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ABSTRACT

Many technical devices are complex systems with a wide
range of configuration options. Such options can be se-
lected, but not independently and with restrictions and
implications. The matching between customers require-
ments to existing configurations that a supplier can build
with sensible effort and technical limitations is currently
mostly done manually based on experience. In this paper,
we present an approach to automate this matching, based
on ontologies and (tailored) similarity measures.

We explain an implementation that works on a reduced
parameter set for star trackers, based on the example of
ASTRO APS® from Jena-Optronik GmbH. This system
is able to automatically suggest the best fitting and build-
able configuration for any requirement configuration and
we point out possible ways to extend it in the future.

1. INTRODUCTION

In this paper, we present an approach to find similar prod-
uct configurations based on ontologies and explain how
this can lead to a new and more efficient way to exchange
technical information along the supply chain.

Currently, suppliers usually provide the technical data of
their products via PDF data sheets on their websites. En-
gineers who design a new spacecraft have to find the data
sheets, compare the technical properties of the described
product with their requirements, and then extract the val-
ues of the product they finally want to use. This is even
more challenging as not all parameters are easily com-
parable (e.g. imperial vs metric system, different error
terms, different functionalities).

Although many new configurations can be realized, the
mutual aim is to re-use existing configurations whenever
possible. This reduces non-recurring effort and cost and
enables the re-use of existing qualification campaigns and

data. Existing configurations are usually well proven and
often already in use (space flight heritage), which is a
strong argument for the usage of established configura-
tions. However, it is hard to find the closest existing con-
figuration for a given set of requirements when none of
existing configurations completely meets all required pa-
rameters.

Often, clarification regarding buildability of certain con-
figurations and their qualification status is necessary —
e.g. via phone or e-mail. We discussed before why this
process can and should be improved [1]. In the end, the
engineer does not really want to know the technical capa-
bilities of the supplier, but wants to know, if the supplier
can meet the core requirements. Often a discussion of a
specific configuration is necessary to identify which re-
quirement has higher weight and which can be changed
to fit existing configuration while maintaining the cus-
tomer’s overall system performance.

To automate the described matching process, we need the
following:

a model of what the supplier is able to build,

a model of what the customer wants built,

an interface to get both together, and

something that decides whether both models match.
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In this paper, we present a system that implements points
1 and 4 for a star tracker as an example case, but the idea
can be easily adapted to other products. Points 1 and 2 are
addressed by an ontology, point 3 by SPARQL! requests,
and point 4 by a tailored similarity measure. The connec-
tion between customer and supplier is currently not yet
implemented via an API, but the models are put together
on supplier side. This will be added in a next version of

IThis is a recursive acronym: SPARQL Protocol and RDF Query
Language



the code. The system is able to automatically suggest the
most fitting actually buildable configuration for any re-
quirement configuration. We are aware that this system
will not revolutionize the whole supply chain information
exchange, but we think that it is a starting point.

2. STATE OF THE ART

Many publications have dealt with various aspects of the
problem how to represent product configurations through
ontologies. One important aspect is the description and
validation of constraints to ensure integrity, because some
properties of a configuration might exclude or imply oth-
ers. The first to address this aspect were Soininen et al. in
1998 [2]. With the standardization of semantic web tech-
nologies by the W3C? and the spread of Web Ontology
Language (OWL), researchers used and extended these
standards for configuration options, e.g., Yang et al. [3]
and Ardito et al. [4]. Multiple works addressed the prob-
lems of defining integrity constraints in OWL that follow
from the Open World Assumption [5][6][7]. Bergner et.
al. presented an approach using the SPARQL Inferenc-
ing Notation (SPIN) created by the company TopQuad-
rant [8][9]. A year later the W3C released the Shapes
Constraint Language (SHACL) [10], which is based on
SPIN and was used in this work.

In order to find matching existing configurations for a
given requirement configuration, a way to determine the
similarity of configurations is needed. A method to cal-
culate the similarity of two objects is called a similarity
measure, i.e. a function with the range [0;1] where 1
means identity of the two input objects. Paul Jaccard for-
mulated the first simple similarity measure for sets (nowa-
days called Jaccard-Index) [11]. More recent approaches
are used in the field of data analysis and clustering and
are often based on probabilistic approaches. One widely
used approach to cluster mixed numerical and categori-
cal data is the adapted K-means algorithm by Ahmad and
Dey which uses the distribution of values among the data
points to calculate the dissimilarity of objects [12]. A dis-
similarity measure can be easily converted into a similar-
ity measure [13]. This approach was developed further
and fine-tuned for different problems, e.g. by [14], [15],
and [16]. However, none of those approaches promise big
improvements over the Ahmad and Dey approach for our
use case.

The last class of similarity measures considered in this
work are the semantic ones. Apart from distributional
semantic measures, which are used in text analysis and
are also based on probabilities, these include knowledge-
base semantic measures. They use the taxonomy and re-
lations of an ontology or another knowledge representa-
tion system to determine the similarity of classes, prop-
erties, and instances [17]. Bisson was amongst the first

2World Wide Web Consortium, https://www.w3.org/

who worked on this problem [18]. Approaches for the
similarity of classes and properties, e.g. [19], can not be
used as similarity measures for instance data like explicit
product configurations. A fitting semantic measure was
described by Rydzynski, Felic, and Zirpins [20], but not
used in this work in favor of a self-developed graph-based
measure that includes suggestions from the domain ex-
perts of Jena-Optronik. This method is described in the
following section.

Ehresmann et al. [21] introduced an approach to optimize
the whole space system according to the mission goal —
focusing there on an electric propulsion system. While
there each component is optimized, our approach focuses
on finding the best-fitting existing component.

3. IMPLEMENTATION

This section contains brief explanations of the example
ontology, of the three implemented similarity measures,
and of the setup which was used to compare them. We
omit some details as the implementation, including a run-
ning example, can be found at [22].

3.1 Ontology

The implemented ontology is a simplified description of
the domain of star trackers and contains the most im-
portant components and properties of the star tracker
ASTRO APS® by Jena-Optronik for demonstration pur-
poses. SHACL-Shapes are used to restrict invalid
configuration options. The URI of the ontology is
http://ontology.dir.de/spacecraft-parts/star-tracker# and
the associated prefix is sz.

The class st:StarTracker describes the general concept
star tracker and an instance of this class is a specific
star tracker with concrete properties, i.e. a configuration.
The set of ASTRO APS configurations is modeled by the
class st:AstroAps, which is a subclass of st:StarTracker.
Each important component of the star tracker is mod-
eled by a dedicated class and can be linked to the con-
figuration through a corresponding owl:ObjectProperty.
These are the detector (st:Detector), the power con-
verter (st:PowerConverter) and the communication pro-
tocol (st:CommunicationProtocol). The properties mod-
eled here are:

* st:hasUpdateRate of type xsd:double defines how many
updates a star tracker sends to the spacecraft

o st:hasMaxUpdateRate of type xsd:double defines the
maximum update rate of a detector

o st:hasNominalVoltage of type xsd:double defines the
nominal voltage of a power converter

o st:isInitialOn of type xsd:boolean defines if the power
converter is turned on when a supply voltage is applied

* stiisMilCompatible of type xsd:boolean defines if the
instance is compatible with MIL-STD-1553



* st:hasLcl of type xsd:boolean defines if the power
converter has a protection against high current peaks
(’latching current limiter”)

A communication protocol has no properties in this sim-
plified description. Instances are distinguished by their
labels.

"0 Power Supply'

‘Communication
Protocol'

Figure 1: The ontology classes as graph

3.2 Similarity Measures

Three similarity measures with different complexities are
considered in this paper. The simplest similarity mea-
sure is the set-based Jaccard-Index [11], which can be ex-
pressed by Eq. 1.
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In our case, the properties of two configurations are the
items of sets A and B. The most important feature of the
Jaccard-Index in this context is that it does not understand
numerical properties. This means, that for example two
configurations with the update rates 8 and 9 Hz (and all
other properties equal) are as similar as two configura-
tions with the update rates 1 and 100 Hz (again, all other
properties equal).

The second similarity measure uses the dissimilarity from
the K-means algorithm for mixed numerical and categor-
ical data by Ahmad and Dey, which is based on a prob-
abilistic approach. The distance between two categorical
values is computed as a function of their overall distri-
bution and co-occurrence with other properties (see [12]
for an in-depth explanation). The distance between two
numerical values is their difference weighted by a signi-
ficance. The significance is calculated by first discretiz-
ing the numbers and then treating them as categorical val-
ues. The output of the distance measure is converted to a
similarity measure by Eq. 2.
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3.2.1 Tailored Approach

The third function is, after fine-tuning for this specific
use case, no longer a similarity measure as it is not
symmetric. It receives two instances of an OWL class
and determines how similar the second instance is to the
first one (“reference instance”) by comparing the values
of owl:ObjectProperties and owl:DatatypeProperties.
The function calls itself recursively with the property
values (which are also instances) as arguments if the
property is an owl:ObjectProperty. For categorical
owl:DatatypeProperties, a binary measure is used which
returns 1 if the two values are equal and 0 otherwise.

Eq. 3 is used for numerical properties. The han-
dling of numeric properties is influenced by an
owl:AnnotationProperty, st:preferredDirection  in
our ontology. This property is, beneath the asymmetry
of Eq. 3, the second reasons why this approach is
asymmetric: It encodes if a value should be as high as
possible, as low as possible, or as close to the reference
value as possible. The first two options give the property
a direction.
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The similarity ratings of all properties are added up to a
weighted sum, which represents how similar the second
instance is to the first one. The weights of the different
properties were defined by hand according to the experi-
ence at Jena-Optronik.

3.3 Test Setup

To compare the three approaches and to optimize the third
one, tests were conducted as follows:

14 ASTRO APS configurations were provided by Jena-
Optronik as existing configurations as well as retrictions
and limitations to create new configurations. Based on a
permutation of the parameter sets, 3600 query, or require-
ment, configurations were created and evaluated (see [22]
for details). Each of the three similarity measures com-
pared each requirement configuration against the 14 ex-
isting configurations and provided a similarity value for
each comparison. In order to provide a comparison be-
tween the algorithms, five requirement configurations
where selected, where the result order of the 5 best fit-
ting existing configurations was different °. These cases
were discussed with the experts from Jena-Optronik and
results were compared with ratings of the algorithms.

3This means: the five highest rated buildable configurations of two
similarity measures match in a maximum of two places



4. RESULTS

Fig. 2 shows in how many cases out of the 3600 query
configurations the three algorithms agreed pair-wise with
each other about the Top 3, Top 2, and Top 1 best fitting
buildable configurations. All three algorithms agreed in
6.10% of all cases about the Top 3, in 15.0% about the
Top 2, and in 43,6% about the Top 1. Therefore, in less
than 50% of all cases all three algorithms agreed on the
best matching buildable configuration. None of the three
algorithms agreed about the Top 3 in 1.7% of all cases,
about the Top in 2.14% of all cases, and about the Top 1
in 9.14% of all cases. The ratings of Jaccard and Ahmad
Dey were more often identical than any of them and our
tailored algorithm.
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Figure 2: Accordance of the different similarity measures
for the most similar 3, 2, and 1 configuration(s).

Tab. 1 shows the total runtimes of the algorithms for cal-
culating the similarity of 3600 queries to the 14 reference
configurations. Since all three implementations use the
same data access, differences in the runtimes must come
from the algorithms themselves. This point is further dis-
cussed in the next section.

Method Runtime
Jaccard 819s
Ahmad Dey 104.8 s
Tailored 1179 s

Table 1: Total runtimes for the three implementations us-
ing the sample parameter set, 3600 queries and 14 refer-
ence configurations.

In order to compare results, five interesting queries from
the set of 3600 were selected. Their parameters are shown
in Tab. 2 and are discussed in the next section.

Upd. | Nom | LCL | init. | MIL | Protocol | Det.
rate | Volt. on
10 53 v v v | SCDI H2
8 53 X X v | HDLC H2
8 33 4 v v | UART S1
10 88 X X v | SCDI S1
8 28 X X X HDLC S1

Table 2: Query configurations used for evaluation that
show differences in results between the algorithms (up-
date rate in Hz, nominal voltage in Volts, LCL equipped,
device is initial on, MIL-STD-1553 compatible, commu-
nication protocol, and detector). Detectors are either
STARI1000 (S1) or HAS2 (H2).

5. DISCUSSION

Evaluation of non-agreement configurations: We ex-
plain one query configuration, where the three algorithms
disagreed about the Top 5 matching buildable configura-
tions (definition in section 3), in detail. The query con-
figuration of this example has the following properties:

» Update Rate: 10Hz

* Nominal Voltage: 53V

* LCL equipped

* is initially on

» compatible to MIL-STD-1553
* Communication Protocol SCDI
* Detector HAS2

Tab. 3 shows the most three most similar rated configura-
tions for each of the three algorithms using the example
query. First result value is the number of the rated ex-
isting configuration, values in brackets are the similarity
values.

Method st 2nd 3rd
Jaccard 7 (0.38) 8 (0.38) 9 (0.38)
Ahmad Dey | 12 (0.58) | 9(0.569) | 7 (0.567)
Tailored 7(0.94) | 8(0.642) | 14 (0.64)

Table 3: Top 3 most similar configurations for exam-
ple query according to the different similarity measures.
Green highlight is the preferred solution based on exper-
tise while orange is a less suited configuration.

A human expert would choose configuration 7 as best
matching for the example query configuration. The nomi-
nal voltage is the only property that is not a perfect match.
In the existing configuration it is higher than in the query
configuration, which is usually no issue due to wide oper-
ational voltage ranges. Configurations 8, 9, and 12 were
also suggested by the algorithms, but they have the wrong



communication protocol and the wrong voltage range.
Such deviations are usually unacceptable to the customer.
Both the tailored and the Jaccard algorithm rate buildable
configuration 7 as the best matching, but the Jaccard al-
gorithm rates buildable configurations 8 and 9 exactly as
good as 7, which is incorrect. The Ahmad and Dey based
algorithm rates buildable configurations 12 and 9 before
7, which is also incorrect.

For all query configurations that were discussed with ex-
perts, the tailored algorithm voted for the same configu-
ration as the human experts. This was not surprising as
the algorithm was tailored using expert rating. However,
it was not certain that the same weighting of parameters
for the algorithm would be working perfect for all queries.
The tailored algorithm performed quite well and showed
the best results.

The main problem of the Jaccard algorithm we encoun-
tered, was that it gives different buildable configurations
the exactly same rating. Therefore, there is no clear dif-
ference between configurations and the solution contains
a wide range of solutions. The Ahmad and Dey based
algorithm gives more distinct ratings, but often rates un-
suitable configurations the highest.

Runtimes: We did not measure the runtimes for data ac-
cess and actual similarity evaluation separately, though
this might be an interesting point for future work. We
see, however, that the runtimes do not differ by magni-
tudes between the different algorithms. We also see that
the runtimes become longer with increasing complexity
of the algorithm, as expected

6. CONCLUSION AND OUTLOOK

We implemented a system to find the best matching build-
able configuration of a star tracker to a given requirement
configuration — for a simplified and reduced parameter
set. The algorithm can be applied to more complex sys-
tems (e.g. as described in ECSS-E-ST-60-20C) and is not
limited to the demonstration system. Modeling all param-
eters is done easily, more complex is the task of transfer-
ring knowledge about dependencies and weighting of pa-
rameters to achieve robust behavior and results as shown.
As mentioned before, the runtimes for the algorithm(s)
can be optimized. The data access should become faster
if data is kept in RAM instead of requested from the ontol-
ogy every time. The runtime of the algorithm itself should
become faster by parallelization as individual query con-
figurations are not related.

Another point to be pursued further is the practical imple-
mentation in the software ecosystems of an actual sup-
plier and an actual customer. It would be interesting to
expand the system beyond technical aspects and to cover,
e.g., potential delivery dates. Another direction for fu-
ture work is the adaption to other satellite components
and sub-systems, e.g., batteries or solar panels. The in-
teresting problems, however, will arise where data will

be exchanged that is considered intellectual property of a
company. We are certain that the solutions to those are
not purely technical.

Overall, we hope to show with this system that there are
other ways of data exchange than the currently established
ones. Likely, even more complex systems will not cover
all relevant technical data along the whole supply chain as
current data sheets also only cover a subset of the overall
data and rarely any dependencies. However, we would
like to see how far this approach can be stretched and
which new problems arise at its borders.
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