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The potential of high-speed rail freight in
Europe: how is a modal shift from road to
rail possible for low-density high value
cargo?
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Abstract

Purpose: A fully electrified transport chain offers considerable potential for CO2 savings. In this paper, we examine
the conditions necessary to introduce a fully electrified, large-scale, high-speed rail freight transport system in
Europe in addition to high-speed passenger trains, aiming to shift goods transport from road to rail. We compare a
novel high-speed rail freight concept with road-based lorry transport for low-density high value goods to estimate
the potential for a modal shift from road to rail in 2030.

Methods: To characterize the impacts of different framework conditions, a simulation tool was designed as a
discrete choice model, based on random utility theory, with integrated performance calculation assessing the full
multimodal transport chain regarding costs, emissions and time. It was applied to a European reference scenario
based on forecast data for freight traffic in 2030.

Results: We show that high-speed rail freight is about 70% more expensive than the conventional lorry but emits
80% less CO2 emissions for the baseline parameter setting. The expected mode share largely depends on the
cargo’s value of time, while the implementation of a CO2-tax of 100 EUR/tCO2eq has an insignificant impact. The
costs of handling goods and the infrastructure charges are highly influential variables.

Conclusion: High-speed rail track access charges are a suitable political instrument to create a level playing field
between the transport modes and internalize external costs of freight transport. With the given access charge
structure, a reduction of the maximum operating speed to 160 km/h has a positive impact on the expected mode
share of rail transport while it still reacts positively to a wide range of the cargo’s time sensitivity (compared to a
maximum operating speed of 350 km/h). The flexibility of rail freight’s operating speed is important for an effective
implementation. Further research should concentrate on time- and cost-efficient transhipment terminals as they
have a significant impact on transport performance.
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1 Introduction
Without a significant shift to more efficient electrified
transport modes and decarbonized energy generation,
limiting the global temperature increase above 1.5 °C
compared to preindustrial times is unlikely. In Europe,
the transport sector accounted for 30.8% of the final en-
ergy consumption and 27.9% of greenhouse gas (GHG)
emissions in 2017 with mainly fossil fuel powered road
transport being the largest consumer and emitter (93.7%
and 71.7%, respectively) [1]. Especially due to the in-
creasing freight transport demand, same day delivery
and reduction of warehousing, traffic is expected to grow
in the future. However, the energy system must be radic-
ally decarbonised throughout all sectors within a very
short time frame to achieve the climate protection tar-
gets [2]. In Europe today, rail freight transport emits 3.5
times less GHG emissions than its road counterpart and
strikes with high energy efficiency [3]. It must extend its
market share and enter cargo segments that belong to
the realm of road transport to facilitate the required
modal shift. Intermodal rail-road transport has been pro-
posed as a solution in the past [4–8]. Going beyond, this
paper examines the potential of a disruptive multimodal
concept for the transportation of low-density high value
(LDHV) goods via rail to gain new market shares.

1.1 Challenges and future markets
The market share of rail freight in the European Union
decreased from 12.5% in 2000 to 11.3% in 2017 despite
an increase in total freight transport performance [1].
This decline is related to the freight structure effect,
which involves a transformation of the production struc-
ture from mass goods to high value cargoes [9]. Mass
goods are still the classic market segment of conven-
tional rail freight transport while it has been widely ex-
pected that LDHV cargo will continue to be solely
subject to road transport [10–12]. Intermodal rail-road
transport in Europe copes with average speeds of 18-30
km/h [3], high expenses for single wagonload transport
and simultaneous reduction of railway sidings. Hence, in
average, intermodal transport is competitive to unimodal
road haulage only on distances larger than roughly 600
km [8]. However, the EU white paper “Transport” from
2011 aims at a modal shift from road to rail and water-
ways of 30% by 2030 and 50% by 2050 for distances lar-
ger than 300 km [13]. These goals demand novel
solutions for market segments that are not adequately
addressed by conventional rail transport [14]. Schumann
et al. [15] find the demand for LDHV goods transport to
be 1.45 million tonnes per year on a representative
trans-European transport corridor. In value terms, this
accounts for significant 16.5% of the total freight trans-
port market, currently solely transported by trucks.

1.2 Approaches to support rail freight’s competitiveness
Jackson et al. [16], Islam et al. [17], and Islam and Zun-
der [18] point out that innovative transhipment tech-
nologies and logistics concepts, intermodal load transfer
and general flexibility are crucial factors in supporting
rail freight transport. Different developments such as
higher speeds, automatic coupling systems, information
and communication technologies or fast intermodal
road-rail transhipment terminals can favour such a de-
velopment [14, 19]. However, their implementation is
lacking behind and there are only few examples of novel
approaches to support rail freight transport. A higher
operating speed is deemed especially important.
In 2017, Russian Railways has ordered baggage and mail

wagons designed for maximum operating speeds of 160
km/h, which can significantly increase the average speed
on long distances. In the past, the EURO CAREX project
promoted a (very) high-speed rail freight (HSRF) concept
with maximum speeds over 200 km/h for the transporta-
tion of air freight pallets in the retired TGV Postal trains,
that is, however, currently not in operation.
In Italy, Mercitalia started “Mercitalia Fast” in autumn

2018: A high-speed freight point-to-point service with
the HSRF-train ETR 500, transporting rolling containers
(cf. used for postal service) between Maddaloni-
Marcianise and Bologna Interporto. The trains run over-
night at 180 km/h on the Italian high-speed network for
time-sensitive deliveries, Monday to Friday in 3 h and
30 min. It is planned to extend the service in the future.
In Austria and Sweden, other HSRF-projects are planned
for express delivery of time-sensitive goods [20, 21].
Watson et al. [22] examine the future possibility of

transferring freight from airlines to HSRF by analysing the
operational and technical constraints associated with
freight transport. They point out that HSRF could gener-
ate a new demand, a general increase in the utilisation of
the transport infrastructure, an increase in revenue and a
reduction in subsidies. However, the capacity of existing
network to transport goods with HSRF and the technical
and operational constraints of mixed transport need to be
examined. They also conclude that the implementation
and operation of HSRF is a costly business and it is doubt-
ful whether infrastructure or railway undertakings alone
will be able to set up such a freight service.
Cavagnaro et al. [23] further describe an innovative

intermodal HSRF concept, compatible with high-speed
passenger traffic, named “Hyperfreight”. The concept in-
volves a high-speed train and an automatized terminal-
system for standard containers, which are fed into the
rail vehicle from below with an elevation system.
The German Aerospace Centre also takes a holistic re-

search approach in order to counter the current declining
mode share in rail freight transport and overcome the
above-mentioned key problems. The Next Generation Train

Boehm et al. European Transport Research Review            (2021) 13:4 Page 2 of 11



(NGT) CARGO is a driverless HSRF train concept with
light-weight single wagons that load and unload palletised
goods on roller floors for a fully automated, electrified logis-
tics process [24]. The powerful, innovative transhipment in-
frastructure is able to perform cargo handling for a whole
NGT CARGO block train within a few minutes and facili-
tates an efficient multimodal transport chain [25]. On un-
electrified feeder tracks, the motorised single wagons can
serve external logistics sidings and integrate themselves into
a block train formation autonomously [26].
In the following, the NGT CARGO concept is used in the

European HSRF reference scenario 2030. Section 2 intro-
duces the applied methodology and Section 3 the examined
scenario. The results for transport carrier performance and
modal split under different assumptions are presented in
Section 4, followed by a discussion and conclusion.

2 Methods
Previous research identified various attributes influen-
cing the decision maker’s mode choice in freight trans-
port [5, 27–29], the most important being internal cost
and haulage time. To assess these variables and the cli-
mate impact of multimodal and international freight
transport chains, a multi-dimensional simulation model
was developed. It is established as a detailed short-term
performance calculation tool combined with an aggre-
gate modal split model. The former uses detailed input
data to determine performance attributes and their
structure. The latter is implemented as a discrete choice
model (Logit) based on random utility theory. Here, the
shippers act as decision makers and intend to maximize
their utility of freight transport on a scenario-specific
origin-destination (O-D) pair. The utility is derived from
micro-economic theory and is dependent on three per-
formance attributes: internal cost, GHG emissions and
transport time. External costs beyond emissions with
global impact (e.g. network congestion, noise and local
air pollution) are excluded because currently, these are
not subject to the trade-offs in mode choice made by
shippers. An inclusion thereof would alter the choice of
transport mode to be the optimal solution for society as
a whole which would most probably promote the rail
mode. See Fig. 1 for a simplified illustration of the two-
stage model structure.

2.1 Transport chain modelling
In every scenario, the performance of several transport
chains comprising one or more transport modes on a
defined O-D pair is calculated based on the characteris-
tics of the attributed transport vehicles. There are four
major mode types; road, rail, water and air (focus here:
road and rail). Every transport chain is designed as a lin-
ear concatenation of L links which can hold one trans-
port carrier tc of the corresponding mode each. Usually,
the key aspect of research is attributed to the main car-
riage link(s). Beside the modes, a pseudo mode tranship-
ment is integrated, which is not dependent on vehicles
but on loading and unloading processes. Based on this
set-up, the calculation of transport chain- and carrier-
dependent performance attributes (i.e. C costs, EM emis-
sions and T transport time) is carried out for each trans-
port chain. These attributes consist of several impact
factors as follows:

C ¼
XL

l¼1ð Þqtcl�½ED vl; unitsl�ρ; ed max;0tc; μtc; λtc; vmaxtc

� �
�dl�FP fueltc; countrylð Þ þ cmainttc�dl þ cperstc
�TD vl; vmaxtc; dl; ststtcð Þ þ ccaptc�dl þ INFC countrylð Þ
�dl� þ ctrans − fixl þ ctrans − varl� loadingl þ unloadingl

� �
ð1Þ

EM ¼
XL

l¼1ð Þqtcl�½ED vl;unitsl�ρ; ed max;0tc; μtc; λtc; vmaxtc

� �
�dl�FEM fueltc; countrylð Þ� þ emtransl

� loadingl þ unloadingl
� �

ð2Þ

T ¼
XL

l¼1ð ÞTD vl; vmaxtc; dl; ststtcð Þ þ ttrans − fixl

þ ttrans − varl� loadingl þ unloadingl
� � ð3Þ

Transport costs (1) comprise energy, maintenance
cmainttc , capital ccaptc , infrastructure (e.g. track charges or
road fees), personnel cperstc , and transhipment costs. The
first four components are dependent on the driving dis-
tance of that link dl, while total transhipment costs de-
pend on the number of units loaded and unloaded (
ctrans − varl�ðloadingl þ unloadinglÞ ) plus a fixed fee to
enter a transhipment point ctrans − fixl . These costs occur
in case that link l is of type transhipment. Personnel
costs depend on the time demand calculated from the
maximum velocity of the transport carrier v maxtc on that

Utility maximization in a 
Multinomial Logit Model

Transport chain for mode A

Transport chain for mode B

Expected mode shares

Costs, Emissions, Travel time

Costs, Emissions, Travel time

Set of transport
carriers 1

Set of transport
carriers 2

Fig. 1 Illustration of the methodology
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link, the link’s maximum speed vl, and a transport car-
rier specific standstill time ststtc to model congestion:

TD vl; vmaxtc; dl; ststtcð Þ ¼ min
dl

vmaxtc
;
dl

vl

� �
þ ststtc�dl ð4Þ

The energy cost is a product of energy demand ED, dl
and the fuel price function FP(fueltc, countryl). The latter,
as well as the infrastructure cost function INFC(countryl)
and fuel emissions function FEM(fueltc, countryl), maps
country and fuel dependent values in the input data. ED
of all modes’ possible transport vehicles is calculated
with a linearized function (5). It is two-dimensionally
dependent on the velocity vl and the load (as a product
of transport units unitsl and their density ρ), with edmax,

0tc as intercept at maximum velocity and zero load
[kWh/km], μtc as slope of gross vehicle weight [kWh/
(kg*km)] and λtc as slope of the difference between vl
and vmaxtc [kWh/((km/h)*km)]:

ED vl; unitsl�ρ; ed max;0tc; μtc; λtc; vmaxtc

� �
¼ ed max;0tc þ μtc�unitsl�ρþ λtc� vmaxtc − vlð Þ ð5Þ

Emissions EM (2) depend on the fuel demand of the
transport carrier on that link or the transhipment process.
The variable vehicle driving emissions are calculated in the
same way as the fuel costs, just mapping emission data in-
stead of prices. Variable emissions in case of a transhipment
link emtransl are dependent on loadingl and unloadingl.
For costs and emissions, each link’s value is multiplied

with the quantity of transport carriers on that link qtcl to
model situations where several vehicles are needed to
satisfy a given transport demand. qtcl is the round-up ra-
tio of the difference between loading and unloading until
that link in the transport chain and the maximum load
(maxloadtc multiplied by maximum load factor τtc) of
that link’s transport carrier (6):

qtcl ¼
Pl

i¼1ð Þloadingi − unloadingi
maxloadtc�τtc

& ’
ð6Þ

Transport time T (3) is calculated as a sum of the time
demand for transport carriers TD (4) and both, a fix and
variable transhipment time for every transhipment link (
ttrans − fixl and ttrans − varl , the latter being dependent on
the number of loaded and unloaded transport units).

2.2 Mode choice modelling
The implemented mode choice model is a reproduction
of the decision maker’s choice behaviour within a
discrete choice set (discrete, behavioural model) which is
derived from random utility theory. Logit models have
been best practice in discrete choice modelling for de-
cades, especially in transport literature [30–32]. They are
subject to several assumptions (see [33, 34]):

� every individual is a rational decision maker
maximizing the utility of his or her choices;

� decision maker i considers mutually exclusive
alternatives, which make up his or her choice set Ii;

� each alternative j has a perceived utility Ui
j, based

on microeconomic consumer theory;
� Ui

j depends on a number of measurable attributes
X i

j (as a vector) and

� Ui
j is not known with certainty by an external

observer, which is why it is split into a systematic
utility V i

j and a random residual εij considering

unobservable errors: Ui
j ¼ V i

j þ εij ∀ j∈Ii

In this model, the individual shippers are aggregated
to one generic decision maker, which is why the index i
is not required in all upcoming mathematical descrip-
tions. Random residuals comprise all influences of deci-
sion making that are not addressed in the systematic
utility and other errors in the analytical expression of
performance attributes, errors in the input data, errors
due to omitted performance attributes and errors occur-
ring due to the aggregation of decision makers.
The probability that the utility of alternative j, Uj, is

greater than all the other alternatives in the choice set I
can be expressed as follows (7):

p j=I½ � ¼ Pj ¼ Pr Uj > Uk ∀k≠ j; k∈I
� � ð7Þ

An appropriate statistical model must be applied to es-
timate the perceived utility of the decision maker. The
simplest and most common utilization of random utility
theory is represented by the Multinomial Logit model
(MNL). It is assumed that random residuals εj are inde-
pendently and identically distributed according to a
Gumbel random variable of zero mean and parameter θ,
which leads to the following expression for the mode
choice probability (8):

P j ¼
exp

V j

θ

� 	
Pm

j¼1 exp
V j

θ

� 	 ð8Þ

2.3 Model calibration
The perceived utility must be calculated, to estimate a
modal split. Hence, a vector β is defined consisting of a
cost sensitivity of 1 (i.e. neutral perception of cost), a
value of time (VoT) in EUR/(h*t) and an emissions pen-
alty in EUR/tCO2eq (e.g. CO2-tax to internalise external
cost from GHG emissions). The VoT describes the deci-
sion maker’s appreciation for the acceleration of goods.
It positively relates to the weight-specific value, interest
rates and deterioration of goods and is independent of
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distance and transport mode [5]. Most commonly, data
is gathered with Stated Preference surveys and evaluated
in a Logit model [35, 36]. β is multiplied with the per-
formance attributes C, EM and T to bring them on a
common scale (EUR per transport unit), wherefore the
VoT is rescaled to transport units under use of the
scenario-specific unit density. C, EM and T are consid-
ered as unit-specific values because shipment sizes vary
between transport carriers and the decision-maker con-
siders load-specific performance values.
Parameter θ is a control variable for the selectivity of

the mode share estimation results, i.e. the variance of
the probability distribution [33]. Studies that gather mi-
cro data for discrete choice modelling usually estimate
the perceived utility Ui

j directly, making θ obsolete (see

[37, 38]). The present study uses literature values for β
to compute Vj which requires the calibration of θ de-
pending on possible error sources described in the previ-
ous subsection. We find a value of 0.5 for this study’s
model structure based on the simulation of conventional
intermodal rail-road and unimodal road transport rela-
tions on distances ranging from 100 to 1000 km in
Germany.
While it is intended to model the full internal cost and

time of a transport chain, emissions calculation does not
happen according to a life-cycle analysis. Vehicle, infra-
structure and terminal building emissions are excluded
from all components and only well-to-wheel CO2eq
emissions from fuel consumption (including well-to-
tank and tank-to-wheel) are accounted. Costs of trans-
port exclude logistics operations (other than cargo car-
riage), margins and business overheads of any service
providers above the level of carriers. The expression
“fuel” includes electricity in this paper.

3 European scenario 2030
The idea behind the NGT CARGO concept is a dense
European HSR network with block trains rushing
from one hub to another and single wagons driving
to and being loaded at external logistic sidings au-
tonomously (powered by an internal energy storage
and motor). This could facilitate a widespread modal
shift from road to rail. Even though we model with
predicted data for the year 2030 it is improbable that
such a network exists until then. Nevertheless, certain
European transport corridors show high transport vol-
umes of LDHV goods (mainly transported via road
today and in the projected future) and thus, potential
for a first application of the NGT CARGO concept
worth investigating.
The market analysis and the operating concept as well

as scheduling used for definition of this scenario’s trans-
port corridor (Madrid to Vienna) was conducted by

Knitschky et al. [39] and Schumann et al. [15]. It is based
on the traffic forecast data of the German Federal Trans-
port Infrastructure Plan 2030 (German: Verkehrsver-
flechtungsprognose 2030; VP2030; [10]). It contains
international traffic originating from or transiting
through Germany as well as inner-German traffic on
NUTS-3 level resolution [10].1 The selected cargo types
are LDHV goods on euro pool pallets or in unit load de-
vices with a specific weight of 350 kg per loading unit
(ρ). The whole transport demand considered here is pro-
jected to be satisfied by lorries in the VP2030. Figure 2
depicts the hubs along the transport corridor and the
corresponding loading and unloading volumes per day.
As can be seen, the eastbound transport volume roughly
corresponds to the westbound volume which is import-
ant for vehicle and terminal productivity. For sake of
simplicity, pre- and on-carriage are excluded from
calculations.
In the European scenario, trains use high-speed rail-

way lines expected to be available in 20302 with permis-
sible maximum operating speeds along the transport
corridor [15].
Lorries use national highways with an average speed of

70 km/h, which is slightly faster than average values be-
cause of long distances between hubs. In 2030, lorries are
still modelled diesel-powered with emission class EURO VI
because this drivetrain is assumed to represent the highest
share in the heavy-duty road vehicle fleet (see [42]). The
transhipment in each hub is assumed to cost 60 EUR per
full lorry load and take 1 h for a fully loaded lorry.
The transhipment system of the HSRF concept is

based on a new terminal structure outside the cities be-
ing able to unload and reload an entire block train
within 5 min. Emissions are assumed to be 0.2 kg CO2eq
per pallet (due to high degree of automation and electri-
fication). The costs are assumed to be roughly the
double of conventional road-rail terminals with handling
volumes of 20,000 to 100,000 TEU per year (see [43]).
Thus, we assume loading or unloading costs to be 10
EUR per pallet.
The track access charge systems for railways in Europe

are highly diverse and dependent on many boundary con-
ditions [44–46]. For country specific track charges we dif-
ferentiate between two scenarios, based on the current
network statements of the respective countries for freight

1The data set was provided for research purposes. The file format is an
origin-destination freight transport matrix for the 2030 forecast and is
based on the approach of Knitschky et al. [39] and Schumann et al.
[15].
2Montpellier - Avignon: already in operation; Lyon – Dijon (Rhin-
Rhône Sud): slightly delayed; Mülhausen – Karlsruhe: delayed, speed
increase between Offenburg and Freiburg planned until 2030 [40];
Stuttgart – Ulm: under construction, start of operation planned for
2025 [41].
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Fig. 2 Transport demand of LDHV goods on the transport corridor ES - AT and vice versa

Table 1 Country specific parameters: prices and emissions for 2030

Country Diesela

[EUR/kWh]
Electricityb

[EUR/kWh]
Traction electricity
emissionsc [gCO2eq/kWh]

Road feesd

[EUR/km]
Track charges conventional rail
freighte [EUR/train km]

Track charges HSRFe

[EUR/ train km]

Austria 0.133 0.10 138.6 0.40 17.54 19.79

France 0.159 0.09 70.6 0.22 2.12 23.80

Germany 0.139 0.13 476.3 0.13 6.54 17.11

Spain 0.133 0.11 254.5 0.15 0.25 9.17
a https://www.globalpetrolprices.com/diesel_prices [accessed at 1st November 2019], 10% estimated price increase by 2030, WtW diesel emissions: 325.8 gCO2eq/
kWh following EN16258 specifications; b Prices for non-households from Eurostat (2019), no price change by 2030 even though nominal prices may decrease (see
[47–49]); c Rail electricity mix at pantograph, emissions data from Ifeu et al. [50], 65% estimated emissions reduction by 2030 compared to 1990; d If existent, the
latest road fees are retrieved from national information in the internet. Otherwise, from BVU et al. [51]; e Based on the current network statements of the
respective country for freight and long-distance passenger transport, adjusted to 2030 values. For detailed information see Additional file 1 (description of the
calculated country specific track charges for 2030)

Table 2 Vehicle specifications
Parameter HSRF trainc Lorry with semi-trailerd

Vehicle design Block train with two locomotives and ten single wagons in
between

40 t max gross weight, Euro VI emission class, 4+
axles

Max Load [pallets] 900 34

Max speed [km/h] 350 90

Vehicle costs [1000 EUR] 54,800a 70

Mileage yearly [1000 km/a] 1,008 135

Lifetime [a] 10 6

Personnel costs [EUR/h] 8b 23.81

Maintenance and other costs [EUR/
km]

3 0.21

Fuel Electricity Diesel

edmax, 0tc [kWh/km] 38.40 2.12

μtc [kWh/km/kg] 1.24*10
−5 4.06*10

− 5

λtc [kWh/km/(km/h)] −0.1013 0
aVehicle cost estimation based on ICE 3/Velaro, with comparable technical properties, assuming a cost increase factor of 2 for chassis, power
supply, propulsion, on-board control, factor 1.5 for car body, assembly and acceptance, factor 0.6 for vehicle equipment; b Remote-operation 10
trains/person; c NGT CARGO specification book and operational concept, fuel demand calculated from own simulations; d data from BVU et al.
[51], vehicle cost data from Lastauto Omnibus-Katalog [53]: average value of six 18-ton semi-trucks plus 20,000 EUR for the trailer, costs inflation-
adjusted to 2030 (annual growth 1.5%), the price is based on a 50% write-down and resell value rate, as it can be found in other sources, fuel
demand calculated from fuel station bills for long haul driving cycles [54]
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and long-distance passenger transport (Table 1). The
calculated track charges consider line and train type, gross
weight, velocity, international charges and supplements
for congested rail infrastructure. As a simplification we ex-
cluded service charges, low-speed and delay penalties and
noise bonus. Terminal service cost we calculated separ-
ately. We assume a country specific increase of track ac-
cess charges by 2030 based on the changes to previous
years (see Additional file 1).
The employed VoT is taken from a study by Signifi-

cance et al. [52] with Stated Preference data from the
Netherlands. They find 3.87 EUR/(h*t)

3 as average VoT
travel savings for non-container road transport with loads
from 2 to 15 t (in average 8 t), which matches the defin-
ition of LDHV goods in this paper: Average weight of 350
kg/pallet and average value of 2,937 EUR/t (see [15]).
The expected mode share, emissions and costs are fur-

ther analysed under different parameter variations (track
charges, velocity, unit handling, VoT, CO2-tax). All that
combined yields an optimistic parameter set that in-
cludes a VoT of 5 EUR/(h*t), a CO2-tax of 100 EUR/
tCO2eq, HSRF track charges of 8 EUR/km, double road
fees, and unit handling costs of 5 EUR per pallet.
Vehicle specifications and country-specific emission

data, prices for fuels and infrastructure charges for rail
and road transport that are considered in this paper can
be found in Tables 1 and 2.

4 Results
All results are given in units per day to enable the com-
parison of different transport alternatives and assess the
real market potential at the same time. In 2030, 93 to
380 diesel-powered lorries are expected to travel along
different parts of the modelled transport corridor to sat-
isfy the given freight transport demand, emitting 411
tCO2eq per day in sum. If all that freight transport de-
mand was satisfied by a HSRF concept, four to fifteen
block trains would emit 88 tCO2eq per day with the ex-
pected electricity mix.
The results for the baseline parameter set show that

total cost of HSRF is about 70% higher than these of the
conventional lorry (Table 3). Main cost drivers are unit
handling in terminals and railway track charges while the
largest cost components of the lorry (fuel and personnel
costs) play a minor role for HSRF. Along the route, load
factors from 86 to 98% are realized with the modelled
transport demand. The distance-weighted average is 89%
which generates average costs without terminal activities
under the level of road transport (0.10 EUR/tkm). This
comparably high load factor results from small loading
units and high handling flexibility of the multimodal train

concept. It indicates higher competitiveness to road trans-
port compared to conventional intermodal rail-road trans-
port. The lorry’s total transport chain GHG emissions are
4.7 times higher than those of the HSRF train. The latter
uses electric traction with low carbon intensities, continu-
ing the current trend towards renewable electricity gener-
ation in Europe. Furthermore, it features energy efficient
high-speed operation due to highly efficient rolling mater-
ial, lightweight design and low aerodynamic drag. The
average HSRF train speed declines on the route from
Madrid to Vienna because of a less extensive HSR net-
work in Germany and Austria.
Variations of the scenario parameters yield strongly

varying results. The application of freight service track
charges with a reduction of maximum operating speed
to 160 km/h causes a significant decrease of specific
costs due to lower railway track charges and electricity
costs (see Fig. 3). Moreover, a maximum operating speed
of 160 km/h reduces average emissions of the HSRF con-
cept from 15.0 to 11.1 gCO2eq/tkm, which is 6.4 times
less than the lorry’s emissions.
Likewise, the application of freight train track charges

shows a positive effect on the expected mode share, even
though the average speed drops from 135 km/h to 107 km/
h. The reaction to higher VoTs is very positive (reaching a
crucial mode share of 50%) while the expected mode share
for lower VoTs still lies slightly over the baseline value
(Fig. 4). Similar results show the reduction of HSRF passen-
ger track charges to 8 EUR/km, which is especially high in
combination with doubling of road fees for lorries. The
most effective single-measure is reducing unit handling
costs to 5 EUR per pallet. A CO2-tax of 100 EUR/tCO2eq
shows only minor effect. In the optimistic case, 62% of the
lorries could be replaced by the HSRF concept. This would
reduce CO2eq emissions to roughly 200 t per day in 2030.

5 Discussion and conclusions
The purpose of this paper is to draw pathways for the
introduction of a HSRF concept in Europe, in particular to
estimate the modal split between HSRF and conventional
road transport and elaborate on influential factors. Costs,
emissions and time were evaluated with the focus on
LDHV goods which are currently predominantly carried
by road vehicles but could be shifted to rail in 2030. For
this, a mode choice model with an integrated transport
chain performance calculation tool was developed.
The results show that multimodal unit handling ex-

penses are an essential cost factor. Assumed a cost-
effective transhipment concept, the expected mode share
exceeds 50%, outperforming road transport in all three
target values of this paper. Islam and Zunder [18], Jack-
son et al. [16], and Zunder and Islam [14] also find that
unit handling is crucial for effective and competitive rail
freight transport, especially in the LDHV goods segment.

3Inflation-adjusted with historic values up to 2020 and 1.5%/a
onwards.
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Despite the technical implementation, the most effective
policy instrument to support HSRF transport in Europe is
the design of rail track access charges and road fees. Cur-
rently, there is no comprehensive HSRF operation in Europe
which is why there are no track charges to be deducted for
this study. However, assuming national passenger ser-
vice HSR track charges, the average rail charges per
tkm are 3.9 times higher than the road counterpart
today. An adjustment is deemed important to create a
level playing field in LDHV goods transport. More-
over, road freight transport externalities are reason-
ably higher than those of the rail mode and there
should be higher aspirations of internalizing trans-
port’s external costs (see [55] for reference values).
The replacement of road transport with the proposed HSRF

concept in the LDHV goods segment for a trans-European
transport corridor could save up to 79% GHG emissions. Even
though solely on the simulated transport corridor every day,
several hundred tons of GHG emissions could be saved, a
CO2-tax of 100 EUR/tCO2eq would have little effect on the

expected modal split. This is due to comparably low emissions
per transport unit. The monetarized GHG emissions penalty
represents 5.7% of the transport costs in the case of lorry oper-
ation and 0.7% for the HSRF train. CO2 emission penalties on
a higher scale are not considered realistic for 2030 under
current policies (see [56] for comparison).
Lower maximum speeds of the HSRF concept corres-

pond to lower GHG emissions from electricity consump-
tion while expected mode shares are dependent on the
VoT and the track access charges applied. One core elem-
ent of the examined HSRF concept is the free integration
of freight and passenger transport which leads to more ef-
ficient utilization of the rail network and lower infrastruc-
ture costs (see [14]). Maximum speeds of up to 350 km/h
make the full operational inclusion possible but result in
lower expected mode share than operation with a max-
imum of 160 km/h. The latter represents the threshold for
application of (higher) passenger service HSR track
charges in this paper and the maximum operating speed
of regional passenger services. Lower speeds respond less

Table 3 Simulation results for European scenario 2030 with baseline parameter setting

HSRF train Lorry with semi-trailer

Mode share 41.9% 58.1%

Total cost [EUR/d] 1,164,402 684,285

Total emissions [tCO2eq/d] 87.6 410.9

Average speed [km/h] 134.9 57.6

Specific costs [EUR/tkm] 0.20 0.12

Specific emissions [gCO2eq/tkm] 15.0 71.0

Cost share of transhipment 49.8% 15.0%

Cost share infrastructure charges 30.5% 13.2

Time share of transhipment 35.3% 17.6%

Specific rail/road charges [EUR/tkm] 0.061 0.016

Fig. 3 Specific costs and emissions of the HSRF concept compared to road transport
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negatively to a lower VoT and more positive to a higher
VoT than the baseline parameter setting. This implies the
applicability to a wider market segment (still within LDHV
goods). Moreover, vehicle and maintenance costs could de-
crease for lower performance ratings. However, they make
only a small share of specific transport costs due to high
productivity of the rolling stock on this transport relation
(i.e. 86 to 98% load factor compared to 70 to 85% in average
for rail freight [57]. Overall, the operational speed needs to
be adjusted to the transport corridor’s utilization, the applied
track charges, and the respective types of transported goods
(VoT) which requires higher flexibility than current rail
freight transport services.
An innovative multimodal HSRF concept could re-

place road freight transport in the LDHV market seg-
ment to a certain extent. The resulting mode share
depends on transport policy actions, an effective imple-
mentation of HSRF solutions and – most notably – the
eco-awareness of decision makers. To meet the goals of
the Paris Agreements for the freight transport sector,
there must be the ambition for system change with the
objective of reducing the sector’s GHG emissions and
other external costs. For further research, the cost influ-
ence of multimodal road-rail transhipment terminals for
different layouts in the LDHV segment and the influence
of network effects – especially on the HSRF concept –
should be considered in more detail.

6 Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12544-020-00453-3.

Additional file 1. Description of the calculated country specific track
charges for 2030.
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