such applications, when considering different boundary conditions, the first vibration

modes are still similar to the corresponding buckling modes. As a consequence, the



9 State of the art

relationship between f 2 and p becomes a shallow curve that slightly deviates from the

linearity, like illustrated in Figure 2.2, allowing the VCT based on the linear best fit to

be successfully applied for different boundary conditions [72].

0 1.0p

f
2

1.0
Simply supported
Clamped

Figure 2.2: Comparison between simply supported and clamped columns.

Lurie investigated in his doctoral thesis [39] elastically restrained columns in the

form of rigid-joint frames (also published in [71]). The experimental results corroborated

the estimation based on the linear relationship between f 2 and p when two conditions

are kept: (1) the column member of the frame must be long enough for ensuring an

elastic buckling phenomenon, and (2) the boundary conditions should not change with

the axial loading.

Johnson and Goldhammer [73] performed VCT experiments for predicting the

buckling load of a panel-column, in fact a built-up long stiffened panel supported only

on the top and bottom edges. Within this study, the classic VCT was employed for

investigating the influence of different stiffener configurations on the effective length of

the panel. The authors proved the applicability of the methodology and recommended

it for measuring the in-situ effective length of panels.

Burgreen [74] studied the effect of arbitrary boundary conditions in columns. The

author reconfirmed that the error on assuming a linear relationship between the squared

frequency and the axially applied load is negligible (less than 2% for equal end-fixities).

In the 1960s, the VCT became an accepted practice in the industry for determining the

buckling load and end-fixity coefficients of columns [32], e.g., Jacobson and Wenner [75]

described the procedures adopted in the Northrop Corporation.

Chailleux et al. [76] tested composite and sandwich columns with rectangular

cross-sections and various boundary conditions. The specimens were designed with a

span-to-depth ratio of approximately 100 and were made of epoxy resin reinforced by
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boron and glass fibers or aluminum reinforced by boron fibers. The authors split the

characteristic chart into three zones and correlated the size of these zones with the

applicability of the VCT. Figure 2.3 illustrates the described procedure [76].

1
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Figure 2.3: Schematic view of the characteristic chart zones, as classified in [76].

In Figure 2.3, zone 1 is the region where the clearances have not entirely disappeared;

zone 2 is the region characterized by the linear relationship, for which the VCT is

applicable; and zone 3 is the region where the nonlinear effects dominate causing

unsymmetrical vibrations. The authors correlated the accuracy of the VCT with the

size of zone 2, recommending that this zone should extend for about three-quarters of

the characteristic chart for good predictions of the buckling load.

As stated before, the linear relationship between f 2 and p is available for simply

supported flat plates; however, its applicability for predicting the buckling load of such

structures is not straightforward. As an example, in the discussed doctoral thesis [39],

the author investigated flat plates with simply supported boundary conditions. In this

study, the inherent initial curvatures of the specimens led the relationship to deviate

from linearity resulting in poor estimations of the buckling load.

In the 1970s, Chailleux et al. [76] also tested flat plates made of aluminum reinforced

with boron fibers considering several boundary conditions. The specimens were manu-

factured with small imperfections permitting a good correlation between the buckling

loads estimated using the VCT and the calculated ones. Moreover, the practicality of

the method was correlated to the size of the linear zone of the characteristic chart, and

the same criterion defined for columns, see Figure 2.3, was verified for flat plates.

Jubb et al. [77] tested square box-columns (1.225 m x 305 mm); the specimens consist

of four rectangular (1.225 m x 305 mm) thick (4.8 mm) plates made of mild steel welded

together along their long edges. The authors monitored the first four natural frequencies
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and all of them decrease as the axial load was applied. However, only the fourth natural

frequency, for which the associated vibration mode is similar to the first buckling mode

of the box-column, tends to zero as the axial load approaches the buckling load.

Mandal [78] studied simply supported plates with different aspect ratios. The

author demonstrated that the first vibration mode changes its shape resembling the

buckling mode when P approaches PCR. Hence, following its frequency yields a convex

curve to the origin bounded by a coherent number of straight lines, i.e., two and three

lines for aspect ratios 2 and 3, respectively. The author concluded that the prediction is

non-conservative for low magnitudes of P and almost exact as P tends to PCR.

Chaves-Vargas et al. [79] conducted experimental and numerical investigations for

flat stiffened carbon fiber-reinforced polymer (CFRP) plates. The study is based on

three identical specimens with a total length of 550 mm, a total width of 430 mm,

and stiffened by two blade stringers and two blade caps as inner and outer stiffeners,

respectively. The authors predicted the buckling loads through the classic VCT with

deviations to the experimental buckling loads between 5% and 6%.

The accuracy of the VCT to predict the shear buckling load of simply supported

unstiffened and stiffened plates was numerically evaluated in [80]. The authors verified

that the first vibration mode presents a smooth transition to the critical buckling mode

as the shear load was increased. Besides, the relationship between f 2 and p is nonlinear

being in this study represented by high-order polynomials. The adjusted curves ex-

trapolated to f 2 equal to zero led to appropriate estimations for low load levels.

Shahgholian-Ghahfarokhi et al. [81] applied the method from [35]—described in

the next section—to composite sandwich plates with isogrid cores. The authors

manufactured four specimens and tested all of them for buckling and one of them for

VCT. In this study, load levels up to 96% of the average experimental buckling load

were considered; however, the best prediction, which is associated with a deviation of

-1.5%, was achieved for a maximum load level of 87% of the average buckling load.

2.3 VCT for imperfection-sensitive structures

Imperfection-sensitive structures like curved panels and spherical and cylindrical

shells present an unstable buckling behavior. For such structures, when following the

vibration mode similar to the buckling mode, the relationship between f 2 and p for

the imperfect structure is characterized by a sharp bend close to the buckling load, as
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illustrated in Figure 2.4. Therefore, the linear VCT is not applicable, and there is no

consensus on a mature technique suitable for practical scenarios up to the present [82].
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Figure 2.4: Comparison between perfect and imperfect shell structures.

In this context, different VCTs were proposed specifically addressing such structures

over the years. Okubo and Whittier [83] tested six nominally identical shallow spherical

shells under static external pneumatic pressure. The authors tracked the vibration

mode similar to the fundamental buckling mode. The study showed that extrapolating

the nonlinear relationship between f 2 and p to the abscissa would lead to appropriate

estimations of the buckling load.

Radhakrishnan [84] presented an experimental campaign for cylindrical shells with

an R/h of roughly 400 made of Hostaphan® under axial compression, external pressure,

or both. In this study, the final linear path of the f 2 versus p chart for the vibration mode

similar to the experimental buckling mode (verified through quasi-static experiments)

is extrapolated to the applied load axis for estimating the buckling load. The results

substantiated the suggested technique as the deviations were below 1%.

Particularly for stiffened cylindrical shells, the natural frequency and the buckling

load are similarly affected by the boundary conditions when the corresponding vibration

and buckling modes are close in shape [32]. Moreover, these structures are usually

characterized by unique buckling modes. Thus, a multitude of experimental campaigns

was performed at Technion in the 1970s, investigating the correlation between the two

phenomena for assessing the boundary conditions nondestructively [27, 44].

Concerning the classic characteristic chart, such structures typically present a sharp

bend close to the buckling load, vide Figure 2.4. Since the first attempts of applying the

VCT for direct estimations, the researchers noticed that the methodology is essentially

a curve fitting of the experimental data. Therefore, a convenient form for rewriting
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Equation (2.1) was proposed at Technion, in which the frequency ratio f is raised to an

exponent q resulting in a linear relationship to the load ratio p [32]:

f q = A−Bp (2.2)

where A and B are fitting constants and q, adjusted to its optimal magnitude qOPT,

leads the extrapolated load level to match exactly the experimental buckling load.

Exploring Equation (2.2), Segal [85] performed a parametric study taking into

account the results of 35 stiffened cylinders. For each cylindrical shell, the author

calculated qOPT and investigated the influence of the dominant geometric characteristics

on it. The study proposed an equation for qOPT in terms of such characteristics obtaining

a substantial reduction in the scatter of the VCT estimated KDF when compared to

the indirect VCT method based on Equation (2.1) [32].

Plaut and Virgin [86] further explored Equation (2.2) through an analytical model

of a shallow elastic arch with pinned ends. The authors verified that the pattern of

the curve relating the frequency ratio f to the load ratio p changes from concave to

convex as q increases. From this observation, a methodology was recommended for

determining upper and lower bounds for the optimal exponent qOPT and, consequently,

for the estimated buckling load PVCT.

Souza et al. [87] scrutinized a simplified model for large deflections representative

of structures characterized by unstable instability like skin-dominated stiffened cylin-

drical shells. The authors defined a semi-analytical approach based on a modified

characteristic chart in terms of the parametric forms (1− p)2 and 1− f 4. In such a

representation, a linear relationship between these variables should be obtained, as

illustrated in Figure 2.5, which presents a schematic view of the VCT delineated in [87].
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Figure 2.5: Schematic view of the VCT established in [87].
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The referred linear relationship is identified through a best-fit procedure of the

experimental results. Note that the parametric form (1−p)2 contains the ratio between

the load level and the linear buckling load; consequently, the load level in which the

structure is unstable is obtained by evaluating the linear equation for the loaded natural

frequency equal to zero (equivalent to the parametric form 1− f 4 equal to one) leading

to the following relationship:

(1− p)2 + (1− ξ2)(1− f 4) = 1 (2.3)

where ξ2 is the square of the drop of the buckling load due to initial imperfections.

Accordingly, the VCT estimation of the buckling load PVCT is expressed in terms

of the positive square root of ξ2:

PVCT = PCR(1− ξ) (2.4)

being 1−ξ comparable to the KDF γ as defined in [12].

Souza and Assaid [88] represented the classic characteristic chart through a cubic

parametric curve. The authors employed the Hermite form to define the parametric

equations. In this technique, the appropriate natural frequency should be measured

at the unloaded condition and considering a small amount of axial load (15% of PCR).

Both methods established by Souza and his colleagues [87, 88] were validated based on

the experimental results of stiffened cylindrical shells tested at Technion in [89].

Abramovich et al. [82] proposed a second-order equation to represent the classic

characteristic chart. The authors tested aluminum and composite laminated stringer

stiffened curved panels confirming that the predictions of the experimental buckling

load using the VCT for load levels up to 50% of PCR were reasonable. However, for

improving the accuracy of the VCT estimation, load levels near the sharp bend of the

characteristic chart, vide Figure 2.4, should be included.

In 2014, Arbelo et al. [35] established an empirical VCT addressing unstiffened

composite laminated cylindrical shells. The authors modified the work done in [87] by

assuming the applied load in the parametric form (1− p)2 as a quadratic function of

the loaded natural frequency represented as 1− f 2. Such a second-order equation is

adjusted through a best-fit procedure, from which ξ2 is extrapolated as its minimum.

Figure 2.6 presents a schematic view of the described VCT [35].

The authors estimated the buckling load from the positive value of ξ as stipulated
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in [87] and previously shown in Equation (2.4). Furthermore, this method is grounded

on the effects of the initial imperfections in the vibration response of the structure,

and typically the first two or three natural frequencies are evaluated for estimating

the buckling load [90]. Until this point, this methodology was validated by different

scientists in nine experimental campaigns published in [81, 90–97].
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Figure 2.6: Schematic view of the VCT established in [35].

The above-described method was first time experimentally validated in [91], where

three nominally identical CFRP unstiffened cylindrical shells, named R07, R08, and

R09, were tested. The variation of the first natural frequency was measured for several

load steps up to 80.0%, 92.2%, and 93.9% of the corresponding buckling loads for

R07, R08, and R09, respectively. The predictions were in good agreement with the

experimental buckling loads as the absolute errors were between 2.3% and 7.0%.

Kalnins et al. [90] conducted experiments for two CFRP and two metallic unstiffened

cylindrical shells named R15, Z37, SST-1, and SST-2, respectively. The first two natural

frequencies for load levels up to the onset of buckling were measured and used for the

VCT predictions. The estimations coming from the first natural frequency for R15, Z37,

and SST-1 and from the second natural frequency for SST-2 were associated with a

deviation from the respective experimental buckling loads between 0% and 10%.

Skukis et al. [92] performed a statistical evaluation of the buckling load estimated

through the VCT established in [35]. The authors investigated two identical CFRP

unstiffened cylindrical shells for the VCT and obtained estimations with a deviation

from the respective experimental buckling loads between 4.8% and 8.4%. Additionally,

they concluded that using load levels up to 65% of the experimental buckling load gives

a fidelity close to 90% in the VCT estimations.

Skukis et al. [93] executed an experimental campaign for unstiffened cylindrical shells
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made of aluminum with and without circular cutouts. For specimens governed by a

global failure mode—cylinders without cutout and with reinforced cutout—the authors

obtained reliable estimations when load levels greater than 60% of the experimental

buckling load were considered. Conversely, they conclude that the VCT from [35] was

not applicable when a local failure mode governs.

Recently, Shahgholian-Ghahfarokhi and Rahimi [94] further validated the aforemen-

tioned method addressing composite cylindrical shells stiffened with lozenge grid-cores.

Three specimens were tested for buckling, and the VCT was applied to one of them.

The authors included load levels up to 90% of the average experimental buckling load,

for which the deviation was 3.1%; moreover, appropriate estimations were obtained for

load levels above 68% of the average experimental buckling load.

Labans et al. [96] investigated classical and variable angle tow composite cylindrical

shells. The authors measured the first four vibration modes, being the most accurate

predictions based on the lowest natural frequency. For the classical laminated shell,

considering load levels up to 65.48% of the theoretical buckling load led to an error of

4.0%; likewise, for the variable angle tow cylinder, considering load levels up to 69.23%

of the theoretical buckling load led to an error of 1.4%.

2.4 The probing technique

As explored today, the energy barrier that must be overcome for the shell to snap

through to a postbuckling path was introduced in [20, 21]. For example, the authors

compared calculated and experimental results for an axially loaded cylinder disturbed

by a local transverse force in [21]. The comparison indicated satisfactory quantitative

and qualitative agreement for the energy barrier parameter. Since the 1970s, Evkin

continues to develop the topic, and more applications are found in [26, 98–102].

Horák et al. [22] further extended the energy barrier parameter by demonstrating

numerically the existence of a mountain pass point in the form of ‘‘the most localized

solution that is possible—a single dimple’’. Recently, Thompson et al. [34] scrutinized

these results and formulated a new nondestructive experimental procedure for estimating

the buckling load, which is based on applying a lateral displacement to determine the

shock sensitivity of an axially loaded cylinder.

Figure 2.7 exemplifies the probing technique following the schematic flowchart

outlined in [45]. Consider a cylinder under an axial load Pi, in which a transverse
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displacement DT is prescribed through a rigid probe. During this event, Pi is almost

constant while the reaction load PT varies, as illustrated in the chart emphasized by

in Figure 2.7. The transverse load increases reaching the maximum magnitude PT,MAX,

and then decreases to the initial level when simultaneously the cylindrical shell buckles.

The energy calculated through this transverse force consists of a ‘‘barrier’’ to be

overcome for triggering the buckling of the cylinder. If the axial load level Pi is increased,

the maximum transverse load PT,MAX and the barrier required to buckle the specimen

are smaller, as illustrated in the stability landscape highlighted by in Figure 2.7.

Extrapolating this behavior, the prescribed axial load associated with PT,MAX reaching

zero would buckle the cylindrical shell without any energy barrier to be overcome.

Next load step Pi

P
i

P
i

Pi

Pi

Predict the buckling load

Prescribe the axial load Pi

Relationship of

Probing process

DT
PT

PPROB

PPROB

PT,MAX

DTP
T

P
T

DT

PT,MAX

andDT PT

Pi −−DT PT

Figure 2.7: Schematic diagram of the probing technique evaluated in [45].

Following the scheme of Figure 2.7, Fan [45] performed the first systematic numerical

assessment of the probing technique. The probe was modeled as an analytical rigid body,

which was in contact with the surface of the cylinder. The radial displacement DT was

prescribed through the rigid probe, and PT was evaluated at the nodes within the region

of influence at nine axial load steps. The buckling load was predicted by extrapolating

PT,MAX to zero, as represented in the chart contoured by in Figure 2.7.

The study considered a cylinder with perfect geometry and disturbed by dimple-

shaped imperfections or measured mid-surface imperfections. For all cases, the predic-

tion PPROB associated with the smallest deviation was obtained probing the model at
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the location with the greatest imperfection amplitude. The author concluded that the

probe size has a small influence on the predictions and that the axial load must be

carefully controlled for guaranteeing a truly nondestructive experiment.

2.5 Numerical assessment of existing VCTs

In this section, a part of the results published in [46] is discussed to expose some

aspects of the dynamic behavior of imperfection-sensitive cylinders related to the

applicability of existing VCTs. In the mentioned paper, a numerical assessment

of three methodologies, which were revisited in Section 2.3, was performed. The

study involved ten nominally identical unstiffened composite cylindrical shells with the

geometric and material properties presented in [15].

The detailed numerical models were validated based on buckling experiments

published in [15] and employed to evaluate how the axially applied load influences

the dynamic behavior. For each cylinder, 41 load steps were defined to calculate the

frequency variation during the nonlinear static simulation being 40 load steps equally

distributed from 2.5% to 100% of the nonlinear buckling load and the other load step

at the first stable increment of the postbuckling regime.

Figure 2.8 reproduces the first vibration mode of the cylinder Z15U500, as named

in [46], at the following load levels: (a) unloaded condition (204.8 Hz), (b) nonlinear

buckling load (118.6 Hz), and (c) first stable increment in the postbuckling regime

(26.6 Hz). From these results, there is no vibration mode associated with zero magnitude

of the natural frequency at the buckling load, which is the foundation of most of the

VCTs, for instance, see the methodologies published in [82, 85–88].

(a) Unloaded condition
(204.8 Hz).

(b) Nonlinear buckling load
(118.6 Hz).

(c) Postbuckling regime
(26.6 Hz).

Figure 2.8: First vibration mode at different load levels for Z15U500 [46].
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Considering Figure 2.8(a) and (b), the first vibration mode of Z15U500 is signifi-

cantly affected by the nonlinear static state in the prebuckling regime, presenting a

reduction of 42.1% in the frequency magnitude. Moreover, from Figure 2.8(c), the

number of half-waves in the axial direction has changed in the postbuckling regime,

which does not allow following the first unloaded vibration mode beyond buckling. Note

in [46] that similar results were found for the other cylinders.

The first natural frequency variation is plotted up to the nonlinear buckling load in

Figure 2.9 for all evaluated cylindrical shells, for reference, see [46]. Three VCTs were

assessed: (a) f 2 versus p, (b) (1 − p)2 versus 1 − f 4, and (c) (1 − p)2 versus 1 − f 2.

Besides, in Figure 2.9(a) and (c), the reference solutions are based on Equation (2.1)—

as demonstrated in Chapter 4 of this thesis; similarly, in Figure 2.9(b), the reference

solution is based on Equation (2.3).
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(a) Classic characteristic chart.
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(b) Modified characteristic chart [87].
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(c) Modified characteristic chart [35].

Figure 2.9: Numerical assessment of existing VCTs.

Analyzing Figure 2.9(a), a linear extrapolation of the numerical data to the ab-

scissa would overestimate the buckling load for all cylindrical shells. Likewise, from

Figure 2.9(b), a linear best fit evaluated at 1− f 4 equal to one would result in negative
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values of ξ2, which has no physical meaning. In the study, the authors attempted to

estimate the buckling loads based on the classic [32] and semi-analytical [87] VCTs

corroborating these remarks.

On the other hand, the results represented in the characteristic chart from [35], see

Figure 2.9(c), are following the suggested second-order relationship between (1−p)2 and

1− f 2. As classified by the authors, the associated VCT provided proper estimations

for eight out of the ten investigated unstiffened CFRP cylinders. For that reason, the

mentioned VCT was considered in [46] the most appropriate technique for estimating

the buckling load of the therein-evaluated cylindrical shells.

2.6 Summary and conclusions

This chapter focused on the state-of-the-art techniques for predicting the buckling

load from the prebuckling stage applied to different types of structures. In this review,

the main developments of three methodologies were examined: the Southwell plot, the

VCT, and the probing technique. Furthermore, Section 2.5 provided a summary of the

numerical study published in [46], which investigated the applicability of three existing

VCTs to imperfection-sensitive composite cylindrical shells.

Throughout the years, the applicability of the Southwell plot was extensively con-

firmed to several types of structures under different types of loading. Nevertheless, for

structures characterized by a complex buckling phenomenon, such as local instabilities,

the method depends on the location where the deformations are measured. Hence, for

the cases where the measurements do not culminate in a discernible slope, the accuracy

of the estimated buckling load is compromised.

About the VCTs, the method is straightforward when applied to columns, for

which the experimental buckling load is close to the theoretical one associated with the

perfect structure. Additionally, the similarity between corresponding vibration and

buckling modes holds even for boundary conditions different from simply supported.

The mentioned aspects substantiate the classic linear VCT as one of the prevailing

methods for such structures.

For plate-like structures, there is a commitment between the magnitude of the

initial imperfections and the applicability of the VCT based on a linear extrapolation

in the chart f 2 versus p. Concerning shells, the mentioned chart is characterized by a

sharp bend close to the buckling load; therefore, the linear best-fit relationship does not
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provide appropriate estimations. As revisited for these cases, modified methods were

implemented, requiring further investigation for practical industrial applications.

The probing technique established on the basis of the energy barrier against buckling

is a promising method for estimating the buckling load of cylindrical shells. The

methodology depends on probing representative locations of the specimen, which must

be carefully addressed in a practical application ensuring a conservative estimation.

The control of the axially applied load is another aspect to be taken into account to

avoid permanent damage in the tested cylinder.

Concerning the numerical assessment published in [46], the fundamental natural

frequency evaluated at the nonlinear buckling load is not equal to zero. Moreover, the

classic [32] and the semi-analytical [87] methods fail to provide a proper estimation for

the buckling load of the investigated unstiffened composite cylinders. In the conclusion

of the study, the authors stated that the VCT empirically deduced in [35] is the most

promising method for the evaluated structures.

Furthermore, different from other methods assessed in [46] and revisited within this

chapter, the VCT introduced in [35] is established on the extrapolation of an extreme

point; therefore, it does not rely on the assumption that the natural frequency will drop

to zero at the buckling load. Additionally, the aforementioned approach was validated

through nine experimental campaigns [81, 90–97] being two of them described as part

of the experimental work of this thesis.
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3 Scope and outline of the thesis

This chapter contextualizes the research of the thesis. The research hypothesis and

the scope of the thesis are presented in Section 3.1. Subsequently, Section 3.2 shows the

outline of each chapter and a summary of its respective contents.

3.1 Scope

Section 2.1 evidenced that the Southwell plot depends on the location where the

deflections are evaluated being not directly suitable to imperfection-sensitive cylindrical

shells [32]. Analogously, the recently conceived probing technique also demands an

evaluation of representative locations of the specimen; besides, it imposes additional

experimental difficulties for applying the transverse displacement and measuring the

shock sensitivity nondestructively [34, 45].

On the other hand, the first vibration modes are representative of the global stiffness

of the structure and measured independently of the assessed location [95]. Despite

this advantage, the current scenario places the VCT applied to imperfection-sensitive

cylindrical shells as not mature enough for industrial applications [82]; basically, the

majority of the validated methods consist of empirical curve fitting procedures of the

experimental data, for instance, see [35, 82, 84, 85, 87, 88].

Nonetheless, observe that among the mentioned VCTs, two methods based on the

parametric form (1− p)2, available in [35, 87], achieved notable results, being validated

by several experimental campaigns, vide [81, 89–97]. The first one of them, defined

in [87], depends on the dropping to zero of the appropriate natural frequency, and its

modified version, suggested in [35], depends on an empirical second-order relationship

between (1−p)2 and 1−f 2 evaluated for the first natural frequencies.

From this viewpoint, there is interest in revisiting the analytical formulation of

the free vibration of axially loaded unstiffened cylindrical shells for representing the

parametric form (1−p)2 in terms of the loaded natural frequency. Furthermore, bearing

in mind that the first buckling modes and the first vibration modes hardly coincide for

such structures, the load-shortening curve of imperfection-sensitive cylindrical shells in

terms of (1−p)2 should be investigated towards a novel VCT definition.
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Given these points, the research hypothesis of this thesis was delineated as:

‘‘It is possible to predict the buckling load of imperfection-sensitive cylindrical shells

through an analytically verified vibration correlation technique that does not depend on

the similarity between the buckling and vibration modes.’’

Additionally, the following working hypotheses were formulated to investigate

analytically, numerically, and experimentally the research hypothesis:

� It is possible to rearrange the well-known linear relationship between f 2 and p,

corroborating the second-order relationship between (1−p)2 and 1−f 2 empirically

introduced in [35].

� It is possible to evaluate the typical load-shortening response of an imperfect

unstiffened cylindrical shell towards establishing a VCT based on the minimum

of an adjusted equation for (1− p)2.

� It is possible to verify numerically that the demonstrated relationship holds in the

presence of initial imperfections and more realistic boundary conditions paving

the path for practical applications.

� It is possible to validate experimentally the VCT for a metallic orthotropic

skin-dominated cylinder with internal pressure, an unstiffened thin-ply composite

laminated cylinder with internal pressure and in-plane imperfections, and three

equivalent unstiffened composite cylinders tested at different facilities.

Furthermore, during the development of this doctoral thesis, two articles in confer-

ences [46, 103] and three articles in peer-reviewed scientific journals [95, 97, 104] were

published as listed in Appendix A.

3.2 Outline of the thesis

The present thesis is organized into seven chapters:

� Chapter 1—Introduction: gives the motivation of the thesis.

� Chapter 2—State of the art: revisits the state-of-the-art nondestructive

experimental procedures to determine the in-situ buckling load; moreover, some
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aspects of the dynamic behavior of imperfection-sensitive composite cylinders are

discussed.

� Chapter 3—Scope and outline of the thesis: delineates the scope, the

research hypothesis, and the outline of the thesis.

� Chapter 4—Analytical verification: revises the free vibration of an axially

loaded isotropic cylindrical shell. After that, the steps for the rearrangement

of the linear relationship between f 2 and p to a second-order equation between

(1−p)2 and 1−f 2 are presented. Afterward, the typical load-shortening response

of an unstiffened cylindrical shell is evaluated for a VCT definition, which does

not depend on the similarity between the buckling and vibration modes. At the

end of the chapter, the VCT implementation is readdressed.

� Chapter 5—Numerical assessment: proposes two theoretical cylindrical

shells for a numerical assessment. At first, the numerical and analytical results

are compared, verifying the finite element (FE) models. The models are then

extended for investigating nonlinear effects associated with initial imperfections

and more realistic boundary conditions on the methodology verified in Chapter 4.

Finally, the VCT is evaluated through a systematic study that could be reproduced

during the definition phase of the experiment.

� Chapter 6—Experimental validation: describes the three experimental

campaigns, based on five cylindrical shells, performed within the scope of this

doctoral thesis. Fully descriptions of the test facilities and test set-ups are

given. The experimental results are presented and, subsequently, employed for

predicting the buckling load of the test specimens through the VCT demonstrated

analytically herein.

� Chapter 7—Final remarks: presents the main conclusions of the thesis;

moreover, limits of the VCT applied to cylindrical shells are discussed, and

proposals for further developments in this research area are listed.
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4 Analytical verification

As revisited in Chapter 2, most of the VCTs are established on the similarity

between the buckling and vibration modes; thus, based on the drop to zero of the

natural frequency. The first methodology not relying on such similarity, to the best of

the author’s knowledge, was developed empirically in [35]. This method consists of an

important step in the context of imperfection-sensitive unstiffened cylindrical shells,

and in this chapter, its analytical foundation is deduced.

Firstly, Section 4.1 reviews the free vibration of an axially loaded unstiffened

isotropic cylindrical shell. Following this, Section 4.2 proposes a rearrangement of

the reviewed equations towards evaluating (1 − p)2 in terms of the loaded natural

frequency. Afterward, Section 4.3 devises a VCT definition from the typical behavior

of imperfection-sensitive cylindrical shells, closing the loop of the analytical verification;

finally, the implementation of the VCT is outlined in Section 4.4.

4.1 Free vibration of an axially loaded cylinder

Consider the conventional cylindrical shell structure depicted in Figure 4.1, which

has an axial length L, a constant thickness h, and a middle surface radius R. An

orthogonal cylindrical coordinate system (x, θ, z) is defined in the middle surface of

the shell as a reference, where x, θ, and z are the axial, circumferential, and radial

directions, respectively, being u, v, and w their corresponding displacement components

of the middle surface of the shell.

u
w

v

L

x

R

h

θ

Figure 4.1: Geometry of a conventional cylindrical shell.
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The differential equations of motion are expressed in matrix notation as formulated

in [105, 106]:

[L] {ui} = {0} (4.1)

where {ui} is the displacement vector {u v w}T and [L] is a matrix differential

operator.

Considering the linearized Flügge-Lurie-Byrne’s shell theory taking into account the

prestress effects due to the uniform axial membrane force N̄x, which the magnitude is

positive for tension loads, the matrix differential operator [L] is expressed as [105]:

[L] = [LD] + k [LF] +
1

CN

[LI] (4.2)

where k is given by h2/12R2, CN is given by Eh/(1 − ν2), [LD] contains the terms

associated with Donnell’s theory of shells, [LF] contains the terms for extending

Donnell’s to Flügge-Lurie-Byrne’s shell theory, and [LI] contains the additional terms

related to the initial stress state. The three operators are given by [105]:

[LD]=



R2 ∂
2

∂x2
+
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2
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−νR ∂
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− ∂
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(4.3)

[LF]=


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[LI]=


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(4.5)
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where ν is the Poisson’s ratio, and FIN and∇4 are defined as:

FIN = ρ
(1− ν2)

E
R2 ∂

2

∂t2
(4.6)

∇4 = R4 ∂
4

∂x4
+ 2R2 ∂4

∂x2∂θ2
+

∂4

∂θ4
(4.7)

being ρ the mass density, t the time variable, and E Young’s modulus.

Assuming a circular cylindrical shell with two simply supported SS3 edges, where

w = v = Nx = Mx = 0, the solution of the differential equations is straightforward

being the displacement components:

u (x, θ, t) = Amn cos (λmx) cos (nθ) cos (ωmnt) (4.8)

v (x, θ, t) = Bmn sin (λmx) sin (nθ) cos (ωmnt) (4.9)

w (x, θ, t) = Cmn sin (λmx) cos (nθ) cos (ωmnt) (4.10)

where Amn, Bmn, and Cmn are the amplitude coefficients, and λm is given by mπ/L.

Moreover, the range of axial half-waves m and the range of circumferential waves n are

1, 2, . . . , and 0, 1, 2, . . . , respectively.

Substituting the displacement functions into Equation (4.1), the following system of

algebraic equations is obtained in terms of Amn, Bmn, and Cmn:
Ω̄mn −H11 H12 H13

H12 Ω̄mn −H22 H23

H13 H23 Ω̄mn −H33



Amn

Bmn

Cmn

 =


0

0

0

 (4.11)

being the terms Hij (where i and j are equal to 1, 2, and 3, and ij = ji), which depend

on m, n, and some mechanical and geometric properties of the cylindrical shell, and

the frequency parameter Ω̄mn given by:

H11 = λ̄2
m +

(1− ν)

2
n2 (1 + k) (4.12)

H12 =
(1 + ν)

2
λ̄mn (4.13)

H13 = νλ̄m + k

[
λ̄3
m −

(1− ν)

2
λ̄mn

2

]
(4.14)
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H22 =
(1− ν)

2
λ̄2
m + n2 + k

3 (1− ν)

2
λ̄2
m (4.15)

H23 = −n− k3 (1− ν)

2
λ̄2
mn (4.16)

H33 = 1 + k
(
λ̄2
m + n2

)2
+ k

(
1− 2n2

)
(4.17)

Ω̄mn =
(1− ν2)

E
ρR2ω̄2

mn −
N̄xλ̄

2
m

CN

(4.18)

where λ̄m = λmR.

The determinant of the left-hand side matrix of Equation (4.11) must be equal to

zero for a nontrivial solution resulting in the following cubic characteristic equation for

a pair of m and n:

Ω̄3
mn − T2Ω̄2

mn + T1Ω̄mn − T0 = 0 (4.19)

where T2, T1, and T0 are coefficients depending onHij from Equations (4.12)– (4.17):

T2 = H11 +H22 +H33 (4.20)

T1 = H11H22 +H11H33 +H22H33 −H2
12 −H2

13 −H2
23 (4.21)

T0 = H11H22H33 − 2H12H13H23 −H11H
2
23 −H22H

2
13 −H33H

2
12 (4.22)

The three roots of Equation (4.19) are always real for any pair of m and n [105, 106]

and by substituting them into Equation (4.18), the natural frequencies of the axially

loaded cylindrical shell ω̄mn are calculated as:

ω̄2
mn =

E

(1− ν2) ρR2

(
Ω̄mn +

N̄xλ̄
2
m

CN

)
(4.23)

The negative values from Equation (4.23) have no physical meaning being, therefore,

neglected. The three positive values correspond to three natural frequencies, where each

one is prevalently associated with one of the three displacement components. Finally,

Equation (4.23) is expressed in a more convenient form:

ω̄2
mn = ω2

mn +
N̄xλ̄

2
m

ρhR2
(4.24)

where ω2
mn is the corresponding squared unloaded natural frequency. Typically, the

evaluated cylindrical shells have their fundamental natural frequency associated with
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the vibration mode mainly characterized by radial displacement.

The vibration modes are calculated through two linear-dependent equations deter-

mined from Equation (4.11). For example, returning to Equation (4.11) and dividing

the first two equations by Cmn gives the following two linear-dependent equations in

terms of the ratios between the amplitude coefficients:

Ω̄mn −H11 H12

H12 Ω̄mn −H22

Amn/Cmn

Bmn/Cmn

 =

−H13

−H23

 (4.25)

The ratios between amplitude coefficients, i.e., Amn/Cmn and Bmn/Cmn, define the

vibration mode. The third coefficient Cmn, which is undetermined by Equation (4.25),

is a scaling factor of the amplitude calculated through the initial conditions or a

normalization criterion [106].

4.2 An analytical equation for (1 − p)2

Through Equation (4.24), the total applied load P , defined as 2πRN̄x, is expressed

in terms of the squared loaded natural frequency as:

P = Gm(ω̄2
mn − ω2

mn) (4.26)

where Gm = 2πρhR3/λ̄2
m.

Referencing [40, 105], the natural frequency dropping to zero is sufficient to obtain

the associated buckling load of the perfect cylinder with SS3 boundary conditions:

PCR = Gm(ω̄2
mn − ω2

mn)|ω̄2
mn=0 = −Gmω

2
mn (4.27)

Finally, the load ratio p from Equation (2.1) is found dividing Equation (4.26) by

Equation (4.27):

p = 1− f 2 (4.28)

where f = ω̄mn/ωmn.

The resultant equation, which is also presented in Equation (2.1), is rearranged

to express the parametric form of the squared applied load (1 − p)2 in terms of the
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parametric form of the squared loaded natural frequency 1−f 2:

(1− p)2 =
[
1−

(
1− f 2

)]2
(4.29)

Equation (4.29) analytically demonstrates that the parametric form (1 − p)2 is

related to 1−f 2 through a second-order equation, as empirically suggested in [35].

4.3 Experimental estimation of the KDF

Isotropic unstiffened cylindrical shells are highly imperfection-sensitive; as a conse-

quence, a substantial drop in the experimental buckling load PEXP is expected when

compared to the theoretical buckling load calculated for the perfect structure PCR.

Figure 4.2 presents the typical load-shortening curve for an unstiffened cylindrical shell

in terms of the load ratio p = P/PCR; besides, the chart depicts the parametric form

(1−p)2 and the KDF γ as defined in [12] and as related to ξ.

ua

p

γ =

ξ2 = (1− γ)2

p

(1− p)2

PCR

PCR

PEXP——

Figure 4.2: Typical load-shortening curve of an unstiffened cylindrical shell.

According to its definition, the parametric form (1− p)2 has a nonlinear variation

within the prebuckling regime, and its minimum magnitude occurs exactly at the insta-

bility point. At this point, the square root of (1− p)2 is equal to ξ from Equation (2.4),

as illustrated in Figure 4.2. This interpretation is grounded on the behavior of (1− p)2,

supporting the definition of a VCT that does not rely on the drop to zero of the natural

frequency, but the extrapolation of the minimum magnitude of (1−p)2.

Given that Equation (4.29) provides an analytical foundation for a second-order

relationship between (1− p)2 and 1− f 2, a VCT considering the defined statement is

obtained by minimizing the referred equation with respect to 1 − f 2 to estimate ξ2.
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For example, the minimization of Equation (4.29) results in (1− p)2 = 0 at 1− f 2 = 1,

where the second derivative is 2, which is constant and greater than zero, indicating

that this result is the minimum point of Equation (4.29).

The described result was expected because the equations revisited throughout this

chapter are deduced from the linearized Flügge-Lurie-Byrne’s shell theory applied to a

perfect cylinder. Accordingly, there is no drop in the load-carrying capacity due to

initial imperfections. Moreover, for the prescribed SS3 boundary conditions, in which

the buckling and vibration modes exactly match [40, 105], the first natural frequency of

the loaded structure is equal to zero at the buckling load.

4.4 VCT implementation

During a VCT experimental campaign of an unstiffened cylindrical shell, the

dynamic behavior is characterized for different axial load levels in the prebuckling

regime, as illustrated in Figure 4.3. The measurements inherently take into account the

imperfections, boundary conditions, and anisotropy of a specific set composed by the

cylinder and the test set-up. For such an experimental set, ξ2 is not zero, and usually,

none of the first vibration modes matches the first buckling mode.

p

Pi

ua

PEXP

p
PCR

Figure 4.3: Illustration of a typical VCT experiment.

Under the described circumstances and towards a straightforward VCT, the study

assumes that, within the prebuckling regime, the nonlinear behavior of the parametric

form (1−p)2 is still represented by a second-order equation in terms of 1−f 2. Following

this assumption, the modified characteristic chart empirically recommended in [35]
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is applicable, from which a fitted version of Equation (4.29) based on measured data

from practical scenarios is obtained:

(1− p)2 = A(1− f 2)2 +B(1− f 2) + C (4.30)

where A, B, and C are the coefficients determined through the best-fit procedure of

the experimental data.

As illustrated in Figure 4.2, the minimum value of the parametric form (1− p)2 is

related to the square of the drop of the load-carrying capacity. Section 4.3 explored

this interpretation, defining a direct VCT by extrapolating the minimum of (1− p)2,

represented as a second-order equation in terms of 1 − f 2, for estimating ξ2. Thus,

applying this observation on Equation (4.30), the estimated ξ2 is expressed in terms of

the fitting coefficients as:

min(1− p)2 = ξ2 = −B
2

4A
+ C (4.31)

where the positive square root evaluated as 1 − ξ represents an estimation of the

effective KDF γ of the experiment.

Taken together, Sections 4.2, 4.3, and 4.4 verify analytically the VCT defined in [35]

and on scrutinizing the experimental campaigns [81, 90–97], its steps are restated as:

1. Calculate the first linear buckling load of the perfect structure.

2. Track the first vibration mode and corresponding natural frequency from the

unloaded condition until an appropriate load level.

3. Plot the experimental data into the characteristic chart (1− p)2 versus 1− f 2.

4. Identify the second-order best-fit relationship between (1− p)2 and 1− f 2 and

minimize the quadratic equation for evaluating ξ2, as proposed in Equation (4.31).

5. Use the estimated ξ2 and the linear buckling load PCR into Equation (2.4) to

assess the in-situ buckling load of the structure.

4.5 Summary and conclusions

This chapter analytically demonstrated the VCT empirically developed in [35]

and experimentally validated in nine scientific papers, see [81, 90–97]. Initially, the
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anticipated second-order relationship between the parametric forms (1− p)2 and 1− f 2

is corroborated through the rearrangement of the classic linear relationship between

the applied load and the squared loaded natural frequency for an isotropic unstiffened

cylindrical shell, for which the formulation was revisited in Section 4.1.

Afterward, the relationship between the minimum magnitude of (1− p)2 and the

KDF γ is established from the typical load-shortening curve of an imperfection-sensitive

cylinder. This interpretation, solely based on the static behavior evaluated as (1− p)2,

can be applied to a nonlinear equation of this parametric form and does not depend on

the drop to zero of the natural frequency, but whether the assumed equation for (1−p)2

is correctly representing its nonlinear behavior below buckling.

Finally, the VCT implementation is exemplified for practical scenarios assuming

that a second-order equation also represents the relationship between (1−p)2 and 1−f 2

in the presence of different boundary conditions, initial imperfections, and other degrees

of anisotropy. In conclusion, the given verification through existing linear equations

enhances the understanding of the VCT conceived in [35] and paves the path for its

consolidation in the context of imperfection-sensitive cylindrical shells.
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5 Numerical assessment

This chapter describes the numerical work performed in this thesis being the

main objective to assess the effects of different boundary conditions and realistic

initial imperfections on the functional relationship of Equation (4.29). In Section 5.1,

two theoretical isotropic cylindrical shells are specified, and an existing mid-surface

imperfection pattern is chosen. After that, Section 5.2 defines the numerical models

representing the nominal and the disturbed geometry of each cylinder.

Following this, Section 5.3 verifies the reference models considering SS3 boundary

conditions based on the analytical equations revisited in Section 4.1. Subsequently,

Section 5.4 extends the verified FE models assessing the effects of different boundary

conditions (SS4) and mid-surface imperfections. At the end of the chapter, Section 5.5

examines the numerical results for a systematic evaluation of the VCT, which could be

reproduced during the planning phase of the experiment, helping with its definition.

5.1 Overview of the cylindrical shells

The nonlinear numerical assessment considers two theoretical isotropic unstiffened

cylinders that would fit DLR test facilities, named ZAL1 and ZAL2. Table 5.1 presents

the geometric characteristics defining both structures. The study assumes the aluminum

alloy AL7075-T7351, which is typically employed in aerospace designs. Concerning

the material properties reproduced in Table 5.2, they were obtained from the Metallic

Materials Properties Development and Standardization (MMPDS) [107].

Table 5.1: Geometric characteristics of ZAL1 and ZAL2.

Property ZAL1 ZAL2

Free length [mm] 500 800

Middle surface radius [mm] 250 400

Shell thickness [mm] 0.50 0.50

Radius over thickness ratio 500 800

Radius over length ratio 0.50 0.50
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Table 5.2: Mechanical material properties of AL7075-T7351 [107].

Property Magnitude

Compressive elastic modulus [MPa] 73,084

Poisson’s ratio 0.33

Mass density [kg/m3] 2,796

The influence of real geometric imperfections is investigated employing the measured

imperfection signature of a stainless steel laser-welded unstiffened cylinder tested

in [90], identified there as SST-1. The measured data of SST-1 are available in the

DESICOS plug-in [108], considering its original magnitude as related to the middle

surface best-fit radius of the cylinder (approximately 250 mm). Figure 5.1 depicts the

described measured imperfection pattern (in mm).
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Figure 5.1: Measured mid-surface imperfection of SST-1, available in [108].

5.2 Finite element analyses

The FE models of this chapter are dedicated to the linear buckling, nonlinear static,

and linear frequency solutions. The linear buckling analysis provides the theoretical

buckling load. The nonlinear static solution followed by linear frequency steps at chosen

axial load levels yields the nonlinear static response and the variation of the natural

frequencies. The study uses the commercial FE solver Abaqus Standard 6.16® for pre-

and postprocessing of the numerical models hereafter described.

The Newton-Raphson iterative procedure with artificial damping stabilization is

used as the nonlinear solver for the axial loading step. For the eigenvalue problems,

i.e., linear buckling and free vibration analyses, the default Lanczos solver is employed.
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Referencing the convergence study performed in [18], the FE models are defined with

parabolic quadrilateral thin-shell elements with eight nodes, six degrees of freedom per

node, and reduced integration (labeled S8R elements in Abaqus® library).

Two types of simply supported boundary conditions, i.e., SS3 and SS4, are simulated

on both edges of the cylinders. The SS3, also known as shear diaphragm, is characterized

by w = v = Nx = Mx = 0 and compatible with Equations (4.8)– (4.10); therefore, it

is directly compared to the analytical equations from Section 4.1. The SS4 is defined

by w = v = u = Mx = 0, being closer to the experimental boundary conditions and,

consequently, more appropriate for the verification of the VCT.

For implementing the SS3 boundary conditions in Abaqus®, additional constraints

along the edge lying in the middle of the length of the cylinder are defined, which

keep the symmetry and avoid rigid body motions. Figure 5.2 depicts the details of the

implemented SS3 and SS4 boundary conditions. Observe that the described constraints

are related to a cylindrical coordinate system specified at the center of the circle defined

by the bottom edge (also presented in the figure).

(a) SS3 boundary conditions. (b) SS4 boundary conditions.

Figure 5.2: Implementation of the boundary conditions in the FE models.

Shell edge forces are applied on both edges in the linear buckling FE models with

SS3 boundary conditions for loading the structures. For the models considering SS4

boundary conditions, the nonlinear static problem uses enforced displacement, whereas

the linear buckling problem considers a unitary force. Both described loads are applied

at the center of the circle defined by the top edge and distributed through multipoint

constraint equations to the nodes lying along the top edge of the cylinders.

A convergence analysis taking into account 35, 70, 140, 280, and 560 elements over

the circumference with a consistent global element size, keeping square elements in other

directions, is performed for ZAL1. The FE models consider SS4 boundary conditions
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being the main objective to obtain an appropriate theoretical buckling load, i.e., not

necessarily associated with a converged first linear buckling mode. Furthermore, these

results in terms of the element size will be extended to the geometry of ZAL2.

Considering the first linear buckling modes of a perfect isotropic cylinder with

SS4 boundary conditions, the difference between the magnitudes of the corresponding

eigenvalues is minor. As a consequence, the smallest perturbation, e.g., the element size,

stimulates a different first buckling mode. For this reason, the first axis-symmetrical

buckling mode is tracked. Figure 5.3 presents the convergence study, in which the

deviation is related to the finest mesh, and a threshold of 1% is outlined.
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Figure 5.3: Convergence of the first axis-symmetrical buckling load of ZAL1.

From Figure 5.3, the FE mesh associated with 140 elements over the circumference,

which corresponds to an element size of 11.22 mm, demonstrated an appropriate

convergence (with a deviation to the finest mesh of roughly 0.05%). Based on the

referred element size, the resulting FE models have 6,160 and 16,128 S8R shell elements

associated with 18,760 and 48,832 nodes for ZAL1 and ZAL2 geometries, respectively.

Figure 5.4 depicts an overview of the converged FE meshes of both models.

(a) Cylinder ZAL1. (b) Cylinder ZAL2.

Figure 5.4: FE meshes of ZAL1 and ZAL2.
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The mentioned characteristic of the linear buckling solution of an isotropic cylinder

with SS4 boundary conditions is exemplified in the comparison presented in Table 5.3,

which contains the magnitudes of the 1st, 10th, 20th, 50th, and 100th linear buckling

loads for the converged FE models. Furthermore, in the mentioned table, the deviation

δCR is calculated as related to the buckling load associated with the first buckling mode

of the respective cylindrical shells.

Table 5.3: First linear buckling loads of ZAL1 and ZAL2 considering SS4.

ZAL1 ZAL2

Mode PCR [kN] δCR [%] PCR [kN] δCR [%]

1 70.18 - 70.18 -

10 70.19 0.02 70.19 0.01

20 70.27 0.13 70.21 0.04

50 70.58 0.57 70.28 0.14

100 71.03 1.21 70.40 0.31

Analyzing Table 5.3, the 100th buckling load is 1.21% and 0.31% greater than the

corresponding first buckling load for ZAL1 and ZAL2, respectively. The results corrob-

orate a small deviation between the magnitudes of the first 100 buckling loads for an

isotropic cylinder with SS4 boundary conditions. In practice, any of these modes could

be stimulated by the real imperfections thus being eligible for a numerical assessment;

nevertheless, in this thesis, the measurements from Figure 5.1 are taken into account.

Two main FE models are defined for each cylinder:

1. Reference model: considers the nominal geometry without initial geometric

imperfection and both boundary conditions (SS3 and SS4), being employed in

two types of eigenvalue problems: linear buckling and free vibration analyses.

2. Imperfect model: considers the geometry disturbed by the initial imperfection

presented in Figure 5.1 and SS4 boundary conditions. For each cylindrical shell,

the imperfection amplitude is downscaled to a maximum deviation of 50%, 75%,

and 100% of the shell thickness. The initial positions of the nodes are disturbed

using a python script based on the inverse-weighted interpolation and scaling

rules from [18] employed here for the five closest measured points. Figure 5.5

shows the disturbed FE meshes of ZAL1 and ZAL2 considering the original
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magnitude of Figure 5.1 (in mm) and the deformation amplified by 20. These

models are employed for a nonlinear static analysis followed by free vibration

analyses at different load levels.

(a) Cylinder ZAL1. (b) Cylinder ZAL2.

Figure 5.5: Initial mid-surface imperfection applied in the FE models.

5.3 Analytical versus numerical results

The first vibration mode is associated with the minimum magnitude among the

natural frequencies; moreover, the equations depend on the number of axial half-waves

m and circumferential waves n. Thus, a Matlab® algorithm was written to calculate

the natural frequencies based on Equation (4.24). Figure 5.6 depicts the natural

frequencies for different magnitudes of m and n of both cylinders and highlights the

first (minimum) natural frequency of each one.
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(a) Cylinder ZAL1.
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(b) Cylinder ZAL2.

Figure 5.6: Natural frequencies for different magnitudes of m and n.

From Figure 5.6, the first unloaded natural frequency F1 of ZAL1 and ZAL2 is



43 Numerical assessment

associated with the following pairs (m, n): (1, 8) and (1, 9), respectively. Additionally,

Figure 5.7 shows the corresponding first unloaded vibration mode of each cylinder,

which is calculated through Equation (4.25).

(a) Cylinder ZAL1. (b) Cylinder ZAL2.

Figure 5.7: First unloaded vibration mode of ZAL1 and ZAL2 considering SS3.

The analytical results constitute a reference for verifying the numerical models with

SS3 boundary conditions. Table 5.4 presents the direct comparison with the buckling

load from Equation (4.27) and the first natural frequency at different compressive load

levels from Equation (4.24), where the deviation δANA is calculated as related to the

analytical results. Besides, the natural frequencies (both numerical and analytical) are

associated with (m, n) equal to (1, 8) and (1, 9) for ZAL1 and ZAL2, respectively.

Table 5.4: Numerical and analytical results of ZAL1 and ZAL2 considering SS3.

Analytical Numerical δANA [%]

Variable ZAL1 ZAL2 ZAL1 ZAL2 ZAL1 ZAL2

PCR [kN] 68.21 68.62 68.24 68.64 0.04 0.03

F1 [Hz] 176.24 87.34 176.22 87.33 -0.01 -0.01

F̄1 at 25% of PCR [Hz] 152.63 75.64 152.65 75.65 0.01 0.01

F̄1 at 50% of PCR [Hz] 124.62 61.76 124.64 61.76 0.02 0.00

F̄1 at 75% of PCR [Hz] 88.12 43.67 87.76 43.56 -0.41 -0.25

From Table 5.4, there is an excellent agreement between the analytical and numerical

results being the maximum deviation magnitude of 0.41% for F̄1 at 75% of PCR for

ZAL1. Another important aspect is the comparison between the vibration and buckling

modes for a cylinder with SS3 boundary conditions. Therefore, Figure 5.8 presents the

numerical results for the first buckling mode and first unloaded vibration mode of ZAL1

and ZAL2 with the referred boundary conditions.
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(a) First buckling mode (ZAL1). (b) First buckling mode (ZAL2).

(c) First unloaded vibration mode (ZAL1). (d) First unloaded vibration mode (ZAL2).

Figure 5.8: First buckling mode and first unloaded vibration mode for SS3.

Evaluating Figure 5.8, the first unloaded vibration mode exactly matches the

first buckling mode, which is expected for SS3 boundary conditions, for reference,

see [40, 105]. Furthermore, Figure 5.8(c) exactly matches Figure 5.7(a); likewise,

Figure 5.8(d) exactly matches Figure 5.7(b). This correspondence between vibration

and buckling modes corroborates the equivalence between the reference models with

SS3 boundary conditions and the recapitulated formulations of Chapter 4.

5.4 Nonlinear numerical assessment

In practical scenarios, SS3 boundary conditions are not realistic; besides, real struc-

tures have initial imperfections like the mid-surface deviations depicted in Figure 5.1.

Given these points, this section proposes to extend the numerical analysis to assess the

frequency variation considering geometric nonlinearities, initial geometric imperfections,

and SS4 boundary conditions. This study is closer to an actual experimental campaign;

thus, more appropriate for evaluating the VCT.

Firstly linear buckling and free vibration analyses are solved considering the reference

model defined in Section 5.2 with SS4 boundary conditions. The first linear buckling

load is 70.18 kN for both cylinders, and the first unloaded natural frequency is 250.65

and 126.43 Hz for ZAL1 and ZAL2, respectively. Furthermore, Figure 5.9 shows the

corresponding first buckling mode and first unloaded vibration mode of ZAL1 and

ZAL2, respectively.
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(a) First buckling mode (ZAL1). (b) First buckling mode (ZAL2).

(c) First unloaded vibration mode (ZAL1). (d) First unloaded vibration mode (ZAL2).

Figure 5.9: First buckling mode and first unloaded vibration mode for SS4.

Analyzing Figure 5.9, there is no similarity between the first buckling mode and

the first unloaded vibration mode for both cylindrical shells. This scenario is recurrent

in practical applications for unstiffened cylinders consisting of an obstacle for tracking

an appropriate vibration mode (similar to a corresponding buckling mode in terms of

m and n) during the experiments. This typical characteristic endorses the need for

developing a VCT independent of the drop to zero of the natural frequency.

The nonlinear numerical assessment considers the imperfect model with SS4 bound-

ary conditions focusing on evaluating the second-order relationship presented in Equa-

tion (4.29) against a more realistic application. Accordingly, Section 5.5 employs these

results for verifying the VCT, providing a better understanding of the convergence of

the method and some insight into planning the experiment. Table 5.5 shows the main

solver parameters considered for the nonlinear static analysis.

Table 5.5: Solver parameters for the nonlinear static analysis.

Parameter Magnitude

Damping factor 10−7

Initial increment 0.001

Minimum increment 10−6

Maximum increment 0.001
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Figure 5.10 presents the load-shortening curves of ZAL1 and ZAL2 considering all

initial imperfection magnitudes, while Table 5.6 summarizes the respective nonlinear

buckling loads PNL and effective KDFs γNL (calculated as PNL/PCR). Hereafter, three

additional labels are defined for ZAL1 and ZAL2 by adding an “M” followed by three

digits representing the maximum amplitude of the initial geometric imperfection: 050,

075, and 100 representing 50%, 75%, and 100% of the shell thickness, respectively.
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(a) Cylinder ZAL1.
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(b) Cylinder ZAL2.

Figure 5.10: Load-shortening curves as related to the initial imperfections.

Table 5.6: Nonlinear buckling loads and effective KDFs of ZAL1 and ZAL2.

Cylinder PNL [kN] γNL

ZAL1M050 58.51 0.83

ZAL1M075 53.88 0.78

ZAL1M100 49.74 0.71

ZAL2M050 58.97 0.84

ZAL2M075 57.38 0.82

ZAL2M100 52.85 0.75

Analyzing Figure 5.10 and Table 5.6, the initial mid-surface imperfections sig-

nificantly affect the nonlinear buckling load of the cylindrical shells. As expected,

smaller KDFs are associated with greater amplitudes of the geometric imperfections.

Furthermore, note that the downscaled amplitudes 50%, 75%, and 100% of the shell

thickness result in two similar ranges of KDF for ZAL1 and ZAL2, respectively: from

0.71 to 0.83 and from 0.75 to 0.84.

In the following, the nonlinear static results from Figure 5.10 are divided into 41

load steps for a sequence of axially loaded free vibration analyses. These load steps are
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defined equally distributed from 2.5% up to 100% of the buckling load PNL and at PPB,

which designates the first stable increment in the postbuckling regime. Figure 5.11

shows the load-shortening curves of the evaluated cylindrical shells, emphasizing the

load steps followed by linear frequency analyses.
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(a) Cylinder ZAL1M050.
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(b) Cylinder ZAL1M075.
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(c) Cylinder ZAL1M100.
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(d) Cylinder ZAL2M050.
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(e) Cylinder ZAL2M075.
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(f) Cylinder ZAL2M100.

Figure 5.11: Load steps followed by frequency analyses.

The numerical investigation covers the complete prebuckling path of the cylinders

with a high number of load steps. Such a dense evaluation is important to comprehend

the contrast between the behavior of the natural frequencies in a condition closer to

a real application and the ideal case from Equation (4.29). Thus, it challenges the
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assumption made in Section 4.4, which establishes that a second-order relationship

holds in practical scenarios.

The variation of each vibration mode during the axial loading is obtained through

an algorithm based on the modal assurance criterion (MAC) implemented in Matlab®.

The MAC index gives a comparison between two vectors of the same length being close

to one if a linear relationship between the two vectors exists and close to zero if the

vectors are linearly independent [109]. Besides automatic postprocessing, this algorithm

allows a thorough evaluation of the vibration response.

In this script, the MAC index is calculated between each vibration mode in the

current load step and all vibration modes in the next load step. Afterward, the maximum

MAC index is assumed associated with the evaluated vibration mode in the next load

level. The described process is repeated until the final load step is analyzed. Figure 5.12

presents the MAC index variation for the first vibration mode considering the evaluated

theoretical cylindrical shells.
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(a) Cylinder ZAL1.
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(b) Cylinder ZAL2.

Figure 5.12: MAC index variation for the first vibration mode.

From Figure 5.12, the first vibration mode for all evaluated cylindrical shells is

characterized by a smooth transition from one load step to the next until the vicinity of

buckling. Between the load steps 37 and 39, which are corresponding to 92.5% and 97.5%

of PNL, respectively, the MAC index indicates a change in the shape of the vibration

modes. These load levels are close to the buckling load coinciding with the region in

which the geometric nonlinearities start to dominate the behavior of the cylinders.

Figure 5.13 shows a comparison between the first vibration mode of ZAL1M050

at the following load levels: (a) unloaded condition, (b) nonlinear buckling load PNL,

and (c) first stable increment in the postbuckling regime PPB. Similar results were

found for the other cylindrical shells; therefore, Table 5.7 presents the magnitudes of
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the first natural frequency for all simulated cylinders considering the aforementioned

load steps.

(a) Unloaded condition
(250.65 Hz).

(b) Nonlinear buckling load
(167.84 Hz).

(c) Postbuckling regime
(53.84 Hz).

Figure 5.13: First vibration mode at different load levels for ZAL1M050.

Table 5.7: First natural frequency at the unloaded condition, PNL, and PPB.

Cylinder F1 [Hz] F̄1 at PNL [Hz] F̄1 at PPB [Hz]

ZAL1M050 250.65 167.84 53.84

ZAL1M075 250.65 176.26 57.74

ZAL1M100 250.65 189.02 73.50

ZAL2M050 126.43 84.55 33.65

ZAL2M075 126.43 87.05 27.93

ZAL2M100 126.43 92.88 23.94

Evaluating Figure 5.13(a) and (b), a detectable variation on the first vibration

mode, associated with a reduction of 32.97% in the frequency magnitude, is observed.

In Figure 5.13(c), the number of half-waves in the axial direction has changed, which

does not allow following the same vibration mode beyond buckling. From Table 5.7, the

magnitude of the first natural frequency at PNL increases as the KDF from Table 5.6

decreases being not zero for all investigated cylinders.

The postprocessed results for the first natural frequency are shown in Figure 5.14.

The charts concern the frequency variation up to the load step associated with the

buckling load PNL. Moreover, they are presented considering the classic characteristic

chart in Figure 5.14(a) and (c), and in the modified characteristic chart [35] in

Figure 5.14(b) and (d), for ZAL1 and ZAL2, respectively. The analytical solutions are

based on Equation (2.1), as demonstrated in Section 4.2.
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(b) Modified characteristic chart (ZAL1).
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(c) Classic characteristic chart (ZAL2).
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(d) Modified characteristic chart (ZAL2).

Figure 5.14: First natural frequency variation of ZAL1 and ZAL2.

Analyzing Figure 5.14(a) and (c), which are based on the classic characteristic

chart, an extrapolation of a linear best-fit equation to the abscissa would overestimate

the buckling load. On the other hand, regarding the results presented in the modified

characteristic chart [35], a nonlinear relationship that holds the second-order shape is

observed, see Figure 5.14(b) and (d); additionally, the minimum magnitudes of (1− p)2

are positive likely culminating in realistic estimations of ξ2.

5.5 VCT applied to the numerical results

In Section 5.4, numerical models of ZAL1 and ZAL2 are simulated for three

imperfection magnitudes up to their respective buckling loads PNL. These results are

taken into account up to a load level corresponding to 97.5% of PNL for predicting the

buckling load through the VCT. The method is applied following the steps described in

Chapter 4, considering the load levels normalized by PCR calculated for SS4 boundary

conditions (70.18 kN as given in Table 5.3).

The VCT is evaluated in a convergence study, which simultaneously increases the
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maximum load level PMAX and the number of load steps. This analysis indicates an

appropriate PMAX for the VCT experiment since PMAX is more relevant than the number

of load steps for the accuracy of the estimation [92]. Figure 5.15 shows the deviation δNL

between the VCT predicted buckling load PVCT and PNL (as related to PNL) in terms of

PMAX (as a percentage of PNL); moreover, the charts highlight a tolerance of±10%.
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(b) Cylinder ZAL2.

Figure 5.15: Convergence of the deviation for the VCT predictions.

From Figure 5.15, the VCT provides appropriate and conservative estimations for

all cylindrical shells, i.e., characterized by δNL converging from negative values. This

is true even when the VCT is evaluated for low maximum load levels far from the

actual buckling load once the magnitudes of the deviations are below 10% for most of

the estimations. Additionally, the methodology provides better estimations at lower

maximum load levels for greater magnitudes of the initial imperfections.

Towards assessing the nondestructive nature and the applicability of the methodol-

ogy, the results from Figure 5.15 are summarized in Table 5.8. Two approaches are

considered: (1) including all load steps up to the maximum load level associated with

the minimum δNL, and (2) including all load steps up to 50% of PNL. For both cases, the

maximum load level of the VCT estimations PMAX (as a percentage of PNL), the VCT

estimations PVCT, and deviations δNL (as related to PNL), are presented.

Furthermore, Figure 5.16 shows the frequency variation up to the corresponding

PMAX with the respective best-fit curves for all cases of Table 5.8. Observe that the

legend of the charts brings the associated coefficient of determination R2
S and the

estimated ξ2. The high magnitudes obtained for R2
S confirm the goodness of fit of the

quadratic equation endorsing it as an appropriate model in the presence of SS4 boundary

conditions and measured mid-surface imperfections with different magnitudes.
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Table 5.8: Summary of the VCT predictions of the numerical assessment.

Minimum deviation Up to 50% of PNL

Cylinder PMAX [%] PVCT [kN] δNL [%] PMAX [%] PVCT [kN] δNL [%]

ZAL1M050 97.5 57.14 -2.4 50.0 53.70 -8.2

ZAL1M075 77.5 54.88 -0.0 50.0 53.24 -3.0

ZAL1M100 17.5 49.46 -0.6 - - -

ZAL2M050 97.5 57.28 -2.9 50.0 53.13 -9.9

ZAL2M075 97.5 56.59 -1.4 50.0 52.66 -8.2

ZAL2M100 45.0 52.76 -0.2 - - -
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Figure 5.16: VCT implementation for the numerical assessment.

Analyzing Table 5.8 for the first study, represented in Figure 5.16(a) and (c), the

VCT estimations are conservative and in excellent agreement with the corresponding

values from Table 5.6 being the greatest deviation magnitude of 2.9%. Nevertheless,

a residual deviation is identified for cylindrical shells with smaller magnitudes of the

initial imperfection even for 97.5% of PNL as the maximum load level, for instance, see
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the results of ZAL1M050, ZAL2M050, and ZAL2M075.

Concerning the second study, note in Figure 5.16(b) and (d) that the estimated

KDFs are similar for the different magnitudes of geometric imperfections. Yet, the

results are conservative and in good agreement with deviation magnitudes in the range

between 3.0% and 9.9%. This range of deviation for low maximum load levels supports

the applicability of the method as a truly nondestructive experimental procedure for

predicting the buckling load of the theoretical unstiffened cylindrical shells.

5.6 Summary and conclusions

This chapter assessed the effects of geometric nonlinearities and different boundary

conditions on the methodology verified in Chapter 4 through a numerical study com-

prising two theoretical isotropic cylindrical shells. Firstly, the cylinders are represented

by reference FE models considering the same boundary conditions of the analytical

solution presented in the mentioned chapter. Subsequently, these models are verified

by direct comparison with the analytical results.

The numerical models are then extended for SS4 boundary conditions and had their

meshes disturbed by a measured mid-surface imperfection available in [108]. For a

better understanding of the effects of the initial imperfections, the original measurement

is downscaled, taking into account three maximum magnitudes: 50%, 75%, and 100%

of the shell thickness for both cylinders. These models are employed to simulate the

vibration response of the cylindrical shells under axial loading.

For the numerical assessment, 41 load steps, including the buckling load and the

first stable increment in the postbuckling regime, are defined. The numerical vibration

modes are analyzed through an algorithm based on the MAC. This procedure allows

the evaluation of a high density of load steps resulting in a thorough analysis of the

variation of the natural frequencies and vibration modes as related to the axial loading

and inherent nonlinearities.

These results could be reproduced before a VCT test, helping to define the maximum

axial load level and the number of load steps needed for a reliable prediction. Such

a simulation would assess different combinations of the number of load steps and

maximum load level addressing the feasibility of the VCT experiment. Hence, a

sufficient number of load steps to be measured and a maximum load level would be

determined, ensuring a truly nondestructive procedure within a reasonable time frame.
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The numerical results are postprocessed to evaluate the VCT in two different

approaches: (1) minimizing the deviation between the VCT estimation and the nonlinear

buckling load, and (2) exploring load steps up to 50% of the nonlinear buckling load.

Notably, the second approach meant to strengthen the practicality of the method

verified in Chapter 4 as a nondestructive experimental procedure for predicting the

buckling load of the simulated unstiffened cylindrical shells.

Within the proposed study, the predicted buckling loads PVCT are in high-grade

agreement when load levels up to 97.5% of PNL are contemplated (the error is between

-0.0% and -2.9%). All estimations for the entire range of load levels are conservative,

i.e., associated with negative deviations. Considering load levels up to 50% of PNL, the

method is acceptable as the deviation magnitudes are below 9.9%; furthermore, the

convergence is faster for smaller magnitudes of the KDF, as observed in Figure 5.15.
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6 Experimental validation

This chapter presents the experimental work of this thesis, which is focused on

extending the applicability and the robustness of the VCT empirically formulated in [35]

and analytically verified in Chapter 4. Altogether, five cylindrical shells were tested,

exploring different design details, test set-ups, and loading conditions. According to

the test specimens, the work is split into three main test campaigns being each one

composed of buckling and a sequence of vibration experiments.

Section 6.1 provides a complete overview of these specimens showing the geometric

and material properties and the measurements for characterizing the cylindrical shells.

The evaluation of the VCT approach requires the first linear buckling load PCR as a

reference for calculating the load ratio p. Therefore, Section 6.2 shows the convergence

analyses and the first linear buckling load for the reference FE model based on the

measured characteristics of each cylinder.

After that, Section 6.3 brings the description of the three buckling test facilities

employed during the three experimental campaigns. Two of them are located at the

DLR Institute of Composite Structures and Adaptive Systems and the other one at the

TU Delft Faculty of Aerospace Engineering. Afterward, Section 6.4 summarizes the

results of the buckling and vibration experiments for each one of the cylindrical shells

under all tested configurations.

Finally, the mentioned experimental results are evaluated in Section 6.5, further

validating the methodology discussed in this thesis. The variation of the first natural

frequency for each cylinder is used for predicting its corresponding in-situ buckling

load. Apart from this, additional aspects of the methodology were experimentally

investigated, such as the number of load steps and the maximum load level considered

for an appropriate estimation and the goodness of fit of the second-order equations.

6.1 Overview of the cylindrical shells

This study concerns five cylindrical shells with different geometric and material

properties. The specimens, named Z38, ZD27, ZD28, ZD29, and Z42, are described in

the following subsections.
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6.1.1 Cylinder Z38

The specimen Z38 is a metallic orthotropic skin-dominated cylinder consisting

of a milled panel with 126 closely spaced integral blade stiffeners bent to form the

cylindrical shell. The structure is made of aluminum alloy AL7075-T7351 (characterized

in Table 5.2), and the joint edge was welded using an electron beam based process [95].

Table 6.1 presents the geometric characteristics, and Figure 6.1 shows an isometric view

of the structure and detailed views of the stiffeners and welding seam.

Table 6.1: Geometric characteristics of Z38 [95].

Description Magnitude [mm]

Free length L (total length) 960 (1000)

Outer surface best-fit radius R 400.38

Thickness of the skin h 0.55

Height of the stiffener HST 5.20

Thickness of the stiffener hST 0.55

Distance between stiffeners b 19.97

HST

hST 

h

R

L

b

Cross-section area

Stiffeners

Welding seam

Figure 6.1: Isometric and detailed views of Z38 with design details [95].

Considering the boundary conditions, the cylindrical shell was potted into circular

steel rings with 20 mm in height using an epoxy resin mixed with quartz powder. The

end plates ensure circular cross-sections, and the hardening of this mixture with 20 mm
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depth ensures the bond between the structure and the metallic rings. Figure 6.2 shows

(a) an overview of the cylinder potted into the steel rings and (b) a detailed view of

the upper steel ring.

(a) Overview of the potted cylindrical shell. (b) Detailed view of the upper steel ring.

Figure 6.2: Z38 potted into the metallic end plates [95].

Before the experimental campaign, a digital image correlation (DIC) system based

on photogrammetry, named ATOS® [15], was used for measuring the outer surface

deviations of the potted cylindrical shell. These measurements allow an assessment of

the quality of the specimen and the calculation of the ideal best-fit cylinder along with

the corresponding outer surface best-fit radius of Table 6.1. Figure 6.3 presents the

measured deviations as related to the calculated best-fit cylinder.
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Figure 6.3: Measured mid-surface imperfection of Z38.
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6.1.2 Cylinders ZD27, ZD28, and ZD29

The specimens ZD27, ZD28, and ZD29 concern three nominally equal unstiffened

composite laminated cylindrical shells manufactured at the DLR Institute of Composite

Structures and Adaptive Systems [97]. The cylinders were fabricated by hand-layup

using four plies of the unidirectional prepreg IM7/8552 Hexcel® and the same mold.

Figure 6.4 presents the described structures, and Table 6.2 shows the geometric

characteristics (measured and nominal magnitudes).

(a) Cylinder ZD27. (b) Cylinder ZD28. (c) Cylinder ZD29.

Figure 6.4: Specimens ZD27, ZD28, and ZD29 [97].

Table 6.2: Geometric characteristics of ZD27, ZD28, and ZD29 [97].

Description Nominal ZD27 ZD28 ZD29

Free length (total length) [mm] 560 (600) 560 (600) 560 (600) 560 (600)

Middle surface best-fit radius [mm] 250.00 250.78 250.86 250.87

Average total thickness [mm] 0.50 0.58 0.48 0.52

Layup [°] [+45 -45]S [+45 -45]S [+45 -45]S [+45 -45]S

Evaluating Table 6.2, the variations of the geometric characteristics of the cylindri-

cal shells are within a tolerable range for equivalent specimens. Additionally, Table 6.3

shows the mechanical material properties of the unidirectional lamina, considering

0.125 mm as the nominal ply thickness and 60.5% as the fiber volume fraction. These

material properties were obtained from previous material characterization tests per-

formed at DLR, available in [111, 112].
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Table 6.3: Mechanical material properties of IM7/8552 [111, 112].

E11 [GPa] E22 [GPa] ν12 G12 [GPa] G13 [GPa] G23
* [GPa]

150.0 9.08 0.32 5.29 5.29 3.41

* Calculated G23 using the approximation formula from [113].

Concerning the boundary conditions, equally to Z38, circular steel end plates with

20 mm in height were potted on both edges using the resin mixture. After that, the DIC

ATOS® was employed for measuring the outer surface deviations. Figure 6.5 presents

these measurements for each one of the specimens as related to the best-fit radii of

Table 6.2. The middle surface best-fit radii of Table 6.2 are calculated considering the

respective outer surface best-fit radii and average total thicknesses of Table 6.2.
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(a) Cylinder ZD27.
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(b) Cylinder ZD28.

Circumferential position [rad]

L
en

gt
h
[m

m
]

−π −π/2 0 π/2 π

0

140

280

420

560

 

 

D
ev
ia
ti
on

[m
m
]

-0.40

-0.15

0.09

0.33

0.57

(c) Cylinder ZD29.

Figure 6.5: Measured mid-surface imperfection of ZD27, ZD28, and ZD29.

The manufacturing quality of the composite cylindrical shells was also assessed

regarding their thickness variation. The ultrasonic scan employing a 10 MHz probe,

which gives a good balance between thickness range and resolution, covered the total

surface of the cylinders. The thickness measurements were taken before the described

potting procedure. Figure 6.6 shows the ultrasonic scan of each structure, from which

the corresponding average total thicknesses were given in Table 6.2.
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(a) Cylinder ZD27.
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(b) Cylinder ZD28.
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(c) Cylinder ZD29.

Figure 6.6: Measured thickness variation of ZD27, ZD28, and ZD29.

The mechanical material properties of composite materials are calculated based

on the fiber volume ratio [114]. Khakimova et al. [115] assumed that the thickness

variation is associated with the amount of matrix variation while the amount of

fibers remains constant, and recalculated the material properties through composite

composition rules. Two equations were deduced for calculating a given material property

of the composite material XC:

XC =
hNOM

h
XC,NOM +

(
1− hNOM

h

)
XM (6.1)

XC =
XM

1−
√
hNOM

h

(
1− XM

XC,NOM

) (6.2)

where hNOM is the nominal thickness of the laminate, XC,NOM is the nominal magnitude

of the composite material property XC, and XM is the corresponding material property

of the matrix. In the study, the authors specified that Equation (6.1) should be used

for calculating E11 and ν12, while Equation (6.2) should be used for calculating E22,

G12, G13, and G23.

Note that Equations (6.1) and (6.2) depend on the thickness ratio and the matrix

and nominal composite material properties. The elastic modulus of the matrix, available
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in [116], is 4,670 MPa, and the Poisson’s ratio is assumed 0.30, as suggested in [115].

Moreover, the nominal and average total thicknesses presented in Table 6.2 are

considered. Table 6.4 shows the modified material properties, which are used to

calculate the linear buckling loads of ZD27, ZD28, and ZD29 in Section 6.4.

Table 6.4: Modified mechanical material properties of IM7/8552.

Cylinder E11 [GPa] E22 [GPa] ν12 G12 [GPa] G13 [GPa] G23 [GPa]

ZD27 130.82 8.53 0.32 4.67 4.67 3.21

ZD28 155.93 9.26 0.32 5.51 5.51 3.47

ZD29 144.84 8.93 0.32 5.11 5.11 3.36

6.1.3 Cylinder Z42

The specimen Z42 consists of an unstiffened cylinder fabricated by hand-layup

using six layers of the unidirectional prepreg 135/HS40/67g NTPT� [117]. The design

based on such thin layers allows the investigation of cylindrical shells that are closer

to real launch vehicle structures in terms of the R/h ratio (approximately 1025 for

Z42). Figure 6.7 shows the described cylinder, while Table 6.5 presents the measured

geometric characteristics and the corresponding nominal values.

Figure 6.7: Specimen Z42 [117].
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Table 6.5: Geometric characteristics of Z42 [117].

Description Nominal Z42

Free length (total length) [mm] 800 (850) 800 (850)

Middle surface best-fit radius [mm] 400.00 400.93

Average total thickness [mm] 0.39 0.36

Layup [°] [+60 0 -60]S [+60 0 -60]S

Furthermore, Table 6.6 summarizes the mechanical material properties obtained

from a test campaign according to DIN EN 14126, 2561, and 2597 for a specimen with

0.065 mm as nominal ply thickness.

Table 6.6: Mechanical material properties of 135/HS40/67g [117].

E11 [GPa] E22 [GPa] ν12 G12 [GPa] G13 [GPa] G23
* [GPa]

196.0 7.80 0.25 5.09 5.09 3.20

* Calculated G23 using the approximation formula from [113].

Analyzing Table 6.5, the average total thickness of Z42 is 7.69% smaller than the

nominal magnitude. Assuming that this discrepancy is due to the variation of the

amount of matrix, the obtained material properties of Table 6.6 are modified through

Equations (6.1) and (6.2). The elastic modulus from [116] and 0.30 as Poisson’s ratio

are considered once specific information for the resin of the prepreg 135/HS40/67g is not

available in [118]. Table 6.7 shows the recalculated material properties.

Table 6.7: Modified mechanical material properties of 135/HS40/67g.

E11 [GPa] E22 [GPa] ν12 G12 [GPa] G13 [GPa] G23 [GPa]

211.94 8.02 0.25 5.50 5.50 3.31

Analogous to Subsection 6.1.2, the thickness measurement, shown in Figure 6.8, was

performed through the same ultrasonic scan taking into account the already delineated

configuration. As described for the other specimens, the cylinder Z42 was also potted

into metallic rings using the same resin mixture. However, as in-plane imperfections
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were prescribed during its experimental campaign, the upper ring, which is split into

two parts, has 30 mm in height while the bottom one has 20 mm.
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Figure 6.8: Measured thickness variation of Z42.

The two mentioned parts of the upper ring are connected by top flanges through

64 bolts like schematically depicted in Figure 6.9. This design permits including shims

between these flanges, forming a desired pattern of in-plane imperfections through the

circumference. In Figure 6.10, a top view of the described shim is presented, which has

0.05 or 0.10 mm of thickness, while Figure 6.11 shows the in-plane imperfection pattern

implemented during the experimental campaign of Z42.

Shim

Flanges

Upper ring cross-section

Shell

Figure 6.9: Schematic view of the upper ring.

22.5

Figure 6.10: Top view of the shim.
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Figure 6.11: Implemented in-plane imperfection of Z42 [117].

For potting the cylindrical shell into the metallic rings, the flanges were firstly

tightened in the reference position, i.e., without any shim configuration. This procedure

ensured that the expected misalignment between the parts does not affect the desired

in-plane imperfection. Subsequently, as performed for the other cylinders, the out-of-

plane deviations of the outer surface of the specimen were measured through the DIC

ATOS®. Figure 6.12 presents the measured imperfection signature.
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Figure 6.12: Measured mid-surface imperfection of Z42.

6.2 Linear numerical analyses

As itemized in Section 4.4, the implementation of the VCT analytically verified

in Chapter 4 requires the first linear buckling load for calculating the load ratio p.

Consequently, simplified FE models are determined for obtaining the linear buckling

load of the cylindrical shells presented in Section 6.1. The numerical models are pre-

and postprocessed through the commercial FE solver Abaqus Standard 6.16® using

the default Lanczos algorithm.

The simplified FE models are based on the free length and best-fit radius of the

cylinders given in Tables 6.1, 6.2, and 6.5; besides, they assume clamped boundary

conditions on both edges. The FE model of Z38 contains linear quadrilateral elements
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with four nodes, six degrees of freedom per node, and reduced integration (S4R).

Differently, the FE models of ZD27, ZD28, ZD29, and Z42 use parabolic shell elements

with eight nodes, six degrees of freedom per node, and reduced integration (S8R).

Besides the unpressurized condition, the cylinder Z38 was also tested for three inter-

nal pressure levels, i.e., 0.01, 0.02, and 0.03 bar. Thus, a convergence analysis with 126,

252, 378, and 504 elements over the circumference associated with 1, 2, 3, and 4 elements

within the stiffener’s height, respectively, is performed for each loading condition. The

FE models employ the material properties from Table 5.2. Finally, Figure 6.13 shows

the convergence of the first buckling load (as related to the finest mesh).
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Figure 6.13: Convergence of the first buckling load of Z38.

As presented in Figure 6.13, the mesh with 252 elements over the circumference

has an appropriate convergence, that is, the deviation to the finest mesh is below 1%.

Figure 6.14(a) depicts the resultant FE model, which contains 36,288 S4R elements

associated with 36,792 nodes. Additionally, the inner surface of the cylinder is taken as

a reference; hence, the elements associated with the skin include offset avoiding a super-

position of the skin and stiffeners cross-section areas as illustrated in Figure 6.14(b).

(a) Isometric view of the FE mesh.

Nodes

Stiffener

Skin

(b) Cross-section area of the shell elements.

Figure 6.14: FE mesh and cross-section area of the shell elements of Z38.
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For the composite shells, the FE models are based on the average total thickness and

the recalculated material properties from Tables 6.4 and 6.7. The convergence analysis of

Z42 investigates 75, 150, 300, and 600 elements through the circumference, whereas the

analyses of ZD27, ZD28, and ZD29 investigate 60, 120, 240, and 480. Besides, as Z42 was

tested with 0.01 bar of internal pressure, this configuration is also evaluated. Figure 6.15

shows the convergence of the first linear buckling load of the CFRP cylinders.
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(a) Cylinders ZD27, ZD28, and ZD29.
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(b) Cylinder Z42.

Figure 6.15: Convergence of the first buckling load of the CFRP cylinders.

From Figure 6.15(a) and (b), converged buckling loads (with a deviation to the finest

mesh below 1%) are achieved for 120 and 300 elements over the circumference for ZD27,

ZD28, and ZD29 and Z42, respectively, whereas in other directions the elements are kept

square. Thus, the FE models of ZD27, ZD28, and ZD29 have 5,040 S8R shell elements

associated with 15,360 nodes, and the FE models of Z42 have 28,800 S8R shell elements

associated with 87,000 nodes. Both described FE meshes are depicted in Figure 6.16.

(a) Cylinders ZD27, ZD28, and ZD29. (b) Cylinder Z42.

Figure 6.16: FE meshes of the CFRP cylinders.
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The above-described FE models are used for calculating the linear buckling loads

of the perfect cylindrical shells PCR. The simulations take into account the internal

pressure levels pINT when appropriate, i.e., for Z38 and Z42, and fully clamped boundary

conditions. Table 6.8 summarizes the linear numerical results for the first buckling

load, which are employed in Section 6.5 to calculate the load ratio p for the VCT

assessment of the experimental campaigns.

Table 6.8: First linear buckling load of the cylindrical shells.

Cylinder pINT [bar] PCR [kN]

Z38

- 109.46

0.01 120.83

0.02 130.66

0.03 139.70

ZD27 - 27.40

ZD28 - 22.46

ZD29 - 24.33

Z42
- 21.58

0.01 23.32

6.3 Test facilities and test set-ups

This section describes the three buckling test facilities and corresponding test set-ups

employed during the experimental campaigns presented in this thesis.

6.3.1 DLR static buckling test facility

The experimental campaigns of the specimens Z38 and Z42 were performed in one of

the buckling test facilities at the DLR Institute of Composite Structures and Adaptive

Systems. The test rig consists of an axially supported top plate and a lower drive

plate activated by a servo-controlled hydraulic cylinder. Between the top plate and

the cylindrical shell, a load distributor was placed to ensure an equal force distribution

between three load cells, which were used for measuring the applied load.
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Moreover, a thin layer of epoxy concrete—epoxy resin reinforced with quartz

sand—was added to the interface between the lower drive plate and the specimen.

This layer overcomes any further misalignment and encloses the structures’ volume

for applying the internal pressure. More details of the mentioned test facility and

its established procedures for buckling tests are published in [119–121]. Figure 6.17

presents an overview of the cylinders Z38 and Z42 positioned in the test facility.

(a) Cylinder Z38. (b) Cylinder Z42.

Figure 6.17: Z38 and Z42 positioned in the DLR static buckling test facility.

Considering the loading procedure during the buckling and vibration tests, firstly,

when applicable the specimens were loaded with internal pressure, which was applied

at a constant rate of 0.03 bar/min from zero to the desired magnitude. A closed-loop

control system was used for applying the internal pressure conserving the desired level

constant during the axial loading and the vibration tests. Figure 6.18 depicts the

schematic representation of the pressure control system.

8 bar

Pressure reduction
valve

Proportional

pressure control

valve
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control unit
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cylindrical shell
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Figure 6.18: Schematic representation of the pressure control system [95].
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Afterward, the specimens were loaded in compression using displacement control at

a constant velocity of 0.12 mm/min. For the buckling tests, the load was applied until

buckling took place and smoothly removed after that. Concerning the VCT experiments,

the movable lower drive of the machine was held in place at the desired load levels,

and the vibration tests were performed through a mechanical shaker connected by a

rod and a laser scanning vibrometer.

The cylindrical shells were excited by a pseudo-random signal, and the laser scanning

vibrometer, which measures the vibration response in terms of velocity, was positioned

covering a segment of the specimen surface. For Z38 and Z42, the segments were

defined by an arc length of 459 and 350 mm, a height of 768 and 550 mm, and a

mesh with 99 and 77 measured points, respectively. The described grids of measured

vibration points are shown in Figure 6.19.

(a) Cylinder Z38. (b) Cylinder Z42.

Figure 6.19: Grids of the measured vibration points of Z38 and Z42.

At least three measurements per measured point were taken for averaging the

vibration response signals. Furthermore, a frequency band from 0 to 200 Hz and 800

spectral lines were assumed, resulting in a frequency resolution of 250 mHz. The signals

were measured and postprocessed through the Polytec® software, in which a modal

analysis was performed for characterizing the dynamic behavior of the cylindrical shells,

i.e., the vibration modes and respective natural frequencies.

6.3.2 DLR dynamic buckling test facility

The VCT experimental campaigns of ZD28 and ZD29 were performed in the dynamic

buckling test facility at DLR [97]. The test rig consists of a lower base plate with a load

releasing structure on the bottom of the test rig and a top drive unit activated by a
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linear electric actuator. This load introduction unit is guided by linear bearings at three

positions so that the only possible translation is along the axial direction of the cylinder;

additionally, it acts as a load distributor to ensure an equal force distribution.

Below the load releasing structure, three load cells were mounted measuring the

applied axial load. The relative displacement of the load introduction unit to the load

releasing structure was also measured by three displacement sensors placed equally

distributed around the circumference of the cylinder. Furthermore, a thin layer of

epoxy concrete was placed between the lower end plate and the load releasing structure

and between the top end plate and the load introduction interface.

Identically to the test set-up of Z38, these layers consist of epoxy resin reinforced

with quartz sand, and the objective of such a procedure is to reduce any additional

misalignment between the test rig and the specimen. Figure 6.20 presents two pictures

of the test set-up prepared for ZD28 being (a) the cylindrical shell positioned in the test

facility for a buckling test, and (b) a detailed view of the mechanical shaker coupled

with the cylinder for a vibration test.

(a) Cylinder positioned in the test facility for
a buckling test.

(b) Detailed view of the mechanical shaker
coupled with the cylinder.

Figure 6.20: ZD28 positioned in the DLR dynamic buckling test facility.

Besides the mechanical shaker presented in Figure 6.20(b), the test set-up also

considered a laser scanning vibrometer; observe that both were also used in the test

set-ups described in Subsection 6.3.1. Displacement control was used to apply the axial
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load at a 0.8 mm/min rate. For the vibration tests of the axially loaded cylinders, the

top drive plate was held at each desired load level, whereas for the buckling tests the

load was applied until buckling took place.

The cylindrical shells were excited with a pseudo-random signal and two different

test configurations were defined for the cylinders ZD28 and ZD29, respectively. For the

first, 77 points were designated for measuring the vibration response with a frequency

band of 2 kHz and a frequency resolution of 312.5 mHz. For the second, 171 points

were considered for measuring the vibration response with a frequency band of 1 kHz

and a frequency resolution of 156.25 mHz.

The actual vibration measurements are contaminated by random and bias noises.

The random noise is completely filtered out by averaging the signal [109], while bias

errors, such as nonlinearities, leakage, and mass loading, are not affected by this

procedure. Thus, for both test configurations, at least three measurements were taken

for averaging the vibration response signals. Figure 6.21 depicts the grids of measured

vibration points of the cylinders ZD28 and ZD29.

(a) Cylinder ZD28. (b) Cylinder ZD29.

Figure 6.21: Grids of the measured vibration points of ZD28 and ZD29.

6.3.3 TU Delft buckling test facility

The specimen ZD27 was tested for buckling and vibration at different load levels

at the TU Delft Faculty of Aerospace Engineering. The test set-up considers an

MTS 3500 servo-hydraulic test machine; moreover, the cylindrical shell was placed

between the base plate and the movable plate of the machine. Two linear variable

differential transformer (LVDT) sensors measured the axial shortening on both sides of

the cylinder [97]. Figure 6.22 shows an overview of ZD27 positioned for the tests.
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Figure 6.22: ZD27 positioned in the TU Delft buckling test facility.

For the buckling and vibration experiments, the cylinder was loaded in axial

compression with displacement driven test mode. The displacement speed was set to

0.2 mm/min with a preload of 1 kN. The load was applied up to the instability of the

structure for the buckling test. Concerning the vibration tests, the natural frequencies

of the cylindrical shell were measured at various load levels through a test set-up

consisting of a laser scanning vibrometer and a loudspeaker.

Over the shaker, the loudspeaker has some advantages as a uniform excitation and

not adding a local interference in the structure. A frequency sweep signal was used for

exciting the specimen in the range of interest (between 100 and 400 Hz). Thus, the

frequency band was adjusted to 400 Hz, while a frequency resolution of 250 mHz was

defined. The cylinder was scanned at 143 points, as given in Figure 6.23, considering

four measurements for averaging the vibration signals.

Figure 6.23: Grid of the measured vibration points of ZD27.
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6.4 Experimental campaigns

As mentioned before, three main experimental campaigns were performed within the

scope of this thesis. A description of the buckling and vibration tests, together with the

corresponding experimental results, is provided in the following subsections.

6.4.1 Z38 experimental campaign

The cylinder Z38 was tested for the unpressurized condition and three internal

pressure levels pINT, specifically, 0.01, 0.02, and 0.03 bar, which provided a substantial

increase in the buckling load within the elastic range. Nevertheless, the vibration tests

were conducted before the buckling tests ensuring an intact specimen during all of

them [95]. Moreover, before and after each buckling test, measurements of the surface

displacements were taken and compared to guarantee no plastic deformations.

Firstly, one buckling test per pINT was performed, and after that, a sequence of ten

buckling tests was planned for each pINT. The specimen suddenly failed during the sixth

test considering 0.01 bar. Consequently, Table 6.9 shows average buckling loads PEXP

for the unpressurized condition and 0.01 bar of pINT, with the respective standard devia-

tions, and the magnitude of a single buckling test for 0.02 and 0.03 bar of pINT. Moreover,

the mentioned table also presents the effective KDF γEXP calculated as PEXP/PCR.

Table 6.9: Results of the buckling tests of Z38 [95].

pINT [bar] PEXP [kN] γEXP

Unpressurized 86.53±0.083 0.79

0.01 104.36±0.080 0.86

0.02 116.80 0.89

0.03 127.86 0.92

The vibration tests were performed for the unpressurized condition and each pINT at

eight compressive load levels Pi. The maximum load level and the number of load steps

were chosen based on FE models defined during the planning phase of the experiment.

The tests provided the variation of the dynamic behavior, specifically, vibration modes

and natural frequencies through the axial loading. Table 6.10 presents the first loaded

natural frequency F̄1 at different load steps Pi for each pINT.
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Table 6.10: Results of the vibration tests of Z38 [95].

Unpressurized pINT: 0.01 bar pINT: 0.02 bar pINT: 0.03 bar

Pi [kN] F̄1 [Hz] Pi [kN] F̄1 [Hz] Pi [kN] F̄1 [Hz] Pi [kN] F̄1 [Hz]

14.59 93.50 16.30 105.50 19.24 116.00 20.42 124.25

36.27 86.00 42.84 98.00 46.96 108.50 50.86 117.00

44.29 83.00 65.05 90.50 65.30 103.25 70.54 111.75

62.05 75.50 70.11 88.75 77.38 99.25 85.01 108.00

66.36 73.50 74.18 87.25 82.59 97.25 88.45 106.75

68.04 72.25 76.46 86.50 85.45 96.75 93.43 105.75

70.33 71.25 83.37 83.25 88.47 95.75 96.83 104.25

72.73 69.00 87.30 81.50 92.60 94.50 100.80 103.50

The first vibration mode for all loading conditions of Table 6.10 is associated with

one axial half-wave m, directly identified from the measured vibration mode, and nine

circumferential waves n, extrapolated from the measurements using the arc length of the

grid of the measured points. Figure 6.24 depicts the first vibration mode measured at the

first load step for Z38, precisely, 14.59, 16.30, 19.24, and 20.42 kN for the unpressurized

condition, and 0.01, 0.02, and 0.03 bar of internal pressure, respectively.

(a) At 14.59 kN unpressurized
(93.50 Hz).

(b) At 16.30 kN with 0.01 bar
(105.50 Hz).

(c) At 19.24 kN with 0.02 bar
(116.00 Hz).

(d) At 20.42 kN with 0.03 bar
(124.25 Hz).

Figure 6.24: First vibration mode at the first load step for Z38.
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6.4.2 DLR/TU Delft experimental campaign

This experimental campaign comprises buckling and vibration tests performed at

two different test facilities. As its first step, ten buckling tests were performed at

DLR for validating the nominally identical specimens, i.e., ZD27, ZD28, and ZD29, as

equivalent. Table 6.11 gives the results of the ten buckling tests in terms of the average

buckling loads PEXP with the corresponding standard deviations and the effective KDFs

γEXP for each cylinder.

Table 6.11: Results of the DLR buckling tests of ZD27, ZD28, and ZD29 [97].

Cylinder PEXP [kN] γEXP

ZD27 20.47±0.007 0.75

ZD28 21.49±0.052 0.96

ZD29 21.86±0.016 0.90

Analyzing Table 6.11, the sets of ten buckling tests were reproducible, and the

buckling loads are within an acceptable range of variation corroborating the three spec-

imens as equivalent. Nevertheless, note that ZD28 and ZD29 have greater magnitudes

of γEXP when compared to ZD27. This fact is associated with the modified material

properties of the latter mentioned cylindrical shell, which resulted in a greater PCR, for

reference, see Table 6.8.

Concerning the VCT tests conducted at DLR, the vibration measurements were

performed at six load steps for ZD28 and eleven load steps for ZD29. As a result, the

study also experimentally verifies the effectiveness of considering more load steps in the

VCT estimations. Figure 6.25 shows the first vibration mode at the first load step for

ZD28 and ZD29, while Table 6.12 presents the variation of the first natural frequency

F̄1 of each cylinder as related to the respective applied axial load levels Pi.

(a) ZD28 at 0.38 kN (203.13 Hz). (b) ZD29 at 0.53 kN (203.75 Hz).

Figure 6.25: First vibration mode at the first load step for ZD28 and ZD29.
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Table 6.12: Results of the vibration tests of ZD28 and ZD29 [97].

ZD28 ZD29

Pi [kN] F̄1 [Hz] Pi [kN] F̄1 [Hz]

0.38 203.13 0.53 203.75

5.38 194.38 2.96 200.00

10.38 182.81 5.39 195.00

15.38 170.63 7.95 190.00

17.88 165.00 10.41 184.22

20.38 155.31 12.37 180.47

14.39 175.16

16.35 170.31

18.47 164.53

20.47 157.34

20.93 153.91

Evaluating Figure 6.25, both vibration modes are similar and associated with one

axial half-wave m and nine circumferential waves n—extrapolated from the pictures.

Note that the same pair (m, n) was found for the first vibration mode of the other load

steps for both cylinders. Furthermore, the magnitudes of the first natural frequency for

similar load steps among the specimens are comparable, see Table 6.12. Given these

aspects, the different vibration test configurations of ZD28 and ZD29 are equivalent.

The cylinder ZD27 was also tested for buckling at the TU Delft Faculty of Aerospace

Engineering to establish a common basis for comparing both test facilities. A sequence

of ten buckling tests was planned; however, the specimen failed during the first buckling

test. Therefore, Table 6.13 gives the experimental buckling load based on a single

buckling test PEXP, the deviation from the DLR equivalent test result δDLR, and the

corresponding effective KDF γEXP.

Table 6.13: Results of the TU Delft buckling test of ZD27 [97].

Cylinder PEXP [kN] δDLR [%] γEXP

ZD27 15.90 -22.33 0.58

Analyzing Table 6.13, the experimental buckling load obtained at the TU Delft is
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considerably smaller when compared to the DLR average buckling load for the same

cylindrical shell, i.e., with a deviation between magnitudes of 22.33%. This discrepancy

is likely to be associated with the differences between the test set-ups as, for instance,

load asymmetry (reduced in the DLR test arrangement due to the thin layers of epoxy

concrete), boundary conditions, among others.

The natural frequencies of the specimen were measured considering a load step

of 1 kN starting from 5 kN, except for 12 kN. A lower load level was not measured

due to the not completely fixed boundary conditions at low load magnitudes, noticed

previously in similar tests. As there was no adhesive paste added between the circular

end rings and the support plate of the test machine, the cylinder could not be uniformly

pressed without applying a certain load level.

Therefore, this experimental campaign also evaluates if the VCT proposed in [35]

is applicable when the natural frequency is not available near the unloaded condition

as, e.g., in the experimental campaigns of Z38 and Z42—for the experimental results

of Z42, vide the next subsection. The first vibration mode is shown at 5 and 6 kN in

Figure 6.26 (a) and (b), respectively. Additionally, the variation of the first natural

frequency F̄1 with the measured load steps Pi is presented in Table 6.14.

(a) At 5 kN (176.5 Hz). (b) At 6 kN (175.0 Hz).

Figure 6.26: First vibration mode at 5 and 6 kN for ZD27.

Table 6.14: Results of the vibration tests of ZD27 [97].

Pi [kN] F̄1 [Hz] Pi [kN] F̄1 [Hz]

5.0 176.5 9.0 167.0

6.0 175.0 10.0 164.0

7.0 171.5 11.0 161.0

8.0 168.5 13.0 153.0

From Figure 6.26, the first vibration mode is slightly different at 5 and 6 kN; note
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that the first vibration mode resembles Figure 6.26(b) for greater load levels. This

discrepancy is most likely associated with the not completely fixed test set-up. Moreover,

comparing the frequency magnitudes for similar load levels in Tables 6.12 and 6.14

observe that the results obtained at the TU Delft are much lower, clearly indicating

more flexible boundary conditions or non-uniform load distribution.

6.4.3 Z42 experimental campaign

The cylinder Z42 was tested with and without the in-plane imperfection pattern of

Figure 6.10; additionally, both test set-ups considered 0.01 bar of internal pressure and

the unpressurized condition resulting in four test configurations. Three buckling tests

were performed for each described configuration [117]. Table 6.15 presents the results of

the three buckling tests in terms of the average buckling loads PEXP with the respective

standard deviations and effective KDFs γEXP.

Table 6.15: Results of the buckling tests of Z42 [117].

Configuration pINT [bar] PEXP [kN] γEXP

Without shims Unpressurized 12.40±0.058 0.57

Without shims 0.01 15.09±0.135 0.65

With shims Unpressurized 10.56±0.036 0.49

With shims 0.01 13.25±0.046 0.57

Evaluating Table 6.15, the sets of three buckling tests were reproducible, and the

results are within an acceptable range of variation. As expected for a specimen with

such an R/h ratio, the KDFs associated with the experimental buckling loads are

relatively low. Moreover, note that the effect of the in-plane imperfection on the

reference buckling loads (without shims) is a reduction of 14.84% and 12.19% for the

unpressurized condition and 0.01 bar of pINT, respectively.

The vibration measurements were performed at six load steps plus the unloaded

condition—considering a residual load for keeping the test set-up fixed—for all test

configurations. Figure 6.27 presents the first vibration mode at the first load step of

each test configuration, being all of them characterized by (m, n) equal to (1, 11), which

was also observed for greater load levels. Besides, Table 6.16 shows the variation of the

corresponding first natural frequency F̄1 as related to the applied axial load levels Pi.
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(a) At 0.76 kN unpressurized without shims
(133.50 Hz).

(b) At 1.34 kN with 0.01 bar without shims
(170.25 Hz).

(c) At 0.76 kN unpressurized with shims
(134.00 Hz).

(d) At 1.23 kN with 0.01 bar with shims
(169.50 Hz).

Figure 6.27: First vibration mode at the first load step for Z42.

Table 6.16: Results of the vibration tests of Z42.

Without shims With shims

Unpressurized pINT: 0.01 bar Unpressurized pINT: 0.01 bar

Pi [kN] F̄1 [Hz] Pi [kN] F̄1 [Hz] Pi [kN] F̄1 [Hz] Pi [kN] F̄1 [Hz]

0.76 133.50 1.34 170.25 0.76 134.00 1.23 169.50

2.76 132.25 3.76 168.50 2.76 132.25 3.76 167.75

5.76 129.25 6.76 166.25 4.76 130.25 6.76 165.75

6.76 128.00 8.26 165.00 5.76 129.50 8.26 164.50

7.76 126.75 9.76 163.50 6.76 128.00 9.76 163.25

9.76 124.75 11.16 161.75 7.76 126.75 10.76 162.50

10.76 123.00 12.66 160.50 8.76 125.00 11.66 161.00

6.5 VCT applied to the experimental results

Section 6.4 presented the experimental results for the buckling and vibration tests

of the cylinders Z38, ZD27, ZD28, ZD29, and Z42. In the present section, these results
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are evaluated towards extending the applicability of the VCT verified analytically in

Chapter 4. The study validates the VCT predictions by comparing them with the

corresponding buckling loads obtained from the buckling tests. Furthermore, the steps

restated in Chapter 4 are followed as described below:

1. Calculate the first linear buckling load of the perfect structure PCR. This step

was carried out through a linear numerical analysis considering clamped boundary

conditions. Standard material properties from [107], reproduced in Table 5.2,

were employed for Z38, and recalculated ones, presented in Tables 6.4 and 6.7,

for ZD27, ZD28, and ZD29 and Z42, respectively. The results for the first linear

buckling load are shown in Table 6.8.

2. Assess the first natural frequency variation during axial loading. This step was

performed experimentally in different buckling test facilities depending on the

specimen, as described in Sections 6.3 and 6.4. The results of the vibration tests

are given in Tables 6.10, 6.12, 6.14, and 6.16.

3. Generate the charts (1 − p)2 versus 1 − f 2. The load ratio p is calculated as

the applied axial load Pi over the first buckling load from the linear numerical

models PCR and the frequency ratio f as the first natural frequency at Pi load

level F̄1 over the first natural frequency in the unloaded condition. The unloaded

condition is not available for the tested specimens; therefore, the corresponding

natural frequency at the smallest load level was used.

4. Estimate the second-order best-fit relationship between (1 − p)2 and 1 − f 2

through Equation (4.30). The adjusted quadratic equation is then minimized for

evaluating the square of the drop of the load-carrying capacity ξ2, as defined in

Equation (4.31).

5. Estimate the buckling load of the structure as established by Souza et al. [87],

i.e., using the positive square root of ξ2 and the first linear buckling load PCR

into Equation (2.4).

The experimental data were postprocessed in a Matlab® algorithm and the corre-

sponding characteristic charts are depicted in Figure 6.28. For the sake of simplicity,

each chart groups all test results associated with one of the experimental campaigns,

for reference, see Section 6.4. Besides the second-order best-fit curves plotted for

each test configuration, the legend of the charts contains the respective coefficients of

determination R2
S and minima along the (1−p)2 axis (regarded as ξ2).
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(a) Cylinder Z38.
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(b) Cylinders ZD27, ZD28, and ZD29.
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(c) Cylinder Z42.

Figure 6.28: VCT implementation for the experimental campaigns.
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Additionally, Table 6.17 presents the estimations of the ξ2 parameter, the VCT

predictions for the experimental buckling loads PVCT, the deviations δEXP (as related

to PEXP), and the maximum load level considered in the VCT estimations PMAX (as a

percentage of PEXP). Besides, in the mentioned table, the experimental buckling loads

PEXP and their associated KDFs γEXP, given in Section 6.4, are reproduced for a better

assessment of the results.

Table 6.17: Summary of the VCT predictions of the experimental campaigns.

Cylinder pINT [bar] PMAX [%] PEXP [kN] γEXP ξ2 PVCT [kN] δEXP [%]

Z38

- 84.05 86.53 0.79 0.071 80.23 -7.28

0.01 83.65 104.36 0.86 0.049 93.99 -9.94

0.02 79.28 116.80 0.89 0.020 112.28 -3.87

0.03 78.84 127.86 0.92 0.016 122.22 -4.41

ZD27 - 81.76 15.90 0.58 0.198 15.21 -4.37

ZD28 - 94.85 21.49 0.96 0.015 19.70 -8.33

ZD29 - 95.74 21.86 0.90 0.025 20.48 -6.30

Z42
- 86.77 12.40 0.57 0.210 11.78 -4.99

0.01 83.90 15.09 0.65 0.177 13.51 -10.49

Z42*
- 82.95 10.56 0.49 0.320 9.45 -10.54

0.01 88.00 13.25 0.57 0.205 12.76 -3.67

* With the in-plane imperfection presented in Figure 6.11.

From Table 6.17, the VCT is providing consistent estimations for ξ2 once greater

magnitudes are associated with smaller γEXP. Notably, the adjusted curves are associ-

ated with high magnitudes of R2
S corroborating their goodness of fit, being the smallest

0.9944 for ZD28. These results indicate that the proposed quadratic equation fits the

experimental data appropriately. Moreover, as data at 95.74% of PEXP are available for

ZD29, the second-order relationship is verified in the vicinity of buckling.

As shown in Table 6.17, the predictions of the VCT are in good agreement with the

equivalent experimental results. The smallest and greatest deviation magnitudes, that

is, 3.67% and 10.54%, are obtained for Z42 with shims, with 0.01 bar of internal pressure

and in the unpressurized condition, respectively. Additionally, for all cylindrical shells,

the predicted buckling load is conservative since its magnitude is smaller than the
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corresponding experimental buckling load.

Particularly, for the experiments of Z38, the smallest deviations, i.e., -3.87% and

-4.41%, are associated with the pressurized tests presenting greater KDF magnitudes,

with 0.02 and 0.03 bar of pINT, respectively. This aspect indicates that the stabilizing

effect of the internal pressure improved the estimations. Furthermore, the method

has demonstrated to be truly nondestructive during the mentioned experimental

campaign once the maximum applied load level is 84.05% of PEXP for the unpressurized

case.

Considering the TU Delft/DLR test campaign, the results provide experimental

evidence that the VCT is more suitable for smaller KDF (as numerically verified in

Chapter 5). Analyzing the predictions of the three equivalent cylindrical shells, PVCT

obtained for ZD27 is in better agreement, although estimated from a relatively smaller

maximum load level (81.76% of PEXP). For ZD28 and ZD29, a reliable estimation is

associated with a high PMAX, specifically, 94.85% and 95.74% of PEXP, respectively.

Furthermore, the prediction for ZD27 was not affected by the absence of the first

natural frequency at a relatively small load level (close to the unloaded condition).

Moreover, a significant difference between the estimations of ZD28 and ZD29 is not

identified, indicating that the maximum load level—note that the maximum load level

for both cylindrical shells is similar—is more effective for reducing the deviation δEXP

than the number of load steps.

Concerning the experimental campaign of Z42, the methodology is first time

confirmed for an R/h of approximately 1025 and test conditions closer to real structures

(with in-plane induced stresses and internal pressure). The VCT successfully took into

account the in-plane imperfections combined with the internal pressure providing a

prediction with a deviation of -3.67%. Additionally, as the maximum load level is 88.00%

of PEXP for this test condition, the methodology is perceived as truly nondestructive.

6.6 Summary and conclusions

Five cylindrical shells, being one metallic and four composite laminated, were tested

towards expanding the practicality of the VCT conceived in [35] and verified analytically

herein. For that reason, the experimental campaigns also addressed internal pressure

levels and in-plane imperfections, which are often encountered in practical aerospace

applications. Moreover, the robustness of the methodology was validated, as three out
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of the five cylinders were equivalent structures tested in two different test facilities.

The cylindrical shells were manufactured considering processes usually employed in

the aerospace industry. Specifically, the composite specimens were fabricated by hand

lay-up of the prepreg onto a mandrel and cured in an autoclave, while the metallic one

consisted of a milled panel bent to form the cylinder with the joint edge welded by an

electron beam based process. Before testing, the structures were potted into circular

end plates with a resin mixture ensuring circular cross-sections.

State-of-the-art techniques were used for assessing the initial imperfections of the

specimens. The study employed these measurements in the definition of the linear

FE models used to calculate the first linear buckling load PCR of each cylinder. The

experimental campaigns were performed considering quasi-static loading. For the

vibration tests, the axial load was applied up to the desired load levels, whereas for the

buckling tests, up to the instability of the structure.

During the experimental campaigns, the first vibration mode was measured at

different axial load levels for different test configurations, vide Section 6.4. All VCT

estimations presented a good correlation when compared to their respective experimental

buckling loads once the magnitudes of the deviations are between 3.67% and 10.54%.

The results corroborate the nondestructive nature of the approach as the predictions

are conservative, i.e., below the corresponding buckling loads.
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7 Final remarks

In this final chapter, the main achievements of this thesis are discussed in Section 7.1,

whereas Section 7.2 provides a critical assessment, and Section 7.3 gives a perspective

for future researches.

7.1 Main conclusions

The most prominent contribution of this thesis is the analytical foundation for the

empirical VCT published in [35]. In Chapter 4, the anticipated second-order equation

between the parametric forms (1− p)2 and 1− f 2 was demonstrated by rearranging the

well-known linear relationship from Equation (4.28). The study also devised a novel

VCT definition substantiated on the typical static behavior of an imperfect cylinder, in

which the minimum magnitude of (1−p)2 is related to the effective KDF.

These findings were first challenged through a numerical assessment, verifying

the second-order relationship despite more realistic boundary conditions, geometric

nonlinearities, and initial imperfections. Following this, three experimental campaigns

further validated the applicability and robustness of the methodology addressing design

details and loading conditions, such as closely spaced stiffeners, internal pressure,

realistic R/h, and in-plane induced stresses.

Concerning the second-order equation expressing (1− p)2 in terms of 1− f 2 and the

VCT definition provided in Chapter 4, the following conclusions are drawn:

� Over the methodology from [87], the quadratic nature of the relationship between

(1− p)2 and 1− f 2 permits evaluating an extreme point for estimating ξ2 instead

of relying on the zero natural frequency assumption.

� For the typical static behavior of an unstiffened cylinder in the prebuckling

regime, the parametric form of the axially applied load (1− p)2 has a nonlinear

variation reaching its minimum magnitude exactly at the buckling load.

� The development of the equations, even though based on a linear theory of shells,

improves the understanding of the effectiveness of the methodology conceived

empirically in [35].
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Regarding the numerical assessment supplied in Chapter 5, the subsequent outcomes

are pointed out:

� A nonlinear relationship between (1 − p)2 and 1 − f 2, which decreases as the

load level increases, is observed in the nonlinear numerical results investigating

SS4 boundary conditions and initial mid-surface imperfections.

� The corroborated second-order equation resembles the relationship obtained

in the modified characteristic chart; for instance, see Figure 5.16, where the

coefficient of determination R2
S is 1.0000 for all evaluated results.

� The methodology is verified as truly nondestructive even for the study case

considering the maximum load level PMAX up to 50% of the corresponding PNL,

for which the deviation magnitudes are below 9.9%.

� The estimations obtained increasing the number of load steps and the maximum

load level simultaneously are conservative for the entire analyzed range of load

levels, i.e., associated with negative deviation magnitudes, see Figure 5.15.

� The algorithm developed based on the MAC index for tracking the vibration

modes consists of a reliable tool for fast postprocessing of the results facilitating

a thorough evaluation of the variation of the natural frequencies.

As related to experimental campaigns, the applicability and the robustness of the

method were notoriously extended as:

� The cylinder Z38 was designed as a simplified downscaled model of a launcher

propellant tank [95]; furthermore, internal pressure levels are commonly found in

operational conditions.

� The cylinder Z42 was fabricated with an R/h ratio of approximately 1025;

moreover, its experimental campaign, including internal pressure and in-plane

induced stresses, is closer to real applications.

� The cylinders ZD28 and ZD29 were tested up to 94.85% and 95.74% of their

corresponding PEXP, respectively, verifying the second-order relationship in the

surroundings of the instability point.

� Different test facilities result in different test conditions; consequently, the

experimental campaign presented in Subsection 6.4.2 endorses the robustness of

the VCT by testing equivalent specimens in different locations.
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All things considered, as introduced in Chapter 1, the aerospace industry would

benefit from a reliable nondestructive experimental procedure to predict the buckling

load of imperfection-sensitive structures, reducing time and budget spent in projects.

In this context, given the nine experimental campaigns [81, 90–97] and the analytical

foundation, developed in this thesis and published in [104], the VCT conceived in [35]

emerges as a promising method for tackling practical applications.

7.2 Critical assessment

The analytical, numerical, and experimental results of this thesis add substantially

to the prospect of the VCT applied to cylindrical shells; nevertheless, the study has

some limitations that should be highlighted:

� The analytical verification of (1− p)2 as a quadratic function of 1− f 2 is deduced

from a linearized theory of shells for an unstiffened isotropic cylinder with SS3

boundary conditions. Thus, the assumption that this equation holds for a given

structure with initial imperfections, different boundary conditions, and other

degrees of anisotropy needs to be verified before the test.

� The numerical evaluation based on two theoretical isotropic cylindrical shells is

associated with conservative estimations for the complete range of load levels, vide

Figure 5.15. Nonetheless, this tendency was not corroborated in the experimental

campaign presented in [91], where the authors found non-conservative estimations

for one out of three nominally identical specimens.

� The experimental work confirmed that PMAX has more influence on the prediction

than the number of load steps and that a PMAX closer to PEXP is needed for

experiments associated with a high effective KDF. Accordingly, to plan the VCT

experiment, ensuring a nondestructive procedure in the context of imperfection-

sensitive structures, remains an open question.

7.3 Future works

On developing the presented research, additional topics that may potentially

improve the relevance of the VCT applied to imperfection-sensitive structures were

recognized, which are itemized in the following:
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� One immediate extension of this thesis would concern the applicability of the

methodology. A broader range of realistic design solutions and loading conditions

frequently found in aerospace applications could be investigated experimentally

and numerically. Among these are other geometries, like conical and double-

curved shells; other composite materials, such as sandwich structures; some

design details as stiffeners, holes, and complex boundary conditions; and axial

load cases combined with bending or external pressure, or both.

� To investigate real-scale barrel structures and to include the VCT in the qualifi-

cation test of real launch vehicle components are still, to the best of the author’s

knowledge, unexplored. Such experiments could guide the development of the

methodology identifying the barriers that must be overcome to implement the

technique in the above-mentioned industrial applications. Besides, experimental

data to correlate the available results of sub-scale cylinders to full-scale ones

would be provided.

� The analytical work presented in Chapter 4 is based on the linearized Flügge-

Lurie-Byrne’s shell theory and assumes SS3 boundary conditions. An exploratory

research project could tackle both aspects, improving the practicality of the equa-

tions. Different boundary conditions would require more complex displacement

functions than the ones provided in Equations (4.8)– (4.10). Concerning shell

theories, the study could retain different terms, include other phenomena, or

eliminate some assumptions.
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Appendix A - Publications

The research work performed during the development of this doctoral thesis led to

two papers published in conferences:

� Franzoni, F., Arbelo, M. A., and Degenhardt, R., Numerical assessment of existing

vibration correlation techniques, in Proceedings of the 15th European Conference

on Spacecraft Structures, Materials and Environmental Testing (Noordwijk, NL,

2018);

� Franzoni, F., Albus, J., Arbelo, M. A., and Degenhardt, R., Analytical, numerical,

and experimental predictions for free vibrations and buckling of pressurized or-

thotropic cylindrical shells, in Proceedings of the 69th International Astronautical

Congress (Bremen, DE, 2018);

and three articles published in peer-reviewed scientific journals:

� Franzoni, F., Odermann, F., Wilckens, D., Skuk, is, E., Kalnin, š, K., Arbelo, M. A.,

and Degenhardt, R., Assessing the axial buckling load of a pressurized orthotropic

cylindrical shell through vibration correlation technique, Thin-Walled Structures

137, 353–366 (2019);

� Franzoni, F., Degenhardt, R., Albus, J., and Arbelo, M. A., Vibration correlation

technique for predicting the buckling load of imperfection-sensitive isotropic cylin-

drical shells: An analytical and numerical verification, Thin-Walled Structures

140, 236–247 (2019);

� Franzoni, F., Odermann, F., Labans, E., Bisagni, C., Arbelo, M. A., and De-

genhardt, R., Experimental validation of the vibration correlation technique

robustness to predict buckling of unstiffened composite cylindrical shells, Com-

posite Structures 224, 111107 (2019).
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Zeitschrift des Vereines Deutscher Ingenieure 52(43), 1706–1713 (1908).
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