Measurement Methods for Train Localization with Onboard Sensors

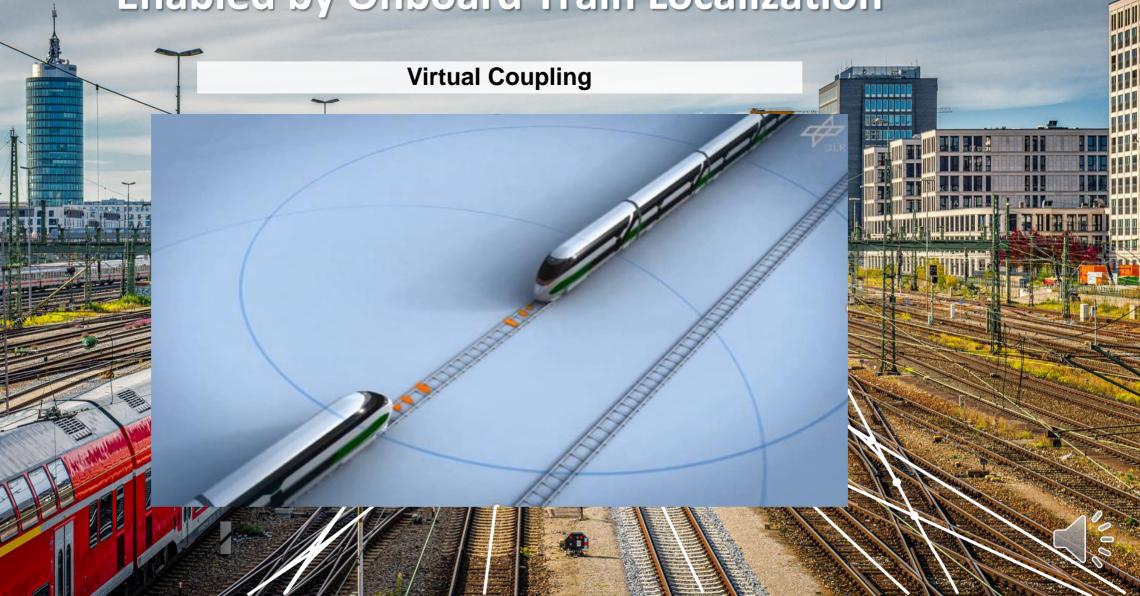
Oliver Heirich Benjamin Stephan Siebler Sand

Andreas Lehner

Omar García Crespillo

DLR – German Aerospace Center Institute of Communications and Navigation, Oberpfaffenhofen, Germany

Knowledge for Tomorrow


Train Localization

State-of-the-art train localization uses elements in the railway environment (infrastructure-**based**)

Onboard train localization (Infrastructure-less)

TTTT

Visionary Applications Enabled by Onboard Train Localization

Visionary Applications Enabled by Onboard Train Localization

Railway Collision Avoidance System (RCAS)

RCAS

Train: 452 Track ID: 17154 Pos: 107,0m Vel: 50,0 km/h RCAS: safe

> Train: 125 Track ID: 35212 Pos: 53,7m Vel: 80,1 km/h RCAS: safe

Railway Collision Avoidance System (RCAS)

End-of-train Device for Cargo Trains

- Train Integrity Monitoring

End-of-train

Locomotive with Train Localization

Railway Collision Avoidance System (RCAS)

End-of-train Device for Cargo Trains

Track Condition Monitoring with Regular Trains

Railway Collision Avoidance System (RCAS)

End-of-train Device for Cargo Trains

Track Condition Monitoring with Regular Trains

Evolution of ETCS (European Train Control System) Virtual Balise

Onboard Train Localization

Measurements from onboard sensors

Digital track map

Localization algorithm

Navigation integrity method

Track ID 1-D Position

Requirements depend on application: Highest availability in all environments Track-selective accuracy

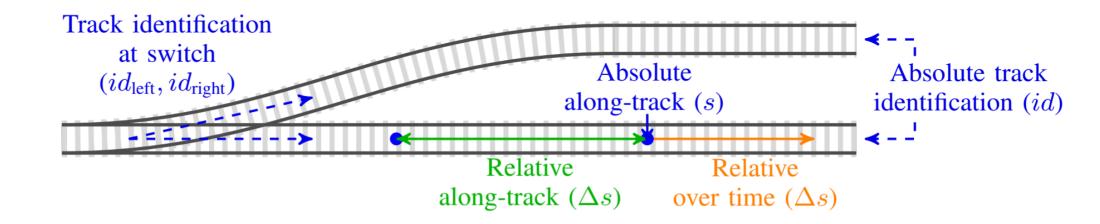
Onboard Train Localization

Measurements from onboard sensors

Digital track map

Localization algorithm

Navigation integrity method


Track ID 1-D Position

How can a measurement contribute to train localization? What are useful measurement methods for train localization?

Requirements depend on application:

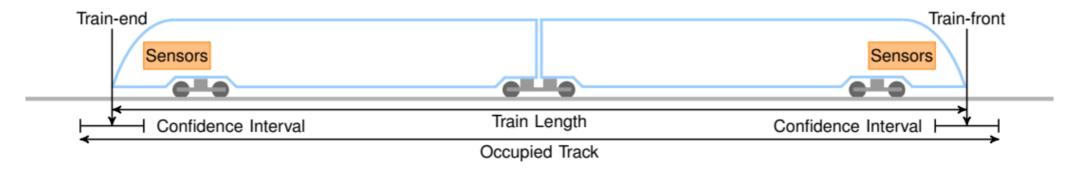
- Highest availability in all environments
- Track-selective accuracy

How can a Measurement Contribute to Train Localization?

Train Speed, Relative over Time	
Speed measurement	d/dt s
Travel distance over time	Δs
Dead reckoning	ΣΔs


Relative	Train	Localizati	ion
Distance meas	suremen	t between	٨s

two positions on track


Absolute Train Localizati	
Absolute along-track	S
Absolute track identification	id
Track identification at switches	id

Absolute and Relative Train Localization

Robust and Safe Train Localization

- Safe train localization uses confidence intervals and a defines an occupied track
 - redundant measurements
 - navigation integrity monitoring
- Navigation integrity method computes protection levels based on measurement analysis, failure detection and exclusion and a sensor fusion monitoring
 - Confidence interval is the protection level in along track direction
 - Navigation integrity guarantees, that true location is within the confidence interval with very low error probability
- An application is safe when the confidence interval (protection level) is smaller than a limit (alert limit) that is defined by the application and use-case requirements

Measurement Methods Overview

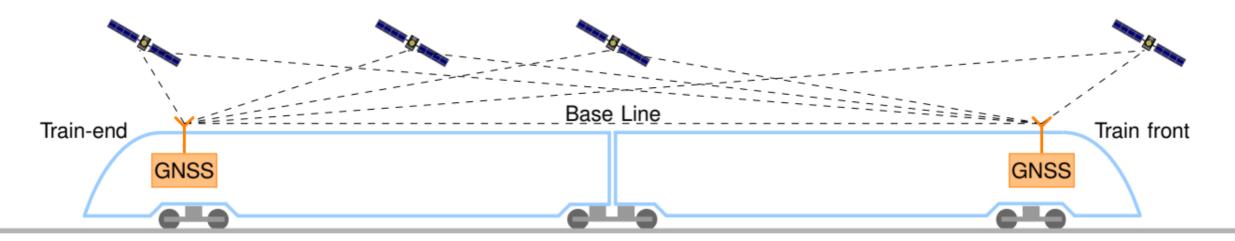
- Sensors (selection)
 - 1. GNSS,
 - 2. IMU,
 - 3. Magnetometer,
 - 4. Terrestrial radio ranging
- Some methods require a map, pre-processing, or multiple measurements
- Paper contains further links to publications

Train Speed, Relative over Time

	Туре	Method	Sensor
S .1	GNSS	Doppler, time differenced carrier phase	GNSS receiver
S.2	Magnetic	periodic wheel signal	magnetometer
S .3	Magnetic	speed signature	magnetometer
S. 4	Magnetic	magnetic signature	2x magnetometer
S.5	Vibration	speed signature	inertial
S. 6	Vibration	vibration signature	2x inertial
S.7	Cellular RF system	Doppler, base station to mobile	mobile terminal

Relative Train Localization

	Measurement Metho	d Type of Localization	Sensors, Map
F	R.1 GNSS relative	relative on tracks, train to train / front to end	2x GNSS (SBAS), map
F	R.2 Baseline GNSS	relative, direct distance	2x GNSS
F	R.3 INS relative	relative on tracks	IMU, (GNSS,X,odometer,map)
F	R.4 Inertial signature	relative on tracks	2x IMU, (odometry)
F	R.5 Magnetic signature	relative on tracks	2x magnetometer, (odometry)
F	R.6 Radio ranging on trai	n relative, direct distance train to train / front to end	2x RF tranceivers
F	R.7 Cellular base station	relative, direct distance train to train / front to end	2x cellular mobile terminal, map



	Measurement Method	Type of Localization	Sensors, Map
A.1	GNSS loosely	absolute on tracks, loosely coupled with map	GNSS position, (SBAS), map
A.2	GNSS tightly	absolute on tracks, tightly coupled with map	GNSS pseudorange, (SBAS) map
A.3	INS/GNSS	absolute on tracks	IMU, GNSS, map
A.4	INS/X/map	absolute on tracks	IMU, (odometer), map X: e.g. magnetom., vibrations
A.5	Inertial signature	absolute on tracks	IMU, (odometry), map
A.6	Magnetic signature	absolute on tracks	magnetometer, (odometry), map
A.7	Cellular base station radio ranging	absolute on tracks, loosely coupled with map	cellular mobile terminal, map
A.8	Cellular base station radio ranging	absolute on tracks, tightly coupled with map	cellular mobile terminal, map

1. GNSS - Global Navigation Satellite System

A GNSS receiver measures pseudorange, Doppler and carrier phase to multiple satellites in view.

Train Speed, Relative over	r Time
Train speed via Doppler	GNSS
Train speed via time-differenced carrier phase	GNSS

Relative Train Loc	alization
Relative on tracks	2x GNSS
Baseline GNSS, double differencing	2x GNSS

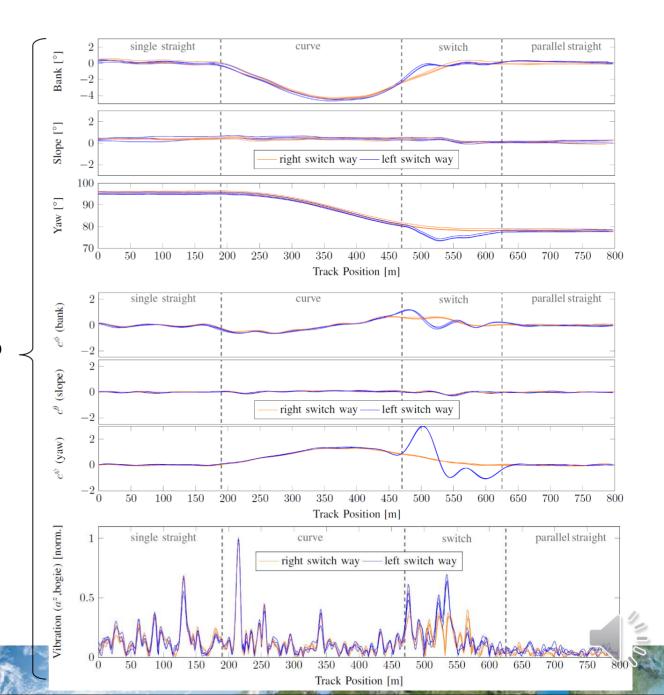
Absolute Train Localization

GNSS position, loosely	GNSS
coupled with map	
GNSS pseudorange, tightly	GNSS
coupled with map	

2. IMU – Inertial Measurement Unit

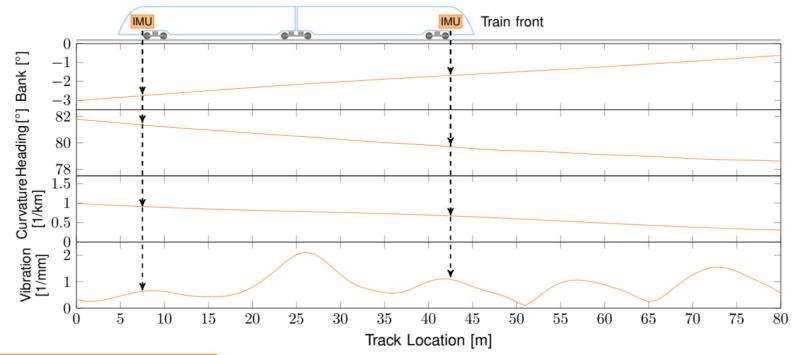
Measurements: accelerations, turn rates in three axes (x,y,z)

- 1. Inertial Navigation System (INS/GNSS, INS/X/map):
- INS/GNSS computes position, velocity and attitude


2. Kinematics of track geometry

- No integration required: suitable for low-cost MEMS IMUs
- Curvatures can be processed from turn rates and velocity

Inertial Signatures


3. Vibrations

Characteristic vibration intensity

2. IMU Measurement Methods

Train Speed, Relative over Time

Along-track acceleration,	IMU
integration over time	
Vibration speed signature,	IMU
comparison of speed depend	dent
patterns	
Vibration signature comparis	on 2x IMU
with known distance betwee	n
sensors	

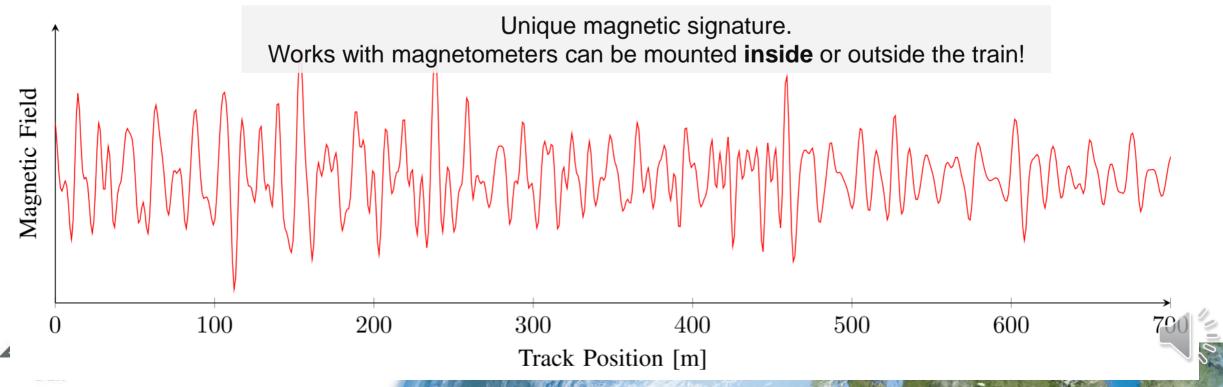
PLK

Relative Train Localization

Inertial signature relative on	2x IMU
tracks	(odometry)

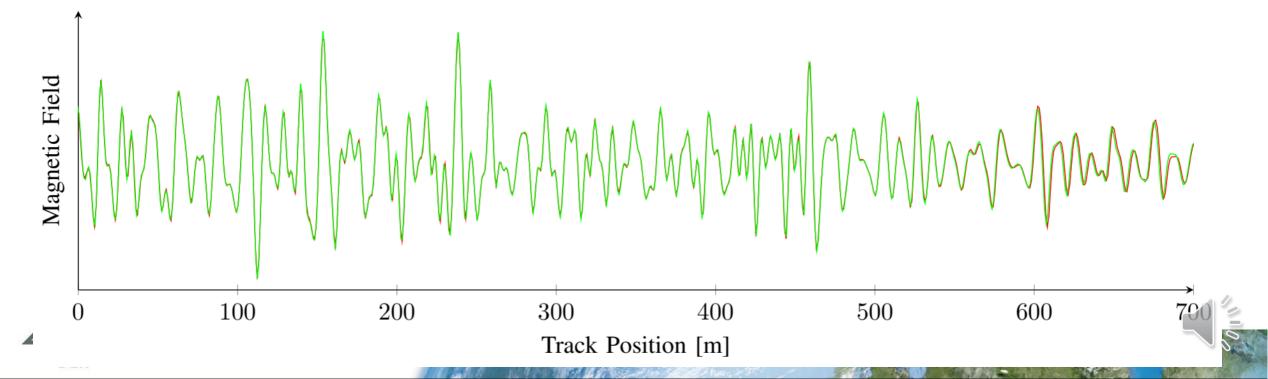
Absolute Train Localization

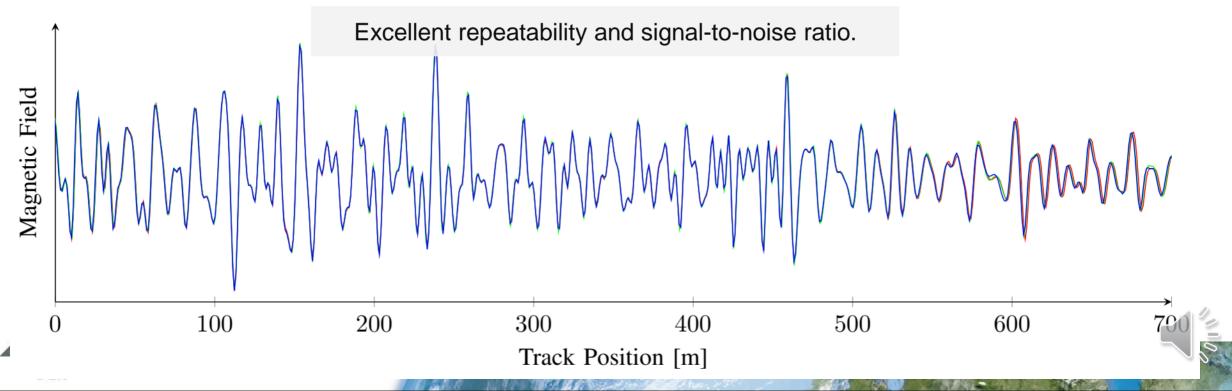
Inertial signature (attitude,	IMU, map
curvature, vibration)	(odometry)

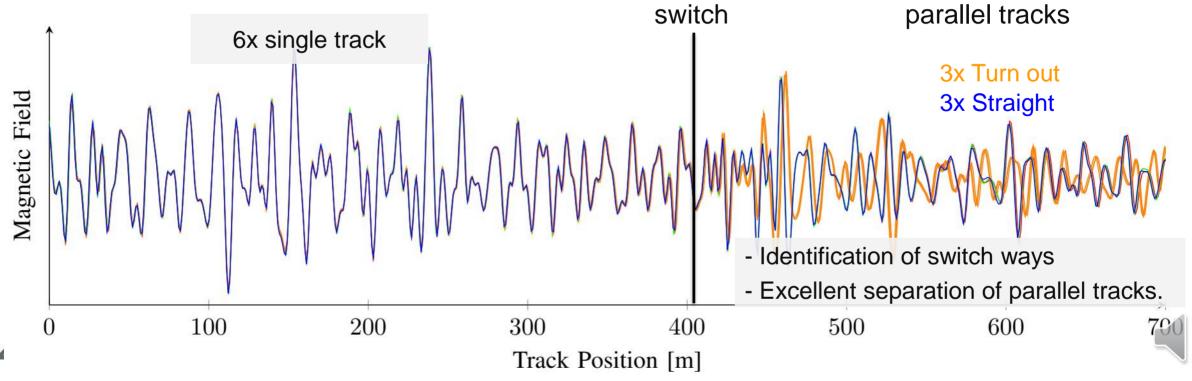

3. Magnetometer

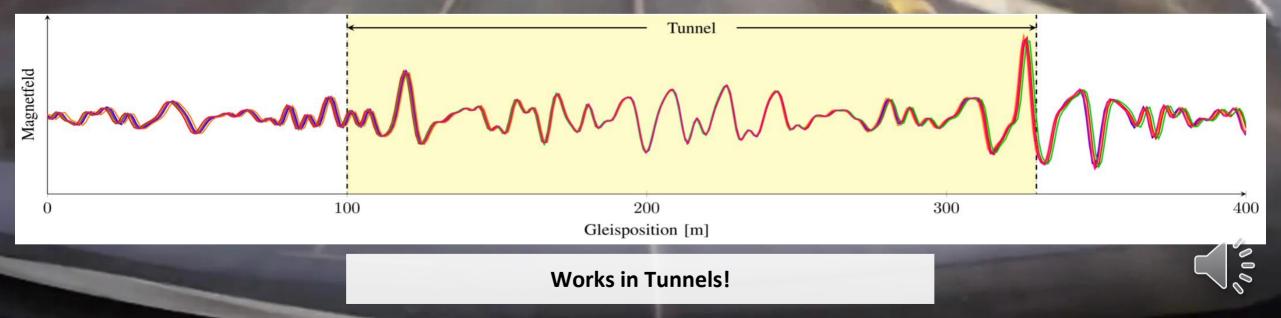
- Measurements: magnetic field density (Tesla) in three axes (x,y,z)
- Sensor elements are used in an electronic compass
- Railway environment creates characteristic distortion of the magnetic Earth field

DLR

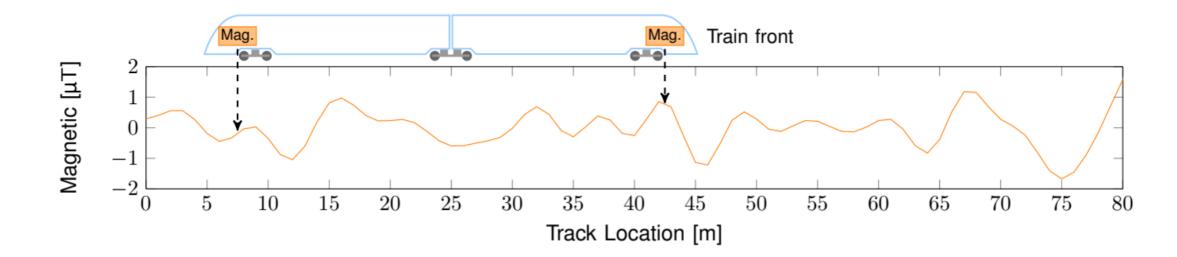

3. Magnetometer: Magnetic Signature, 1st Run


Magnetometer: Magnetic Signature 1st Run + 2nd Run


3. Magnetometer: Magnetic Signature 1st Run + 2nd Run + 3rd Run



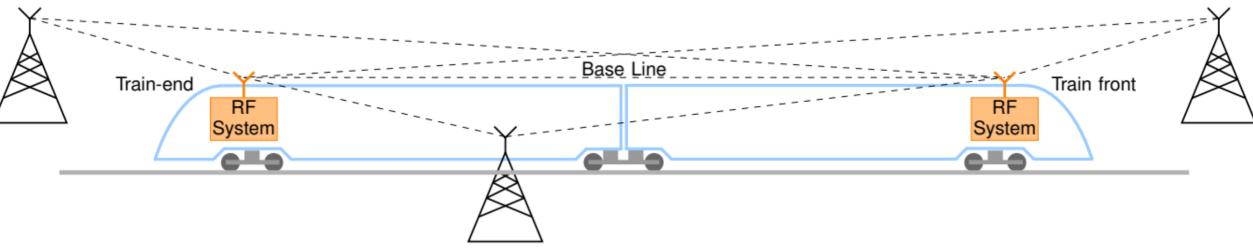
3. Magnetometer: Magnetic Signature 6 rain runs



3. Magnetometer: Tunnel

3. Magnetic Measurement Methods

Train Speed, Relative over Time		
Magnetic periodic wheel signal	1x Mag.	
Magnetic speed signature	1x Mag.	
Magnetic magnetic signature	2x Mag.	


Relative Train Localization		
Magnetic signature relative on tracks	2x Mag. (Odometry)	

Absolute Train Localization

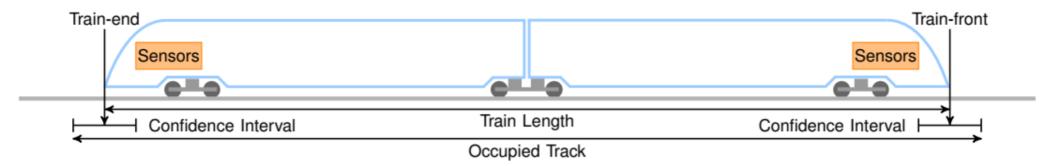
Magnetic signature absolute on tracks	Mag., map (odometry)
. .	Mag, IMU (odometry)

4. Terrestrial Radio Ranging Measurement Methods

• Measurements: Ranges (Round-trip Delays), Doppler

Train Speed, Relative over Time

Cellular RF system, Doppler ofmobilebase station to mobile terminalterminal


Relative Train Localization	
Radio ranging on train	2x RF trans.
Cellular base station, difference	2x mobile terminal, map

Absolute Train Localization

Cellular base station	mobile
ranging, map-matched	terminal, map
position, loosely coupled	
Cellular base station	mobile
ranging, tightly coupled	terminal, map

Current & Future Work

- Measurement methods from GNSS, IMU, magnetometer and terrestrial radio ranging.
- Current & future research focuses on:
 - Localization algorithms based on a digital track map with INS/GNSS, inertial and magnetic signatures for a reliable train speed, train location and train integrity monitoring with highest availability in all environments
 - Safe train localization with navigation integrity methods for railways with advanced sensor models

Measurement Methods for Train Localization with Onboard Sensors

Oliver Heirich Benjamin Siebler

Stephan Andreas Sand Lehner Omar García Crespillo

Q&A Session: D2 Rail Navigation, Day 1 (Monday, 23.11) 19:00-19:20 CET

Dr.-Ing. Oliver Heirich

DLR – German Aerospace Center Institute of Communications and Navigation Oberpfaffenhofen, Germany

Links to all our publications: elib.dlr.de

Measurement Methods for Train Localization with Onboard Sensors

Oliver Heirich, Benjamin Siebler, Stephan Sand, Andreas Lehner, Omar García Crespillo

DLR - German Aerospace Center, Institute of Communications and Navigation, Oberpfaffenhofen, Germany email: oliver.heririch@dlr.de Track: Rail Navigation

Abstract: Real-time truth localization with obsead momend sensors 1 a batic with inform railway application. In contrast to infrastructure bated truth localizations with way-aids ensors, the onboard truth localization are only train-side ensors and a digital any of the nilway-truck. Therefore, the truits are equipped with sensors, e.g. near the train-form and near the train-rule. The train-form location and the train-rule calculation elements of the tracks in track containers with aboutless train localization methods. A distance on tracks between two locations is determined with relative localization methods. Thi sitence on the tracks on be used to monitor the train length and also to observe the distance between trains. This paper constains an overview of different train localization haved on GNSS (Giebal Norsignion Satellite System), BUU (herital Measurement Units, Imagentometers and Re (rudio frequency) ranging.

1. Introduction

Future train applications with real-time localization aim at an increase of safety and efficiency. As outboard train localization contains all composents and comparation outboard the train. In contrast to infrastructure based localization with beacons, cable loops or radio balies, the outboard train localization requires a map of the railway tracks. Applications with demand for real-time and onboard train localization are manifold such as: general train control and signalling, automated manavereing, automated driving, collision avoidance with general monitoring as well as moving block and virtual coupling [2] that target on an increase of efficiency with shorts requences of trains. Furthermore, a continuous and automated track condition monitoring requires an association of the measurements and anomalies to the position on the track.

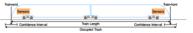


Figure 1: Train with train-front, train-end, train length and occupied track definitions.
The European Navigation Conference ENC 2020, November 22-25, 2020, Dresden, Germany
978-3-944978-25-0 ©2220 DGON

Knowledge for Tomorrow