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EXECUTIVE SUMMARY 
 

 

 Urban areas are the biggest consumers of electricity and energy consumption is only likely to increase 

with rapid urbanization. Out of the urban building stock residential buildings require continuous supply 

of energy for space heating and appliances. To answer to this demand in a sustainable way policy maker 

need to design energy efficiency strategies that must rely on accurate and traceable models. These 

models estimate energy demand based on a series of building features, out of which building age is of 

prime importance because it predicts the insulation properties of the building.  

To support the energy modelling process, we propose a method of automatically identifying building 

age from spatial data at a large scale. We identify features of buildings that are significant for age 

prediction and determine which set of features has best prediction power at national scale, in Germany. 

It is expected that the accuracy of classification will be strongly related to sampling design and data 

availability. The final results will be used to identify the impact of misclassification errors on estimating 

energy use in urban energy models, providing in this manner a measure of the reliability of such models. 
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1. INTRODUCTION 
 

 

Sustaining basic human activity requires a continuous supply of energy. In order to be able to fulfill our 

growing energy needs in a natural world that is under pressure and close to resource depletion, we need 

to achieve a significant change in the manner in which we produce, distribute and consume energy. One 

direction towards sustainability is to diversify the sources of energy production, by increasing 

significantly the share of renewable sources (United Nations, 2019). Another direction deals with smart 

energy management and planning for increased energy efficiency.   

Worldwide urban areas account for 71% of energy-related CO2 emissions (International Energy Agency, 

2016). In the EU, buildings account for 40% of energy consumption and 36% of CO2 emissions 

(European Commission, 2019). It is expected that by 2050 end-use energy demand to triple compared to 

2005 values because of urban population growth and economic development (Creutzig, Baiocchi, 

Bierkandt, Pichler, & Seto, 2015). This leads analysts to conclude that the “technological, sociopolitical, 

cultural and ecological drivers of energy transitions will increasingly be urban-related“ (Marcotullio et 

al., 2018). 

1.1.  PROBLEM IDENTIFICATION 

The drivers of urban energy demand are multifaceted and have been categorized into socioeconomic, 

behavioral, geographical and built environment drivers. The factors associated with the built 

environment include technologies and materials used, infrastructure, age, type and size of buildings, 

city planning, street connectivity and accessibility to jobs and services and last but not least, population 

and employment density (Marcotullio et al., 2018). It is estimated that it is possible to reduce city-

related energy demand by up to 50% by 2050 through increasing the energy efficiency of buildings, 

appliances and distribution networks and also by changes in residents’ usage behavior. 

The strategies involving buildings in particular are directed towards new ways of constructing new 

buildings and to retrofitting old buildings. The former measure can lead to reduced energy consumption 

by 50-70% for singe family dwellings and by 50-90% for multi-family dwellings (Global Energy 

Assessment, 2012). Building energy efficiency strategies such as renovation must take into account 

multiple factors such as climate, energy use and building age especially since 90% of EU building stock 
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has been built before 1990 and 75% of it is energy inefficient according to current building standards 

(Filippidou & Jimenez Navarro, 2019).   

Urban energy modelling helps policy makers understand the energy needs of city buildings and 

infrastructure, plan energy saving programs and analyze the future effect of the planned strategy 

(Reinhart & Cerezo Davila, 2016). Urban building energy models are constructed by applying “physical 

models of heat and mass flows in and around buildings to predict operational energy use as well as 

indoor and outdoor environmental conditions for groups of buildings” (Reinhart & Cerezo Davila, 2016).     

The operating principle behind these energy models is that energy consumption in buildings is 

determined by weather, usage pattern, building geometry, construction techniques and building 

regulations existing at the time of its construction (Economidou et al., 2011). Building age is an essential 

parameter for any scenario for modelling energy consumption or refurbishment needs since building 

techniques and construction materials are an indicator of building energy consumption and these   vary 

between historical periods. 

Building age is used in energy modelling to estimate the insulation properties of the building and to 

inform assumptions around the thermal performance and mechanical system attributes of a building 

(Tooke, Coops, & Webster, 2014). Thermal insulation varies per building element, and is expressed by 

the materials’ U-values. U-values measure the capacity pf the building element to prevent the transfer 

of heat between the inside and the outside of a building (Designing Buildings, 2019).  Another energy 

indicator associated with building age is air leakage (Economidou et al., 2011). A building envelope with 

reduced air leakage performs better in internal temperature control and energy conservation.  For these 

reasons, the ability to identify the age of the building stock is an important factor in estimating energy 

use and consequentially, energy saving potential. 

1.2.  KNOWLEDGE GAP 

Scientific policy advising requires models that are transparent, unbiased and realistic (Alhamwi, 

Medjroubi, Vogt, & Agert, 2017). These models should be based on accurate and complete data.  

Building stock data is acquired usually by two methods: either through census data collection, a process 

of registering population and housing statistics, or through surveys, a process focused on a reduced 

number of buildings and with a specific purpose (Mata, Kalagasidis, & Johnsson, 2014).  Statistical 

information on the non-residential sector is sparser than for the residential sector. Moreover, energy 

modelling for non-residential buildings is a complex process since these buildings form a more 

heterogeneous group due to differences in floor size, usage pattern, energy intensity or construction 

techniques (Loga, Diefenbach, Stein, & Born, 2012). For these reasons, this research is concerned with 

the residential building stock.    

Despite efforts of data acquisition through census and surveys, the year of construction or the building 

is not information readily available for modelling purposes. The reasons behind this lack of data are the 

high costs of surveys, un-uniform administrative procedures, and privacy concerns. Data availability 

varies both at national and regional level. One positive example is The Netherlands where the Dutch 

Land Registry and Mapping Agency provides information on the construction year for individual 
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buildings (Kadaster, 2019). In Germany, this information is available sparsely, and whenever the 

information is collected, it is not public due to privacy laws protecting the publication of data on 

individual addresses, or it is available at an aggregated level (Zensus, 2011).  Using incomplete or 

aggregated data in modeling energy consumption estimates introduces various degrees of uncertainty, 

depending on the resolution of the simulation, with higher uncertainties for simulation of single 

buildings (Reinhart & Cerezo Davila, 2016; Zirak, Weiler, Hein, & Eicker, 2020). 

The need to reduce this source of uncertainty in energy modelling has led to various studies for the 

automatic identification of building age. The general trend is to deduce the age of a building from 

various physical characteristics, like shape (Alexander, Lannon, & Linovski, 2009; Biljecki & Sindram, 

2017; Tooke et al., 2014), position (Rosser et al., 2019) or façade appearance (Li, Chen, Rajabifard, 

Khoshelham, & Aleksandrov, 2018; Zeppelzauer, Despotovic, Sakeena, & Koch, 2018). The prediction is 

realized by learning these characteristics from buildings with known age and then applying the learning 

result on buildings for which the age is not known.  The literature overview highlights a common feature 

of the cited studies, which is that they have been performed only for single cities or neighborhoods and 

the power of generalization of their method is either not discussed or only briefly addressed. The 

accuracy of predictions across all age classes varies between 50% and 77%. This suggests that is not yet 

possible to determine precisely the year of construction based on spatial or image-related 

characteristics.   

The aim of this research is firstly an attempt to improve the accuracy of building age identification by 

exploring building characteristics that are related to their surrounding urban environment. Secondly, 

the potential of automatic prediction of building age at a large spatial scale will be investigated. The end 

purpose of the research is to support energy consumption modelling and facilitate decision making 

surrounding energy efficiency policies. Outside the context of energy applications, building age is a 

factor to be considered also in scenarios considering: material stocks and flows in the built environment 

(Ortlepp, Gruhler, & Schiller, 2018),   urban resilience, seismic vulnerability, building thermal 

performance under climate change conditions (Nahlik, et al., 2017), and real estate market valuation.  

Furthermore, investigating building age constitutes an opportunity for understanding the built 

environment, its spatial and temporal patterns.  

1.3.  RESEARCH OBJECTIVES 

The research has been carried under the tutelage of the German Aerospace Center (DLR) and its scope 

is the age prediction of the building stock in selected German cities, more specifically in the federal state 

of North Rhine-Westphalia. The actual end use of the proposed methodology is however broader than 

this specific context. It is expected that in the next two decades the highest impact from energy saving 

policies will be achieved in non-OECD countries (Marcotullio et al., 2018).  In the absence of complete or 

reliable data, the access to automated tools that facilitate and accelerate the process of decision 

making will have a considerable impact.  

To sum up the intent of this work, we aim to identify a set of building features that can be obtained 

exclusively from public data, that are representative at multiple spatial scales and that conduce to good 

accuracy of prediction of residential building age. The core of the proposed investigation can be further 

on summarized by the following research question: 
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How can urban energy models be improved by accurate and automatic residential building age 

identification at a large scale?    

Starting from the main research question, the workflow is structured in several phases surrounding a 

central sub-question:  

1) What is the influence of construction year on building energy efficiency? 

2) What model parametrization is most suitable for the automatic classification of building age? 

3) What features are relevant for the classification of building age and what is the prediction 

success for different groups of features? 

4) How accurate is the classification and what is the model’s power of generalization across 

different spatial scales?    

5) What is the effect of misclassification of building age on energy demand estimation?  

1.4. THESIS OUTLINE 

The report has been introduced by an overview of the complex sociotechnical problem which forms the 

context for our research: transition towards energy efficiency in urban areas. The motivation behind the 

focus of this work, building age prediction, has been briefly addressed, as well as the knowledge gap 

that makes our investigation scientifically relevant. These aspects are further on developed in Chapter 2 

with a broader introduction to the field of building energy efficiency and a review of the literature that 

supports and informs the research task at hand. The research methodologies employed are presented in 

Chapter 3 with an emphasis on modeling technique and data collection and interpretation. The 

discussion surrounding data processing continues in Chapter 4, with an overview of data sources used 

and their integration into a homogeneous dataset. The extraction of building attributes, also called 

classification features is then presented. The chapter also contains an analysis of the optimal 

parameters and sampling strategies for the chosen model. Chapter 5 summarizes the validation tests 

performed in order to judge the accuracy and generality of the model. Chapter 6 consists in a discussion 

of results and their relevance in answering the proposed research questions. The perceived limitations 

and suggested directions of future research conclude this chapter. Lastly, Chapter 7 is an overview of 

the study’s main findings, both in terms of technical achievements and importance for model-based 

policy analysis.   
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2. LITERATURE REVIEW 
 

 

In order to understand the connection between building age and energy policies a deeper dive is needed 

into the fields of building energy regulations, energy models and energy policies tailored for residential 

buildings. Whenever the context allows for country-specific explanations, the spotlight will be on 

Germany.  After giving an overview of the policy context where we situate our research, we focus on the 

available research methods for investigating building age. These methods include both the traditional 

avenues of research where building age is the study target and studies of neighborhood urban structure 

where the age of the buildings is merely implicit.  

2.1 BUILDING ENERGY EFFICIENCY   

2.1.1. BUILDING ENERGY CODES 

Building energy codes are a key policy instrument that enables governments to achieve their energy 

sustainability targets by improving building energy efficiency while at the same time ensuring 

comfortable living conditions to building inhabitants (UNECE, 2018). The building elements and energy 

systems that are the main focus in building energy codes and standards are: building envelope, water 

heating, lightning, and heating, ventilation, and air conditioning systems (HVAC). More elaborated 

standards refer also to: level of daylight or solar gains, air tightness, renewable energy, indoor and 

outdoor temperatures, passive solar systems and solar protection, performance of boilers and air-

conditioning systems (Economidou, 2012; UNECE, 2018). The measures imposed are either voluntary of 

mandatory, and can be of prescriptive nature of performance-based. Prescriptive measures require a 

minimum energy efficiency level for the individual building components while performance measures 

refer to an integrated energy assessment of the whole building.  The prescriptive approach is easier to 

implement compared with the performance approach, and refers to regulations of heat loss (U-value) of 

building component such as windows, roofs and walls, and to the efficiency levels of HVAC systems 

(UNECE, 2018). The object of both types of measures are new or existing (after refurbishment) 

residential and non-residential buildings.  
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Specific regulation on the thermal insulation of the building envelope has been introduced in European 

building codes in the late 1970s (Filippidou & Jimenez Navarro, 2019). The evolution of these energy-

related standards has been unequal for EU member states since then.  

Building regulations in Germany are defined in the building control laws, which are divided into material 

and formal control laws. The material laws describe the building construction standards while the 

formal laws regulate supervisory procedures and the enforcement of the planning law.  They were 

created at the end of the 18th century based on the laws of the Prussian States, and their first major 

overhaul took place after the Second World War (Pahl-Weber & Henckel, 2008). The war brought about 

large-scale destruction of cities, towns and villages and at the same time, a large influx of refugees. The 

laws developed to deal with the immediate issue at hand were state laws that dealt with firstly with the 

removal of rubble, with the reconstruction of the infrastructure and then with housing. This phase was 

followed, in the 60s and 70s, with the construction of “large-scale housing estates and new 

developments in the urban fringes” (Pahl-Weber & Henckel, 2008). An important moment in the 

evolution of building codes has been the end of 1970s. Higher energy costs paired with increasing 

societal concerns for environmental protection, lead to the adoption of prescriptive building energy 

efficiency measures, in 1977 and 1979. Measures concerning the authorization, research and 

development and use of renewable energy were introduced in 1996 (Pahl-Weber & Henckel, 2008).  

The introduction at European level, in 2002, of the Energy Performance of Building Directive (EPBD) 

was an important step in the evolution of energy efficiency regulations from prescriptive to 

performance-based measures.   The latest amendments to EPBD were brought in 2019.    

Germany, as well as other member states of the European Union, has adjusted its national laws in 2002, 

in conformity with EU regulations. The Energy Saving Ordinance (EnEv) has been introduced that year, 

together with a standard method for calculating the heat requirement of a building. The elements under 

regulation that are related to the age of the building are the U-values of construction elements: external 

wall, floors, basement, roof, upper ceiling, windows and entrance doors.    

Primary energy demand is estimated based on the energy profile of reference buildings, which are 

representative of the national building stock and are defined as ‘typical’ buildings for which specific 

energy performance requirements exist in national legislation.  In Germany, in 2016, the maximum 

primary energy demand equaled 75% of the reference value for 2014 value and the thermal envelope 

requirements were constrained by a further 20% from the 2014 value (Schettler-Köhler & Ahlke, 2016). 

These energy performance requirements are cost-optimal according to EU standards (Schettler-Köhler 

& Ahlke, 2016).   

2.1.2. ENERGY SAVING MEASURES 

For countries in cold climates the first important measure for energy saving is to ensure insulation. 

Then, when heating or cooling is required, tight air sealing with mechanical ventilation should be 

considered (UNECE, 2018). For countries in warmer climates moderate insulation would be sufficient 

while the focus should fall on efficient cooling and heating systems (Filippidou & Jimenez Navarro, 

2019). It has also been shown that heat pumps are a technology that is both highly efficient and 

essential in the process of heat decarbonization (Economidou, 2012).  Other measures include insulation 
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of heat distribution pipes, using condensing boilers, heat recovery ventilation systems, or solar thermal 

systems (Loga et al., 2012).   

The greatest part of the European building stocks has been built before 1979, when the first building 

energy codes have been implemented. Renovations should play an important role in achieving energy 

targets but their rate is low, at 2.5-3 % and they consist in their greater part only in minor adjustments, 

thus making it doubtful that their full energy-saving potential will be reached (Filippidou & Jimenez 

Navarro, 2019). In Europe between 0.4 and 1.2% of buildings are renovated each year which means that 

more efforts must be consolidated into identifying energy-inefficient buildings. In Germany, the process 

of refurbishment differs per construction element. For buildings constructed before 1978, 

approximately 50% had their roof thermally upgraded, while only 20% had walls insulated, with an 

annual rate of less than 1% (Loga, 2012).   

2.1.3. BUILDING AGE AND ENERGY CHARACTERISTICS 

In order to understand the need of renovation measure, this section presents the status of the 

construction year of the building stock across Europe and the energy attributes associated with building 

age.    

 

Figure 2.1:   European building stock by construction year. Data retrieved from ENTRANZE, http://www.entranze.enerdata.eu/. 

Copyright Enerdata 2012-2020 (Data tool, 2019). 

The introduction in the 70s of thermal insulation requirements in building codes has resulted in a 

significant decrease in thermal transmittance values (U-values) across all countries (Filippidou & 

Jimenez Navarro, 2019). All over Europe the U-values of building elements have decreased in time, as it 

can be observed in figure 2.2 but there are also exceptions to this trend, most notably Germany and 

Bulgaria, where buildings built in the 1960s are less well thermally insulated than buildings built before 
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that time (Economidou et al., 2011), due to a combination of inferior material technology and lack of 

maintenance. 

Another energy indicator associated with building age is air leakage (Economidou et al., 2011). The 

decreasing trend of air leakage over construction periods is less pronounced as thermal insulation, and 

there is a marked difference between old building stocks from Western and Eastern Europe from this 

point view, where the former has an increased level of air tightness than the later.   

 

Figure 2.2:  Mean U-value of the building's envelope elements (roof, floor, wall and window) calculated as a weighted average 

per surface area of each element for two subsets (built before and after the 1970s) of the national building stocks. Reprinted 

from Achieving the cost-effective energy transformation of Europe’s buildings by Filippidou & Jimenez Navarro, 2019, retrieved 

from https://ec.europa.eu/jrc/en/publication/achieving-cost-effective-energy-transformation-europes-buildings. Copyright 

European Union, 2019  (Filippidou & Jimenez Navarro, 2019). Source of data EPISCOPE, http://episcope.eu/welcome/. 

2.2 BUILDING ENERGY MODELS  

The working principle of a building energy model is to express the requirements for energy as a function 

of selected input parameters with the goal of “quantifying the consumption and predicting the impact 

or savings due to retrofits and new materials and technology” so that “decisions can be made to support 

energy supply, retrofit and technology incentives, new building code, or even demolition and re-

construction” (Swan & Ugursal, 2009).  Two broad classes of models have been identified, each with 

their own set of input parameters and simulation methods: top-down and bottom-up.  Bottom-up 

models estimate energy requirements for individual groups of houses and extrapolate the results at 

national or regional level. These models generally require a high-level of detail in the specification of 

their input parameters and use complex calculation and simulation methods.  

Many of the most commonly used bottom-up models start with the in-detail simulation of energy 

requirements for individual buildings that represent each of major classes of buildings that form a 
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national building stock. Such buildings are called archetypes and their parameters are derived from 

grouping together different features of the building stock by using available data at national level (Mata 

et al., 2014). The simulation results for archetype buildings are scaled-up then at regional or national 

level by multiplication with a weighting factor to achieve the total number of houses in each class. 

There are several ways in which these archetypes can be defined and at the present date there is no 

single international or even European-level uniform characterization of the building stock through 

archetypes. The largest-scale initiative is the European Tabula Project which identifies an energy-

relevant building typology for 13 member states of EU (Loga et al., 2012).   For Germany the final result 

of the Tabula Project is a building classification based on building type (4 classes - single-family houses, 

terraced houses, multi-family houses and apartment blocks) and construction year (11 classes). Mata et 

al. (2014) propose another method of segmentation of building stock, based on building type, 

construction year, main heating system and climate zone and they apply it for 4 European countries: 

France, Germany, Spain and UK.     

In their review of urban energy modeling Reinhart & Davila (2016) show that the combination of 

building type and construction year is a common factor in most of the proposed building typologies. 

Clustering construction years into building age classes is normally done based on building regulation 

changes and is country specific due to the evolution of these regulations in the national historical 

context (Firth, Lomas, & Wright, 2010).   

As mentioned before the purpose of classifying buildings into archetypes is to extract a common set of 

input parameters for modeling energy requirements of buildings of same type. These input parameters 

include: heated floor area, external surface, window area, glazing type, ventilation rate, fuels used for 

the heating system, indoor temperature, and outdoor climate data. Extended parameters may include: 

“building form and orientation; daylight, solar gains and shading; thermal bridges; internal loads from 

appliances, equipment and occupants; the performance of different building components and 

equipment; and the use of renewable energy sources and automatic controls” (UNECE, 2018). 

The parameters that are associated with construction year depend on the setup of calculation and 

simulation used by the energy model employed but mainly refer to the U-values of the construction 

elements of the building. A short overview of energy models and input parameters inferred from 

building age is presented in table 2.1.  

Table 2.1: Building energy model input parameters inferred from building construction year. 

Model Construction Year Input parameter Reference 

Energy, Carbon and Cost 
Assessment of Building Stocks 
(ECCABS) 

Average U-value of the building  
Ventilation rate 

  (Mata et al., 2014) 

Community Domestic Energy 
Model (CDEM) 

Average wall U-value and average roof U-value (Firth et al., 2010) 

SimStadt Building storey height   
 

(Zirak et al., 2020) 

CitySim+ Floor type 
Glazing ratios 

(Rosser, Long, Zakhary, 
Boyd, & Mao, 2019) 
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2.3 BUILDING AGE PREDICTION 

A building is an individual unit of built environment, positioned in time and in space. It can be described 

by its interior and exterior, its position and the surrounding environment. It can have cultural, emotional 

and monetary value attached to it. The construction epoch determines many of the physical attributes 

of the building as well as the structure of the enclosing neighborhood. Discerning from all the building 

features the ones that are most representative for the year of its construction is a task that requires 

subject-matter expertise.   

Building and neighborhood characteristics change with the construction epoch and particular attention 

should be paid to country-specific characteristics.  

2.3.1. GERMAN BUILDINGS CHARACTERISTICS 

There are approximately 18.9 million buildings with living space in Germany. A great majority of these 

buildings (38%) have been built between 1949 and 1978, as it can be seen in figure 2.3. 

 

Figure 2.3: German building stock by construction year. 

In Germany, between 1850 and 1920 buildings usually had 4 to 6 storeys, arranged along streets and 

enclosing a block area. Ribbon developments of the 1950s usually consist of 4–5 floors. In the 1970s and 

1980s high-rise buildings with large open space between them were constructed (Mueller, Segl, Heiden, 

& Kaufmann, 2006).  World War II changed the shape of many historic cities in Germany and some cities 

reconstructed their center altogether. The focus after the war was the densification of city centers 

(Braun, 2015). Another important characteristic of the German building stock are the differences that 

emerged from the separation between East (German Democratic Republic) and West Germany (Federal 

Republic of Germany). Eastern Germany followed an intense reconstruction plan driven by the need of 

social housing which has led to the construction of many high-rise pre-fabricated buildings (Grothe, 

2010).  These buildings are specific to the East but have also been built more sporadically in the Western 

part of the country. All these particularities make Germany an interesting and challenging case study for 

this particular research.    
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The challenge is visible by merely inspecting a set of representative buildings from different 

construction periods. With the purpose of providing nationwide building typologies for enabling large-

scale energy modeling, the TABULA project classified the German residential building stock into 11 age 

classes and 4 type classes (Loga et al., 2012).  Besides energy data and calculations, the project’s web 

portal (Institut Wohnen und Umwelt , 2020) also offers an overview of representative images of 

buildings from each category, as displayed in figure 2.5. These images are a proof of the similarities in 

shape and appearances between age periods and are an indication of the complexity of the task at 

hand.    

Construc
tion Year 

Single Family House Terraced House  Multi Family House Apartment 
Block 

Before 
1859 

 

 

 

 

1860 to 
1918 

    
1919 to 
1948 

    

1949 to 
1957 

    
1958 to 
1968 

  
 

 
1969 to 
1978 
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1979 to 
1983 

 

   

 

1984 to 
1994 

 
  

 

1995 to 
2001 

   

 

2002 to 
2009 

   

 

After 
2010 

   

 

Figure 2.4: Building facades representative for the German building typologies identified in the European project TABULA. 

Data retrieved from TABULA WebTool, http://webtool.building-typology.eu/#bm.  Copyright Institut Wohnen und Umwelt 

GmbH 2012-2016 (Institut Wohnen und Umwelt , 2020). 

2.3.2. BUILDING SHAPE AND STRUCTURE 

In detail knowledge of floor types, construction elements, location of kitchens, bathrooms, elevators, 

disposition of balconies, symmetry of the façade structure, decoration tiles, windows shape and 

location could be an indicator of the year of construction age. However, machine-readable data 

referring to construction materials or to the plan of buildings is generally unavailable. Real estate 

databases could contain this information, but their records are most likely to be incomplete, at a small 

spatial scale and intended for private use, which will not make them a reliable data source for large-

scale applications.   

Building attributes that are related to shape or location are increasingly easy to find and compute from 

open spatial data sources due to a growing number of open city data initiatives and the emergence of 

crowd sourced GIS maps.   
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There are two classes of studies that have dealt with building age prediction, age being either a 

continuous numerical value or an age periods, usually counted in decades. The first is defined by the use 

of spatial datasets and various supervised learning algorithms while the second relies on datasets of 

images of buildings and deep learning algorithms for image feature extraction and classification.  

From the first class, Tooke et al. (2014) have used for predicting building age features related to building 

shape, 2D and 3D, and information derived from cadaster data and, in a lesser measure, LiDAR data.  

The authors relate their findings on building age with energy demand estimation and conclude that 

categorizing building ages into age groups and then defining common energy consumption values per 

group is not necessarily a good approximation and they suggest individual ages to be better proxies.  

Rosser et al. (2019) used a similar approach of classification, based on spatial datasets, while adding a 

second phase of prediction optimization. The features they used for classification were related not only 

to building shape but also to their position with respect to other buildings, in a buffer area of 30 m. 

Starting from the principle that buildings were most likely built together in blocks, they optimize the 

initial classification results by aggregating results over sets of nearby buildings, where close buildings 

are determined using three types of proximity measures. 

Alexander et al. (2009) explored several possibilities of using spatial information for building age 

classification. On one hand, they used as predictors the building area and position with respect to other 

buildings and also to the street, and on the other hand they tested a method based solely on building 

shape, where the shape is encoded according to its topology. The latter method appeared to be less 

successful than the former, which is the most common approach in the literature.   

From the second class of studies, Li et al. (2018) and Zeppelzauer et al. (2018) have used convolutional 

neural networks to learn characteristics of a building epoch from patches extracted from images of 

building facades. The data used was taken either from Google Street View in the first case and from real 

estate databases in the second. Both studies used only images of single-family dwellings. 

Another source of findings that are relevant for building age prediction is literature on the topic of 

building type predictions. Both directions of research investigate building shape and position, employ 

supervised or unsupervised learning models and their case studies have similar spatial resolutions. 

Amongst these studies, we highlight the research of Wurm, Schmitt, and Taubenböck (2016) whom 

have used a large set of shape indicators, 2D and 3D, to determine building type. The types they have 

identified are: perimeter block development, terraced houses, detached and semi-detached and halls. 

Their conclusion is that more complex geometric features are better predictors of type. 

One direction of research in the prediction of building age could include the analysis of the relationship 

between building age and roof material type and condition. The spectral characteristics of the roof can 

be extracted from aerial or satellite images.  Roof material classification is however difficult due to the 

wide range of materials that may be used, the steep roof geometry, coloring (red tiles and red colored 

roofing are not separable), illumination conditions and other properties of the roof surface, such as age, 

dust or moss that lead to buildings with the same type of roof to appear to have different materials 

(Armesto Gonzalez, Docampoa, & Canas Guerrero, 2006; Mueller et al., 2006). For properly identifying 
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roof materials hyperspectral sensors are used. Studies that investigate for example urban seismic 

vulnerability have made use of sensors that capture up to 503 spectral bands (Constanzo et al., 2016).  In 

addition to hyperspectral sensors, for identifying houses within an image, the spatial resolution of the 

data should be ideally 0.25 m–0.5 m according to Jensen and Cowen (1999) as cited in Mueller et al. 

(2006). This type of data is costly to be acquired for extended regions.   

2.3.3. URBAN MORPHOLOGY 

Buildings are the essential components of cities and the evolution of city planning is in close relation to 

the evolution of construction epochs. Investigating building age from the perspective of urban growth is 

a natural investigation step. Although growing needs of urban settlement, combined with the 

destruction caused by major historic events such as World War I and II, have led to mixed-age 

neighborhoods throughout Europe, the history of city planning does follow certain epoch specific 

considerations.  

The 19th century industrial city was an overcrowded space, receiving within its growing boundaries both 

industrial workers and members of the bourgeoisie. The cities were planned along an orthogonal grid of 

streets and blocks, with buildings that were compact and similar in size and height (Oikonomou, 2014). 

Most of the 20th century development has tried to counter-balance this trend, by reducing density, 

increasing dispersion of settlements and planning for open and green spaces. Towards the end of the 

last century environmental concerns and a reconsideration of architectural principles lead to increased 

emphasis on compactness of the urban block for increased community spirit and shorter travel 

distances (Marshall, 2005). The evolution of the city form was accompanied by the development of new 

construction materials and techniques and enhanced building design (Oikonomou, 2014).  

The urban space is the combination of blocks, composed of plots and buildings, and the public space and 

streets interspersed between them (Oikonomou, 2014). City planning consists in designing the optimal 

physical form of urban space through a combination of “”size, density, structure and built form” that 

best accommodate the various urban functions (Marshall, 2005). Identifying, understanding and 

describing in a quantitative manner the existing urban structures is the purpose of growing body of 

work, under the term of urban morphology.  These studies focus on the analysis of individual spatial 

features, and more recently also to the interrelation between them and between different spatial scales 

(Berghauser Pont et al., 2019). 

There are numerous studies that have defined metrics that can describe urban patterns. We will refer 

presently to studies that connect explicitly the notion of age of a building or block with the spatial 

characteristics of the surrounding urban space.  

Hermosilla, Palomar-Vázquez, Balaguer-Beser, Balsa-Barreiro, and Ruiz (2014) analyzed the spatial 

characteristics of different blocks in Valencia, Spain and extracted an age-based classification. The 

historical center of the city is defined by buildings of different heights, blocks of different geometries, 

streets that are narrow and reduced green space. Another type of historical blocks is those spread into 

the fabric of the city and that have buildings of lower heights. At the end of the 19th century a type of 

grid-shaped block was constructed. The blocks developed in the 50s or the 60s have irregular shapes 
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and buildings of average heights and are bounded by narrow streets. In the 70s and the 80s high-rise 

buildings were built in block which privileged greater open spaces. The trend of building tall residential 

buildings continued after 2000 with blocks delimited by wide avenues and an increased share of green 

space. The last type of residential blocks identified are suburban areas, situated farther from the city 

center and composed of detached and semidetached houses surrounded by vegetation. When 

investigating the metrics that best characterize these neighborhoods, they found that street width and 

area compared to building coverage, as well as the size of the green space are the best differentiators.  

Another example of age-based classification for urban blocks has been done by J.H. Lowry and M.B. 

Lowry (2014) for the region of Salt Lake County, Utah, US. Their classification is limited to 3 types of 

neighborhoods: pre-suburban (1891-1944), suburban (1944-1990) and late suburban (1990-2007). Their 

most important of their finding is associated with the fact that World War II marked an important 

change in real estate development. The suburban neighborhoods are characterized on average by lower 

house density, increased building lot size and less fragmentation of land uses. From a demographics 

point of view they also observed an increase in percentage of house ownership but also increased time 

to commute to work.  

Gil, Beirão, Montenegro, and Duarte (2012) compared the characteristics of two neighborhoods in 

Lisbon, a newly built one and one with continuous development since 1920. By computing a set of block 

and street metrics they concluded that the biggest differences among the two types of neighborhoods 

were: the new neighborhood contained long streets with wide pavements while the other contained 

highly connected streets; with respect to urban density, the old neighborhood contained medium 

density block with houses with private courtyards, while in the new one there was a mix of high density 

compact blocks and low density blocks. 

Berghauser Pont et al. (2019) researched the block, street and plot patterns in 5 European cities, 3 of 

which Swedish, investigating measures of urban density and street connectivity. Their typology does 

not involve a temporal aspect. They found that streets that are well connected in the network (both at 

local and global scale) are mostly found in dense neighborhoods. These dense neighborhoods occupy 

however a small share of the city surface, with more than 65% of the surface being either sparsely or 

compactly occupied by low-rise buildings. They also noted a difference between Swedish cities on one 

hand and Amsterdam and London on the other hand, where the former has a more of tree-like pattern 

of streets, with a higher share of dead-end streets, and the later a grid-like pattern.    

To sum up the relation between the reviewed literature and the current study, our approach extends 

previous work in building age detection. The research goes further by putting a stronger emphasis on 

urban morphology traits concerning street and urban block as mean of identifying age class and also by 

considering large scale classification. Our interest into block features is in the same vein as the idea of 

spatial autocorrelation introduced by Rosser et al. (2018). We do not however plan to assign uniformly 

the same age to the entire block since the urban fabric is not homogeneous and buildings are 

constructed in gaps in older neighborhoods, especially in areas that suffered from conflict-related 

destructions. The importance of street features, another novelty point in our research, has not yet been 

addressed in the building age prediction literature, with the exception of one study (Alexander et al., 

2019) that mentioned distance to road as a minor building attribute that has proven irrelevant.  
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3. RESEARCH METHODOLOGY 
 

 

The following chapter highlights the methodology used for this study. Particular emphasis is placed on 

the description and motivation behind the main activities of research, data collection and modeling, and 

the chapter concludes with an illustration of the research workflow. 

3.1.  RESEARCH APPROACH 

The proposed investigation method is based on a case study and modeling approach. The core of the 

research work will be of quantitative nature and consists of data gathering, analysis and modelling.  

Literature review and desk research provide a starting point and context to future findings. The 

modelling technique employed is multilabel classification of building age.  

3.1.1. MACHINE LEARNING  

Machine learning is the process through which a machine can change its structure, program or data with 

the goal of improving future performance (Nilsson, 1996).  One practical aspect of machine learning is 

the extraction of useful information from raw data according to Witten, Eibe, and Hall (2011) who define 

it as a body of techniques for extracting structural descriptions from examples with the purpose of 

prediction, explanation and understanding. One important subset of machine learning algorithms is 

supervised learning where labelled input data is used to make predictions for unlabeled new data based 

on data attributes also called features or predictors (Géron, 2019). The predictions can be either 

continuously numeric, in which case the task is that of regression, or a finite set of categories, in 

classification. Whenever the label to predict is categorical and non-binary we are dealing with multilabel 

classification.   

In their review of machine learning methods used for smart cities and urban sustainability (Nosratabadi, 

Mosavi, Keivani, Ardabil, & Aram, 2019), the authors show that machine learning is widely used in topics 

such as energy, transportation, health, environment and city management. Out of all possible 

applications, smart energy is the field that has made use of practically all methods available in machine 

learning, including its most recent development, deep learning (Nosratabadi et al., 2019). In another 

review of machine learning for estimating building energy consumption (Seyedzadeh, Rahimia, Glesk, & 
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Roper, 2018) the authors conclude that these techniques show great potential for forecasting building 

energy performance and that they are a viable alternative for classical methods of building energy 

modelling and assessment.  

The literature review we performed on topics concerning building age, building shape and urban 

morphology highlights a recurring number of machine learning methods employed: Random Forest 

(Biljecki & Sindram; 2017; Rosser et al., 2019; Tooke et al., 2014), clustering (Berghauser Pont et al., 

2019; Gil et al., 2012), Convolutional Neural Networks (deep learning) (Li et al., 2018; Zeppelzauer et al., 

2018).   

The classification method used for this study is Random Forest, an ensemble-based supervised learning 

algorithm.  Its advantages over other types of learning algorithms are robustness to noise, 

computational efficiency, feature importance estimation and treatment of both categorical and 

continuous data (Breiman, 2001). It is a method conceived to deal out-of-the-box with multilabel 

classification and it handles well high data dimensionality and multicollinearity of features (Belgiu & 

Dragut, 2016). Random Forest is also widely used in urban remote sensing for classification of 

hyperspectral images for the investigation of urban land cover (Tooke et al., 2014).  

3.1.2. DATA COLLECTION 

 Some of the main challenges in data-driven decision-making are the availability, quality and 

interpretability of data. Data unavailability is an obvious reason for weak modeling results. Data 

interpretability is essential for obtaining relevant results and avoids misleading the decision-making 

process. Data quality impacts both the accuracy of the end result and the amount of time and effort to 

invest in a project.  The quality aspect refers not only to accurate information but also to homogeneous 

standards and formats.  

Data availability was the key driver in establishing the scope of research. After investigating the 

availability of open urban data in various states across Germany, North Rhine-Westphalia has been 

chosen as test case owing to its open data policy. Data interpretability has been a challenge in two 

aspects. Firstly, the language barrier has proven a retardant in the data collection process given that the 

majority of data portals were only in German. Secondly, for some data sources the metadata was either 

lacking or displaced and assumptions about the data attributes had to be made by closely inspecting the 

actual data. Data quality has not been an issue as far as completeness and consistency are concerned 

but it can quickly become one with respect to uniformity in data formats and standards especially when 

extending the analysis across geographical regions.  

The notion of spatial scale is an important one for the generality of the method proposed. The aim is to 

investigate the potential of large-scale classification of building age with reproducible research. 

Consequently, national and international open data sources were given priority. Whenever the data was 

not available or unusable due to its low resolution, local data sources have been used, i.e. data 

repositories provided by the state North Rhine-Westphalia.    

Inspection of the built environment can be achieved through a variety of measuring means (Lemmens, 

2011): aerial surveys, hyperspectral imaging, LiDAR, thermal imaging, oblique digital images. In detail 
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examination of the urban landscape is resource and time consuming and most research projects have to 

deal with a low cost-high data resolution tradeoff. The types of data sources used are: digital 

topographic maps, digital surface models, buildings models, Open Street Map or similar map products, 

census data, satellite images. The data types, sources and formats can be consulter in table 3.1.  An 

overview of the process of data integration and classification setup is illustrated in figure 3.2. 

Table 3.1: Data types and sources. 

Data type Data source Spatial extent Spatial 
resolution 

Format Technology 

Building 
age 

Census 2011 National 100m grid Tabular  
Vector (polygon) 

Excel 
Shapefile 

Spectral 
images   

Sentinel-2 
(Copernicus) 

International 10 m Raster  GeoTiff 

Building 
models 

 State  3D model CityGML 

Block  ATKIS
1
  State 1:10 000 Vector  (polygon) Shapefile 

Address ALKIS
2
  State  Vector (point)  

Street OpenStreetMap International  Vector (point,  line) Shapefile  

  

Figure 3.1: Overview of data integration workflow and classification setup.  

The advantage of scoping our research to a single state with a good open data policy across all cities 

within the state was that homogeneity was insured within-data types for all cities. A process of data 

integration and transformation has to be applied between data types in order to merge all type of data 

into a single dataset per city analyzed. The city dataset contains building attributes that are considered 

                                                           
1
 Amtliche Topographisch-Kartographische Informationssystem (ATKIS) is the Official Topographic-Cartographic 

Information System, a basic information system for topographic geodata created by the Working Group of the 
Surveying Authorities of the States of the Federal Republic of Germany (AdV). 
2
  Amtliche Liegenschaftskataster Informationssystem (ALKIS) is the Official Real Estate Cadastre Information 

System developed by the Working Group of the Surveying Authorities of the States of the Federal Republic of 
Germany (AdV).  
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relevant for building age prediction. The combination of building metrics and building age represents 

the input of the classification model. The research hypothesis identified by the research questions are 

tested against the model, in different setups that express: variations in spatial scale of classification, 

complexity of the model features, sampling strategy and parametrization.    

3.2. RESEARCH WORKFLOW 

The study is structured by the relevant research sub-questions identified in chapter 1 and the research 

activities follow closely this outline. For reference, the sub-questions are:  

1) What is the influence of construction year on building energy efficiency? 

2) What model parametrization is most suitable for the automatic classification of building age? 

3) What features are relevant for the classification of building age and what is the prediction 

success for different groups of features? 

4) How accurate is the classification and what is the model’s power of generalization across 

different spatial scales?    

5) What is the effect of misclassification of building age on energy demand estimation?  

 The research flow diagram in figure 3.2 illustrates the connection between research phase, 

methodology and the question under investigation. 

 

Figure 3.2: Research flow diagram. 
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4. MODELLING 
  

 

 The current chapter describes the data acquisition, data engineering and modelling workflow. Firstly, 

the data sources are introduced along with the most important processing steps. Then the features for 

building classification, either as original data or derived through computations, are presented. Lastly, 

the parameters of the model and the sampling design are described and evaluated. The best performing 

learning setup will be used in the next phase of obtaining the classification results.   

4.1. DATA SOURCES   

Germany is divided into 16 states. North Rhine-Westphalia (NRW) is the state with the highest 

population and the fourth largest by area. It has hosted the capital of the Federal Republic of Germany, 

in the city of Bonn, until the country’s reunification in 1990.  

Data availability differs largely per state in Germany. Since 2014 NRW is developing an open data policy 

through its Open Government strategy (European Data Portal, 2017). The state’s open data web portal 

hosts more than 3800 datasets from 40 local authorities throughout the state (Open Government 

Germany, 2019), which makes it the first state in Germany in terms of size of published open data. 

Because of its size in area and population and mostly because of its data availability, NRW has been 

chosen as the test case for our modelling. 

The data listed in this section is available for all municipalities in NRW. The scope of this analysis is 

restricted to a set of representative municipalities, for reasons of the limited time available for data 

processing. From the 10 most populous cities in the state we have chosen 7 that presented the potential 

of including in the learning phase buildings from all possible construction periods. The chosen cities 

(figure 4.1) are Cologne, Dortmund, Düsseldorf, Essen, Duisburg, Bielefeld and Münster. The number of 

inhabitants ranges from 1.08 million inhabitants (in Cologne) to 314 000 (in Münster).  
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                                              1 : 10 625 250                                                                   1: 3 652 430   

Figure 4.1: Geographical scope of research. On the left, the 16 states of Germany. On the right, the geographical location of the 

selected cities in the state of North Rhine – Westphalia.   

4.1.1. BUILDING AGE DATA 

A supervised learning algorithm like Random Forest requires a phase of learning from examples for 

which the class label is known. This information concerning building age is extracted from the 2011 

Census.  

The 2011 Census is a national population and housing statistical report (Zensus, 2011). The information 

is public and presented summarized at a municipality scale and also in a grid format of 100 m cells. The 

available information refers: buildings and apartments, population demographics and families and 

households’ types.  The construction year of residential buildings is given as a range of years and there 

are 10 groups identified, as depicted in table 4.1. Throughout the report, the concept of age will refer to 

an age class defined by a set of construction years and not to a single numerical value.  

Table 4.1: Age classes defined in the 2011 Census. 

Age class Age description 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Before 1919 
1919 - 1948 
1949 - 1978 
1979 - 1986 
1987 - 1990 
1991 - 1995 
1996 - 2000 
2001 - 2004 
2005 - 2008 

 2009 and after 

NORTH RHINE-WESTPHALIA 

COLOGNE 

DUSSELDORF 

DUISBURG 

ESSEN 
DORTMUND 

MUNSTER BIELEFELD 

N 
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For privacy reasons, the distribution of building ages over a grid cell is available only as percentage of 

the total number of buildings. In order to deduce accurate age information for individual buildings, for 

training we choose areas where a single age class is present, as illustrated in figure 4.2.               

                   

    

 

Figure 4.2: On the left, grid cells classified by the number of different ages of buildings enclosed in the area of the cell. On the 
right, grid cells containing only buildings of the same age, classified by age. Sample of a neighborhood in Cologne.  

4.1.2. BUILDING DATA  

The main data sources for building information are 3D building models. A 3D building model is a 

mathematical representation in three dimensions of the shape of a building, its position within the 

natural or built environment, coupled with other relevant non-geometric building attributes. 3D building 

models are increasingly being published and made available for open access due to their wide 

application in domains such as energy modelling, transportation or climate models for cities.     

One of the mostly used open data 3D model is the CityGML standard, an XML-based format for the 

storage and exchange of virtual 3D city models (CityGML, 2019). The level of details of the model can go 

from the most basic one, which includes footprint shape and uniform building height (LoD1), to full 

specification of roof slopes, annexes and window opening in LoD3. For the purpose of this work we have 

used data at the LoD2 level, which includes besides the building footprint also the shape of the roof. 

Figure 4.4 illustrates the representation of building footprints while in figure 4.3 various examples of 

building 3D models are presented.  

The LoD2 data is available for every city in the state from the open data portal of the administration of 

North Rhine-Westphalia state (Open NRW, 2019). For other cities of Germany either LoD1 or LoD2 data 

is available, but the practice is not yet spread at national level. In some cases, when the model is not 

openly available, it can be purchased for a fee, as is the case for the state of Baden-Wurttemberg.   

1 : 54 415   

N 
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Figure 4.3: LoD3 building models that illustrate different roof shapes. 

Other than data concerning building shape and position, this dataset also contains information such as 

building function, maximum building height, number of above or underground stories. Some 

information is not however consistently recorded, which made it unusable for our project (e.g. the data 

of the number of storeys).   

The building function data allowed to filter out residential buildings and to compute some of the 

features needed for classification. The original information for all buildings within the city includes 512 

functions. For the purpose of computing numerical metrics associated with blocks, we have grouped 

these functional classes into 10 overarching classes. There is no single typology of building functions for 

the non-residential German housing stock due to different “functional, morphological and structural 

characteristics” (Loga et al., 2012). The classification made for the purpose of this research can be 

consulted in table 4.2. The classification has been adapted from typologies proposed in a 2009 

governmental study on benchmarks for non-residential buildings (BMVBS / BBSR, 2009) and a 2011 

study on heated non-residential buildings (BMVBS, 2011).       

Table 4.2: Building function classes. 

Label Name 

1 Public Facilities 
2 Education and Research 
3 Schools 
4 Hotel, Accommodation 
5 Public houses, Restaurants 
6 Buildings for Events and Cultural 

Purposes 
7 Sports Facilities 
8 Retail and Services 
9 Health Care 

10 Transport Infrastructure 
11 Office Buildings 
12 Office and Administration 
13 Factory and Industries 
14 Workshop Buildings 
15 Warehouses and Garages 
16 Utility and Miscellaneous 
17 Agriculture 
18 
19 
20 

House dependencies 
Other 

Residential buildings 
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Figure 4.4: Building footprints classified by function class. Sample from a neighborhood in Cologne.     

4.1.3. BLOCK DATA 

Blocks are administrative areas enclosed by streets and have been extracted from ATKIS Digitales Basis-

Landschaftsmodell, an open dataset accessible from the German Federal Agency of Cartography and 

Geodesy (Open Data, 2019). This digital landscape model describes the topographic objects of the 

landscape (roads, path, railways, settlements, vegetation) and the relief in vector format, with 

administrative boundaries up to the municipal level. The open data portal of NWR (Open NRW, 2019) 

provides freely the model for the entire state at a scale of 1:10 000. The division between urban blocks 

can be observed in figure 4.5. 

       

 

Figure 4.5: Blocks of buildings. Sample of a neighborhood in Cologne. 

 1 : 6 800   

1 : 47 612   
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4.1.4. ADDRESS DATA 

Another dataset retrieved from the open data portal of NRW region is a collection of points in vector 

format that reference building addresses for a city region. The addresses have the purpose to uniquely 

assign a building to a grid cell, and consequently an age class, in cases when the building footprint 

overlaps two grid cells with different ages. Whenever this is not possible, i.e. no address can be assigned 

to a building, and the building overlaps two or more grid cells, the building is not added to the sample. 

For cases when multiple addresses are assigned to one building, if the addresses are situated in different 

age grid cells, the building is not added to the sample. An illustration of the process can be observed in 

figure 4.6. 

          
         

 
Figure 4.6: Assigning ages to buildings by overlaying vector layers (one layer with building footprints and one with age grid). 

Address points facilitate assignment when building is overlapping multiple grid cells. 

4.1.5. STREET DATA 

Street information has been extracted from Open Street Map (OSM) through the APIs provided by the 

osmnx Python library (Boeing, 2017). Open Street Map is a collaborative initiative for the creation of an 

open editable world map through crowdsources volunteered geographic information. In OSM, roads, 

streets and paths are identified using the keyword highway. The information available, although often 

incomplete, refers to road segment length, number of lanes, type of road, road name. The osmnx library 

provides a flexible method for extracting the street network inside a city by giving either a location 

name or location boundary. An example of street network inside a neighborhood is illustrated in figure 

4.7. Besides easy access to street information, the library also provides a set of tools for analyzing the 

network of street nodes and edges. These methods can be applied either to the entire network for 

obtaining general statistics or to particular nodes or edges in the network. The library was used to 

extract network properties of the street nodes and segments closest to a given building since we 

consider the closest street as an indicator of the connectivity options available for the inhabitants of the 

building.  

1 : 7 937   

N 
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Figure 4.7: Street network and block limits. Sample of a neighborhood in Cologne. 

4.1.6. REMOTE SENSING DATA 

The remote sensing data available for this project, covering the entire region of Germany, is the 

Sentinel-2 data provided openly by Copernicus, the European programme for Earth observation.  

Sentinel -2 is a European wide-swath, high-resolution, multi-spectral imaging mission launched in 2015.  

Sentinel -2 carries an optical instrument payload that samples 13 spectral bands: four bands at 10 m, six 

bands at 20 m and three bands at 60 m spatial resolution.  

Out of the four bands sampled at 10 m resolution, blue, green, red and near-infrared, we have only used 

the red and near infrared bands, for the purpose of calculating the NDVI index. The normalized 

difference vegetation index (NDVI) is a simple indicator used for assessing whether a surface being 

observed remotely contains live green vegetation or not (Normalized difference vegetation index, 

2019). The value of the index is given by:  
𝑛𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 − 𝑟𝑒𝑑

𝑛𝑒𝑎𝑟 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 + 𝑟𝑒𝑑
 . Since the low resolution of 10 m does not 

lead to a significant description of the surface of a building, the NDVI index is used to give an estimate of 

the spectral characteristics of the surface of a block, built and non-built areas included. 

The NDVI index has also been used to estimate the extent of areas covered with vegetation, as 

illustrated in figure 4.8. The main purpose of NDVI is indeed to distinguish vegetation from other types 

of coverage such as bare soil or water bodies, but there is no pre-defined threshold for the numerical 

value of the index that can be used to assign one type of surface. The general consensus is that values 

close to 1 are an indication of vegetation, values closer to 0 and slightly negative to water, and small 

positive values around 0.1 to soil (Wikipedia, 2019).    

1 : 36 625 
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Figure 4.8: NDVI values (on the left) and vegetation areas computed based on NDVI values (on the right). Sample of a 
neighborhood in Cologne.  

4.2. DATA EXPLORATION 

As referred to in the beginning of the chapter, the analysis is focused on a set of 7 cities in NRW.  After 

analyzing the distribution of construction ages in the building stock of the 10 most populated cities in 

the state, we have chosen cities the following due to the widest range of ages present: Cologne, 

Dortmund, Dusseldorf, Essen, Munster, Bielefeld and Duisburg.   The distribution of building ages for 

each city is illustrated in figure 4.9.  It can be easily noticed that when choosing the sample for 

classification, the proportions of ages are no longer the same as in whole city residential building stock. 

The period “1949-1978” is extensively represented in the sample, while the percentages of the other age 

classes and for buildings built after 1979 in particular, are significantly reduced. 

    

Figure 4.9: Building age distribution for selected cities. On the left, the distribution of ages for all residential buildings in the 
city. On the right, the distribution of age for the buildings in the sample available for classification.  

Data exploration of the building features for Cologne does not indicate any significant pattern that 

could anticipate the results of building age classification. None of the 89 features exhibits correlation 

with the age class. The kernel density plots of selected features indicate that some attributes exhibit a 

larger degree of differentiation than others while still presenting a significant overlap between age 

N 

1 : 54 415   
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groups. Figure 4.10 illustrates the kernel density plots for simple building attributes such as height, 

ground area, roof angle and ratio height to area.     

 

 

 

Figure 4.10: Kernel density plot of attributes of buildings in the city of Cologne, grouped by age class. From the top, in a 
clockwise traversal, the following building attributes are depicted: building height, building footprint area, roof angle and ratio 

of height to area. 

4.3. CLASSIFICATION FEATURES 

The selection of classification attributes is an important step for a classification problem and “it is 

essential to reach agreement on which attributes to use to describe the urban form, how they relate to 

performance and how to calculate them” (Gil et al., 2012). Ideally the prerequisite of performing a 

classification task is a “deep understanding of the learning problem” (Witten et al., 2011) and manually 

selecting features that are “meaningful to the community of experts or practitioners” (Gil et al., 2012).  

In the absence of a civil engineering and architecture domain knowledge, the most relevant attributes 

for predicting building age have been selected through literature research and through consulting with 

experts into the physics of urban energy modelling and urban remote sensing. The 89 selected features 

are categorized into four classes: one category deals with the shape of the building, the second with 

more complex shape and position metrics, the third with characteristics of the streets close to buildings 

and the fourth with the urban block where the building is situated in. The complete list of features can 
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be consulted in Appendix A.1. The terms feature and metric will be used interchangeably in the report, 

and both refer to the same notion.     

The first category of metrics includes geometric features related to the shape of the building, 2- or 3-

dimensional: height, footprint area, volume, perimeter, shape complexity, density and compactness.    

The second set of features includes shape metrics that are more computationally complex, and also a 

few metrics concerning the building neighbors. Neighboring buildings are buildings that are connected. 

These metrics have been imported from a DLR MSc thesis project that dealt with the classification of 

building construction types (Droin, 2019). The final result of classification (building types) and all 

features have been copied as data attributes to the buildings in our sample, whenever there was more 

than 90% footprint area correspondence between the building samples in the original project and the 

current one. The shape metrics are extracted from the work of Angel, Parent, and Civco (2010). The 

authors argue that one of the most important spatial properties of geographic shapes is compactness 

and they propose a set of measures to characterize a circle, which they consider to be the most compact 

of all shapes (Angel et al., 2010). 

Street metrics have been computed for street nodes that were closest to the footprint of a building, and 

more specifically, closest to the vertices of the footprint. Some street metrics have been computed from 

the characteristics of the street node itself, others from the characteristics of the street to which the 

node belongs to (e.g. street width or length).   Whenever multiple streets or street nodes were retrieved 

for a building, the metric with the maximum value was chosen to represent the building feature. Street 

metrics are an estimation of the connectivity of the street network and for a particular building they 

express the ability for the inhabitants of the building to reach easily or on the contrary, with difficulty 

the urban transportation network. For this reason, we choose the maximum potential of connectivity 

from the closest available options.    

Block metrics have been extracted from studies that analyzed different urban morphologies, for the 

purpose of either classifying neighborhoods by age or discover patterns in streets and blocks that 

characterize neighborhoods or cities.     

4.4. CLASSIFICATION SETUP  

The following sections discuss the chosen classification model and the methodology used for model 

validation. 

4.4.1. RANDOM FOREST 

 Random Forest (RF) is a machine learning algorithm built on the ensemble principle, which means that 

its success rate is obtained by averaging the predictions from multiple models, and more precisely, from 

multiple Decision Trees. 

A Decision Tree is a hierarchical model of supervised learning that splits the input space of labeled 

samples into smaller regions according to the values of the features. A tree is composed of internal 

decision nodes and terminal leaves. At each decision node a test function with discrete outcomes is used 

to label the outgoing branches. The process is repeated on each branch until a leaf node is reached. A 

leaf node contains only samples with the same label.  
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One reason for which RF is a popular algorithm is because they do not require prior feature processing 

such as feature scaling or centering. There are also no prior constraints on the data to be used for 

training; unlike for example a linear model which assumes linear input data. Random Forest has been 

used extensively in remote sensing applications for the high accuracy of classification and its ability to 

handle high data dimensionality and multi-collinearity (Belgiu & Dragut, 2016). Compared with single 

Decision Trees, RF is also less sensitive overfitting.  

4.4.2. VALIDATION METHOD 

 There are several ways to validate a statistical learning model. One learning setup would be to split the 

dataset into a training set and a test set, train the model on the training set and then estimate the 

model error on the test set. Another method is to further on split the training set into an actual training 

set and a validation set. The validation set is used for all model optimization or model selection tests, 

and then the final error rate of the model is estimated using the test set (Witten et al., 2011).  

Another learning scheme is the K-fold cross-validation (Kohavi, 1995). The data is split into K mutually 

exclusive and exhaustive equal-sized subsets. These subsets are called folds. The model is trained on the 

union of K-1 folds and tested on the Kth fold. The process is repeated K times, for each fold, and the 

model error rate is the average over all repetitions.  

A version of the cross-validation method is the leave-one-out validation where one sample of data is 

considered a fold, resulting in a number of folds equal with the number of observations. This is a more 

computationally intensive method which is designed for delivering more accurate results. The gain in 

accuracy compared to 10-fold cross validation is not always significant as studies have shown (Kohavi, 

1995). 

In practice, the standard method used, for the balance of accuracy and computational needs, is 10-fold 

cross validation (Witten et al., 2011). 

In problems with multiple classes and an imbalanced class representation in the input data, stratified 

sampling is a method that ensures improved success rates. This technique is used in combination with 

K-fold cross-validation and consists in assigning to each fold samples from a class in the same 

proportion as in the input dataset. 

All optimization and evaluation tests have been done using stratified 10-fold cross-validation. If splitting 

into training, test and validation sets or repeated validation is required, these aspects will be specified in 

the reporting of results.     

4.4.3. EVALUATION METRICS 

The success rate of a classification algorithm is generally defined as the ratio of correctly labelled 

observations to size of input data: 
𝑡𝑟𝑢𝑒 𝑝𝑜𝑧𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
.  In order to determine if the success rate of 

the algorithm is different from a random prediction, Cohen’s kappa coefficient is generally used. The 

kappa coefficient measures the agreement predicted and actual classes while correcting for any 

agreement occurring by chance (Witten et al., 2011). 
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For problems of multi-class classification where the representation of classes is not equal, the absolute 

success rate as defined above is a misleading evaluation metrics since it emphasizes the results for the 

majority classes. For this reason, another single numeric evaluation metric will be used, the sensitivity or 

recall, defined as the ratio of correct positive predictions to the total no. of positive 

predictions:
𝑡𝑟𝑢𝑒 𝑝𝑜𝑧𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑧𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
.  Sensitivity is computed for each class on its own and also as an 

average for all 10 classes.  

Other multi-class evaluation metrics have been computed and will be reported for specific tests: 

precision, defined as the ratio of correct predictions to the total no. of predicted correct predictions, 
𝑡𝑟𝑢𝑒 𝑝𝑜𝑧𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑧𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑧𝑖𝑡𝑖𝑣𝑒
, and F1 score, a metric that combines recall and precision into a single value, 

defined as  2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
.  

We consider sensitivity as the most important metric since the target of the project is to be able to 

correctly identify the age of a building. Sensitivity and precision vary inversely proportional so attention 

will also be given to the F1 score, which offers a combined evaluation of the two metrics simultaneously. 

4.5. OPTIMIZATION TESTS 

The optimization tests have been performed on the data extracted for the largest city in the region of 

study: Cologne.  These initial tests include: choice of model hyper parameters and sampling design. 

4.5.1. HYPER PARAMETERS  

Random Forest is a nonparametric classification and regression algorithm, which means that the 

number of parameters is not determined before training and the structure of the model can fit closely to 

training data (Géron, 2019). In order to avoid this tendency to overfit, the algorithm uses hyper 

parameters to control the structure of the decision trees and of the forest, a process called 

regularization (Probst, Wright, & Boulesteix, 2019). The regularisation hyperparameters include: the 

number of trees in the forest, the maximum depth of a tree, the minimal number of samples in a node 

for the node to be split, the minimum number of samples in a leaf node and the number of features 

randomly chosen as candidates for a split. 

The opposite trend to overfitting is underfitting, where the algorithm is not complex enough to learn the 

structure of the data (Géron, 2019).  Both overfitting and underfitting should be avoided. 

Performing tests on various combinations of parameters led to the conclusion that, with the exception 

of number of trees and maximum tree depth, all default parameters suggested in the model’s 

implementation in the Python scikit-learn library (Pedregos, 2011) were optimal for our classification 

problem. The maximum tree depth has been set to 25 to curb the overfitting tendency and the number 

of trees to 200 to ensure stable results over various input datasets. The test results are presented in 

Appendix A.2. The metrics followed are average sensitivity over validation sets and average sensitivity 

on the training set.  
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Table 4.3: Random Forest hyperparameters. 

Name Value 

Number of trees  
Maximum tree depth 
Maximum number of features randomly 
chosen 
 
Minimum number of samples for split 
 Minimum number of samples in a leaf 

200 
25 
square root of total 
number of features 
2 
1 

  

4.5.2. SAMPLING DESIGN 

Despite the advantages mentioned in a previous section, Random Forest is an algorithm that is sensitive 

to sampling design, and requires certain conditions to be fulfilled in order to obtain accurate 

classification results (Belgiu & Dragut, 2016). The training and validation data should be statistically 

independent; for multi-class classification, the classes should be balanced in terms of number of 

samples of each class; a high number of data dimensions should be paired with a high number of 

samples. In this section we will address the issue of class imbalance, while the next section deals with 

the statistical independence of training and validation data. 

The data exploration step (4.2) showed us that we are indeed dealing with an imbalanced learning 

problem. For the selected cities, the percentage of buildings of age class “1949-1978” in the final sample 

ranges between 73% and 80%. For this reason, age class “1949-1978” is considered to be the majority 

class and all other ages are the minority classes. The ratio of the majority class with respect to the other 

classes is 5 : 1 at best and 160 : 1 at worst. This is a direct result of the fact the majority class comprises 

of the three decades when building construction in post-war Germany has been the most prolific.   

An imbalanced learning problem is generally approached in two ways: either by assigning different 

classification costs to classes while training or by resampling the dataset by undersampling and 

oversampling techniques (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). A RF-specific solution to counter 

imbalanced learning has been suggested by (Chen, Liaw, & Breiman, 2004) and consists of using 

balanced samples when boostrapping the samples used for training a decision tree within the random 

forest. 

4.5.2.1. UNDERSAMPLING AND OVERSAMPLING   

Undersampling is a straight-forward concept that consists in removing samples of the majority class or 

classes from the training set. Oversampling is the reversed procedure of adding samples from the 

minority class or classes to the training set.  The simplest way to oversample is by sampling with 

replacement from the dataset resulting in duplicated observations from minority classes. Chawla et al. 

(2002) propose an alternative that creates “synthetic” samples for minority classes, meaning the new 

samples resemble the original observations but are not duplicates. This method is the Synthetic 

Minority Oversampling technique (SMOTE) and has been shown to perform well for many applications 
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such as network intrusions, sentence boundary in speech, breast cancer detection and in several 

bioinformatics applications (Blagus & Lusa, 2013).  

SMOTE creates new instances of a minority class by a using a K-nearest-neighbor approach. A random 

number of original observations are chosen and for each of their K neighbors a new sample is created as 

a linear combination of the initial observation and its neighbor. The authors indicate that generally a 

combination of SMOTE and undersampling performs the best (Chawla, Bowyer, Hall, & Kegelmeyer, 

2002).   We have used SMOTE’s implementation provided in the imbalanced-learn Python package, 

which is a very flexible tool that offers the user’s the possibility to choose the classes to oversample, for 

each class the number of new samples to be created and also, the number of neighbors to consider 

(Lemaitre, Nogueira, & Aridas, 2017).   

A pairwise combination of 5 undersampling and 7 oversampling strategies has been tested through 10-

fold cross validation on the building dataset of Cologne, for a total of 35 resampling tests. It has been 

shown that resampling is best to be performed inside the cross-validation loop (Santos, Soares, Abreu, 

Araujo, & Santos, 2018). This principle has been implemented in the following manner: after making the 

split between training – with 90% of the data – and validation – with 10% of the data – we undersample 

and then oversample the training set. Undersampling consists in reducing the number of samples of 

majority class by a percentage: 0%, 25%, 50%, 75% and 90%. Oversampling strategies include either 

multiplying the minority samples by a factor: 200%, 300%, 400%, or 500%, or increasing the number of 

sample for each class such that each minority class is an equal percentage of the training dataset: 5% or 

10%. The values have been adjusted slightly for class “1919-1948” since it is the most represented class 

among the minority classes.  The test results are shown in figure 4.11.   

 

Figure 4.11: Evaluation of different sampling designs. 

In figure 4.11 the difference in a group of 5 tests is given by the undersampling strategy. The tradeoff 

between sensitivity and precision is easily observable. Removing samples from the majority class 

improves the sensitivity of classification while decreasing the precision rate. The increase and decrease 

are however unequal. While sensitivity increases in a range of 10%, precision drops by up to 40%. In 

terms of oversampling, the impact on results is less pronounced, for both metrics. 
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By sorting the results on average F1 score and giving priority to a modest increase in minority samples, 

we select as best sampling design the strategy when undersampling is done by reducing the majority 

class samples by 50% and oversampling adds synthetic samples from the minority classes by 

multiplying the initial sample size per class with a factor of 400% (a factor of 150% for class “1919-

1948”).    

4.5.2.2. PENALIZED CLASSIFICATION 

In penalized classification the misclassification of each class will have a different cost to force the 

algorithm to acknowledge minority classes. We have tested a cost-sensitive classification where the 

costs are inversely proportional with the distribution of ages in the training set. This means that the 

rarest of classes will yield the highest cost of misclassification. These costs, or class weights, as they are 

labeled in the sklearn implementation of RF, are multiplied with the probabilities obtained after normal 

classification. 

The influence of classification costs has been tested through 10-fold cross validation on the building 

dataset of Cologne. The results of our test – displayed in table 4.4 – show that applying classification 

costs does not have an effect on sensitivity, but that precision is slightly improved.   

Table 4.4: Evaluation of penalized classification. 

Classification 
 Costs 

Average 
Sensitivity 

Average 
Precision 

Average F1 

No 62,47 % 86,74 % 72,62 % 

Yes 62,24 % 89,69 % 73,47 % 

  

4.5.2.3. BALANCED TREES 

In their paper, Chen et al. (2004) propose two methods for handling class imbalance when using 

Random Forest for a classification task. The first one consists in making the classification cost-sensitive, 

and the second one in undersampling the majority class when growing single trees for classification, the 

Balanced Random Forest technique.   

We have tested the Balanced RF method both individually and in combination with class penalization 

through 10-fold cross validation on the building dataset of Cologne.  

Table 4.5: Evaluation of Balanced trees classification. 

Balanced 
RF 

Classification 
 Costs 

Average 
Sensitivity 

Average 
Precision 

Average 
F1 

No No 62,47 % 86,74 % 72,62 % 

Yes No 67,87 % 41,93 % 51,82 % 

Yes Yes 68,08 % 42,56 % 52,37 % 

  

The results of our test (displayed in table 4.5) show that while there is indeed an improvement in the 

sensitivity score of about 5%, the precision of classification is severely affected. A 40% precision is not 

acceptable in the context of our problem, where this would imply that numerous old or energy-
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inefficient buildings (before 1979) would be misclassified as new buildings, as it can be observed in the 

confusion matrix in figure 4.12.   

 

Figure 4.12: Confusion matrix for classification using Balanced Trees approach. Number of samples correctly labelled on the 

diagonal. Training and testing on Cologne dataset. 

4.5.3. SPATIAL SAMPLING 

The idea that buildings close to each other tend to display similar features is an important one for our 

thesis. This enables us to explore the common features shared by buildings in the same block. The 

characteristic of data points to dependencies on each other based on their geographical proximity is 

called spatial autocorrelation and has been shown to lead to optimistically biased prediction results 

(Pohjankukka, Pahikkala, Nevalainen, & Heikkonen, 2017). The predictor values tend in these cases to 

be correlated with the underlying spatial structure and leads to model overfitting with non-causal 

predictors (David R. Roberts, 2016). Standard cross-validation in spatial models does not ensure 

statistical independence between training and validation data, a prerequisite for many learning 

algorithms, including Random Forest (Belgiu & Dragut, 2016).  

One method of dealing with spatial autocorrelation is to use models that  incorporate it into their 

learning structure as an autocovariate factor, for example autocovariate models, spatial eigenvector 

mapping, autoregressive models, or phylogenetic least squared regressions (Dormann, et al., 2007). 

Another is to realize a cross-validation split where there is a clear separation between the data points 

used for training and those used for validation. Pohjankukka et al. (2017) propose a method called 

spatial k-fold cross-validation where data points from the training set which are geographically closed to 

data points in the test set. Roberts et al. (2017) offer a similar technique called block cross-validation 

where the input dataset is split into non-overlapping 

 Studies have showed that whenever there is spatial correlation between data, the accuracy of 

classification is overly optimistic. Removing this correlation leads to more accurate results.  

For the building dataset, the most obvious source of spatial autocorrelation is buildings’ belonging to a 

block. Since all buildings in the same block have equal block attributes, buildings in the test set that 
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belong to the same block as buildings in the training set will be classified with high accuracy only on the 

basis of their shared block attributes. Thus, the classification results will be highly optimistic. Besides 

block features, a visual inspection of the dataset is enough to highlight the fact that many times 

buildings of the same shape are found in close vicinity in the same block.   

Another source of correlation for spatial reasons would be buildings that share the same street 

attributes. Buildings aligned on the frontline of a neighborhood, facing the street, are very likely to 

share the street attributes, since these attributes are computed based on the street closest to the 

building.    

Our method to avoid the aforementioned issues is to ensure that no building in the test set will belong 

to a same block as a building in the training set. Since testing is done through 10-fold cross validation, 

the idea behind the spatial sampling is to split the number of blocks in the sample into 10 sets such that 

each set has approximately the same number of buildings. The challenge with this approach is to also 

obtain in all 10 sets a similar distribution of age classes.  

We have compared four methods of sampling. The first is the normal stratified sampling, where the 

building stock is split into 10 folds (standard method). The second is a spatial sampling (a split of the 

blocks containing the buildings) where the distribution of ages in a fold is similar (but not equal) 

between 10 folds (spatial stratified method).  The third is a random spatial sampling, with no concern for 

the distribution of ages in a fold, only requiring that each fold contains a minimum number of buildings 

from each age class (spatial random method). The fourth method is a random spatial sampling, similar 

to the third method, with the added constraint that clusters are formed from neighboring blocks (spatial 

distance method). The principle of spatial sampling is illustrated in figure 4.13 while figure 4.14 shows 

the difference between the first two methods of spatial sampling and spatial sampling with neighboring 

blocks. 

      

 

Figure 4.13: Grouping buildings into 10 subsets for 10-fold cross validation. On the left standard random sampling of buildings. 

On the right, spatial sampling with division per block. 

1 : 2381 

N 
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Figure 4.14: Grouping buildings into 10 subsets for 10-fold cross validation. On the left, spatial sampling with random selection 

of blocks for folds. On the right, spatial sampling with selection of blocks by proximity. 

We test these sampling strategies on 6 models: one with all features, one with all except block features, 

and one for each category of feature separately (building, shape, street, block). We perform repeated 

cross-validation (10 times) in order to eliminate the bias introduced by the method of clustering.  

We observe how the accuracy of prediction drops between the normal sampling and the two spatial 

sampling for all models. The deterioration of results (displayed in figure 4.15) was expected in the case 

of block features, but it seems that for every type of feature there is an underlying correlation of 

attributes at a spatial scale. This issue is often overlooked in studies dealing with spatial data which 

leads to overly optimistic classification results.     

    

Figure 4.15: Evaluation of spatial sampling: sensitivity and precision average scores per sampling strategy and per model. 

Confidence interval displayed for 10 test results. 

1 : 112 848 

N 
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In order to eliminate the possibility that the model is overfitting on the training data and is unable to 

recognize new data, we have tested several combinations of hyperparameters that have been judged 

suboptimal in our initial tests (section 4.5) since they were producing underfitting models. The tests 

have been performed on a reduced model, containing only building features (figure 4.16). Testing the 

model with the spatial sampling technique shows little variation in evaluation scores, either sensitivity 

of precision. This proves that the difference in classification results when using normal stratified 

sampling and using spatial sampling is not a product of an overfitting model, but a consequence of 

spatial autocorrelation in the building features, which leads to more pessimistic results when this 

autocorrelation is accounted for and eliminated.  

 

Figure 4.16: Evaluation of spatial sampling for different combinations of sub-optimal hyperparameters. 

4.5.4. FEATURE SELECTION 

One important step in a learning problem is to obtain the most relevant features for classification 

through a process called feature engineering. By eliminating superfluous attributes, the accuracy of 

classification is usually improved (Witten et al., 2011). Feature engineering supposes either to choose a 

subset of existing features (feature selection), to combine existing feature into new ones (feature 

extraction) or to gather more data for new feature computation (Géron, 2019). We have chosen to apply 

a feature selection technique in our study for two reasons: firstly, Random Forest (RF) is an algorithm 

that does not require preliminary feature processing such as normalization or discretization and also RF 

deals well with feature collinearity which is one of the main reasons for which feature extraction is used, 

and secondly, we wish to keep the model’s readability in what concerns identifying best features for 

prediction. 

Feature selection is the process of searching the attribute space for the best subset for data 

classification. Since the number of possible subsets increases exponentially with the size of the feature 

set, exhaustive search is impossible and multiple search methods have been proposed, with various 

levels of complexity, e.g. forward selection and backward elimination, best-first search, beam search 

and genetic algorithms search (Witten et al., 2011).  

The method used for this study is a combination of backward elimination, the process of removing one 

attribute at a time from the full set of attributes, and feature ranking. We first obtain an ordered list of 

features by their importance for classification and then we proceed to eliminate the last feature in this 
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list. The method used for judging feature importance is RF’s built-in ranking procedure which consists in 

reducing the Gini impurity index. The index is computed at a node of a decision tree. 

Gini impurity is a measure of how often an element chosen randomly from the set would be incorrectly 

labeled if it was randomly labeled according to the distribution of labels in the subset (Decision tree 

learning, 2020). The index is defined as: 

𝐼(𝐺) = 1 − ∑ 𝑝𝑖
2

𝐾

𝑖=1

 

where 𝑝𝑖  is the fraction of items labeled with class 𝑖in the set. 

Random Forest’s feature importance method analyzes the decision tree nodes that use a particular 

feature for split and computes the impurity reduction, then averages the result over all trees in the 

forest; the average for each node is weighted by the number of training samples that were associated 

with that node (Géron, 2019). 

A common malpractice in supervised learning is to perform feature selection and model testing on the 

same data which leads to biased accuracy estimates (Kohavi, 1995). When testing is done through cross-

validation, it is advised that model selection should be done inside the cross-validation loop, reason for 

which both feature selection procedures will be done through cross-validation inside the iterations of 

the initial training-test validation split. The testing setup for model validation will be explained in more 

detail in the next chapter. 
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5. RESULTS 
 

 

After the model’s hyperparameters and the best method of sampling have been chosen, we proceed to 

two types of model validation: for each city, the model is trained either on data from the same city, or 

with combined data from all the other cities. The second test will be labelled as region classification to 

indicate the extended spatial scale used for model learning.   

While Random Forest is the mathematical model employed for classification, the concept of model we 

will refer to for the remainder of the report is defined as the ensemble of data attributes the algorithm 

uses for training and classification. Three models are the starting point of our analysis, irrespective of 

geographical location, geographical scale or sampling strategy. These models are combinations of the 

general classes of features identified as relevant for building age prediction. Model 1 comprises on one 

hand of building features related to the building appearance and geometry and on the other, on 

features that describe the shape of the building footprint and its relationship with neighboring 

buildings.  Model 2 extends the first model by including features of the street or street intersection that 

are closest to the building. Model 3 further extends the two models with the addition of attributes that 

describe the urban block where the building is situated in.   

These models can be applied at different spatial scales, where the scale is determined by the 

geographical location of the training data. When the training process uses data from buildings from the 

same city as the buildings to be classified, the model is called a city model. If training data originates 

from other locations (other cities), the model will be denominated as a region model.  There are multiple 

ways in which to define a region for training. We have chosen the most exhaustive manner at our 

disposition which consists in training the model on the merged data from six cities and testing 

classification on the seventh.   

5.1. CITY MODELS 

Deploying individual city models enables the concurrent analysis of several research hypotheses. Firstly, 

the accuracy of classification of the chosen models will be estimated which consequently will allow 

observing whether the accuracy differs significantly per geographic location. Secondly, the impact of 

the spatial distribution of training samples on classification results can be analyzed. Thirdly, the 

differences in accuracy of classification for individual building ages can be compared across different 



  
 

54 
 

locations. Furthermore, the confusion between building ages can offer insight into whether 

construction epochs present the same dissimilarities across geographic locations. Last but not least, the 

importance of specific building features for improved classification will be tested.  

The validation of the model is done through 10-fold cross-validation. The chosen resampling strategy 

for testing city models is a 50% under-sampling combined with a 400% over-sampling strategy for 

minority classes. Figure 5.1 demonstrates how the resampling strategy improves the ratios between age 

classes for all cities.  

    

Figure 5.1: Distribution of age classes in the training dataset per city: on the left, distribution in the original datasets; on the 

right, the distribution after applying the resampling technique.  

5.1.1. SAMPLING METHOD 

One of the main goals of this investigation is the accuracy of building age classification. Figure 5.2 

shows that across all cities the average sensitivity over all building classes varies between 45% and 85%. 

All three model have been compared with a baseline model that classifies randomly based on the 

distribution of ages in the training data. Across all cities, Model 3 obtains the highest and most stable 

results. The other models also show similar trends in prediction across cities, with two exceptions. The 

results also show that more than 20% increase in accuracy can be obtained when using features with a 

strong spatial autocorrelation trend, such as the block features.  
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Figure 5.2: Average sensitivity and precision scores for building age classification per city. Normal stratified sampling is used for 

selecting training data. Confidence intervals are computed based on 10 test results. 

In order to further on test the effect of spatial autocorrelation on classification results, a spatial 

sampling of training data is applied. This method constrains the training and test data to not belong to 

the same block. Figure 5.3 shows a sharp decrease in both sensitivity and precision for the particular 

method of sampling.  

   

 

Figure 5.3: Average sensitivity and precision scores for building age classification per city. Spatial sampling is used for selecting 

training data. Confidence intervals are computed based on 10 test results. 

The breakdown of classification accuracy per age class (figure 5.4) shows that age class “1949-1978” 

benefits of a very high accuracy of prediction, followed by the class of second oldest buildings, class 

“1919-1948”. The trends for the other age classes are less homogeneous with weak classification power, 

at an average of 20% per class.   

 

Figure 5.4: Sensitivity scores for each age class for building age classification per city. Normal stratified sampling is used for 

selecting training data. Results are obtained from classification with Model 2.   
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5.1.2. CLASSIFICATION ACCURACY 

 While we acknowledge the bias introduced by spatial autocorrelation and its effect on classification 

results, the following accuracy test are performed using normal stratified sampling. This setup 

corresponds to a plausible case study where the age of buildings in a neighborhood or city is partially 

known in the energy model (through house survey for example) and the missing building ages are to be 

predicted using a classification model. In this scenario, it is very likely that buildings from the same block 

will be both in the training and the test set. 

The accuracies of classification for all models, as indicated by the sensitivity scores, over all age classes 

and across all cities can be observed in figure 5.5.  

 

Figure 5.5: Sensitivity scores for each age class for building age classification across cities. Normal stratified sampling is used 

for selecting training data.    

The first observation is that the models perform in a correlated manner for the majority of age classes, 

even though the accuracies differ in absolute values. In other words, for most classes the hierarchy 

between classification accuracies is preserved across all models. The building features that extend the 

first and second models – street and block features – do not provide contradictory information with 

respect to the core set of building features.  This observation is particularly true for Model 1 and Model 2 

since for Model 3 there is a reduced variation of results between cities.  



  
 

57 
 

The second observation concerns the differences between accuracies across age classes. Model 3 leads 

to the best results in classification and the smallest variation in accuracy per age class, with sensitivity 

scores ranging from 65% to 98% across all cities. For the other two models, the sensitivity of 

classification per age class ranges from 20% to 95%, with Model 2 performing better by 8% on average. 

The age class that is best classified is the “1949-1978” period, while the weakest prediction results are 

obtained, on average, for the “before 1919” period. 

The third observation refers to differences between accuracy of age classification per city. For the 

majority of age classes, accuracy of classification differs from city to city. The exceptions to this rule are 

the periods of “1949-1978” and “1979-1986”. The age classes for which the largest accuracy 

dissimilarities between cities occur are the period of oldest “before 1919” and newest “2015 and after” 

buildings. The differences reach up to 45%, for example when using Model 1 for the classification of 

newest buildings between Cologne and Bielefeld. One explanation for the poor accuracy of identifying 

these buildings in Bielefeld could be the very small sample size in the training dataset (1.5% of the 

training data). The sample size is not however a determinant of age class accuracy as the classification 

results for Münster and Duisburg prove it. For both cities the age class “2015 and after” is classified by 

Model 1 45% of times correctly, while the training sample sizes are 7.8% for Münster and 0.09% for 

Duisburg. The differences of results between age classes within a city are best observed in figure 5.6  

 

Figure 5.6:   Distribution of predicted classification labels for buildings in every age category per city.  Normal stratified 

sampling is used for selecting training data for classification with Model 1.  

Figure 5.6 illustrates for each city and for each age class the proportion of buildings being labeled with 

an age class.  This alternative representation of a classical confusion matrix enables us to observe which 
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classes are most often misclassified and which classes are they confused with. Misclassification analysis 

is especially important for Model 1 results, since it could lead to insight on whether buildings from 

different construction periods share similar physical features.      

It can be observed that the main source of misclassification is buildings being labeled as age class “1949-

1978”. On average 32% of buildings constructed in the other time periods have been wrongly classified 

as belonging to this class.  For a majority of cities, the other sources of misclassification result in wrong 

predictions of up to 5% of the tested buildings. An exception is the city of Bielefeld where a greater 

confusion between classes has been identified.  Dortmund is a unique example where misclassification 

occurs between the oldest buildings and all other age classes, in the sense that about 7% of buildings 

built after 1919 irrespective of the actual class are classified as being built before 1919.   For the two 

classes of buildings built before 1948, misclassification occurs either with the “1949-1978” class or 

among each other. These buildings are rarely classified as being constructed after 1978. For the 

buildings built after 1978, the results vary between cities. Bielefeld and Münster for example are two 

cities where there is significant confusion between these buildings, especially between those built after 

1995.     

5.1.3. FEATURE SELECTION 

 Experiments have shown that eliminating data attributes that do not contribute to the classification 

process better accuracy results are obtained. For this reason, we adopt an inside-the-validation-loop 

feature selection strategy that consists in two steps: feature ranking by importance and then feature 

selection by backwards elimination. For reasons of time availability, the technique has been applied only 

to the first two models, consisting of 44 and 57 features respectively.  

The backwards elimination consists in recursively removing the last feature in ranking from the feature 

set and comparing the classification results for each of the reduced models thus obtained. The inside-

the-loop aspect refers to the fact that both steps – ranking and elimination – are performed in every one 

of the 10 validation-folds through 5-fold cross-validation on the training data. In other words, after 

splitting (10 times) the dataset into 90% training and 10% test, we split the training data further on (5 

times) into 80% training and 20% validation twice, independently one of the other: the first time feature 

importance is computed, and the second time feature backwards elimination is performed. 

The method of feature ranking is the Random Forest built-in feature importance evaluation through 

Gini impurity reduction. One example of feature ranking by importance for a cross-validation fold of 

Model 1 can be observed in figure 5.7. We observe that importance is severely reduced only for the 

categorical variable “building type”. 
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 After the backward elimination accuracy evaluation, it can be noticed that the classification results do 

not vary significantly for a model with more than 15 features.  As a general rule, we choose as best 

model the model that contains more than 10 features and outputs best accuracy. This selection is done 

with the purpose of obtaining a flexible model that can accommodate new data.  For example, the best 

result corresponds in the case depicted in figure 5.8 to a subset of 24 features extracted from Model 1.   

 

Figure 5.8: Classification results for backward feature elimination. Training and testing on Essen data set. 

After the phase of feature selection inside the cross-validation loop, we obtain for each city 10 models 

with different number of features. The common features of the 10 models are considered as the best 

model for city classification.  Since the number of features in the best model differs per city, we also 

compute the intersection of best models per city to obtain a unique reduced model for all cities. The 

single models obtained after applying the procedur to Model 1 and Model 2 contain the features listed in 

table 5.1. 

  

 

Figure 5.7: Ranking features by importance. Training and testing on Cologne data set with Model 1 
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Table 5.1: Common features shared by best models for all cities. 

 Model 1 

1 Building Height 
2  Shape Compactness 
3 Floor Area 
4 Average Roof Angle 
5 Roof Height  
6 Shape Area Neighbors  
7 Shape Perimeter Neighbors 
8 Shape Exchange 
9 Volume 

10 Wall Area 
 

 Model 2 

1 Street Length 
2 Street Close Centrality 
3 Street Connectivity 
4 Street Intersections 
5 Shape Area Neighbors  
6 Shape Perimeter Neighbors 

 

To evaluate the success of the feature selection procedure the original models are tested against the 

best models for each city and against the model with shared features across cities.  As it can be 

observed in figure 5.9 the results diverge for the two models. The unique reduced model obtained by 

selecting features from Model 2 improves accuracy of classification, both sensitivity and precision, for all 

cities when compared with the full-feature model or the individual city model. For Model 1 however no 

difference is observed between the three different model versions. One possible explanation for this 

phenomenon is that the backwards elimination method has chosen a local optimal model instead of a 

global optimum. This indicates a limitation of the chosen feature selection technique.  

Another explanation can be derived from the nature of the features in the two models. Model 1 contains 

only building related features, while Model 2 contains also street features that have an important spatial 

autocorrelation component. The reduce version of Model 2 is comprised mostly of these street features 

which leads to the conclusion that classification can be done successfully based on attributes that 

connect the buildings to a location and that are related to their spatial distribution. This conclusion is 

enforced by the high accuracy results obtained with Model 3, where the combination of street and block 

features make the spatial correlation the main driver of classification. The results of feature selection for 

Model 1 indicate that features related only to building shape have a limited potential for correctly 

predicting the age of the building.        

  

                                                                        

Figure 5.9: Average sensitivity scores for different model versions obtained through feature selection. On the left, versions of 

Model 1. On the right, versions of Model 2.  Confidence intervals computed based on 10 test results.     
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5.1.4. FEATURE IMPORTANCE 

For identifying the features most relevant for age classification a simple method will be employed. The 

method consists in averaging the feature importance results over all tests performed on city models for 

each of the three base models.  For 10-fold cross-validation tests for ten cities by applying two sample 

methods, normal and stratified sampling, we obtain a total of 140 tests. The subset of 10 features that 

rank highest after averaging their importance over the complete set of tests are displayed in table 5.2.   

Table 5.2: Most important features for classification across all cities and for both standard and spatial sampling. 

 Model 1 

1 Average Roof Angle 
2 Shape Perimeter Neighbors 
3  Roof Angle 
4 Shape Area Neighbors 
5 Roof Height 
6 Building Height 
7 Wall Area 
8 Volume 
9 Shape Compactness 

10 Shape Exchange 
 

 Model 2 

1 Street Close Centrality 
2 Street Length 
3 Street Connectivity 
4 Street Intersections 
5 Average Roof Angle 
6 Shape Perimeter Neighbors 
7 Roof Angle 
8 Shape Area Neighbors 
9 Building Height 

10 Roof Height 
 

 Model 2 

1 Block NDVI Average 
2 Street Close Centrality 
3 Block Average Volume 
4 Block Average Height 
5 Block Maximum Height 
6 Block Vegetation Percentage 
7 Block Simpsons Diversity 

(Number) 
8 Block Simpsons Diversity 

(Area) 
9 Street Connectivity 

10 Block Shape Compactness 
 

  

5.2. REGION MODELS 

The power of generalization of the model is tested by a training-test setup which defines as test data 

one of the 7 cities and as training data the combination of observations from all the other 6 cities. The 

re-sampling strategy used for this test is a 75% under-sampling combined with a 500% over-sampling 

strategy for minority classes. Three models have been tested: 1) all features; 2) all features except block 

features; 3) selected features that are relevant at city level.  

The results are presented in figure 5.10. The best results concerning sensitivity of classification range 

from 17% to 21%, and they are obtained when excluding block features from the model.    

 

Figure 5.10:  Average sensitivity   scores for building age classification per region. 
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When examining the power of classification per age class (figure 5.8), the only conclusion we can draw is 

that class “1949-1978” is accurately identified, followed distantly by class “1979-1986” while the power of 

identification for all other classes is minimal. Inspection of the confusion matrices (e.g. for Cologne as 

test site, figure 5.11) reveals that while the strongest tendency is to label buildings as class “1949-1978” 

misclassification occurs among all age classes.     

   

Figure 5.11: Sensitivity scores for each age class for building age classification per region.    

5.3. AGGREGATED CLASSIFICATION 

The segregation of construction years into building age classes has meaning only when it respects the 

evolution of the built environment in the national historical context and when it is relevant for a 

particular modelling application. Age classes that are relevant for building energy efficiency modeling 

differ from country to country.  The constraints imposed by the means of survey, profile of individual 

research studies and privacy issues also lead to the existence of datasets with different aggregations of 

building age classes for the same country or region.  If a supervised learning model detects actual 

common trends or dissimilarities across buildings for a particular age categorization, it is expected that 

the accuracy will significantly change when the model is trained for a different age categorization. 

The level of detail of the available data from Census prevents a refinement of the ten age classes into 

smaller categories and then a possible re-combination of subgroups. It is however possible to aggregate 

the existing age classes into broader categories, as shown in figure 5.12. Two split points have been 

chosen to separate three broad classes of buildings: 1949 as a proxy for the beginning of a prolific period 

of residential building constructions in post-World War II Germany and 1979, the year when energy 

efficiency performance indicators have been introduced for the first time in the building standard codes.     
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Figure 5.12: Distribution of age classes in the training dataset per city: on the left, distribution for the original ten-class 

categorization; on the right, the distribution for three-class categorization.  

The power of prediction for the new age class has been tested for both city (figure 5.13) and region 

models (figure 5.15). Results at city level indicate an increase in accuracy of about 15% compared with 

results for ten-age classification, when normal sampling technique is used. For spatial sampling, the 

accuracy is doubled compared with ten-age classification, reaching an average 60% independent on the 

type of classification model used.  

 

 

Figure 5.13: Average sensitivity   scores for building age classification for the three-age category per city. On the left, normal 

stratified sampling is used for selecting training data. On the right, spatial sampling. Confidence intervals are computed based 

on 10 test results. 

A closer inspection of the confusion between actual and predicted age classes (figure 5.14) leads to 

three observations. Firstly, the “1949-1978” class is consistently predicted with over 90% accuracy. Old 

buildings “before 1948” are seldomly labeled as new buildings “1979 and after”, while new buildings are 
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more likely to be labeled as old buildings, for example, with a misclassification rate of 10% in several 

cities.  

 

Figure 5.14:    Distribution of predicted classification labels for buildings in a three-age category per city.  Normal stratified 

sampling is used for selecting training data for classification with Model 1.  

As for the city models, for region models results for three-age classification improve significantly 

compared with the former classification. The sensitivity increases from an average of 25% to 60 %. 

While the differences between models are reduced, the model that includes block features still produces 

the weakest results.  

 

Figure 5.15: Average sensitivity scores for building age classification for three-age categorization per region. 
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It is interesting to note that compared with city models, the misclassification of both old buildings 

“before 1948” and new buildings “1979 and after” as belonging to the “1949-1978” age period is more 

likely to occur for region models. This trend is illustrated in figure 5.16. This is an indication that while 

the overall accuracy of classification across spatial scales increases for a three-age categorization, the 

applicability of model results for energy demand estimation is not necessarily improved.  

 

Figure 5.16:   Distribution of predicted classification labels for buildings in every age category per region.  Classification with 

Model 1.  
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6. DISCUSSION 
 

 

The current chapter discusses the results obtained and their implications for model-based decision 

making and concludes with an overview of limitations and future directions of research. The structure of 

the first two sections follows the direction imposed by the research sub-questions we aimed to answer 

in this study. 

6.1. BUILDING AGE PREDICTION 

What is the influence of construction year on building energy efficiency? 

The relationship between building age and energy efficiency has been discussed in detail in the chapter 

of literature review. To sum up, the age of the building is an indicator of the level of thermal insulation 

of the building and of the various heating and ventilation systems installed.  These building 

characteristics, coupled with climate and inhabitant behavioral patterns define the energy consumption 

for building use and are important levees in the design of measure to improve building energy 

efficiency.   

What model parametrization is most suitable for the automatic classification of building age? 

Results indicate that model parameters are not as important as sampling design for the specifics of the 

modeling technique and of the classification problem investigated. A ten-class learning problem is a 

challenging classification task and it enhances the risk of class imbalance and distorted classification 

results. In order to curb the algorithm’s tendency to over identify the majority class, a method of 

synthetically multiplying the observations from minority classes has been implemented. The result has 

been an improvement of 10% in sensitivity scores.  

Another important aspect of sampling design highlighted by the research has been the importance of 

the spatial relationship between training and test samples. Accuracy is significantly improved when 

buildings for training and testing are in close vicinity. The reason behind this result is the fact the model 

takes advantage in this manner of the underlying spatial autocorrelation of features of buildings close to 

each other. When buildings for training and test are farther apart spatially, the autocorrelation 
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component is reduced and the performance of the model deteriorates with more than 30% for the 

average accuracy over all classes. 

What features are relevant for the classification of building age and what is the prediction success for 

different groups of features? 

The most important type of features in terms of accuracy of classification within one city is building 

features that are spatially auto correlated. Firstly, block features rank the highest since all buildings 

from the same block share the same block attributes. Secondly, buildings alongside streets and in the 

corners of intersections will share the same street attributes, which makes these features the second 

most successful for classification. Lastly, both shape and general building features have been proven to 

have a spatial autocorrelation component although not as strong as block and street attributes. For the 

two first types of features, the accuracy can be further on improved when performing feature selection. 

It has been shown, for example that a small model of 6 features, which includes 4 street features related 

to connectivity and 2 complex shape features obtains best classification scores for all cities under 

analysis. 

The conclusion stated above holds however only for a specific sampling design, which allows for 

buildings for training and testing being in close vicinity. Whenever this condition is not met, as for 

example in spatial sampling within a single city or in region-wide classification, the accuracy of 

classification decreases and the significance of groups of features is reversed. Shape and general 

building features outrank in performance the other types of features, especially block features.  

In conclusion, the relevance of building attributes for age classification must be judged in a specific 

context related to the spatial scale of the classification model.  General building features related to 

building geometry are the classical attributes for building age prediction used in literature. Building 

height and roof steepness have already been identified in the literature as important features for age 

prediction for selected buildings in UK (Rosser et al., 2019) and Canada (Tooke et al., 2014). Our results 

for the selected German buildings confirm these findings. Another roof related attribute has been 

judged important in our study: roof height, along with general attributes such as wall area and volume. 

Incorporating into our research attributes derived from building type classification (Droin, 2019; Wurm 

et al., 2016) has allowed us to highlight other relevant features: attributes related to the complexity of 

the shape of the building footprint and attributes related to the area occupied by a building and its 

neighbors. 

These building features are judged the most relevant across different types of sampling designs and 

spatial scales. Nevertheless the drop in accuracy precision from 56% at city level to 20% at region level is 

an indication that that the importance of these attributes is most likely to stem from the fact that 

buildings within neighborhoods tend to resemble each other as shape due to regulations in building 

codes and spatial planning, for example constraints in height or lot size. Conclusions on the height, roof 

style or shape resemblance between ten age classes of buildings over an entire city or region cannot be 

firmly drawn.    
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Street features have not been explored in previous studies, with the exception of the research of 

Alexander et al. (2009) where distance to road has been used. The street metrics presented in this report 

have not been previously used for building age prediction, but have been employed for identifying 

urban structural typologies. We consider the further investigation of street attributes a promising venue 

of research since these features have been judged useful for the spatial autocorrelation component and 

have also the potential to be significant for region wide classification. 

The advantage of using block features lies first and foremost with a method that allows the spatial 

component in training and test, at city level. Unlike street features, these features have proven the least 

significant when classifying regions and they appear to create confusion in the classification process. A 

tendency to improve classification results has been observed in the case of buildings constructed before 

1919 but results did not replicate for the other age classes. This leads to the observation that while 

buildings definitely differ between cities, urban blocks differ even more.   

How accurate is the classification and what is the model’s power of generalization across different spatial 

scales?    

The general conclusion that can be drawn is that accuracy depends on the model and sampling method 

employed. Results for city classification with normal sampling and region classification can be consulted 

in table 6.1 and table 6.2 respectively. 

Table 6.1: Evaluation of city classification models per building age class. Results are averaged over all tests for 7 cities, a total of 

70 tests. Normal stratified sampling is used for selecting training data. 

Building Age Model 1 Model 2 Model 3 

Mean SD Mean SD Mean SD 

Average for all 
ages 

56,3 7,6 64,8 6,1 83,4 3,2 

Before 1919 35,5 15,7 43,3 13,9 74,3 11 

1919 - 1948 59,1 9,7 62,9 9,5 82,1 5,8 

1949 - 1978 90 2,9 94,7 2,5 97,4 1,1 

1979 - 1986 54,4 6,1 61,1 5,9 81,2 5,5 

1987 - 1990 45,8 17,8 59,2 15,3 81,1 11,6 

1991 - 1995 47,8 13,2 55,3 14,8 77,5 9,6 

1996 - 2000 58,8 12,5 65,8 10 82,7 6,6 

2001 - 2004 63,5 14,8 71,2 12,6 86,1 7,3 

2005 - 2008 57,4 15,8 67,6 12,7 86,1 7,3 

 2009 and after 50,7 20,8 67 15,7 85,3 11,2 

The highest accuracy of prediction was obtained for buildings built between 1949 and 1978. This 

represents the largest age category in the building stock and has been identified with accuracy over 80% 

across all sampling designs and across all spatial scales. The age class that follows consistently behind in 

evaluation scores is the set of buildings built before 1919 and 1948. However, the accuracy suffers when 

classification is performed at region level. Results for the oldest buildings, constructed before 1919 are 

not as consistent: at a city level, they output the least relevant accuracy results, while at region level the 

results are better than for the other age classes (buildings built after 1978).  
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With a favorable sampling design classification sensitivity for cities ranges on average between 56% and 

83%.  The results are in line with other results of classification by age that estimate an accuracy of 

prediction of approximately 70% with highest accuracies for older buildings. The conclusions regarding 

the oldest buildings (35% accuracy when using general building features) differ from some studies. For 

example, Alexander et al. (2009) report a classification accuracy of 90% for buildings built before 1919 

and a 77% average accuracy over all classes. Rosser et al. (2018) report a classification accuracy of 88% 

for buildings built before 1915. Dissimilarities in appearance between the German and British building 

stock built before World War 1 could account for these differences. The sampling method we employed 

could be another reason. Choosing Census grid cells with uniform ages could lead to a sample of 

buildings that resemble each other, irrespective of their age, which leads to greater confusion in 

classification between classes. 

For reasons addressed in the previous sections, we consider the referenced results to be optimistic since 

they ignore the spatial autocorrelation component that influences accuracy of results. This conclusion is 

based on spatial sampling tests that have shown that classification scores drop to approximately 45% 

when the examples used for learning obey to spatial constraints. Optimistic results are likely to be 

obtained in practice but only when the training pool contains buildings in the close vicinity of the target 

building for age estimation.  If learning examples are sampled from regions farer away, it should be 

expected that accuracy of classification to suffer significantly to the point of the whole process 

becoming unusable for energy modeling purposes.  

Furthermore, it has been observed that the results obtained on individual cities do not scale well to a 

region level. The region in this context is the combined area of all cities in the analysis, not the actual 

geographical area of North Rhine-Westphalia. The high level of heterogeneity among building features 

makes it difficult to identify correctly the building age. This occurs despite the fact that all cities belong 

to the same region and we would expect a common trend in construction standards. We can extrapolate 

the results to conclude that applying the classification for regions in different states for example, or 

between East and West Germany will lead to equally inconclusive results. This result reinforces the 

intuition gained through the tests performed with spatial sampling.    

Table 6.2: Evaluation of region classification models per building age class. Results are averaged over all tests for 7 cities, a total 

of 7 tests. 

Building Age Model 1 Model 2 Model 3 

Mean SD Mean SD Mean SD 

Average for all 
ages 

20,1 1,6 
 

18,7 
 

1,5 
 

14,7 
 

1,2 
 

Before 1919 17,3 3,3 14,7 4,4 12,7 6,3 

1919 - 1948 40,4 7,2 38 8,5 34,3 7,1 

1949 - 1978 85,5 2,2 89,6 2 95,4 1,2 

1979 - 1986 15,8 2,8 11,2 2,2 0,7 1 

1987 - 1990 1,3 1,4 0,3 0,4 0 0 

1991 - 1995 6,1 2,4 4,8 3,7 0,2 0,3 

1996 - 2000 10,4 5 8,8 3,8 0,9 1,2 

2001 - 2004 9,9 5,6 8,3 6,6 1,1 1,3 

2005 - 2008 10,3 4,8 9,2 3,4 1 0,9 

 2009 and after 4,2 1,6 1,9 3,5 0,9 1,2 
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6.2. MODEL-BASED DECISION MAKING 

What is the effect of misclassification of building age on energy demand estimation? 

The purpose of this study is to design a method that helps national and local policy makers reach 

optimal decisions for improving the energy efficiency of the building stock.   

The implications for policy making are only relevant for classification predictions that are acceptably 

accurate. After having discussed the power of prediction of the chosen model, we focus solely on the 

context where models achieve good classification results. This scenario most favorable for achieving a 

high degree of accuracy of prediction is when learning and prediction are made with data from the same 

city and when training data is available throughout the city.   

We first observe that buildings from before 1978 are very rarely mislabeled as being built after this year. 

This ensures that energy consumption and retrofit requirements are not under-estimated. The case 

when old buildings would be labelled as new buildings are more damaging for policy making since it 

pictures an overly-optimistic version of reality where decision making is blocked. In this alternative 

scenario the problem would not be identified. There is however a tendency to over-estimate energy 

consumption due to the misclassification of buildings built after 1978 as being built between 1949 and 

1978. A finer division of this age class that spans three decades could pinpoint the exact source of the 

misclassification error.   

In order to broadly test the impact of age prediction on estimates of building energy demand, we will 

perform a simple modeling exercise, based on reference values for building energy demands per age. 

Through a complex computation method based on building typologies, climate data and building 

geometry, the energy demand for space and water heating for each building typology is estimated in 

the Tabula project (Loga et al., 2012). The data concerning the primary energy demand both before and 

after a standard renovation process are considered the reference values in our scenario (figure 6.1). 

Using the classification results obtained for all cities, our goal is to derive new energy estimates for each 

age class and compare them with the reference values. Before this, however, we must unify Tabula age 

classes and building types and the Census age classes. As it can be observed in figure 6.1, building 

energy demands varies per building type. This aspect is however outside the scope of our research, and 

our target is to provide an overall estimate per age class irrespective of the building type. For this, the 

values for the four building types will be averaged into a single value per age class. In what concerns the 

discrepancies between age categorization, the timespans are aligned by either averaging over several 

ages or assigning repeatedly the same value to Census age classes. The results of this process can be 

observed in table 6.3 which lists for each building age a reference value for primary energy demand for 

space and water heating, expressed in kilowatt‐hours per square meter per annum.   
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Figure 6.1: Total primary energy demand for heating and domestic hot water per building type (single family house; terraced 

house; multifamily house; apartment block) and building construction year.  kWh/m2 a = kilowatt‐hours per square meter per 

annum. Data retrieved from TABULA WebTool, http://webtool.building-typology.eu/#bm.  Copyright Institut Wohnen und 

Umwelt GmbH 2012-2016 (Institut Wohnen und Umwelt , 2020).        

Table 6.3: Reference values for energy demand per Census building age class. 

Tabula Age 
Classification 

Census Age 
Classification 

Building energy 
demand (kWh/m

2
a) 

1859 
1860-1918 

Before 1919 246 

1919-1948 1919-1948 229,8 

1949-1957 
1958-1968 
1969-1978 

1949-1978 
 
 

219 
 
 

1979-1983 1979-1986 200,3 

1984-1994 
 

1987-1990 195,7 

1991-1995 195,7 

1995-2001 1996-2000 146,7 

2002-2009 
 

2001-2004 121,3 

2005-2008 121,3 

2010-2015 2009 and after 112,9 

 

Based on the age-aligned reference values (table 6.3), the energy demand estimates per building age 

obtained after using the classification model are computed with the following formula: 

  𝐸𝑛𝑒𝑤(𝑎𝑔𝑒𝑘) = ∑ 𝐸𝑟𝑒𝑓(𝑎𝑔𝑒𝑖) ∗ 𝑝𝑎𝑔𝑒𝑖
(𝑎𝑔𝑒𝑘)𝑖  

where 𝑝𝑎𝑔𝑒𝑖
(𝑎𝑔𝑒𝑘) is the probability that  𝑎𝑔𝑒𝑘 is labeled as  𝑎𝑔𝑒𝑖  and 𝐸𝑟𝑒𝑓(𝑎𝑔𝑒𝑖) is the reference 

energy demand for class 𝑎𝑔𝑒𝑖 . 

0

50

100

150

200

250

300

E
n

er
g

y 
D

e
m

an
d

 (k
W

h
/m

2
a)

 

Building Construction Year 

AB

AB After Renovation

MFH

MH After Renovation

TH

TH After Renovation

SFH

SFR After Renovation



  
 

72 
 

The results for energy demand before and after renovation can be consulted in figure 6.2 and figure 6.3 

respectively. The confidence intervals are computed over all available test for all cities. The results for 

the weakest and strongest performing models are reported: Model 1 , with 56,3 % accuracy of 

classification, and Model 3, with 83,4 %.  

    

Figure 6.2: Total primary energy demand for heating and domestic hot water according to the age of building stock as 

estimated by the classification model. Blue dots represent the actual energy demand, as identified in the Tabula project.   

kWh/m
2
 a = kilowatt‐hours per square meter per annum.   

     

Figure 6.3: Total primary energy demand for heating and domestic hot water after building renovation according to the age of 

building stock as estimated by the classification model. Blue dots represent the actual energy demand after renovation, as 

identified in the Tabula project.   kWh/m
2
 a = kilowatt‐hours per square meter per annum. 

The largest variations in energy estimates occurs for the newest buildings, especially built after 2009. 

For estimates after renovation, both models show a marked improvement. This leads to the conclusion 

that if an individual decision is to be made concerning the impact of renovation for a building whose age 

has been classified with either one of the proposed classification models, the prognosis will be accurate 

for buildings between 1919 and 1995.  

We extend the modeling exercise from a standard building to city wide residential building stock. The 

energy demand for a city is computed using the formula:  
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∑ 𝐸(𝑎𝑔𝑒𝑖) ∗ 𝑇𝑜𝑡𝑎𝑙 𝐹𝑙𝑜𝑜𝑟 𝐴𝑟𝑒𝑎(𝑎𝑔𝑒𝑖)

𝑖

 

where 𝐸(𝑎𝑔𝑒𝑖) is building energy demand (𝐸𝑟𝑒𝑓  for reference values and  𝐸𝑛𝑒𝑤for estimated values) and 

𝑇𝑜𝑡𝑎𝑙 𝐹𝑙𝑜𝑜𝑟 𝐴𝑟𝑒𝑎(𝑎𝑔𝑒𝑖)  is the sum of floor areas over all buildings of age 𝑎𝑔𝑒𝑖. 

The results in figure 6.4 demonstrate how the variations in energy prediction at individual building level 

are smoothed out when increasing the size of the energy model. The difference between reference and 

model estimated energy demand in this scenario is less than 1 % of the reference value. As illustrated in 

the individual building case, this difference will be even lower for after renovation energy estimates. The 

reason behind these positive results is the age distribution of the building stock and the energy 

demands associated with age classes. Firstly, for all cities approximately 50% of the stock (figure 4.9) is 

represented by buildings of an age class that is identified with over 90% accuracy (“1949-1978”). 

Secondly, old and new buildings are not generally confused by the classification model. Buildings built 

before 1978 are always represented as such. Since these buildings are considered to have worst energy 

performance than newer buildings, the model leads to acceptable accurate energy estimates, especially 

at larger spatial scales. In conclusion, the method performs very well on the identification of old 

buildings in the German cities analyzed, which give an indication to policy makers where to focus 

renovation efforts.       

 

Figure 6.4: Total primary energy demand for heating and domestic hot water per city. Blue dots represent the actual energy 

demand. GWh/ a = gigawatt‐hours per annum. 

It is expected that the variations in energy demand estimates to be greater for models at a higher 

resolution, for example individual neighborhoods. The option in this scenario would be to use a model 

with high accuracy, for example a model that takes advantage of the spatial component like Model 3. 

The need for individual building age information is dependent on the resolution of the energy 

simulation. Zirak et al. (2020) have used the Census information to conclude that heating demand for an 

entire city is acceptable, yielding a difference of 4.5% compared with municipality reference data. Zirak 

et al. (2020) also conclude that an important factor in energy modelling is the size of the heated space. 

The advantage of our proposed method over a technique that uses aggregates of age over 
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neighborhoods, as for example the Census survey that provides 100 x 100 m grid cell building data, is 

that with a classification model, for a specific building we can associate the age with building geometry, 

and especially building footprints, and the extent of heated area is an essential parameter in estimated 

building energy demand.  This level of detail allows for more precise energy estimates than using 

general building typologies or aggregated age data.  

Another advantage in using this classification model is its power to identify the class of buildings in need 

of renovation.  The aim of sustainable renovations measures is to improve the energy efficiency of the 

existing building stock by enhancing the performance of the thermal building envelope while at the 

same time reducing greenhouse gas emissions through the use of renewable energy sources. 

Renovations have different impact depending on the building age. Refurbishment of buildings built 

before 1919 was shown to have little impact on energy consumption and this is due to the structure of 

these buildings and the difficulties encountered into their renovation (Energy Efficiency For EU Historic 

Districts Sustainability, 2013). Renovations of buildings built between 1950 and 1990 have a significant 

impact on energy consumption as shown by the work of Michelsen and Müller-Michelsen (2010), cited 

by the EUFFESE report.    

The usability of an age classification model for policy decisions concerning energy efficiency is only as 

good as the accuracy of the energy models build upon it.  The discussion in the introductory chapters of 

the thesis has shown the general trend of the relationship between building age and energy 

consumption estimates.  This relationship is not always straightforward. In their study Bigalke et al. 

(2012) as cited by EUFFESE report (Energy Efficiency For EU Historic Districts Sustainability, 2013), have 

shown that the measured energy consumption for buildings is on average 30% lower than calculated 

estimates, due to differences in user behavior and uncertainty in U-value estimates. This is truer for 

buildings built before 1949. This findings in supported by other studies and has been defined as the pre-

bound effect, the gap between performance and actual energy consumption (Minna Sunikka-Blank & 

Ray Galvin, 2012). While an age prediction model cannot alleviate this gap in modeling results, it can be 

a useful tool for performing uncertainty analysis that quantifies the exact lag between estimates and 

actual consumption.  

6.3. LIMITATIONS AND FUTURE WORK 

There are two types of limitations that are worth mentioning. The first type consists in technical 

limitations and the second type in limitations in the usability of the model for energy-modeling 

purposes. 

6.3.1. TECHNICAL IMPROVEMENTS 

From the first category, we consider the major limitation of the present study to be the data acquisition 

method. Due to the scarcity of publicly available data on construction year a sampling method based on 

information extraction from spatially aggregated data has been designed. The effect of the data 

acquisition method on classification accuracy has not been analyzed. It is possible that by selecting from 

the Census data grid cells of 100 m x 100 m that only contain buildings of the same age we have 

introduced a sampling bias.  It would be noteworthy to extend this analysis to the entire building stock 

of the cities under analysis and verify the reproducibility of results.  
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Random stratified sampling has been proven to lead to more optimistic classification results than spatial 

sampling. This aspect has not been discussed in most of the literature concerning building age 

prediction and should be further on explored. Research in this direction could include three aspects. 

Firstly, the extent of spatial autocorrelation per feature can be estimated by means of spatial indices 

which will lead to identifying the building features most likely to correlate spatially.  Secondly, to 

counteract this tendency to auto-correlate, different spatial sampling methods could be designed. We 

have suggested a simple split of buildings by blocks, but other strategies that take into account the 

morphology of the urban region should be considered. Lastly, a different learning method could be 

employed, for example an algorithm that accounts for spatial autocorrelation. 

The chosen classification model, Random Forest, is a powerful, robust and widely-used supervised 

learning method. It has however its drawbacks and judging on the particularities of the learning 

problem at hand – imbalanced multiclass classification of spatial data – further developments should 

include the analysis of performance of other learning models, for example Deep Learning.  Another 

improvement that could be brought to the classification model is the feature selection procedure. 

Backwards feature elimination has been shown to produce local and not global optima for classification 

accuracy.  

Another direction of research concerns building features most likely to predict building age. The 

association between buildings and the properties of nearby streets properties has been given little 

weight in previous studies on building age prediction. Our results show that these features deserve a 

closer investigation, along with some complex shape features. Building attributes extracted from the 

properties of the block that surrounds them have proven to be weak predictors of building age at larger 

spatial scales. The reason would be that labelling multiple age classes with the same attribute creates 

confusion in the classification process. One avenue of research would be to test a classification of 

construction year per block where the majority age of buildings in the block would be the block class 

label. 

6.3.2. IMPROVEMENTS FOR ENERGY MODELING 

The first limitation for policy analysis support is derived from the data acquisition method and concerns 

the fact that the available age classification in Census is not the standard energy-based typology of 

buildings for Germany.  The typology, as defined in the Tabula project, comprises of 11 classes. The 

major difference consists in the segmentation of the Census age class 1949 – 1978 into several age 

classes in the Tabula project. For further developments a different age split could be considered, 

provided that the data is available or can be accurately deduced.  We consider this to be of lesser 

importance, since there are ways to reclassify the available data. The important question concerns the 

majority class and the power of the model to identify between the specifics of each decade of 

construction comprised in this class: 1949 – 1978. 

Last but not least, estimation of the impact of the resulting age classification has been done through 

literature study by analyzing the associations found in literature between building age and energy 

consumption and through a simple energy modeling exercise. Further work should include a more 

complex energy modeling component where energy estimates are compared with reference data. This 

step is essential in quantifying the uncertainty that the model introduces in the decision-making 
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process. Lomas and Wright (2010) have shown the influence of input parameters on model results varies 

according to different building typologies (age and size characterization). In their study on CO2 

emissions, the influence of model inputs was significantly higher for detached and old buildings, than 

the rest of the building stock (Firth et al., 2016).   

In the absence of concrete data on building refurbishment, energy estimates can be misleading. The age 

information on itself is not sufficient for estimating energy consumption. Moreover, the EFFESUS 

report remarks that visual inspection of a building is also not a sufficient indicator for estimating the age 

or energy consumption. The laws that protect the façade appearances of historical buildings do not 

extend to the entire building, and energy efficiency renovations are likely to have been performed even 

without visible external indications (Energy Efficiency For EU Historic Districts Sustainability, 2013). Our 

proposed method does not cover in any way the renovation status of a building.   

Last but not least, the questions of data privacy and ethical considerations concerning machine learning 

use arise. The danger of such a modeling technique is that an open source model is proposed to 

precisely identify information that has been judged as private by national laws. While the discussion 

extends the scope of our research, we consider it a worth-while endeavor for a deeper analysis in the 

context of elaborating policy regulations for the responsible-use of machine learning models and 

predictions.  
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7. CONCLUSION 
 

 

The investigation pursued in this research project has shown that using supervised classification for 

predicting building age has a positive impact on the accuracy and level of detail of energy efficiency 

modeling. This potential is best explored in situations where there is available data for training from 

buildings in the same spatial region, and more specifically the same city, as the buildings whose ages are 

to be predicted. Accuracy of classification is optimal when the age of buildings in the vicinity of the 

target dataset is known. These results do not reproduce when training a model on a dataset from a 

different city or group of cities. This is a standard example when more training data does not necessarily 

mean better prediction results. These results must however be interpreted in the context in which they 

could be a result of the historical evolution of building construction methods and building standards in 

Germany. It can be expected that the heterogeneity in shape and location of the building stock per age 

period to vary from country to country. The segmentation of construction years into different age 

classes is in itself a country-specific process.    

This lack of power of generalization does not however nullify the potential of using this method as a 

decision-making aide. The class of models where building age is an essential input parameter is bottom-

up models and these are by their nature high-resolution localized models. Building an energy model for 

a neighborhood or a city is a common procedure in this practice, with results being scaled up at regional 

or national level. This neighborhood-by-neighborhood or city-by-city approach can benefit from the 

predictions of a classification model that uses only local data for training and prediction. 

In this context of localized training, the accuracy of the method reaches up to 82% with best results 

obtained in identifying buildings more likely to be energy-inefficient, i.e. built before 1979. The ability to 

differentiate between old and new buildings is essential for accurate estimation of energy consumption 

and retrofit needs.   The model has a tendency to over-estimate the number of old buildings and leads 

to slightly pessimistic results concerning energy consumption and retrofit requirements for new 

buildings. Nevertheless, for energy models at the scale of a city, it has been proved that differences 

compared with reference values are minimal due to the high proportion of older buildings in the building 

stock.  
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The study has gone further than other studies by applying the analysis to a larger scale than one city or a 

set of neighborhoods in a city. The method employed can be easily replicated for the analysis of the 

entire state, and also scaled for national analysis, provided the challenges of data acquisition and data 

compatibility are overcome.   

Concerning the relevance of building features for age classification, an in-depth analysis has been done 

to illustrate the differences in feature importance across spatial scales. Classical building features 

related to building geometry have shown to be relevant across all spatial scales, and their relevance has 

been decomposed on two directions: general similarity between buildings over regions and local 

similarity between buildings in close vicinity one of another. In the later scenario, building features are 

significantly more conclusive for classification. The study has also brought forward new types of 

features in the context of building age prediction: building footprint features, street and block features. 

Out of them, selected shape and street features have been deemed important and deserving of further 

analysis. 

In conclusion, the scientific significance of this research work is three-fold. Firstly, the study is a first 

attempt to analyze the potential of predicting building age from known data both within the same city 

and from different cities. Secondly, it illustrates the effect of spatial autocorrelation on producing 

optimistic classification results. Lastly, it highlights new categories of features that have proven to be 

relevant for prediction and discusses their relevance at different spatial scales. Furthermore, the model 

was proven to produce energy estimates for energy models at city scale that are within 1% of the 

reference energy demand, making it a useful tool for supporting energy efficiency modeling. 
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APPENDICES 

APPENDIX A: MODELLING 

APPENDIX A.1: CLASSIFICATION FEATURES  

 

By reviewing the relevant literature for building and neighborhood age prediction, we have identified a 

set of 89 building attributes for age classification. These attributes of classification features belong to 4 

categories: general building features (listed in table A.1), building shape features (listed in table A.2), 

street features (listed in table A.3) and block features (listed in table A.4). The information presented 

contains the name and description of the feature, accompanied by the mathematical formula used for 

computation if computation is not trivial, and the literature sources. 

Table A.1.1: Building features. 

Name Description Reference 

Height Height of building relative to the ground (the height is 

measured from the highest point of the roof). 

(Biljecki & Sindram, 2017) 

(Rosser, et al., 2019) 

(Tooke, Coops, & Webster, 

2014) 

Wall height Difference between building height and roof height (distance 

between highest and lowest point of the biggest roof surface).  

Number of storeys Number of above ground stories: 
ℎ𝑒𝑖𝑔ℎ𝑡

3
− 1 . 

(Biljecki & Sindram, 2017) 

(Rosser, et al., 2019) 

(Tooke, Coops, & Webster, 

2014) 

 

Area    Area of building footprint. 

Perimeter  Length of building outline. 

Volume  Computed considering roof geometry (flat, prism, pyramid, 

etc). 

Volume (default) Computed considering the building as a parallelepiped: 

𝑎𝑟𝑒𝑎 ∗ ℎ𝑒𝑖𝑔ℎ𝑡. 

Floor area Sum of all floor areas:  𝑎𝑟𝑒𝑎 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑜𝑟𝑖𝑒𝑠 + 1)    

Roof slope  Angle between the ground surface and one lateral surface of 

the roof (the biggest roof surface is considered the most 

representative for the slope). 

Using raster data in (Rosser, 

et al., 2019) (Tooke, Coops, & 

Webster, 2014) 

Roof area  Sum of all roof surfaces. 
 

Vertex number  Number of vertices that make up the footprint. 
(Rosser, et al., 2019) 

Building parts Number of building parts that make up the building (main 

building and annexes).  
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Wall area  Sum of all wall surfaces. (Tooke, Coops, & Webster, 
2014) Surface area  Sum of all surfaces, roof and walls. 

Normalized 
perimeter index 

Indicator of building footprint compactness: ratio of the 

perimeter of the equal area circle to perimeter  
2√𝑎𝜋

𝑝
. 

(Angel, Parent, & Civco, 
2010) 

(Rosser, et al., 2019) 

Shape complexity Ratio of perimeter to perimeter of circle of equal area. P**2 / 
4*pi 

 

Compactness Exposed building per unit volume: ratio of surface area to 𝑉2/3. (Tooke, Coops, & Webster, 
2014) 

Fractal  Indicator of shape complexity and fragmentation: ratio of 

perimeter to area  
ln(

𝑝

4
)

2

ln 𝑎
. 

(McGarigal & Marks, 1995) 

(Wurm, Schmitt, & 
Taubenböck, 2016) 

(Tooke, Coops, & Webster, 
2014) 

2D Shape index  Indicator of shape smoothness: ratio of perimeter to perimeter 

of the equal area square 
𝑝

4∗√𝑎
 . 

(McGarigal & Marks, 1995) 

3D Shape index  Indicator of 3D smoothness: ratio of perimeter to perimeter of 
the equal volume cube. 

(Wurm, Schmitt, & 
Taubenböck, 2016) 

   

Table A.1.2: Building shape features. 

Name Description Reference 

Building type ‘Detached’, ‘semi-detached’, ‘terraced’, ‘end-terraced’ or ‘complex’  (Droin, 2019) 

Height-area ratio Ratio of height to area.  

Detour Length of the convex hull of the polygon. The convex hull is the shortest 
connection of vertexes that fully contains the polygon. 

(Angel, 

Parent, & 

Civco, 2010) 

Detour index Ratio of the perimeter of the equal area circle to detour length. 

Range Distance between the furthest most vertex points of the building footprint. 

Range index Normalized Range using the diameter of the EAC (equal area circle). 

Exchange Area of the polygon within the EAC considering they have the same centroid. 

Exchange index Normalized Exchange by dividing the interior area by the EAC area. 

Cohesion Average Euclidean distance between 30 randomly selected interior points. 

Cohesion index Normalised Cohesion using the radius of the EAC and a constant defined by 

Angel et al. (2010). 

Proximity Average Euclidean distance from all interior points to the centroid. 

Proximity index The average distance of a circle to its center, given as two thirds of its radius (de 

Smith, 2004) 

Spin The average of the square of the Euclidean distances between all interior points 

and the centroid. 

Spin index Normalized Spin using half of the squared radius of the EAC. 

Number of consecutive  Number of direct neighbors. (Droin, 2019) 
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neighbors 

Area neighbors The area of the enclosing polygon containing all direct neighbors. 

Perimeter neighbors The perimeter of the enclosing polygon containing all direct neighbors. 

Relative area neighbors The relative area of the building feature compared to the enclosing polygon 

containing all neighbors. 

 

Table A.1.3: Street features. 

Name Description Reference 

Betweenness centrality  Betweenness centrality of a node v is the sum of the fraction of all-

pairs shortest paths that pass through v. 
(Berghauser Pont, 

et al., 2019) 

Load centrality The load centrality of a node is the fraction of all shortest paths that 

pass through that node. 

Available with 
osmnx (Boeing, 

2017) 

Closeness centrality Closeness centrality of a node v is the reciprocal of the sum of the 

shortest path distances from v to all n-1 other nodes. 

Degree centrality The degree centrality for a node v is the fraction of nodes it is 

connected to. 

Neighborhood degree The average degree of the neighborhood of each node.  

Distance to road Distance from the centroid of the building footprint to closest road. (Alexander, 
Lannon, & 

Linovski, The 
Identification of 

analysis of regional 
building stock 
characteristics 

using map based 
data, 2009)  

Street length  (Gil, Beirão, 
Montenegro, & 
Duarte, 2012) Street width  

Street connections The number of connecting street segment to a node v.  

Street connectivity Ratio of street length to number of intersections. (Berghauser Pont, 
et al., 2019) Street intersections  

  

Table A.1.4: Block features. 

Final Description Reference 

Perimeter  Length of block footprint (p) (Hermosilla, Palomar-

Vázquez, Balaguer-Beser, 

Balsa-Barreiro, & Ruiz, 

2014) 

 

(Gil, Beirão, Montenegro, 

Area    Area of block footprint (a) 

Built-up area A ratio of built-up area size to the area of the block. 
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& Duarte, 2012) 

Gross floor area per 

block 

Building footprint area * (number of storeys + 1) (sum over 

buildings) 
(Berghauser Pont, et al., 

2019)  

 

Floor space index Ratio between gross floor area and block area. 

Open space ratio Ratio between non-built area and gross floor area. 

Function richness Number of function classes of buildings in a block. 

(Lowry & Lowry, 2014) 

 

Simpson diversity index Function of number of classes and buildings per class: 

1 −
∑ 𝑛𝑖(𝑛𝑖−1)𝑖

𝑁∗(𝑁−1)
 where 𝑁 is the total number of buildings and 𝑛𝑖  

the buildings of function i. 

NDVI average   

Vegetation area  Area covered with vegetation (as estimated using NDVI) 

(Hermosilla, Palomar-
Vázquez, Balaguer-Beser, 

Balsa-Barreiro, & Ruiz, 
2014) 

Vegetation ratio  Ratio of vegetation area to block area. 

Number of buildings Total number of buildings in a block. 

Maximum building 
height 

The maximum height of buildings in a block. 

All storeys per block  Sum of all storey for all buildings in a block. 

Maximum number of 
storeys per block 

Maximum number of storeys for buildings in a block. 

Built-up volume Sum of all building volumes in a block. 

 Built-up volume mean Mean building volume. 

 Built-up volume 
normalized 

Ratio of mean building volume to block area. 

Shape index p

4√a
 

Fractal dimension 
2 ∗

log p/4

log a
 

 Compactness The degree to which the shape is close to a circle 
4πa

p
 . (Berghauser Pont, et al., 

2019) 

(Hermosilla, Palomar-
Vázquez, Balaguer-Beser, 

Balsa-Barreiro, & Ruiz, 
2014) 
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APPENDIX A.2: HYPERPARAMETERS TEST  

 

 
Figure A.1.1: Hyperparameter test for varying number of 

trees. 

 
Figure A.1.2: Hyperparameter test for varying maximum tree 

depth. 

 
Figure A.1.3: Hyperparameter test for varying minimum 

samples split. 

 

 
Figure A.1.4: Hyperparameter test for varying minimum 

samples leaf. 

 
Figure A.1.5: Hyperparameter test for varying number of features. 
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 APPENDIX B: RESULTS  

APPENDIX B.1: FEATURE IMPORTANCE RANKS PER CITY 

 
 
Figure B.1: Features ranked by importance in the Model 

2 classification for Cologne. 
 

 
 

 
 

Figure B.2: Features ranked by importance in the 
Model 2 classification for Düsseldorf. 

 

 
 
Figure B.3: Features ranked by importance in the Model 

2 classification for Dortmund. 

 
Figure B.4: Features ranked by importance in the 

Model 2 classification for Duisburg 

 
Figure B.5: Features ranked by importance in the Model 

2 classification for Essen. 

 

 
Figure B.6: Features ranked by importance in the 

Model 2 classification for Bielefeld. 

 


