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Abstract: The impact of SEOM–IAS (Scientific Exploitation of Operational Missions–Improved
Atmospheric Spectroscopy) spectroscopic information on CO columns from TROPOMI (Tropospheric
Monitoring Instrument) shortwave infrared (SWIR) observations was examined. HITRAN 2016
(High Resolution Transmission) and GEISA 2015 (Gestion et Etude des Informations Spectroscopiques
Atmosphériques 2015) were used as a reference upon which the spectral fitting residuals,
retrieval errors and inferred quantities were assessed. It was found that SEOM–IAS significantly
improves the quality of the CO retrieval by reducing the residuals to TROPOMI observations.
The magnitude of the impact is dependent on the climatological region and spectroscopic reference
used. The difference in the CO columns was found to be rather small, although discrepancies reveal,
for selected scenes, in particular, for observations with elevated molecular concentrations. A brief
comparison to Total Column Carbon Observing Network (TCCON) and Network for the Detection
of Atmospheric Composition Change (NDACC) also demonstrated that both spectroscopies cause
similar columns; however, the smaller retrieval errors in the SEOM with Speed-Dependent Rautian
and line-Mixing (SDRM) inferred CO turned out to be beneficial in the comparison of post-processed
mole fractions with ground-based references.

Keywords: infrared; radiative transfer; molecular absorption; line-by-line; line profiles

1. Introduction

Many species present in the atmosphere influence Earth’s radiative transfer by absorbing, emitting,
and scattering electromagnetic energy at certain wavelengths [1]. The interaction of radiation with
matter makes molecular spectroscopy a powerful tool in investigating the composition, distribution,
and evolution of atmospheric constituents. Key elements in the global monitoring of relevant
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molecules are state-of-the-art passive remote sensors on satellites, which provide valuable spectroscopic
measurements for many tropospheric and stratospheric constituents in near real time [2,3].

1.1. TROPOMI aboard S5P

The Sentinel-5 Precursor (S5P) is the first satellite mission within the European Union’s
(EU) Earth observation program Copernicus that is dedicated to the monitoring of atmospheric
chemistry. Successfully launched on 13 October 2017, the satellite was put into a circular near-polar
sun-synchronous low Earth orbit of 824 km with an ascending node equatorial crossing at 13:30 h
mean local solar time [4]. S5P’s payload is the Tropospheric Monitoring Instrument (TROPOMI)
was jointly developed by the Netherlands and the European Space Agency (ESA) and is
building upon the heritage of its predecessors GOME (Global Ozone Monitoring Experiment;
Burrows et al. [5]), GOME-2 (Munro et al. [6]), SCIAMACHY (SCanning Imaging Absorption
SpectroMeter for Atmospheric CHartographY Bovensmann et al. [7], Gottwald and Bovensmann [8]),
and OMI (Ozone Monitoring Instrument Levelt et al. [9]).

The TROPOMI instrument consists of a grating spectrometer with spectral bands in the
ultraviolet, visible (UVIS, 270–500 nm), near infrared (NIR, 675–775 nm), and shortwave infrared
(SWIR, 2305–2385 nm) spectral range and observes sunlight reflected by the Earth’s atmosphere and
surface with a spectral resolution of 0.25 nm and a spectral sampling interval of 0.1 nm in the SWIR
bands [10]. It operates in a push-broom configuration with a 108◦ field of view in the across-track
direction and provides almost daily global coverage at a spatial resolution of about 7× 7 km in the sub
satellite point in bands 7 and 8 [4].

1.2. Carbon Monoxide

The absorption of infrared radiation by carbon monoxide (CO) allows space-borne sensors to
record its infrared spectrum [11–15]. Although carbon monoxide (CO) is not a greenhouse gas, such as
water (H2O), methane (CH4), or carbon dioxide (CO2), it plays a role in climate change by influencing
the tropospheric hydroxyl radical (OH) and, thereby, the CH4 and CO2 concentrations [16–18].
CO’s main sources are combustion in oxygen-poor conditions, as well as atmospheric oxidation
of CH4 and other hydrocarbons. Oxidation by the OH radical is CO′s primary loss mechanism,
which essentially determines its one month lifetime in the troposphere [19–21]. Moreover, CO is a
major atmospheric pollutant that can affect human health, and it indirectly plays a role in the catalytic
ozone production and destruction.

1.3. Absorption in the SWIR and Retrieval

In the SWIR, the fraction of photons generated by thermal emission is well below 1% and
can hence be neglected [22]. Furthermore, clear sky measurements are subject to little atmospheric
scattering, and most of the measured light is reflected by the Earth’s surface. Those characteristics
and TROPOMI’s high signal-to-noise ratio (SNR) in the 2.3µm region over land surfaces allows the
instrument to measure clear-sky CO columns with high sensitivity throughout the vertical extent of
the atmosphere [23–29].

Our retrieval relies on measurements of the first overtone 2-0 absorption band of CO situated
between 3780–4355 cm−1 from which the vertically integrated CO column density is inferred. Since the
absorption of CO is weak in that spectral region (Figure 1), no vertical profile of CO can be retrieved
in the selected fitting window between 4277.20–4302.90 cm−1. Furthermore, the least squares fit of
the forward model parameters to the measurement depends on initial guess data in order to get an
appropriate linearization point for the unconstrained fit.
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Figure 1. Spectral transmittance of CO, CH4 and H2O (upper three panels) according to Beer-Lambert’s
law in spectral range of TROPOMI’s band 7 for a single path through the US-Standard atmosphere
using Scientific Exploitation of Operational Missions (SEOM) line data. The total transmission
for the three molecules is depicted in the lower panel. The Python tool Py4CAtS (Python for
Computational ATmospheric Spectroscopy [30]) was used to calculate the absorption cross sections of
the individual molecules. Note that CO is only responsible for ≈1% of the total optical thickness τ in
that spectral range.

In order to infer the amount of atmospheric constituents from an observed spectrum, an accurate
description of molecular absorption at different pressure p and temperature T levels is mandatory.
In high resolution line–by–line (lbl) models, the cross section of a molecule km is calculated by
the superposition of many lines l, where each line is the product of a temperature dependent line

strength S(m)
l and a normalized line shape function

+∞∫
−∞

g(ν)dν = 1 that is describing mechanisms,

such as pressure and Doppler broadening [31]. Therefore, the best possible knowledge of the
spectral parameters, such as line position ν̂, line intensity S, line width γ (air- and self-broadening),
temperature exponent n, lower-state energy E, and their variation with T and p, is required. However,
advances in high resolution absorption spectroscopy and the advent of sensors, such as TROPOMI,
with wide spectral ranges at rather high spectral resolutions and excellent SNR ratios have indicated
discrepancies between spectroscopic models and observations [32–37]. It was found that physical
processes beyond broadening mechanisms described by the Voigt function should be taken into account
for accurate atmospheric characterization. Moreover, studies [24,38–42] also indicate that improved
molecular spectroscopy is crucial to eliminate systematic residuals in atmospheric spectra and that
trace gas retrievals in the SWIR will benefit accordingly.

1.4. Spectroscopic Line Data and Line Profiles

The SEOM–IAS (SEOM, Scientific Exploitation of Operational Missions–Improved Atmospheric
Spectroscopy) is an improved line parameter database of H2O, CH4, and CO (available on
Zenodo [43,44]) compiled within the framework of an ESA project according to the needs of
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the TROPOMI instrument. Fourier transform spectrometer (FTS) and continuous wave cavity
ring-down spectroscopy (CRDS) measurements (performed at the German Aerospace Center (DLR)
and at Université Grenoble Alpes, respectively) were analyzed in the 4190–4340 cm−1 spectral
range. The spectroscopic database was obtained from high resolution FTS measurements employing
a multireflection cell with absorption path lengths from 14.4–168 m and a temperature range 198–361 K
(12 pure and 32 air-broadened CH4 measurements, 1 pure and 4 air-broadened CO measurements,
7 pure and 23 air-broadened H2O measurements, and 4 pure HDO measurements). A multispectrum
fitting software [45] developed at DLR was used for the analysis of the measured spectra. For modeling
of absorption lines in the multispectrum fitting, a quadratic speed-dependent hard collision model
based on the implementation of the Hartmann-Tran (HT) profile was used [35,46–49]. In order to
account for line-mixing, the profile was extended using the first and second order perturbation
approximation by Rosenkranz [50] and Smith [51]. The CRDS measurements served as validation.

The HT profile with vanishing correlation (η = 0) reduces to the speed-dependent Rautian
(SDR [52–57]) profile. The transmissions in Figure 1 were computed with line-mixing included,
i.e., the SEOM with Speed-Dependent Rautian and line-Mixing (SDRM) profile. Figure 2 shows a
close up view of the molecular cross sections for CO, CH4, and H2O near 4295 cm−1, where all three
molecules possess a fairly strong and almost co-located transition. For each molecule, two cross
sections were calculated, one with the SDRM profile (including the extended set of line data) and
another with the classic Voigt model, while both use SEOM line data as input. The differences between
the two turned out to be around two orders of magnitude smaller than the actual cross sections itself
with the maximum disagreement located close to the line center positions.
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Figure 2. SDRM and Voigt (VGT) molecular cross sections for CO (left), CH4 (center), and H2O (right)
using SEOM data. In addition, the difference between the two line profiles (SDRM-VGT) is depicted.

1.5. Previous Studies

An initial validation of SEOM tested the line list with atmospheric spectra from solar occultation
measurements, and the new database was found to be a significant improvement over High Resolution
Transmission (HITRAN) 2016 (M. Birk, personal communication).

An assessment of the operational TROPOMI CO product for various spectroscopic inputs,
including SEOM, was recently published by Borsdorff et al. [58]; however, only the spectroscopic data
was substituted, while the remaining retrieval settings were identical to the ones of the operational
processing. The study quantified the quality of the spectral fits and biases in the CO column and
found that “updating the CH4 cross sections is the main reason for the improved CO product”.
They concluded that molecular spectroscopy data plays a key role for the quality of the retrieval.

In a recent study [59], we examined the impact of SEOM spectroscopic information on CO total
columns from SCIAMACHY and found that the best retrieval results for SEOM line data are obtained
when higher-order ‘beyond Voigt’ effects in molecular absorption are taken into account. The outcome
indicates that, strictly speaking, the classic Voigt profile is not an adequate line model for the SEOM
line list (confirmed by M. Birk, personal communication), although the largest impact on the improved
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fitting residuals (≈3% on average, up to 15% for individual observations) is attributed to the updated
line parameters while the line profile has less contribution. Although the CO mole fractions increased
by 4− 11% using SEOM spectroscopy the difference to H16 was found to be significant for only a
limited set of spectra (see Reference [59, Figure 7 and A4]).

2. Methodology

In this study, we investigated the impact of the SEOM spectroscopy on the retrieved CO
from TROPOMI SWIR observations by comparing the spectral fitting residuals, deduced columns,
and corresponding retrieval errors with the most recent releases of HITRAN 2016 (H16, High Resolution
Transmission; [60]) and GEISA 2015 (G15, Gestion et Etude des Informations Spectroscopiques
Atmosphériques 2015 [61]). Besides the target gas CO, the impact on the interfering, and hence
co-retrieved species CH4 and H2O (including their isotopologues), was examined. Note that the reason
to stay with the current version of GEISA (2015 instead of 2019) was that not all molecules required for
the retrieval of CO in the specified spectral range were updated at the time of submission (R. Armante,
personal communication).

2.1. Retrieval Setup

The retrievals in this study were performed with the latest version of the scientific retrieval
algorithm BIRRA (Beer Infrared Retrieval Algorithm [25,62]) which has been developed at the
German Aerospace Center (DLR) since about 2005. In addition to enhancements in the GARLIC
(Generic Atmospheric Radiation Line-by-line Infrared Code [63,64]) forward model described in [59],
this most recent version of BIRRA incorporates TROPOMI calibration key data (CKD), such as tabulated
instrument spectral response functions (ISRF).

2.2. Input Data

An updated framework is providing auxiliary data for the prototype retrieval of CO abundances
from TROPOMI. Since information on the amount of CO is inferred by optimally varying forward
model parameters during the inversion process, the quality of the input data affects the accuracy of
the retrieval.

2.2.1. Calibrated Level 1b Spectra

The TROPOMI level 1b data (version 1.0) from band 7 contains spectrally and radiometrically
calibrated Earth radiance and solar irradiance spectra in the 2305–2345 nm (≈ 4338–4265 cm−1) spectral
range (see Figure 3). These quantities already include corrections from the CKD that account for
several effects, such as offset, dark-current, pixel-quality, non-linear response, and noise, and were
derived during the on-ground calibration campaign prior to launch [65,66]. In-flight, the CKD of,
e.g., the pixel-quality, the ISRF, and stray-light correction, is monitored by TROPOMI’s calibration
unit and updated over the lifetime of the instrument if necessary. This is crucial as the operational
level 0-1b processor marks data with quality assessment flags, e.g., in order to exclude bad and dead
pixels that are deemed unusable for generation of the level 2 product. The actual number of available
pixels in the selected retrieval window between 4277.20–4302.90 cm−1is dependent on the bad and
dead pixel-mask (BDPM) and ranges from 146–154 for observations considered in this study. Note that
TROPOMI is commanded to perform a solar irradiance measurement near the day-night terminator at
the northern side of the orbit only every 15 orbits, i.e., approximately once every calendar day [10].
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Figure 3. A calibrated level 1b photon radiance and irradiance spectrum from TROPOMI’s band 7
with SI (Système international d’unités) units mol s−1 m−2 nm−1 and the retrieval window indicated in
gray (top). The Earth radiance I was obtained in orbit 9093 at around 60◦ northern latitude, while the
solar irradiance E was measured in orbit 9088. The lower panel depicts the retrieval window from
4277.20–4302.90 cm−1with units converted to W m−2 nm−1. EKurucz and E5777

Planck describe the incident
solar irradiance at TOA (top of atmosphere) according to Kurucz [67] and an equivalent black body
radiator at 5777 K, respectively. Both were added for illustrative purpose only.

2.2.2. The Instrument’s Spectral Response

The forward model needs to include an accurate description of the ISRF S in order to model the
physics of the measurement with adequate accuracy. In the SWIR, the TROPOMI ISRFs vary across
the spectral and spatial dimension Sij and are provided for each of the 1 ≤ i ≤ 256 ground pixels,
as well as for 1 ≤ j ≤ 24 equally spaced central wavelengths of the spectral axis ranging from 2298 to
2344 nm [68]. Eight tabulated ISRFs remain within the range of sufficiently strong CO absorption lines
defining our fitting window; hence, interpolated response values were used for most spectral pixels.
The rather smooth variation in the spectral dimension is beneficial for the interpolation of responses
to pixels where no tabulated values are available (see Figures 4 and 5). Nonetheless, accounting for
those variations in the instrument’s response is important, particularly when testing spectroscopic
data and models.

During on-ground calibration, van Hees et al. [68] found that the accuracy of the ISRF CKD is
well within the requirements for trace-gas retrievals. Moreover, van Kempen et al. [66] found that the
differences between in-flight and on-ground CKD measurements are small, and no corrections need to
be applied.



Remote Sens. 2020, 12, 3486 7 of 28

1 50 100 150 200 256
ground pixel ID

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

ν
[c

m
−

1
]

×103

2.200

2.225

2.250

2.275

2.300

2.325

2.350

2.375

2.400

n
or

m
al

iz
ed

am
p

lit
u

d
e

1 50 100 150 200 256
ground pixel ID

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

ν
[c

m
−

1
]

×103

0.408

0.412

0.416

0.420

0.424

0.428

0.432

0.436

0.440

F
W

H
M

[c
m
−

1
]

Figure 4. Distribution of the maximum normalized amplitudes (left) and corresponding full-width at
half maxima (FWHM) (right) for the 24× 256 tabulated responses [69].
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+∞∫
−∞
Sij(x)dx = 1 in the wavelength (x = λ) and

wavenumber (x = ν) domain, respectively.

2.2.3. Atmospheric Input Data

The physical description of a measurement by the forward model requires input for
some atmospheric state-variables, such as pressure p, temperature T, and specific humidity q,
since, e.g., the cross section of molecules km need to be calculated at different atmospheric levels
in order to accurately model lbl absorption through the atmosphere.

Note that BIRRA [25] in Section 2.2.2 utilizes a separable least squares where the state-vector x
is separated into two vectors η ⊂ x and β ⊂ x comprising the linear and nonlinear parameters [70],
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and that initial guess values are only required for the nonlinear parameters. In the forward model,
the ‘true’ optical depth of a molecule τm is described as

τm(ν) = αm τref
m (ν) = αm

∫
double

path

nref
m (s) km(ν, s) ds , (1)

with αm ∈ η and nref
m the initial guess molecular number density. In Figure 6, the initial guess for CO

and CH4 mole fractions are shown. Both resemble AIRS (Atmospheric Infrared Sounder) version
6 initial guess profiles [71,72] with varying concentrations from the northern hemisphere to the southern
hemisphere. The AIRS CO initial guess comes from MOZART (Model for OZone And Related chemical
Tracers [73]) monthly mean hemispheric profiles, while CH4 is described by a function of latitude and
altitude. Pressure and temperature, as well as the specific humidity, were taken from the 4-times daily
reanalysis product [74] maintained by the National Center for Environmental Prediction (NCEP).
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Figure 6. Initial guess mole fraction profiles for CO (four panels on the left) and CH4 (right) resembling
the Atmospheric Infrared Sounder (AIRS) version 6 first guess. The CO profiles are provided with
monthly granularity for both hemispheres while only January, April, July and October (clockwise from
top-left) are shown here.

2.2.4. Cloud Filtering and Topographic Information

Auxiliary input data on clouds was obtained from the S5P-NPPC product which is available for
the TROPOMI bands 3, 6, and 7 (SWIR). The Visible Infrared Imaging Radiometer Suite (VIIRS [75])
aboard the Suomi-NPP (Suomi National Polar-Orbiting Partnership [76,77]) spacecraft leads ahead the
S5P in loose formation orbit by 3.5 min in local time ascending node and reports cloud information with
high spatial resolution on nominal and scaled TROPOMI field of views (FOV). The cloud mask data is
grouped in four classes, namely confidently cloudy, probably cloudy, probably clear, and confidently
clear. Prior to the CO retrieval the cloud fraction was calculated for the 1.5 scaled FOV of TROPOMI’s
band 7 (in the along and across-track dimension), and the ratio of the ‘confident’ and ‘probable’
classifications was formed. Besides the retrieved CH4 absorption, those quantities serve to identify
conditions that might lead to errors in the retrieved columns due to path modifications by clouds
and aerosols (scattering) of the observed light, which is not yet considered in the forward model.
In particular, an observation was rejected if the cloud fraction specified in the S5P-NPPC product
exceeds 10% or if the number of VIIRS pixels that fall into the ‘probable’ classification (i.e., not the
‘confident’ classification) exceeds 20%. These rigorous filter criteria avoid observations with large
retrieval inaccuracies caused by scattered photons [78] and minimize any bias that arises from changes
in the retrieval’s vertical sensitivity by modifications in the column averaging kernel (CAK [23],
Section 5) in Figure 7 (also see Reference [28], Section 3, and Figure 4 [79] and Figure 3).

Furthermore, the calculation of the double-path transmission between the reflection point
(e.g., Earth’s surface) and observer and between Sun and reflection point (see Equation (1)) requires
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topographic information on terrain elevation. Therefore, the ETOPO global relief model [80] with
2-min grid spacing and an adequate vertical and horizontal datum provides elevation data for each
TROPOMI observation in the radiative transfer calculation.

2.3. Vertical Sensitivity and Relation to Priors

In the context of profile retrievals, the sensitivity of the inversion process to the true atmospheric
state is given by the averaging kernel. Nonetheless, column density retrievals also have some altitude
dependent sensitivity, i.e., the perturbation of elements in the state-vector x at different altitudes result
in a non-uniform retrieval response [81] (Sections 2 and 3).

Figure 7 shows the altitude sensitivity for three elements of BIRRA’s state-vector. The vertical
sensitivity for the target gas and CH4 reveals to be close to unity across the full range of TROPOMI
observer zenith angles (OZA), while the CAK of H2O tends towards zero at higher altitudes, where the
retrieval is less sensitive to the true atmospheric state.
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Figure 7. Altitude sensitivity of the CO retrieval in the 4277.20–4302.90 cm−1spectral range.
The column averaging kernels (CAKs) were calculated for different TROPOMI observer zenith angles
(OZAs) with a solar zenith angle (SZA) of 30◦ and a surface albedo of r0 = 0.3.

2.4. Assessing the Quality of the Fit

Standard diagnostics are used to assess deficiencies in the forward model of the retrieval.
In particular, the scaled 2-norm of the spectral fitting residual

ρ = Iobs − I(x), (2)

σ2 = ||ρ||2 / (m− n) (3)

is a suitable criterion as it becomes smaller the better the forward model I(x) can mimic the
measurements Iobs. Note that m is designating the number of available TROPOMI measurements in
our fitting window and is dependent on the BDPM (see Section 3). n is the number of elements in the
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state-vector x which is constant and in the setup for this study includes the molecular scaling factors
α ⊆ η and a second-degree polynomial in wavenumber r ⊆ β representing the surface reflectivity.

Furthermore, it is important to note that the absolute value of σ2 is dependent on the SNR and
since no normalization is applied, strictly speaking, only residuals from the same observation should
be compared against each other. Nonetheless, it is deemed permissible to compare the scaled norm of
the fitting residual within a region as the environment is quite homogeneous in terms of temperature,
humidity, and, even at TROPOMI’s spatial resolution, surface reflectance.

Errors in molecular spectroscopy can introduce systematic spectral residuals that in consequence
result in larger retrieval errors of the corresponding quantities according to

Ξ = σ2 (JT J)−1 . (4)

The least squares covariance matrix Ξ contains the Jacobians J ≡ ∂I
∂x of the fitted parameters and

diagonal elements represent the errors of the state-vector components [25,82]. Therefore, besides the
analysis of the residual norms in Section 3.1, the fitted state-vector elements α, along with their error
estimates, are examined in Section 3.2.

3. Results

The investigation was performed for a set of TROPOMI orbits in 2019 that cover various
climatological regions, namely the Sahara, Central-Europe, Amazonia, and Siberia (for details,
see Table 1). Aside from Central-Europe, the areas were selected according to different
pairs of temperature and humidity values, and Europe contains strong anthropogenic sources
(cities, large harbors, airports, etc.), as well as CO background levels (rural areas, many alpine regions,
etc.). The individual orbits are given in Table 1 and were selected based on (low) cloud coverage.
Nonetheless, post-processing steps include rigorous cloud filtering, the removal of non-converged
retrievals, and the disposal of measurements with very small SNRs (e.g., observations above large
bodies of water, such as lakes, rivers, etc.).

3.1. Spectral Fitting Residuals

The elements of the residual vectors according to Equation (2) are depicted in Figure 8.
The histograms are separated by regions, starting with Sahara at the top-left and depicting
Central-Europe, Siberia, and Amazonia in the clockwise direction. The residuals are following a
normal distribution (except for Sahara) with an expected value around zero, indicating that the
majority of the measurement errors are caused by random errors, such as instrument noise, etc. This is
crucial in order to get the so-called best linear unbiased estimate for the state-vector x [83]. In the
Sahara region, however, the distribution of residuals deviate from the Gaussian form in particular
around the center of the curve and most significantly for G15. The non-uniform distribution over the
Sahara is reduced for the SDRM retrievals. Note that the SEOM-Voigt case only considers spectral
parameters that describe the mechanisms of pressure and Doppler broadening and was included in
order to discriminate the impact of line data versus model.

Figure 9 shows one residual vector for a randomly picked measurement per region. It reveals
that the modeled spectra for both H16 and G15 exhibit the largest disagreements in a spectral region
close to 4295 cm−1. This feature is significantly reduced when using SEOM line data and virtually
eliminated when the SDRM line profile is applied (see Figure 2), as well causing a rather uniform
distribution of the residuals across wavenumbers. In addition, G15 reveals some discrepancy round
4293 cm−1. Note that spectral ranges with increased differences show the same positive or negative
deviations across geographic regions, indicating that the radiance (transmission) is persistently over-
or underestimated for those wavenumbers.

In Figure 10, the individual detector-pixel residuals are examined for all measurements across
seasons. The average of the absolute differences is given by E(|ρ|). It shows that the pixels close to
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4295 cm−1 consistently exhibit major disagreements and that the retrievals over the Sahara (first panel)
show the largest discrepancies on average since the absolute values of the elements in ρ are dependent
on the SNR (see Section 2.4). Furthermore, in order to identify molecular transitions that possibly
cause the discrepancies, optical depths of the absorbing molecules CO, CH4, and H2O are depicted in
three separate but aligned panels below. It becomes obvious that the disagreements around 4295 cm−1

coincide with three rather strong and overlapping absorption lines that were shown in Figure 2.
SDRM and H16, particularly, do not agree in that part of the spectrum, and the overall spectral fit
quality is improved by ≈ 4− 8% for SDRM retrievals.
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Figure 8. Distribution of the elements of the residual vectors for a single overpass per season in
2019 (Table 1). The histograms are shown per region, i.e. Sahara (top-left), Central-Europe (top-right),
Amazonia (lower-left), and Siberia (lower-right). VGT represents cases for which the Voigt profile was
calculated with SEOM line data input (SEOM-Voigt).

The substitution of H16 line data with SDRM for each molecule individually shows that the impact
on the fit quality is small when CO is replaced (<0.5%) but improves considerably when H2O (>7%)
and CH4 (>5%) is updated. The given numbers are averages across all investigated regions. Since the
residuals for G15 are similar with respect to H16 (except for some pixels between 4280–4285 cm−1and
around 4293 cm−1 as indicated in Figure 9), they are not depicted in Figure 10.

The averages of the scaled norm σ2 are itemized by region and season in Table 1. The results
confirm above-mentioned findings, i.e., the retrievals using SEOM line data effectively cause smaller
discrepancies to TROPOMI observations. More precisely, SDRM-based retrievals reduce σ2 with
respect to H16 and G15 by approximately 10–15% and 15–20%, respectively. The smaller disagreements
between SDRM and H16 are likely attributed to the fact that both are not completely independent sets
of line data and some of the updates from SEOM are already included in H16 [58].
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Figure 9. Spectral residuals for a measurement over the Sahara, Central-Europe, Amazonia,
and Siberia (from top to bottom) in spring 2019, respectively. The observations were randomly
picked; however, the largest disagreements appear to be at similar wavenumbers across the different
regions, most prominent close to 4295 cm−1 and particularly pronounced in the fits with the two
Voigt spectroscopies.
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Figure 10. Spectral fitting residuals for TROPOMI observations in the four regions (same order top to
bottom as in Figure 9) from the earlier mentioned subset in 2019. Large residuals in the upper four
panels reveal to be co-located with strong (and overlapping) absorption lines depicted in the lower
three panels. However, similar to Figure 9, the overlapping transitions close to 4295 cm−1 causes rather
less significant fitting errors in the SDRM retrievals. Moreover, compared to H16, the average fitting
residual is smaller for SDRM in all of the examined regions.
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Table 1. Average of the scaled norm of the fitting residuals E(σ2) for individual TROPOMI overpasses
in 2019.

Input E(σ2)
Region Data Spring Summer Fall Winter Total

Orbit 6967 7861 8812 10,542
Sahara G15 1.93 · 10−5 2.69 · 10−5 2.40 · 10−5 8.65 · 10−6 1.97 · 10−5

H16 1.79 · 10−5 2.52 · 10−5 2.20 · 10−5 7.63 · 10−6 1.82 · 10−5

SDRM 1.65 · 10−5 2.18 · 10−5 1.74 · 10−5 6.24 · 10−6 1.55 · 10−5

Orbit 6967 7861 8811 10,542
Central-Europe G15 5.93 · 10−7 8.28 · 10−7 7.56 · 10−7 6.89 · 10−7 7.17 · 10−7

H16 5.95 · 10−7 7.70 · 10−7 5.72 · 10−7 5.92 · 10−7 6.32 · 10−7

SDRM 4.92 · 10−7 7.11 · 10−7 5.70 · 10−7 5.65 · 10−7 5.84 · 10−7

Orbit 7581 8517 9553 10,347
Amazonia G15 2.29 · 10−6 1.16 · 10−6 2.93 · 10−6 2.80 · 10−6 2.30 · 10−6

H16 2.14 · 10−6 9.04 · 10−7 2.74 · 10−6 2.57 · 10−6 2.09 · 10−6

SDRM 1.88 · 10−6 9.00 · 10−7 2.36 · 10−6 2.29 · 10−6 1.86 · 10−6

Orbit 7348 8231 9093 9958
Siberia G15 1.45 · 10−6 2.11 · 10−6 2.94 · 10−6 1.25 · 10−6 1.94 · 10−6

H16 1.33 · 10−6 1.93 · 10−6 2.81 · 10−6 1.15 · 10−6 1.81 · 10−6

SDRM 1.29 · 10−6 1.14 · 10−6 2.62 · 10−6 1.14 · 10−6 1.55 · 10−6

3.2. Impact on Retrieved Columns and Corresponding Errors

The effect of absorption line data on the retrieved CO total columns Nm [molec cm−2] and
corresponding errors is shown in Figures 11–14. Each figure depicts the results for one region and
contains the target and co-retrieved quantities according to

Nm = αm

zTOA∫
zsrf

nref
m (z) = αm Nref

m . (5)

The mole fractions for some molecular number densities nref
m are shown in Figure 6. It is important

to note that H2O and CH4, although the latter has strong absorption lines across the CO spectral fitting
window and can be used to identify light path modifications [78], are byproducts primarily considered
due to their spectral interference with the target gas. The distribution of the errors for CH4 and H2O is
shown in Appendix A.

For the Sahara region depicted in Figure 11, the majority of CO is distributed between
1.0− 2.5 · 1018 molec cm−2 and the histograms for SDRM and HITRAN are similar. The CO retrieval
errors according to Equation (4) are illustrated in the top-right and are below 1.0 · 1017 molec cm−2

across spectroscopies with the median around 1.7 · 1016 molec cm−2 in case of SDRM and around
2.2 · 1016 molec cm−2 for the other two line lists. Note that the majority of the CO errors for SDRM
are even below 6.0 · 1016 molec cm−2. Although there is almost no absolute difference in the medians
of the CO columns for SDRM and H16 distributions, they were found to be significantly different
according to the non-parametric Kolmogorov-Smirnoff test (p-value < 1.0 · 10−5) [84]. While this holds
true for SDRM and G15 distributions (CO difference ≈ 1.0 · 1017 molec cm−2), the magnitude of their
retrieval errors is significantly different, as well.

A similar CO distribution is observed for Central-Europe in Figure 12, but values cover a greater
range. Again, SDRM and H16 cause similar concentrations, while G15 is significantly different based
on the distribution of errors. Moreover, the SDRM-based CO product is, again, the most precise,
i.e., incorporates the smallest fitting residuals and thus retrieval errors.
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Figure 11. Distribution of retrieved quantities for Sahara. The CO columns and corresponding errors
for different spectroscopic inputs and models are shown in the top-row. Histograms for the co-retrieved
CH4 and H2O columns are depicted in the two panels below. The median of each distribution is shown
in the corresponding color.
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Figure 12. Distribution of the retrieved values and errors for Central-Europe.



Remote Sens. 2020, 12, 3486 16 of 28

−1 0 1 2 3 4 5 6

CO [molec cm−2] ×1018

0.0

0.2

0.4

0.6

0.8

1.0

1.2

co
u

nt
s

[#
]

×103

SDRM, median 1.90e+18

H16, median 1.66e+18

G15, median 1.77e+18

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

errors of CO [molec cm−2] ×1017

0

100

200

300

400

500

co
u

nt
s

[#
]

SDRM, median 4.66e+16

H16, median 5.47e+16

G15, median 5.66e+16

1 2 3 4 5
CH4 [molec cm−2] ×1019

0.0

0.2

0.4

0.6

0.8

1.0

1.2

co
u

nt
s

[#
]

×103

SDRM, median 3.67e+19

H16, median 3.57e+19

G15, median 3.54e+19

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
H2O [molec cm−2] ×1023

0.0

0.2

0.4

0.6

0.8

1.0

co
u

nt
s

[#
]

×103

SDRM, median 9.81e+22

H16, median 7.99e+22

G15, median 7.70e+22

Figure 13. Distribution for the Amazonia region which include an overpass during the heavy forest
fires in summer 2019 (orbit 9553 on 17 August 2019).
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Figure 14. Distributions over Siberia.

In Figure 13, the CO columns over Amazonia show a rather different distribution where SDRM
retrievals cause significantly higher concentrations. The difference is also significant for the two
co-retrieved molecules. The errors in the top-left are larger compared to the two previous regions;
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however, SDRM-based errors are, again, the smallest. The difference in CO for both SDRM-H16 and
SDRM-G15 was found to be 2.4 · 1017 and 1.3 · 1017 molec cm−2, respectively. The errors are consistently
<1.0 · 1017 molec cm−2 which indicates that the differences in SDRM retrieved CO concentrations over
Amazonia are significant with respect to both other line lists, suggesting that the ‘true’ value might be
outside the specified error range of the product. Furthermore, it should be noted that the S5P-overpass
in the second quarter

The distribution of CO over Siberia in Figure 14 is similar to that for Sahara and Central-Europe,
i.e., the histograms for SDRM and HITRAN almost resemble each other, while GEISA is shifted towards
higher columns on average. Again, this shift is larger than the product error and thus considered to
be significant. In contrast to the other regions, the CH4 columns for G15 are also shifted. For H2O,
the medians are rather equally spaced across cases as it is true for the errors.

3.3. CO over Amazonia and Central-Europe

The trend of differences between SDRM and H16-based CO mole fractions over Amazonia and
Europe is depicted in Figure 15. The standard set of filter criteria described in Section 3 was applied
on a mostly sunny, high pressure influenced day over Central-Europe on 21 September 2019 (orbit
10046) and a day with rather average cloud coverage over Amazonia on 17 August 2019 (orbit 9553).
Note that only the cloud filter was applied for the calculation of the differences since filtering on errors,
etc.,w̃ould create different sized datasets with even less measurements available for subtraction.
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Figure 15. Differences in the retrieved CO mole fractions as a function of the CO concentrations over
Amazonia (top) and Central-Europe (bottom).

Over both regions, the differences tend to be larger for higher CO mole fractions, although the
trend is within the error of most observations (see second column of Figure 16). While the SDRM
retrieval errors for background CO concentrations range between ≈0.5–1.5 ppbv, the errors over
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elevated concentrations are somewhat larger, though the relative error is rather similar for either
case. The spatial distribution of the CO differences is depicted in the third column of Figure 16,
while SDRM-based mole fractions are depicted in the first column. Particularly, the difference plot
over Europe reveals a striping pattern in the satellites’ along track direction. It is a well-known but not
yet understood feature of push-broom spectrometers that is changing from orbit to orbit [58].
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Figure 16. CO mole fractions (left column) and errors (center column) for SDRM-based retrievals, along
with differences between SDRM and H16 (SDRM-H16) over Amazonia (top-row) and Central-Europe
(bottom-row).

3.4. Comparison to Ground-Based Observations

In order to estimate the quality of the retrieval product, a comparison with observations from
co-located TCCON (Total Column Carbon Observing Network [85,86]) and NDACC (Network for the
Detection of Atmospheric Composition Change) ground-based (g-b) measurements was carried out.

Filtering of the TROPOMI retrievals is crucial in order to compare valid CO mole fractions to g-b
references. However, it is important to note that since the errors in the retrievals are dependent on the
spectroscopy, filter criteria based on errors might be appropriate for one retrieval (e.g., SDRM-based)
but not the other (e.g., H16-based). The values given in Table 2 are mean and median values for
the respective TROPOMI overpass on the specified day. Since SDRM inferred CO columns exhibit
smaller errors (see Section 3.2), one set of strict filter criteria leads to different numbers of observations
remaining for comparison after post-processing. The actual number of remaining measurements
after filtering is primarily dependent on the weather conditions at the time of overpass and surface
characteristics around a station. If no TROPOMI observations remained within a reasonable small
radius around the g-b station after filtering (e.g., <50 km), the radius for co-location was increased in
steps of 50 km up to 200 km. The mean value was calculated for measurements that remained after
strict filtering (taking retrieval errors, etc., into account), while the median was computed for the
non-filtered retrieval output (i.e., only filtered for clouds). By only rejecting cloudy pixels using the
S5P-NPPC product (see Section 2.2.4), both retrievals deliver the same number of CO mole fractions
after post-processing but include observations with large errors.

The comparison to g-b reference observations in Figure 17 shows that differences vary across
sites. Although no consistent over- or underestimation of BIRRA retrieved CO mole fractions from
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TROPOMI is obvious, most TCCON sites observe larger values. In accordance with results from
Section 3.3, the validation shows that SDRM-based retrievals cause larger columns on average (also see
Reference [59] Figure 9).

Table 2. Daily mean and median values for the SDRM- and H16-based CO mole fractions
from TROPOMI measurements compared to Total Column Carbon Observing Network (TCCON)
and Network for the Detection of Atmospheric Composition Change (NDACC) g-b observations.
‘Non-filtered’ specifies that only cloudy TROPOMI pixels were eliminated, while ‘Filtered’ additionally
considers retrieval errors in the post-processing steps. ‘Radius’ designates the maximum distance for
co-location, i.e., only TROPOMI observations from within that distance were compared to the g-b site.
Values in brackets designate the number of observations after post-processing.

Ground-Based TROPOMI
Filtered Non-Filtered

Station Date Mean Median Mean [ppbv] Radius [km] Median [ppbv] Radius [km]
[ppbv] [ppbv] SDRM H16 SDRM H16

Bremen (T) 08/05/18 86.32 86.35 92.82 (11) 90.81 (3) 50 91.93 91.05 30
Bremen (N) 11/10/18 79.77 79.82 79.26 (23) 77.29 (4) 50 78.57 77.58 20
Edwards (T) 01/07/19 85.11 87.20 88.62 (7) 86.99 (3) 50 94.40 95.07 50
Garmisch (T) 20/09/19 77.97 77.90 76.66 (6) 73.15 (4) 20 75.21 74.64 20
Karlsruhe (T) 20/09/19 77.83 78.00 84.68 (13) 84.34 (12) 15 86.19 85.40 15
Paris (T) 30/06/18 80.56 80.60 76.89 (21) 76.31 (8) 200 76.31 75.44 200
Park Falls (T) 13/06/19 77.42 77.10 81.77 (19) 84.18 (6) 150 80.40 79.44 150
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Figure 17. Differences of TROPOMI and TCCON/NDACC mean (left) and median (right) CO mole
fractions from Table 2. Note that the mean was calculated upon the strictly filtered retrieval output,
while the median includes all cloud-free retrievals.

4. Discussion

4.1. Spectral Residuals

The results in Section 3.1 indicate that the SEOM line data has positive impact on the retrieval by
causing significantly smaller residuals on average. Furthermore, the impact on the CO fitting residuals
underlines results from previous studies [58] and demonstrates that improvements in spectroscopy
are important, particularly for retrievals from measurements with sufficient SNR and high spectral
resolution [59].

4.2. CO Mole Fractions

As shown in Section 3.2, the number of measurements where differences in CO mole fractions
become significant is considerably dependent on the specific sets of line data compared. The results
in Section 3.3 indicate that the increase in retrieved CO is within the error bar of most observations,
particularly with respect to H16. Nonetheless, Figures 15 and 16 also demonstrate that discrepancies
can become significant over selected scenes, preferably for measurements over elevated CO
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concentrations. A comparison to Reference [59] in Figure 7 shows that CO retrievals from SCIAMACHY
using SEOM spectroscopy also exhibit a tendency towards larger values. Moreover, the outcome in
Section 3.3 indicates that the ratio of change in CO to its errors is roughly proportional across most
geographic areas between SCIAMACHY and TROPOMI.

4.3. Validation

Since g-b observed CO columns can vary considerably throughout a day (>15 ppbv),
representation errors, such as spatial and temporal mismatch, should be taken into account when
interpreting differences for a single TROPOMI overpass. Due to advection of CO over time
(e.g., at 3 ms−1), TROPOMI observations at some distance from the g-b station do also provide a
valuable source of information in the comparison and should be considered, as well.

It is also important to note that TCCON data is calibrated to World Meteorological
Organization (WMO) in situ trace gas measurement scales in order to tie its observations to in
situ measurements [86,87]. The systematic difference between CO from TCCON and observations
that are not tied to the WMO scale was examined in detail by Kiel et al. [88]. They found that this
correction factor (1.0672 for the GGG2014 dataset) is the main source of the observed difference (also see
Reference [62]) and that the choice of different spectroscopic line lists have only minor influence on
the overall bias. This is in accordance with the results in Section 3.4, although different spectroscopies
were compared.

5. Summary and Conclusions

The investigation on the impact of molecular spectroscopy on CO total columns from TROPOMI
SWIR observations found that SEOM line data with the adequate model improves the spectral fit
quality by reducing the residuals to TROPOMI measurements with respect to both H16 and G15.

The results demonstrate that molecular spectroscopy has a significant effect on the precision of
the CO retrieval. The reduced spectral fitting residuals and smaller retrieval errors were found to be
statistically significant across the examined regions, making the SDRM-based CO product more precise.
The magnitude of the impact is dependent on the climatological region and spectroscopic reference
but ranges from ≈ 10–20% (up to 30% for individual observations with respect to G15). Updates in
the H2O and CH4 cross sections were identified to be the main reason for the improved fit quality.
These findings underline the important role that accurate spectroscopic information plays in meeting
the missions’ requirements.

In contrast to the fitting residuals, the differences in CO columns between SDRM and H16
were found to be rather small across most regions (≤ 3%), while some larger discrepancies were
found for individual observations with elevated molecular concentrations, particularly over Amazonia.
Similar to the spectral residuals, the average disagreements to SDRM are larger for G15, with the largest
differences to SDRM-based retrievals found over Siberia. In the other two examined regions, the impact
is less significant with respect to H16 but stays significant for the majority of G15-based retrievals.

The comparison to TCCON and NDACC g-b observations revealed that the smaller retrieval
errors in the SDRM inferred columns are beneficial when comparing post-processed CO mole fractions
to g-b references since stricter filter criteria can be applied on the TROPOMI observations within a
given distance from the station.

Overall, many aspects of the findings underline recommendations from earlier investigations [41,42]
and are in good agreement with similar conclusions from Hochstaffl and Schreier [59].
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Abbreviations

The following abbreviations are frequently used in this manuscript:

BIRRA Beer Infrared Retrieval Algorithm
CRDS Cavity Ring-Down Spectroscopy
FTS Fourier Transform Spectrometer
FWHM Full Width Half Maximum
GARLIC Generic Atmospheric Radiation Line-by-line Infrared Code
G15 Gestion et Etude des Informations Spectroscopiques Atmosphériques 2015 (GEISA 2015)
H16 High Resolution Transmission 2016 (HITRAN 2016)
HT Hartmann-Tran
HWHM Half Width Half Maximum
lbl line-by-line
NDACC Network for the Detection of Atmospheric Composition Change
NIR Near InfraRed
Py4CAtS PYthon scripts for Computational ATmospheric Spectroscopy
S5P Sentinel-5 Precursor
SCIAMACHY Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY
SEOM Scientific Exploitation of Operational Missions–Improved Atmospheric Spectroscopy
SDRM SEOM with Speed-Dependent Rautian and line-Mixing
SNR Signal-to-Noise Ratio
SWIR ShortWave InfraRed
TCCON Total Column Carbon Observing Network
TOA Top Of Atmosphere
TROPOMI TROPOspheric Monitoring Instrument
UVIS Ultraviolet and VISible
VGT SEOM with Voigt

Appendix A. Errors of the Retrieved Quantities

The subsequent Figures A1 and A2 show the errors of the corresponding CH4 and H2O columns
from Section 3.2.

https://tccondata.org
ndacc.org
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Figure A1. Errors of the CH4 columns for Sahara, Central-Europe, Amazonia and Siberia (clockwise
from top-left).
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Appendix B. TCCON Data Providers

The TCCON data were obtained from sites listed in Table A1. The TCCON Data Archive is hosted
by CaltechDATA, California Institute of Technology, CA (US), doi: https://doi.org/10.14291/tccon.
archive/1348407.

Table A1. Total Carbon Column Observing Network (TCCON) sites with the references to the data
used in this publication.

TCCON Site Reference

Bremen Notholt et al. [89]
Edwards Iraci et al. [90]
Garmisch Sussmann and Rettinger [91]
Karlsruhe Hase et al. [92]
Paris Té et al. [93]
Park Falls Wennberg et al. [94]

Appendix C. NDACC Data Providers

The data used in this publication were obtained from from sites listed in Table A2 and are available
through the NDACC website http://www.ndacc.org.

Table A2. NDACC site used in this publication, along with the station’s principle investigator (PI) and
cooperating institution.

NDACC Site Station PI and Coorperating Institutions

Bremen Prof. Dr. Justus Notholt
Institute of Environmental Physics; University of Bremen, Germany
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