Monthly Notices

MNRAS 496, 27762785 (2020)
Advance Access publication 2020 June 20

doi:10.1093/mnras/staal 755

Thermophysical modelling and parameter estimation of small Solar
system bodies via data assimilation

M. Hamm “,"?* 1. Pelivan,® M. Grott? and J. de Wiljes'*

Unstitute for Mathematics, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
2German Aerospace Center (DLR), Rutherfordstr. 2, D-12489 Berlin, Germany
3 Fraunhofer Heinrich Hertz Institute (HHI), Einsteinufer 37, D-10587 Berlin, Germany

Accepted 2020 June 11. Received 2020 June 5; in original form 2020 March 30

ABSTRACT

Deriving thermophysical properties such as thermal inertia from thermal infrared observations
provides useful insights into the structure of the surface material on planetary bodies. The
estimation of these properties is usually done by fitting temperature variations calculated
by thermophysical models to infrared observations. For multiple free model parameters,
traditional methods such as least-squares fitting or Markov chain Monte Carlo methods
become computationally too expensive. Consequently, the simultaneous estimation of several
thermophysical parameters, together with their corresponding uncertainties and correlations,
is often not computationally feasible and the analysis is usually reduced to fitting one or two
parameters. Data assimilation (DA) methods have been shown to be robust while sufficiently
accurate and computationally affordable even for a large number of parameters. This paper will
introduce a standard sequential DA method, the ensemble square root filter, for thermophysical
modelling of asteroid surfaces. This method is used to re-analyse infrared observations of the
MARA instrument, which measured the diurnal temperature variation of a single boulder on
the surface of near-Earth asteroid (162173) Ryugu. The thermal inertia is estimated to be
295 + 18 Jm2K~'s~!/2 while all five free parameters of the initial analysis are varied
and estimated simultaneously. Based on this thermal inertia estimate the thermal conductivity
of the boulder is estimated to be between 0.07 and 0.12,Wm~' K~! and the porosity to be
between 0.30 and 0.52. For the first time in thermophysical parameter derivation, correlations
and uncertainties of all free model parameters are incorporated in the estimation procedure
that is more than 5000 times more efficient than a comparable parameter sweep.

Key words: radiation mechanisms: thermal — methods: data analysis —methods: statistical —
minor planets, asteroids: individual: (162173) Ryugu.

Miiller, Hasegawa & Usui 2014; Harris & Drube 2016; Miiller et al.
2017), or satellite remote sensing data (e.g. Chase 1969; Kieffer
et al. 1972; Kiihrt et al. 1992; Mellon et al. 2000; Christensen

1 INTRODUCTION

Thermal conditions on atmosphereless, small Solar system bodies

are governed by the thermophysical properties of the surface
material, e.g. thermal conductivity, heat capacity, and emissivity.
The thermal conductivity is coupled to structural properties of the
surface material such as grain size and porosity (Sakatani et al.
2017). Observing the surface in the thermal infrared wavelength
range, typically 5-25 pum, provides direct insight into the thermal
conditions on the surface. Thus, thermophysical and structural
material properties can be derived from thermal infrared data.

The thermophysical properties of numerous Solar system bodies
have been investigated using telescopes (e.g. Masiero et al. 2011;
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et al. 2001; Fergason, Christensen & Kieffer 2006b; Paige et al.
2010), as well as close-up studies performed by rovers and landers
(e.g. Fergason et al. 2006a; Gémez-Elvira et al. 2012; Hamilton
et al. 2014; Spohn et al. 2015; Vasavada et al. 2017; Grott et al.
2019). Recently, the Japanese Hayabusa2 mission (Watanabe et al.
2017) investigated the C-type near-Earth asteroid (162173) Ryugu
with four instruments, including a thermal infrared imaging system
(Okada et al. 2017; Sugita et al. 2019; Watanabe et al. 2019; Okada
et al. 2020). The mission included the MASCOT lander (Ho et al.
2017) that, among other instruments, carried a thermal infrared
radiometer (Grott et al. 2017). MASCOT landed on the surface of
Ryugu and investigated a single boulder on the surface of Ryugu
for 2.5 asteroid rotations (Jaumann et al. 2019; Preusker et al.
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2019; Scholten et al. 2019a,b), recording a full diurnal surface
temperature curve (Grott et al. 2019). The NASA OSIRIS-REx
mission is currently investigating the B-type near-Earth asteroid
(101955) Bennu (Lauretta et al. 2019) using the OTES instrument
to investigate the thermal properties of Bennu’s surface (Christensen
et al. 2018; DellaGiustina et al. 2019). Earlier, the Rosetta mission,
consisting of an orbiter and a lander module, arrived at comet
67P/Churyumov—Gerasimenko (67P) and studied the comet in
detail, which included measurements in the thermal infrared on
the surface of 67P (Spohn et al. 2015).

Infrared data are usually analysed by comparing the observed
flux to the results of thermophysical models (e.g. Pelivan et al.
2017; Hamm et al. 2018; Pelivan 2018), to fit the observation in
a weighted least-squares approach (e.g. Nowicki & Christensen
2007; Spohn et al. 2015; Vasavada et al. 2017; DellaGiustina
et al. 2019; Grott et al. 2019). Typically, only a few parameters
are varied in these works while most parameters of the model are
assumed to be some constant value, or varied in coarse steps. This
is due to the extensive computation time necessary to compute
a solution of the standard thermophysical models. Often, look-up
tables are computed prior to the fitting, and the temperature variation
of the surface is interpolated from these tables (e.g. Nowicki &
Christensen 2007).

Recently, Cambioni et al. (2019) published an approach where
a surrogate model, in form of a neural network, returns the tem-
perature variation of an asteroid surface, given insolation data and
some thermal parameters, i.e. thermal inertia of a rock component
of the surface regolith, thermal inertia of the fine components, a
surface roughness parameter, and the rock component’s area cov-
erage. While significantly increasing the speed of the temperature
calculation and thus allowing to use Markov chain Monte Carlo
(MCMC) approaches to approximate unknown parameters, the
trained network is merely a surrogate model of the true physical
system and is thus limited in its predictive power. Furthermore,
the computational complexity to fit a neural network significantly
increases for more detailed thermal models with a higher number
of free parameters.

The commonly used least-squares approach does not require to
generate as many model evaluations as is necessary for a Monte
Carlo estimation but demands some form of linearization. Conse-
quently, unlike the Monte Carlo ansatz, the least-squares technique
can only provide a Gaussian approximate of the true uncertainty
of the parameter estimate. The approach presented in this paper
addresses the issues associated with existing fitting algorithms
such as the least-squares approach and MCMC estimation. More
precisely, the proposed method is computationally feasible, i.e.
only a relatively small number of samples compared to the MCMC
approach are necessary for the algorithm to give robust results.
Further, the method does not require a linearization and thus is
able to capture the highly non-linear relationship between surface
temperature and observable infrared emission while providing a
good representation of the uncertainty of the approximation.

It is important to mention that the method presented in this paper
is a standard approach that has been developed in the field of data
assimilation (DA; Evensen & van Leeuwen 2000; Law, Stuart &
Zygalakis 2015). Here it is adapted to thermophysical modelling for
the purpose of retrieving thermophysical properties from infrared
observations. The proposed method, the so-called ensemble square
root filter (ESRF; Tippett et al. 2003; Nerger et al. 2012; Reich &
Cotter 2015), combines the key strength of the least-squares method,
more specifically the ‘best linear unbiased estimator’ (Reich &
Cotter 2015), with the ones of the Monte Carlo approach, and it has
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been successfully applied to highly non-linear problems with large
number of free parameters of the order of 107 and its accuracy and
stability has been rigorously investigated in recent years (e.g. de
Wiljes & Tong 2019; de Wiljes, Stannat & Reich 2019; Lange &
Stannat 2019).

DA techniques are widely employed in the Earth sciences, in
particular in meteorology, atmospheric physics, and oceanography.
For other Solar system bodies, DA has been applied to atmospheric
data sets from orbital Mars missions (e.g. Montabone et al. 2006;
Wilson et al. 2008). However, so far, DA has not been applied to the
thermal infrared data sets gathered from small Solar system bodies.

2 METHODS

The method described in this section is one of the standard
approaches for non-linear high-dimensional state estimation. Here,
‘state’ denotes the variables that describe the time-dependent
condition of the system, i.e. the surface and subsurface temper-
ature, as opposed to ‘parameters’ that govern the state, i.e. the
thermophysical properties of the surface material.

The DA technique is designed to infer states and parameters
of a dynamical system of interest on the basis of two sources of
information: a model (typically given by an evolution equation of
a state of interest dependent on partially unknown parameters) and
partial and noisy observations of the system. At first, we will discuss
the considered model and the associated observations followed by
an introduction of the ESRF (Tippett et al. 2003; Reich & Cotter
2015).

2.1 Model

The thermophysical model used in this study is similar to the
one used in Pelivan et al. (2017), Hamm et al. (2018), and
Grott et al. (2019) and assumes the surface to be a semi-infinite
and homogeneous half-space. The 1D-heat conduction equation is
solved as follows:

AT (x, 1) m*T(x,1)
o Q x?

where €2 is the rotation period, T(x, f) is the time- and depth-
dependent temperature, with x being the depth variable in the
direction of the local surface normal and x = 0 at the surface. The
depth is normalized to the diurnal skin depth &, which is defined as

k Q
d=[——, 2
cpp T

where p is the density, ¢, is the specific heat capacity, and k is the
thermal conductivity. This normalization requires to assume k, c;,
and p to be constants. At the lower boundary, the flux is set to zero.
The upper boundary condition is given by the energy balance at the
surface:

©)

(1 —A)I(t) = eopT*(x =0,1)+ T/ Ed—T(x =0,7)+ Qu(),
Q dx
3)

where A is the surface Bond albedo, I(¢) is the solar illumination, €
is the thermal emissivity, and o is the Stefan—Boltzman constant.
Further, Qu(¢) denotes the thermal radiation received from the
surrounding terrain. The thermal inertia is defined as I' = /pcpk
in units of Jm~2K~!s7!/2, This parameter is commonly used to
describe the amplitude of the diurnal surface temperature variation
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Table 1. Overview of the parameter forecasts in the re-analysis of the
MARA data set.

o Niot =1 Nrot =2 Niot =3 Nrot = 4 Nrot > 4
r 10 5 5 2 2

3 0.01 0.005 0.005 0.002 0.001
f 0.001 0.0005 0.0005 0.0002 0.0001
[% 10 5 2 2 1

¢ 1 0.5 0.5 0.5 0.1

Note. Listed are the standard deviations of the Gaussian distributions from
which the parameter forecasts are sampled according to equation (6).

and its phase shift with respect to maximum insolation. The higher
a surface’s thermal inertia, the later it will reach its maximum
temperature in the afternoon, and the smaller is the difference
between day and night temperatures. This thermal model calculates
the temperatures on a spatial grid. We chose this grid to consist
of 41 points spread over eight diurnal skin depth with increasing
distance, as described in Hamm et al. (2018) and Grott et al. (2019).

The aim now is to determine unknown parameters of interest
of equation (3), e.g. the thermal inertia I', emissivity e, etc.,
which result in a specific temperature profile. In this paper, we
use a sequential DA algorithm to simultaneously estimate the
temperatures on the 41 grid points, the state, as well as the model
parameters. This is achieved by defining an ‘augmented’ state
vector, which consists of the temperatures and model parameters
and will be denoted z(t) € R"= as follows:

z2(t) =(T(0,1), T(xy,t), ... T(x41, 1), T, ..0), 4)

where the temperatures evolve according to the thermal model
equation (1). Note that besides I', any parameter of the thermal
model can be included in z.

While the model parameters are time independent, the DA
requires some sort of evolution in time for a sequential improvement
of the parameter’s estimate. Here, a Brownian motion is chosen to
ensure that the parameter space is traversed sufficiently to converge
into the true parameter value. Here, the forward model of the thermal
inertia is defined as
dar 4w,

dt — dt’

where W, is a Wiener process, i.e. the mathematical description of
the Brownian motion. This process is realized by adding, in each
forecast step, a random number to the previous estimate:

I'(t,) = T(t,-1) + ¢r(tamr),  with & ~ N0, ar(z,-1)%), (6)

where 7, is the time at which the parameter is updated, 7, _ | is the
time of the previous update, and ¢ (7)) is a random number drawn
from a normal distribution V' centred on zero and with a standard
deviation of ar(7,). The update time 7 in this study is equivalent to
the time of the observations. This formalism can be applied to other
parameters of the thermal model, each with their own choice of «
as provided in Table 1.

(&)

2.2 Data

In order to employ DA techniques, observations that can be linked
to the state of interest are required. The relationship between
observations yops and augmented state z(t) can be written as

yobs(rn) =H 2(Ty) + v(T0), @)

where v(t) € R™ is the observational noise that is assumed to be
Gaussian distributed with zero mean and covariance matrix, R €
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RN»>Ny and H € RNz is the observation operator. Further note
that the number of observed components N, is often significantly
smaller than the dimension of the augmented state space N,. In
this study, only one component of z(t) is observable. In the first
part of the study, this is the surface temperature 7(0, 7). In the
second part, it is the radiance emitted by the surface and observed
by the MASCOT radiometer. This means that Ny = 1, R is a scalar
corresponding to the measurement uncertainty, and H is given by

H(1)=1 and H@G@E) =0 for i#1. (8)

2.3 Sequential DA and the ESRF

In the following, we will briefly introduce basic concepts of
sequential DA and the classic Kalman filter (KF) as an example
for sequential DA. Then, we will introduce the ESRF, which is
a prominent member of the family of ensemble Kalman filters
(EnKFs; Evensen 2006).

2.3.1 Classic KF

In sequential DA, the probability distribution of a system’s state
is estimated by repeatedly applying two steps called forecast and
analysis. Based on an initial estimate of the state, the state in
the first time-step is predicted by applying a model, e.g. the
thermophysical model described above. This prediction is corrected
by incorporating an observation. The corrected prediction is referred
to as analysis and utilized as the input of the model to predict the
state in the next time-step. One iterates over this procedure for all
subsequent time-steps. The forward model can be expressed by

25 = ¥ (20, ©)

where W is the operator evolving the augmented state from time
7;_1 to ;. For the temperature evolution, W is the solution to the
PDE given in equation (1) evolving the temperatures 7(x, 7, _ 1) to
the temperature forecast 7(x, t,). For the evolution of the model
parameters, W is described in equation (6). Note that it is possible
to add some noise in equation (9) to express uncertainties stemming
from model or numerical errors.

The concept of sequential DA can be best illustrated by its
standard version, the classic KF (Kalman 1960). It is valid for a
linear dependence of the observation on the state z and a linear
forward model, i.e. a linear \W:

2(ty) = 2(Tu—1) + 8t(Az(T,—1) + D), (10)

where 8t is the time-step, and A and b are model parameters. A
common example is the estimation of the position of some vehicle
based on measurements of velocity and position at given points in
time (e.g. Hu et al. 2003). The KF has the underlying assumption
that the posterior distribution ,

Pz(T)]yobs(T1 = Tn)),

which describes the probability of the augmented state z(z,), given
all the data ygps(71: T,,) from time 7 up to time 7,, is a Gaussian
N(@m“(z,), P(t,)), where m® € R": is the first and P* € RN*N:
the second moment of the associated normal distribution.

Bayes theorem connects this posterior distribution with the prior
distribution that describes the probability of the augmented state
z(ty), given all the data yous(7;: 7,,) from time 7, up to time t,. The
prior distribution is assumed to be Gaussian N (m/ (,), P/ (t,)) as
well. This is the case when the model operator W and the obser-
vation operator H are linear, and the initial value, the model, and
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Figure 1. Top panel: The graph visualizes the classic Kalman update. The
blue (left-hand panel) normal distribution is the prior with mean m/, while the
red (right-hand panel) represents the likelihood function of the observation
(red dot yops) and the black (centre panel) distribution describes the so called
posterior distribution with mean m“. Bottom panel: illustration of a sequence
of Kalman updates. The analysis of one time-step is used to forecast the state
in the next time-step. Mean of forecast and analysis are shown as blue and
black dots, respectively, and the observation is shown as a red dot.

observational noise are independent identical Gaussian distributed.
The superscript a and f are abbreviations of analysis and forecast
used to distinguish between the posterior and the prior distribution,
respectively. This notation is in accordance with the classical DA
notation in the main application areas such as numerical weather
prediction and oil recovery. The link between prior and posterior
is achieved via the likelihood /(yops(7,)|z/ (z,)), Which describes
the probability of the observations conditioned on the current state
estimate, i.e.

N(m“(z,), P*(t,))
o¢ L(yobs (T2’ (1) N (m/ (z,), P/ (1)),

The upper panel in Fig. 1 shows the three probability distributions,
namely prior, posterior, and likelihood.
The posterior distribution in equation (11) is given by

an

N(@m“(t,), P*(1,))
1
X exp ( - E ((yobs(fn) - Hzf(fn))TR_](yobs(Tn) - Hzf(rn))

+@ @) —m! (@) P @) @) - m @), (12)
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The first part of the right-hand side of the expression is the
likelihood, I(yeps(T,)|m7 (1)), which is maximal when the forecast
observation Hz/ is close to the observation Yobs- The second part
is the prior distribution that is maximal at its mean m/. One can
rearrange the exponent to show that the posterior is a Gaussian with
mean and covariance given by

m*(t,) = m’ (z,) — K(Hm’ () — yobs(t1))

(13
P(r,) = P/ (,) — KHP/(z,), )
where K is the Kalman gain defined as

P/(z,)HT
K(r) = o) (14)

R+ HP/(z,)HT"

The Kalman gain weights how much the analysis, i.e. the posterior
distribution, is governed by the forecast produced by the model or
the observation. Details of this derivation are given in chapter 6 of
Reich & Cotter (2015). The smaller the observation error R, the
larger K becomes and the more is the observation weighted into
the calculation of the analysis. Contrarily, if the observation error
is very large, i.e.

K~0 (forR>>P/)

and, consequently, m¢ = m/ and P* = P/. One can show that
the updated mean m“ maximizes equation (12). One can fur-
thermore show that m® is the ‘best linear unbiased estimator’
of the state for a linear system, i.e. it minimizes the expectation
value E [|m® — zZy||*]. The mean and covariance of the updated
posterior are used to forecast the state in the next time-step by
applying the linear forward model (equation 10):

m’ (1,41) = (I + T A)m“(z,) + 8tb

15
P/ (1,41) = 14+ 8TAP (1)1 + 8TA)T. (15

Iterations over equations (13) and (15) provide a sequence of best
linear unbiased estimators for a series of observations for systems
with linear dynamics, which is illustrated in the lower panel of
Fig. 1.

2.3.2 Ensemble square root filter

The classic KF can be extended to a non-linear model setting via
an ensemble approach where an ensemble of M augmented state
vectors zif (t,) and z{(t,) with i € {1, ..., M} are generated in
each time-step 7, to approximate the Gaussian prior and posterior
distribution via the empirical posterior mean

1 M
(T = < ;z?(r,,) (16)
and covariance
. 1 <
Pl(n) = o D_(@(@) — " (@) (@) — @)’ (7)
i=1

for each 7, and analogously for the empirical prior distribution. This
means that the EnKFs are Monte Carlo approximations of the classic
KF. As in the classic KF, the forecast prior is updated incorporating
the observation. The mean and covariance of the analysis have to
fulfil the Kalman update in equation (13). However, while in the
KEF, it was sufficient to update mean and covariance, in the EnKF,
each ‘ensemble member’, i.e. z',-f , has to be updated individually.
The iterative update procedure of the samples is described in
Algorithm 1. The corresponding code will be made available
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upon request. At first, the initial ensemble of M augmented state
vectors z;(0) with i € {1, ..., M} are generated by sampling from
Gaussian distributions N (m(0), P(0)), which are then, individually,
sequentially updated by iterating over the forecast and analysis step.

Algorithm 1 Ensemble Square Root Filter
Set variables m(0), P(0) and M
Initialise ensemble of augmented states z;(0) ~ N(m(0), P(0))
withi € {1, ..., M} by means of N(m(0), P(0))

forn=1:Ndo
Forecast:

2/ (1,) = lll(zf’(r,,_l)) Vie{l..., M)
Analysis step:
M
Z(5) = Djiz](z,)
j=1

with update Dj; given in equation (20)
end for

The update matrix D € RM*M which performs the update for
each ensemble member, is constrained by the condition that, after
the update, the mean and covariance of the ensemble members
fulfil the Kalman update and the calculation of D depends on
which EnKF variant is used. The different versions can be divided
into a stochastic branch and a deterministic one. For this study
we choose the deterministic branch, the ESRF approach. The
numerical success of the family of EnKFs has been documented
for various applications (Evensen 2006) and there are rigorous
accuracy and stability analyses available for the considered ESRF
(de Wiljes & Tong 2019; de Wiljes et al. 2019). Further, the proposed
deterministic branch of this family is preferable (Tippett et al. 2003;
Nerger et al. 2012) over the stochastic alternative (also known
as perturbed EnKF), which is also very popular in the literature
(Evensen 2003). The entries

1
Dj,':wj—ﬁ-f-sj'i (18)

of D depend on the the components w; of the weight vector,

1 1 _ L
w= Ml - ﬁs2(Ef)THTR YHi! — yops) € RY, (19)
where 1 is a column vector filled with ones and in R”. E/ is a
matrix in R¥=*M that provides the distance between each ensemble
member to the mean of the ensembles:

E/ =1 —ml) .. @ i) (20)

The matrix S and its entries S;; that enter equation (18) are defined
by

1 “12
_ MNTR-! f
S_(I+M_1(HE)R HE) , Q1)

where the matrix square root is defined as B'/?B'/?> = B for a matrix
B. The name ‘ensemble square root filter’ refers to this matrix square
root computation.

Note that the update occurs at the times 7, i.e. the observation
times. For the sake of readability, the time dependency is not
explicitly written in equations (18)—(21). The update matrix D is
constructed so that empirical mean and covariance are equal to the
true mean and covariance of the posterior, m* = m® and P4 = Pe,
for a linear W. In other words, the algorithm is designed to produce
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the same mean and covariance as the classic KF for a linear setting
even for finite number of ensemble members M, whereas other
EnKF versions only produce the KF mean and covariance in the
ensemble limit M — oo, e.g. the perturbed EnKF (Evensen & van
Leeuwen 2000). Further note that the update of each ensemble
member depends on all other ensemble members, coupled through
the empirical covariance matrix Pa given in equation (17). For a
more detailed derivation of the ESRF and its properties, see chapter
7 in Reich & Cotter (2015).

This form of update does not require the model to be linear, which
is one of the key benefits of the ESRF compared to the classic KF.
Furthermore, despite the underlying Gaussianity assumption, the
non-linear evolution of the particles allows to capture the more
complex behaviour of the system and thus leads to more realistic
estimates.

3 NUMERICAL SIMULATION

The ESRF is tested for two cases. The first case is a proof of concept
where the thermal inertia is derived in a controlled and simplified
set-up with an artificial data set based on a reference solution of the
thermophysical model. In the second case, it is employed to revisit
the analysis of the radiometric data set retrieved by the MASCOT
lander from the surface of the near-Earth asteroid (162173) Ryugu
(Grott et al. 2019).

3.1 Estimation of thermal inertia in a simplified model

The aim of this numerical example is to show how the technique
performs in a controlled setting. This is achieved by generating an
artificial reference temperature profile computed by means of a set
of fixed reference parameters. In order to validate the performance
of the proposed technique, the estimates obtained via the ESRF
are compared to the reference temperature variation and reference
thermal inertia.

3.1.1 Reference solution

The reference temperature is simulated using the model given in
equation (1) above with thermal inertia '™ = 300 Jm 2 K~!s~!/2,
an albedo of 0.015, emissivity of 1, and O Qy,. The illumination is
calculated by the simple assumption of a spherical asteroid, with
equal length of day and night:

1(t) = Iax cOS (257[ 1), (22)

where I(f) = 0 if cos %‘t < 0and I,,, = 800 W m~2, similar to the
illumination conditions on Ryugu. The rotation period €2 can be
chosen arbitrarily and was set to the rotation period of Ryugu of
7.632 62 h (Watanabe et al. 2019).

3.1.2 Initial ensemble

For each ESRF simulation, an initial ensemble of M = 50 members
is generated and the thermal inertia values of these ensemble
members are then drawn from a Gaussian distribution, I'; =
rsat 4oz with & ~N(0,?) and o« = 20 Tm2K~'s71/2,
We repeat this procedure for 20 ESRF simulations, sampling
st ~ A(250, 100%) rather than running a single simulation of
1000 members with a standard deviation of 100 Jm™2 K~!s~1/2,
We found that by doing so, we gain a more homogeneous sampling
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of the initial distribution in parameter space. Furthermore, we save
computation time as each of the 20 ESRF simulations converges
quicker than a single simulation with a larger ensemble and the
individual runs can be evaluated in parallel.

In order to save more computation time, a number of temperature
profiles are pre-calculated assuming the parameters given above and
varying the thermal inertia between 100 and 500 Jm—2 K~'s~!/2
in steps of 50 Jm™2K~!'s~!/2, The ensemble member’s initial
temperature profiles are than initialized by interpolating from
the pre-calculated temperature profiles. These provided a more
realistic initial guess for the temperature solution, accelerating the
convergence of the PDE solver.

For each ensemble member, the temperature profile is sampled
from a Gaussian distribution centred on the interpolated temperature
profile with a standard deviation of 1 K. This method ensures that
the ensemble is spread sufficiently to evolve through the parameter
space while, at the same time, keeping the temperature profiles
close enough to a physical solution to ensure convergence of the
differential equation solver.

3.1.3 DA settings

The partial differential equation is solved using the MATLAB®
‘pdepe’-solver for a total of 30000 time-steps per simulated
rotation, i.e. diurnal cycle. This corresponds to a time-step At =
091 s.

For the Kalman update, 15 observation points are placed equidis-
tantly in time from noon (t = 0) to noon. The thermal model is run
between these observations for 2000 At to forecast the temperature
profile at the next observation, using the thermal inertia from the
last Kalman update. The observation error is set to 1 K, which
corresponds to setting the associated covariance matrix to R = 1.

The augmented state vector is then given by

2(r) = (T, 1), T(x1, T), oo, T(xa1, 7), ['(7)). (23)

The thermal inertia evolves as described in equations (5) and (6),
where the parameter «(7) is reduced from one simulated rotation
to the next. The width is varied from o« = 10 Jm™2K~'s~'/2 in
the first rotation to & = 5 Jm2K~'s™'/2 in the second, & = 1
Tm 2K ~'s7 /2 in the third, « = 0.5 Jm~2K~!s~!/2 in the fourth,
and @ = 0.2 Jm~2K~'s7!/2 for the remaining 16 rotations. This
gradual decrease of « is in line with classic simulated annealing
schedules often employed in the context of Monte Carlo methods.
The key idea however is very intuitive, i.e. big o help to traverse the
parameter space more quickly, while they also prevent convergence
of the ensemble members. Thus, lower o values are chosen as
the estimation procedure progresses in order to allow the posterior
distribution to converge.

3.1.4 Results

The 20 ESRF simulations were run for 20 asteroid rotations starting
with a randomly chosen thermal inertia each. Fig. 2 shows the
histogram of the thermal inertia after 20 rotations. During the
first few simulated cycles, the parameters spread out wide before
converging. The last thermal inertia estimates of all ensemble
members over all 20 simulations were combined into the histogram,
i.e. 1000 thermal inertia estimates make up the final result of I' =
299 +4Jm~2 K~! s~!/2 with the uncertainty given by the 2o bound,
where o is the standard deviation over the thermal inertia set. The
thermal inertia of the reference temperature was 300 J m =2 K—! s~!/2
and could thus be successfully retrieved.
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Figure 2. Top panel: histogram of the thermal inertia of all the ensemble
members from the last time-step after 20 simulated rotations. y-axis shows
the probability, i.e. the number of elements in a bin divided by the total
number of estimates (1000). The solid red line indicates the mean, dotted
red lines indicate 20, with o denoting the standard deviation. Bottom:
Black symbols indicate the mean of the deviation between the reference
solution and the solution of the ensemble members in the last simulated
diurnal cycle. The error bar indicates 20, with o being the standard
deviation over all ensemble members and simulations. The temperature
estimates lie well within the postulated 2-K observation error for the 2o
uncertainty.

Furthermore, the reference temperature could be retrieved well
within the assumed 1-K uncertainty. The bottom panel of Fig. 2
shows the temperature estimates at the 15 observation points,
where, at each point, the mean and standard deviation was
taken over the last diurnal cycle. The error bar indicates the 2o
uncertainty.

This study demonstrates the working principle of the considered
DA algorithm for the retrieval of thermophysical parameters from
temperature observations. In the next step, the ESRF will be used
to revisit the radiometric data obtained on the surface of asteroid
(162173) Ryugu by the MARA instrument (Grott et al. 2017,
2019).

3.2 Thermal inertia estimation of Ryugu

The MARA instrument onboard the MASCOT lander observed the
infrared flux emitted by the surface of a single, irregularly shaped
boulder on Ryugu for a full diurnal cycle. The instrument consists
of six infrared bolometers that are placed behind different infrared
filters. The 8—12 wm (W10) filter was the instrument channel with
the highest fidelity and was used for the initial analysis reported in
(Grott et al. 2019). In that work, the night-time data were fitted by
minimising the x 2 value that measured the misfit between observed
flux and the one predicted by a thermal model.

This thermal model included as free parameters the thermal
inertia I', emissivity ¢, the orientation of the surface observed by
MARA in terms of azimuth 6 and elevation ¢ of the surface normal,
and the view factor to the surrounding terrain f that parametrizes
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O as follows:

Qu(1) = fopeTy (1), (24)

where the temperature of the surrounding is assumed to be equal to
the brightness temperatures observed by MARA, Tos, as described
in Grott et al. (2019). It should be noted here that the roughness
correction applied to day-time observation in Grott et al. (2019) did
not influence the night-time temperatures, and is therefore omitted
in this study.

The surface orientation had to be included as a free parameter as
the observed spot on the irregular boulder showed a rugged texture
with various parts of unknown orientation, and thus unknown
illumination condition. The parameters 6 and ¢ therefore represent
an averaged surface orientation within the field of view of MARA.

The illumination is determined by the scalar product of surface
orientation n and (time-dependent) solar vector s:

1
1) = 73 n®,¢) - s(), (25)
h

where I, is the solar constant and ry, is the heliocentric distance.

In Grott et al. (2019), the parameter space was sampled by a
grid search, where the thermal inertia was varied in steps of 1
Jm~2K~!'s7!/2, However, due to the high computational cost of
the thermal model, the other parameters were varied in significantly
coarser steps, i.e. only three emissivity values were considered (0.9,
0.95, 1) along with only two values for f (0 and 0.08). To test the
efficiency of our new approach, this analysis was repeated using the
ESRF.

3.2.1 Forecast settings

The forecasts of parameters and temperatures are again calculated
using equation (1) and a forward model of the free parameters
as in equation (5). The free parameters of the model were chosen
analogous to the analysis of Grottetal. (2019): ', ¢, ¢, 0, f. Also, the
same grid settings were applied, i.e. we calculate the temperature
profiles for a 1D grid with 41 grid points spread over eight diurnal
skin depths. The augmented state is then given by

Z(T) =(FW10(T)’ T(()’ T)? T(XI, T)! oe
Txn,71),T,6,0,0, f).

Note that unlike in equation (23), the surface temperature 7(0,
1) is not directly observable but connected to the observed surface
radiance Fyq via the instrument function:

(20)

Fw1o(f)=8/qu()~)B(T(0, ), A), 27

where A is the wavelength, B is the Planck function, and ¢ is the
MARA filter throughput (Grott et al. 2017). The radiance observed
by MARA is calculated from the reported brightness temperatures
(Grott et al. 2019), i.e. T in equation (27) is set to the brightness
temperature and € = 1. Note, that the MARA signal depends linearly
on the net flux between MARA and the surface. The calculation
of the brightness temperature from the signal incorporates the
temperature of the MARA sensor, the instrument field of view,
sensitivity, etc., which does not need to be repeated in this study. As
in the simplified case, the forecast of the parameters is performed
according to equations (5) and (6). The value is again sampled from a
Gaussian distribution where the standard deviation a(7) is stepwise
reduced. An overview of « for the respective model parameters is
provided in Table 1.
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3.2.2 Data settings

The Kalman updates are performed at nine points of the night-time
data equally distanced in time starting from 17:45 local time, which
corresponds to the first data point considered in (Grott et al. 2019).
The distance between the points is similar to the one in the first part
of this study, except for the last night-time data point where the step
to the first point in the next simulated night encompasses the entire
asteroid day. The temperature is forecast by the thermal model, and
converted into radiance received by the MARA W10 filter (Fyo),
based on the instrument calibration (Grott et al. 2017, 2019), and
the ensemble member emissivity.

The illumination is calculated for each ensemble member based
on the angle between the sun vector and the surface normal
according to equation (25), while azimuth 6 and elevation ¢ of
the surface normal are updated from observation to observation.
Likewise, surface emissivity, the view factor f, and the surface
thermal inertia are updated.

3.2.3 Initialization

The ensemble states are initialized similar to the first case. In
total, 20 ESRF simulations are performed and for each simulation
a thermal inertia is randomly picked from T ~ A/(300, 100%).
In each simulation, an ensemble with 50 members is initialized,
and for each ensemble member, a thermal inertia is sampled from
I; ~ N(I'* 100%). The thermal inertia is confined to an interval
of 150-450 Jm~2K~'s~!/2, a range that is larger than given by
conservative estimates for Ryugu’s thermal inertia (Wada et al.
2018). For a sample of I'; > 450, the thermal inertia is set to 450,
and if I'; < 150, it is set to 150. The emissivity of the ensemble
members is sampled from a Gaussian distribution & ~ A/(1, 0.022)
and confined to the interval of 0 and 1. Thereby, emissivity values
larger than 1 are folded back into the interval, i.e. an ¢ = 1.05
is set to 0.95, etc. The view factor to the surrounding terrain f is
sampled from f ~ N(0.048, 0.007%) based on the topography of
the landing site as described in the methods section of Grott et al.
(2019).

Azimuth and elevation of the surface normal in the best-fitting
case of the initial MARA data analysis were found to be 20° and
80°, respectively, where an azimuth of 0° is defined by the local
east and an elevation 90° corresponding to 3142207 east and 342599
south in Ryugu’s body fixed frame. For each ensemble member,
elevation and azimuth are sampled from 6 ~ N(20, 360%) where
values are confined to 0 and 360°, e.g. # = 361° =1°0rf = —1°
=359°, and ¢ ~ N (80, 10?) where ¢ > 90° are flipped back, e.g.
a ¢ = 95° is set to ¢ = 85° as an elevation larger than 90° is not
defined.

The temperatures of the ensemble members are initialized by
interpolating the temperature profile from pre-calculated simu-
lations. These pre-calculated simulations were performed for &
=10 = 20, ¢ = 80, and f = 0, while the thermal inertia
was varied between 150 and 450 Jm—2K~!s~!/2 in steps of 50
Jm™2K~!s71/2 It should be noted here that the resulting initial
temperature curves are not consistent with the initial parameter
sets of the ensemble members. However, this is not problematic
as the ensembles are given enough time to produce consistent
solutions. Rather, this initial temperature profile serves as a better
first guess for a solution of the 1D-heat conduction equation, e.g.
compared to assuming a constant temperature as in (Grott et al.
2019), and results in a quicker convergence of the temperature
solution.
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Figure 3. Parameter estimation from MARA data set. Panel (a): histogram of thermal inertia estimates of ensemble members. The solid red line indicates the
mean, and the dotted red line indicates 20, with o the standard deviation. Panel (b): deviation between the estimated radiance and the radiance emitted by the
surface and observed by MARA as a function of time given in hours since the first MARA observation point (UTC 08:02:31) (black); the error bars indicate
20 with o the standard deviation over all ensemble members and simulations. The estimated radiance is derived from the ensemble member’s emissivity,
surface temperature, and the instrument calibration. The red area indicates the 2o uncertainty of the observed radiance based on the instrument calibration.
The estimates of the other free parameters are shown in the following four histograms: (panel c¢) emissivity, (panel d) integrated view factor, (panel e) surface
normal elevation, and (panel f) surface normal azimuth. As in panel (a), all histograms are based on all ensemble members and simulations for the last Kalman

analysis step.

3.2.4 Results

The DA method allowed for a much finer variation of the free
parameters, resulting in a more thorough estimate of the thermal
inertia.

Fig. 3 shows parameter estimates of the ensembles at the last
Kalman analysis step combining 20 simulations with randomly
chosen starting thermal inertia. Mean and uncertainty of the es-
timates are displayed by solid and dashed red lines respectively
with the uncertainty given as two standard deviations (20). The
histograms displaying the posterior distributions of the various,
simultaneously estimated model parameters show a major ad-
vantage of this method, which can account for non-Gaussian
distributions.

The thermal inertia was found to be 295 £ 18 Jm 2 K~!s71/2,
This result lies within the range of the former estimate but with
lower uncertainty. The thermal inertia estimate is roughly Gaussian-
distributed, with a slight tilt towards lower values, accounting for
the fact that the effect of thermal inertia on the temperature variation
decreases with increasing thermal inertia.

The other parameter distributions contain important information
about the observed boulder. The estimated emissivity is very high
and estimated to be between 0.95 & 0.05. This is in line with the
extremely dark appearance of Ryugu and the fact that roughness,
as observed on the boulder in front of MASCOT, tends to increase
the emissivity even further. The estimates for f, 0.08 & 0.02, show
that this parameter might have been underestimated in Grott et al.

(2019), i.e. that the view factor of the observed spot towards the
surrounding terrain is up to 10 per cent.

The elevation of the average surface orientation within the MARA
field of view is estimated to be within 81° = 2°, which is consistent
with the camera images of the boulder surface in the field of
view (Jaumann et al. 2019; Scholten et al. 2019b). The azimuth
distribution shows that the most likely values lie within 304° £
68°, i.e. oriented towards south-east. This is also the direction of
the MARA boresight, which is consistent with the fact that those
surface parts oriented towards MARA will contribute most to the
signal. Also, due to the roughness effect, such an orientation would
result in a systematically lower noon temperature as reported by
(Grott et al. 2019). The former best-fitting azimuth of 20° is less
likely as the very flat peak in the posterior distribution indicates.
However, many of the fitting models reported in Grott et al. (2019)
showed an azimuth similar to the one retrieved in this work. Note
that the dashed line in Fig. 3(f) at about 12° represents the upper
limit of the estimate as an azimuth angle of 372° is equivalent
to 12°.

The figure also shows that the estimated surface radiance matches
the observed one very well. The major improvement of this analysis
over the initial one is the full correlation among the parameter
estimates and a smooth, simultaneous, and statistically thorough
estimation rather than a rough parameter sweep. Despite the fact
that 47 parameters are estimated simultaneously, including the 40
subsurface temperatures, one simulation run requires only 30 min on
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Figure 4. Evolution of ensemble thermal inertia with time for all 20

simulations (1000 ensemble members in total). Black dots indicate the

thermal inertia of the ensemble members, and red lines indicate the mean
and standard deviation (20) in each time-step.

a Laptop with four cores, drastically decreasing the computational
resources needed.

3.3 Convergence of ensemble distribution

Since one of the major advantages of using an EnKF variant for
the parameter estimation is the increased computational speed, it
is important to investigate the convergence of the estimate. Fig. 4
shows the evolution of the ensemble thermal inertia. The mean
and standard deviation are shown in red. The initial, wide-spread
thermal inertia of the ensemble members quickly converges to the
final ensemble spread. After 10 simulated rotations, the results
change only slightly, and after 15 simulated rotations, the result
is practically constant.

To obtain a stable result, the number of simulations starting with
different initial parameter combinations is more important than the
length of each simulation. The combined results of 20 simulations,
each with 50 ensemble members, converged quicker than the result
of a single simulation (not shown in the figure). Since the different
simulation are independent of each other and can be run in parallel,
this saves substantial computation time.

However, the most significant saving in computational cost is the
efficient sampling of the parameters space. In a parameter sweep or
also in other Monte Carlo approaches, most of the tested parameter
combinations have to be discarded, whereas the EnKF approach
moves them through parameter space to a region of high probability.
To obtain our results, 20 simulations with 50 ensemble members
were performed, i.e. 1000 model runs. A parameter sweep with
comparable resolution, e.g. thermal inertia in steps of 5 from 250 to
400 JTm~2 K~ s7!/2, emissivity in steps of 0.01 from 0.8 to 1, fin
steps of 0.05 from O to 0.1, elevation in steps of 2.5 from 60 to 80,
and azimuth in steps of 10 from 0 to 360, would require more than
5 million simulations. This means that the here presented ESRF
exploration of the parameter space is more than 5000 times more
efficient than a comparable parameter sweep. This effect increases
if further free parameters are introduced.

4 CONCLUSIONS

This study introduced DA as a method to derive thermophysical
model parameters along with their associated uncertainties from
thermal infrared observations. The considered ESRF allows for a
simultaneous estimation of the state, i.e. surface and subsurface
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temperatures, as well as model parameters, i.e. thermal inertia,
emissivity, surface orientation, etc., based on observed thermal
infrared flux. Ensembles generated by the ESRF form a distribution
that represents the uncertainties of state and parameters, while auto-
matically including their respective correlations. As the performed
forecast step is done on the basis of the thermal model without a
linearization, the ensemble is able to better capture the non-linear
relations better than commonly employed techniques such as the
least-squares method.

The observations of the MARA instrument onboard the MAS-
COT lander were revisited in this work applying the ESRF. The
results are consistent with the initial analysis of (Grott et al.
2019) but narrow the range of the thermal inertia estimate to
295 4+ 18 Jm™2K~'s71/2, At the same time, the emissivity could
be constrained to 0.95 £ 0.05. The average surface orientation of
around 81° & 2° elevation and 304° £ 68° azimuth indicate that
a significant fraction of the boulder in the MARA field of view
is orientated towards the instrument. As these parts of the boulder
face away from the sun during day, this result is consistent with
reduced day-time temperature and the roughness effect reported in
Grott et al. (2019).

In the first analysis of the MARA data, thermal conductivity k
and porosity ¢ of the boulder on Ryugu was estimated based on two
empirical relations of k(¢) (Henke, Gail & Trieloff 2016; Flynn et al.
2018). Repeating the calculation (Grott et al. 2019) for the thermal
inertia estimate of this study, 295 & 18 Jm =2 K~! s7!/2, results in k
=0.11 £0.01 Wm~'K~! and ¢ = 0.50 # 0.02 using Flynn et al.
(2018), and k =0.08 0.01 Wm~' K" and ¢ = 0.32 & 0.02 using
Henke et al. (2016).

An advantage of the ESRF scheme is its computational design
to cope with large dimensions of state and parameter spaces, while
being robust for non-linear systems. The possibility of estimating
many parameters simultaneously enhances the scientific output of
the remote sensing data. The parameters retrieved from the MARA
observations are more accurate than previous estimates, as the ESRF
discards unlikely parameter combinations and incorporates their
correlations. At the same time, the parameters were sampled from
a wide section of the parameter space and allowed to vary freely,
limited only by basic physical limits, which should ensure that the
parameter space was sufficiently covered.

The features of the family of EnKFs, i.e. coping with large
dimensions of state and parameter spaces, provide great flexibility.
The efficiency in handling many model parameters simultaneously
sets the ESRF method apart from other Bayesian Monte Carlo
methods such as the MCMC (Cambioni et al. 2019) or Particle filters
(also ABC methods; see Ogawa et al. 2019). Further applications
may include other thermal models and sets of parameters, e.g. such
as modelling multiple ground layers with different thermal con-
ductivity, or including temperature-dependent models of thermal
conductivity and heat capacity (e.g. Vasavada et al. 2017). This
will allow for an improved estimation of thermal properties on
many other objects in the Solar system such as Mars, the Moon, or
Comets.
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