German Aerospace Center

Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institute of Engineering Thermodynamics

The Segmented Battery Cell: Measurement of Current Density Distribution and locally-resolved Impedance Spectroscopy Density Christopher Haim, Dirk Schneider

Concept and approach

Dennis Kopljar, Christopher Heim, Dirk Schneider, Norbert Wagner, K. Andreas Friedrich

Motivation

Trend in the development of lithium-ion-batteries goes towards manufacturing of **large-format cells** to increase system energy density.

Challenges:

Inhomogeneous load and thermal gradients over cell-stack become more pronounced. This leads to

- inhomogeneous aging due to unfavorable current, SOC and temperature distribution,
- local increase of impedance and temperature hot-spots.
- Critical for longevity, performance and safety!

Obtaining information on how material properties, cell design & charge/discharge parameters influence local gradients is critical to

- maintain inside a safe operating window,
- to optimize performance and
- facilitate longer lifetime.
- Combination of simulation
 AND experiments to monitor
 local gradients and aging behavior

The segmented cell* approach

- Segmented current collector coated with active material,
- analogous to printed circuit-board technology,
- segments are individually contacted and current over each segment is measured.

* N. Wagner, A. Dreizler, D. Schneider. DE102017109233A1, 2017

Modelling and simulation of current density distribution

Impedance-based network-model

Model is parametrized by electrochemical experiments:

- Pseudo-OCV curve at C/25
- Polarization resistance of each element is parametrized by impedance spectroscopy measurement of full cell

Current is distributed over network of resistances. each element with given *U-I* characteristics

- Current density distribution, SOC and temperature gradients can be modelled as function of cycling conditions, cell geometry and SOH.
- Aging can be implemented via parametrization (OCV and EIS),
- **Locally-resolved EIS** for more accurate parametrization (local aging behavior) ...

Experimental measurement of local parameters

Experimental set-up

- in-house developed circuit board connected to ZAHNER potentiostat with PAD4 add-on card for parallel signal input
- 30 mAh graphite-NMC622, 15 cm² pouch cell, 8 equally distributed segments on anode current collector

Nyquist-plot of parallel EIS measurements on each segment @ SOC50

measured current density on each segment during 1C charge

- Experimental current distribution <u>correlates</u>
 well with measured impedance distribution
 (see colors of curves),
- <u>Proof-of-Concept</u> of characterization technique successfully demonstrated,
- integration of local data into network model.

Next steps:

- systematic investigation of inhomogeneous aging during long-term cycling,
- Influence of cycling conditions and cell design.

