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Summary

This report documents the implementation of a Vortex Lattice Method (VLM) and a Doublet 

Lattice Method (DLM) in Python. The aerodynamic influence matrices (AICs) obtained from 

this implementation are validated with respect to MSC.Nastran for both the parabolic and the 

quartic integration schemes of the DLM. The test cases include dihedral and sweep of the 

main wing, wing-empennage configurations with the horizontal tail planar to the main wing, 

near-planar and further away (e.g. T-tail) and with/without a vertical tail. The test cases have 

been inspected at  different  mach numbers  and reduced frequencies.  For  all  tested aircraft 

configurations the results were found to be equivalent to MSC.Nastran in a numerical sense. 

Using panels which are misaligned in y-direction provokes differences and errors.
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Nomenclature

Abbreviations

AIC Matrix of aerodynamic influence coefficients

DLM Doublet lattice method

VLM Vortex lattice method

Software

Loads Kernel Loads and aeroelastic analysis software developed in this thesis

MSC.Nastran NASA structural analysis code, commercially distributed by MSC software

Numpy Python library for scientific and technical computing 

Python High-level programming language for general-purpose programming

Notation Conventions 

Matrix

Vector

Scalars

Local coordinates, typically of the receiving point with respect to sending 
point

Sub- and Superscripts

Descriptive superscript

Center point of aerodynamic panel

One quarter point of aerodynamic panel

Three quarter point of aerodynamic panel

Receiving panel

Sending panel
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Quantity in the direction of or about the ,  and  axis

Planar and non-planar contributions

Variables and Parameters

Latin:

 to 
Coefficients in the parabolic (only ,  and ) and the 
quartic integration schemes, planar and non-planar, 
respectively

 Matrix of aerodynamic influence coefficients

Pressure coefficient

Reference length

 
Normal wash factor,  is the steady part,  are 
the incremental unsteady parts, planar and non-planar, 
respectively

Panel semi span width

Term used in the parabolinc and the quartic integration

Integrals inside the kernel functions , planar and non-
planar, respectively

Imaginary number

Indices to identify panels with different conditions, e.g. 
planar, near-planaer, etc.

Boolean

“The” kernel functions, planar and non-planar, 
respectively

Reduced frequency

Mach number

Result from the evaluation of the kernel functions,  
planar and non-planar, respectively

Landahl’s direction cosine matrices

V Free stream velocity

, , Distances in cartesian coordinates

Greek:

Angle of attack, term used to calculate 

Term used to calculate 

Circulation strength

Dihedral angle of a panel rad
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Sweep angle of a panel rad

Circular frequency
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1. Introduction

 1.1 Background of this Implementation

The implementation of the vortex lattice and the doublet lattice method has been developed as 

a part of the Loads Kernel Software [20], which allows for the calculation of quasi-steady and 

dynamic maneuver loads, unsteady gust loads in the time and frequency domain as well as 

dynamic landing loads. The Loads Kernel Software was mainly developed and used within 

PhD thesis  of the author [19] for the investigation of a flying wing configuration.  In the 

meantime, the Loads Kernel has been applied to various aircraft configurations (e.g. DLR-

F19, MULDICON, Discus 2c, FS35, ALLEGRA, HALO, XRF1,...) successfully. However, 

during  the analysis  of  a  High Altitude  Platform (HAP alpha),  differences  with respect  to 

MSC.Nastran were discovered that could be traced back to differences in the aerodynamic 

influence coefficients (AIC), which was the catalyst for a closer inspection, resulting in the 

need for a reliable, more generic implementation of the DLM that covers more geometrical 

conditions such as dihedral, sweep, and different tail configurations.

 1.2 Availability & License

The implementation described in this report is publicly available on GitHub: 

https://github.com/DLR-AE/PanelAero

Note that the software is developed for scientific applications and is delivered as open source 

without any liability (BSD 3-Clause, please see the license for details). For every new aircraft, 

a validation against test data and/or other simulation tools is highly recommended and in the 

responsibility of the user.

If you use this software for your scientific work, we kindly ask you to include a reference to 

this technical report in your publications. Thank you!
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 1.3 Literature on the Doublet Lattice Method

Most of the time, Albano and Rodden 1968 [1] is cited when referring to the DLM. It should 

be mentioned that the origins of compressible, unsteady aerodynamic theories date back to the 

early 1940s when for example Küssner published his General Airfoil Theory [10], referring 

again  to  Prandtl [14] who  introduced  the  theory  of  a  lifting  surface  based  on  potential 

accelerations instead of velocity fields in 1936. The translation of Küssners work into English 

language by NACA [11], shows that the development of the DLM was an international effort 

with contributions of scientists from multiple nations. At the time of formulation, its solution 

was only possible for some special cases and it took three decades until, in the late 1960s,  

Albano and Rodden had the computational power available for a general, numerical solution 

applicable to arbitrary three-dimensional wings. Therefore, Albano and Rodden didn't actually 

invent the DLM but were those bright minds who properly implemented the DLM for the first 

time.  For  further  reading,  a  historical  overview  is  given  by  R.  Voss [21] and  a  very 

comprehensive work on the mathematical derivation is published by Blair [2]. 

Next to the first, original DLM publication by Albano and Rodden 1968 [1], there is a series 

of  further  publications  introducing  modifications  and  additions  to  the  DLM,  which  are 

summarized below.

Albano and Rodden 1968 [1]

• The first, original DLM paper.

• Parabolic integration.

• Watkins approximation [22].

• Shortcomings for wing-tail  combinations with small  offset  in z-direction,  the near-

planar case.

Rodden et al. 1971 [15]

• Refinement of the non-planar part with additional condition for the near-planar case.

• Planar part as before but with a rearrangement of formulas and new nomenclature.

• Laschka approximation [13] with 11 coefficients.

• Changed signs for .
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• Analytical solution for .

• Probably the most useful publication with many details required when attempting an 

implementation.

Rodden et al. 1972 [16]

• Same as above but using a new formulation with  that places the arctangent in the 

correct quadrant. In most programming languages arctan2 does the job, but for some 

reasons that is not used in the Nastran implementation.

Blair 1992 [2]

• Comprehensive work on the mathematical derivation.

• Planar surfaces only, therefore educational application only.

Rodden et at. 1998 [17]

• Quartic  integration  for  higher  reduced  frequencies  and/or  higher  allowable  panel 

aspect ratios.

• Desmarais approximation [3,4] with 12 coefficients.

Rodden et al. 1999 [18]

• Numerical comparisons between parabolic and quartic integration schemes.

• Draft version of an unpublished report/manuscript? 

There are  only a  few implementations  of the DLM the author  is  aware of.  They include 

different numbers of features from the publications listed above, a summary is given in Table

1.1.  The  DLM  published  by  Kotikalpudi [8,9] is  a  Matlab  code  with  its  origins  at  the 

Universities of Iowa and Minnesota. The author used this implementation for a long time, has 

been in contact with Kotikalpudi and is very grateful for his publication. However, it has the 

shortcomings of Albano and Rodden 1968. At the DLR Institute of Aeroelasticity, there is a 

Fortran implementation by Ralph Voss,  which can be used in combination with a Python 

wrapper but the quartic integration is missing. An implementation at the DLR Institute of 

System Dynamics and Control is a Matlab code by Thiemo Kier, which is used within the 

Varloads framework. To the author’s best knowledge, that implementation is very mature and 

includes most features. Both implementations are in-house tools and not publicly available. 

Page 3



An Implementation of the Vortex Lattice and the Doublet Lattice Method

Another implementation (added to this overview in version 1.03 of this report) exists from the 

Politecnico di Milano, written by multiple authors including Luca Cavagna, Andrea da Ronch 

and Lorenzo Travaglini. The interesting part about this implementation is it’s availability as 

part of NeoCASS, which is an open source suite for aeroelastic analyses at conceptual and 

preliminary design level [5]. A technical report provides comparisons with a number of test 

cases. The results, for example in terms of lift derivative , are very close to the references 

for most cases but are not numerically equal. The Desmarais approximation appears to be 

missing, which might be a first explanation for difference w.r.t the quartic formulation. The 

original Nastran source code [23] by NASA is published on GitHub and includes the DLM 

implementation as well. However, the Fortran code is not documented, difficult to understand 

and  the  quartic  integration  is  missing.  Finally,  there  is  the  commercial  Nastran  version 

distributed by MSC. The AIC matrices may be extracted via a so-called DAMP alter  in the 

OP4 format, which requires a OP4 reader and several additional steps when thinking of an 

efficient workflow. Licensing might be an issue as well. The considerations above as well as 

academic interest led to the present implementation, including all desired features as indicated 

in the last column of Table 1.1.

Kotikal-
pudi R. Voss T. Kier

Poli. di 
Milano

NASA 
Nastran

MSC
Nastran

This 
version

Wing-empennage 
planar or further away 

x x x x x x x

Wing-empennage 
near-planar

x x x x x x

Parabolic integration x x x x x x x

Quartic integration x x x x

Watkins approx. x x

Laschka approx. x x x x x x

Desmarais approx. x x x

License Free In-house In-house Free Free Commer
-cial

BSD 3-
Clause

Language Matlab Fortran Matlab Matlab Fortran Fortran Python

Table 1.1: Overview of different DLM implementations
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 1.4 Modeling Guidelines

This  section  presents  an  (incomplete)  collection  of  tips,  modeling  guidelines  and  typical 

mistakes.

Modeling from the left to the right: All aerodynamic panels must be modeled from the left 

to the right, for example starting at the left wing tip moving towards the wing root and form 

the wing root moving towards the right wing tip. Upside down / flipped panels lead to wrong 

results! The current understanding of the author is that in equation (2.14) the semi span  is 

calculated as a scalar value, and thus “looses” the orientation. However, there are some terms 

where the semi  span   is  subtracted e.g.  from   or   and where the  sign of   would be 

important.

Alignment of stream-wise edges: The stream-wise edges of the aerodynamic panels must be 

aligned in y-direction. This is true for panels on the same wing, e.g. wing + aileron, as well as  

for  wing  +  tail  combinations  if  they  are  same  or  nearly  the  same  plane.  For  complex 

configurations  with  multiple  kinks,  this  is  not  a  straight  forward  task  but  necessary  as 

demonstrated in section 3.2.7. 

Aspect ratio: The aspect ratio of the panels should be < 3...4, although this is relaxed with the 

quartic  integration  scheme,  see  section  2.3.2.  For  example,  while  maintaining  the  same 

number of panels in x-direction on a tapered wing, the discretization should be refined in y-

direction.

Number of panels: Keep in mind that the size of the  matrix, and thus the computation 

times, increase quadratic with the number of panels. So first think about the desired maximum 

reduced  frequency  ,  then  decide  on  an  acceptable  number  of  panels  in  x-direction. 

Remember  that  a  refinement  in  x-direction  also  requires  a  refinement  in  y-direction  to 

maintain the aspect ratio. 

Page 5





An Implementation of the Vortex Lattice and the Doublet Lattice Method

2. Implementation

 2.1 Definitions

Both the VLM and the DLM are based on a matrix of aerodynamic influence coefficients 

, which depends on the Mach number , the reduced frequency  defined by

(2.1)

and the geometry of the aircraft. Note that the “Nastran definition” of the reduced frequency 

adds , leading to 

 . (2.2)

The geometry is discretized using an aerodynamic panel mesh. The  matrix then relates 

an induced downwash  on each aerodynamic panel to a circulation strength  , which is 

translated to a complex pressure coefficient . 

(2.3)

With   for the quasi static case,  the solution of the DLM is equivalent to the VLM. 

Because  the  DLM  involves  numerical  integration  and  approximation,  the  VLM  is  more 

accurate. In this implementation, the steady part of the DLM is subtracted from the solution 

and replaced later by the VLM solution and the DLM returns only the unsteady increment.

In the current  implementation,  the aerodynamic grid is  stored in a python dictionary that 

contains the items as given in Table 1.1. For loads and aeroelastic analyses, the ¼, ½ and ¾ 

points are important, which have the index ‘l’, ‘k’ and ‘j’ respectively as sketched in Figure

2.1. In addition to that, for the corner points of the vortex / doublet filament are required, 
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which have the index ‘1’ and ‘3’.  The points  ,   and   as well as the panel normal 

vectors  and the remaining geometrical parameters are assumed as a given.

Description Type Shape

aerogrid['offset_l'] ¼ point np.array n x 3

aerogrid['offset_k'] ½ point np.array n x 3

aerogrid['offset_j'] ¾ point np.array n x 3

aerogrid['offset_P1'] Inner vortex / doublet point np.array n x 3

aerogrid['offset_P3'] Outer vortex / doublet point np.array n x 3

aerogrid['N'] Panel normal vector np.array n x 3

aerogrid['A'] Panel area np.array n

aerogrid['l'] Panel length np.array n

aerogrid['n'] Number of panels int -

Table 2.1: Definition of the aerodynamic grid
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 2.2 The Vortex Lattice Method

The formulation of the VLM used and described herin follows closely the derivation given by 

Katz and Plotkin [7] using horse shoe vortices. An implementation of the VLM is publicly 

available  from  Kotikalpudi [8,9].  That  version  is  translated  from  Matlab  to  Python  for 

performance and independence from commercial licenses. It is adapted to respect the dihedral 

of  the  wings,  and  the  Prandtl-Glauert  transformation  is  introduced.  In  addition,  the 

computational process is split into more sub-functions to allow for the extraction of matrices 

at different stages, e.g. to obtain the circulation matrix  and the  matrices for both lift 

and drag. 

In a first step, the Prandtl-Glauert transformation with   is applied to the 

geometry by division of the x-coordinates by  as suggested by Hedman [6]. The next steps 

are described in Katz and Plotkin [7] in section 10.4.5 and 10.4.7. The induced velocities 

 at  from the vortex line segment between  and  are given by

(2.4)

where

(2.5)

(2.6)

(2.7)

and  with  an  assumed  circulation  strength   of  unity.  Singular  cases  arise  when  , 

 or  .  In  these  cases,  the  induced  velocity  is  set  to  0.  The  induced 

velocities   at   from  the  inner  horseshoe  vortex  are calculated  with  a  simplified 

procedure

(2.8)

(2.9)
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where   is  the dihedral angle of each panel,  the cosines are  given by   and 

 and  is the distance between the horseshoe vortex and points . The 

induced velocities   at   from the outer horseshoe vortex are calculated as above but 

with the cosines given by  and .  Singular cases arise when 

,  or  and for these cases, the induced velocity must be to 0 as well.

The final induced velocities  are composed of

(2.10)

where the velocity components   are weighted by the normal vector   to account for 

dihedral  and  vertical  surfaces.  Superposition  of  the  induced  velocities  from  all  three 

component for the horseshoe vortex leads to 

 . (2.11)

The Kutta-Joukowski theorem relates circulation with lift per unit span width.  Multiplication 

with panel areas  and division by panel span widths  ensures that matrix  maps induced 

velocities to pressure coefficients  instead of circulation strength .

(2.12)

Finally,  the matrix  of aerodynamic influence coefficients   is  defined as the negative 

inverse

 (2.13)

to fit into equation (2.3) from the beginning.

Note that the VLM code is vectorized for higher performance (no for-loops), therefore scalar 

values typically turn into vectors and vectors typically turn into matrices. 
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 2.3 The Doublet Lattice Method

The geometrical points used for the VLM (compare Figure 2.1) are reused for the DLM and 

translated to the nomenclature introduced by Rodden et al. 1968 [1]. The receiving point  ‘r’ 

is equivalent to ‘j’, the sending point ‘s’ is equivalent to ‘l’, and the inner and outer dipole 

points with index ‘-e’ and ‘+e’ are equivalent to points ‘1’ and ‘3’. The formulas are arranged 

in  a  different  sequence  than  in  the  original  publications  to  be  as  close  to  the  actual 

implementation as possible. Note that, for simplicity, the following formulas are given for one 

single aerodynamic panel, the code itself is vectorized and uses mainly vectors and matrices.

The semi span width of a panel is given by 

 . (2.14)

The cartesian coordinates of a receiving point relative to a sending point are given by

 . (2.15)

The  dihedral  angle  defined  by   and  the  sweep  angle  defined  by 

 yield

 , (2.16)

 , (2.17)

 , (2.18)

and a relative dihedral angle  is calculated between receiving and sending panels. The local 

coordinates  and  of the receiving point relative to the sending point are calculated with

(2.19)

and

 . (2.20)

The DLM as in Rodden et al. 1971 [15] differentiates between three cases for the arrangement 

of wing and horizontal tail with respect to their distance in z-direction. The planar condition is 

identified by

 , (2.21)
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which  is  adapted  from  the  Nastran  source  code [23] and  allows  for  small  geometrical 

inaccuracies which might arise from a text-based input. For the non-planar part, a ratio

(2.22)

is calculated. The co-planaer / close-by condition is given by

(2.23)

and the remaining panels, which are further away, are identified by

 . (2.24)

 2.3.1 Parabolic Integration

Based on the conditions from above, a term  is calculated for the planar case using

 , (2.25)

for the near-planar case using (compare Rodden et al. 1971 [15] eq. 32)

 , (2.26)

with (compare Rodden et al. 1971 [15] eq. 33)

, (2.27)

and for the rest using (compare Rodden et al. 1971 [15] eq. 31b)

 . (2.28)

Note that it is important to use arctan2, which places the arctangent in the range from 0 to . 

In a next step, the kernel functions described in section 2.3.3 are evaluated three times along 

the panel span width with ,  and , resulting in matrices  and . 

The following terms are used for the parabolic integration (compare Rodden et al. [15] eq. 28-

30 and eq. 37-39). Note that Rodden has the habit of leaving out some brackets,  a likely 

source for confusion.

(2.29) 
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(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

Matrix  is described as the “planar” part of normal wash matrix, which is a somewhat 

misleading expression as   is evaluated for both planar and non-planar panels. Matrix 

 is given by (compare Rodden et al. 1971 [15] eq. 34)

(2.35)

Matrix  is the “non-planar” part of normal wash matrix, and distinguishes between two 

(new) conditions

(2.36)

and 

 . (2.37)

Matrix  is given by (compare Rodden et al. 1971 [15] eq. 40)

(2.38)
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and (compare Rodden et al. 1971 [15] eq. 41)

(2.39)

Note that   can not be take from eq.  2.27 because the conditions are different. Instead, it 

should be reconstructed from eq. 2.26. 

In a last step, the planar and non-planar parts are added up

(2.40)

leading to the final downwash matrix with  . Note that in eq. 22 in Rodden et al. 

1971 [15] there  is  a  third term   which subtracts  the steady contribution,  which  has 

already been subtracted inside the kernel function in this implementation. 

 2.3.2 Quartic Integration

The  quartic  integration  scheme  is  introduced  by  Roddel  et  al.  1998 [17] as  a  “further 

refinement”, which aims to relax the restriction to panel aspect ratios < 3...4. This allows for 

fewer  panels  or  to  calculate  higher  reduced  frequencies  with  a  given  aerodynamic  mesh 

compared  to  the  parabolic  integration  scheme.  Figures  4  and  5  in [18] visualize  the 

differences clearly and make the improvement very obvious. However, the formulas are more 

complex compared to the parabolic scheme and the kernel functions need to be evaluated five 

times  along  the  panel  span  width  instead  of  only  three  times,  leading  to  slightly  higher 

computational  times  per  panel.  In  addition,  some rearrangements  have  been made in  the 

formulas, e.g. using a term   instead of   and parameters   are introduced to place the 

arctangent in the right quadrant instead of using arctan2. Still, we have to use that formulation 

as  and  will be used later on in the calculation of . Note that there is a difference 

and/or mistake (?) in eq. 23 in Roddel et al. 1998 [17] compared to eq. 30b in Roddel et al. 

1972 [16]. The following values appear to be correct:

 and  for (2.41)

 and  for (2.42)
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 and  for (2.43)

Based on the conditions ,  and  from before, the term  is calculated for the planar 

case using

 , (2.44)

and (compare Rodden et al. 1998 [17] eq. 22)

 . (2.45)

Note that eq. 2.44 is actually equivalent to eq. 2.45 but without the terms including  because 

they would become singular if . For the near-planar case,  is equivalent to  as given in 

eq. 2.27 (compare Rodden et al. 1998 [17] eq. 25)

, (2.46)

and for the rest  is calculated with (compare Rodden et al. 1998 [17] eq. 24)

 . (2.47)

The two different ways of calculating  and  should lead to equivalent results 

in a numerical sense, thus comparing both results is a good cross-check. In a next step, the 

kernel functions described in section 2.3.3 are evaluated five times along the panel span width 

with , ,  ,  and , resulting in matrices  and . 

The following terms are used for the quartic integration (compare Rodden et al. 1998 [17] eq. 

15-19 and eq. 28-32):

(2.48)

and
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(2.49)

The “planar” part of normal wash matrix  is given by (compare Rodden et al. 1998 [17] 

eq. 20):

(2.50)

The “non-planar” part of normal wash matrix  is given by (compare Rodden et al. 1998 

[17] eq. 33 and 34):
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(2.51)

and

 (2.52)

In a last step, the planar and non-planar parts are added up like before in eq. 2.40.
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 2.3.3 Kernel Functions

In this section, “the” kernel functions of the DLM are calculated. Again, Rodden has the habit 

of leaving out some brackets in his formulas. This applies to eq. 7, 8 and 11 where it is not  

very clear which parts belong to the denominator, however, that is clarified in the following. 

In a first step, some variables are defined, compare eq. 4, 9, 10, 11 and 12 in Rodden et al.  

[15]. 

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

Here,  the  reduced  frequency  is  defined  by  ,  compare  eq.  2.1 and  2.2.  The 

exponential function

(2.58)

is pre-multiplied as it is used several times and is computationally expensive. The direction 

cosine matrices are given by (compare eq. 5 and 21 in Rodden et al. [15])

(2.59)

and

(2.60)

The solution of the kernel functions  is originally given by Landahl [12], compare also 

eq. 7 and 8 in Rodden et al. 1971 [15]. Note that the signs of terms for  are switched in 

Rodden et al. 1971 [15] compared to Albano and Rodden 1968 [1], this implementation stays 

with the 1968 convention as we don't want to mess with the steady part from the VLM.

(2.61)
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(2.62)

The evaluation of  involves integrals , which are more difficult to solve and require a 

numerical approximation as explained in  section  2.3.4.  The analytical  solution of   at 

 is given by (compare eq. 15 and 16 in Rodden et al. 1971 [15])

(2.63)

and

 . (2.64)

During  the  numerical  evaluation,  singularities  may  arise  when  .  In  these  cases, 

 and  when  and  and  when .

The final matrices of the kernel functions  and  are given by (compare eq. 27B and 

36b in Rodden et al. 1971 [15]) 

(2.65)

and

 . (2.66)

The  steady  parts   and   are  directly  subtracted  from  the  solution,  as  the  steady 

contribution will be added later from the VLM.

 2.3.4 Integral Approximation

Integrals  and  (compare eq. 13 and 14 in Rodden et al. [15]) require an approximation to 

be solved in a computationally efficient way. There are a number of methods, e.g. by Watkins 

[22] (used in Albano and Rodden 1968 [1]), by Laschka [13] (used in Rodden et al. [15]) and 

by  Desmarais [3] (used  in  Rodden  et  al.  1998 [17]).  In  the  following,  the  last  two  are 

summarized.

The first step is to evaluate integral
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 . (2.67)

Using the approach

(2.68)

as proposed by Laschka [13], leads to (compare eq. A.4 in Rodden et al. 1971 [15])

 , (2.69)

where  and the coefficients  are as given in Table 2.2. The values are difficult to 

read in Rodden et al. 1971 due to the low quality of the digital reproduction of the original 

paper but can be found as well in Blair 1992 [2], page 89.

The second integral is

 . (2.70)

Using the same approach leads to (compare eq. A.8 in Rodden et al. 1971 [15])
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1 +0.24186198

2 -2.7918027

3 +24.991079

4 -111.59196

5 +271.43549

6 -305.75288

7 -41.183630

8 +545.98537

9 -644.78155

10 +328.72755

11 -64.279511

Table 2.2: Coefficients used in the Laschka approximation
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 . (2.71)

Then,  is calculated with (compare eq. A.1 in Rodden et al. 1971 [15])

(2.72)

and  is calculated with (compare eq. A.6 in Rodden et al. 1971 [15])

 . (2.73)

For compatibility with eq. 2.62,  is divided by 3 and the inner. Note that the author believes 

there is a mistake in eq. A.6 in Rodden et al. 1971 [15], which is correcte in the following 

way: brackets are added for term  and the inner, closing square brackets is put 

after  the  fraction.  The  integrals   are  only  evaluated  for  positive  values  of  .  When 

, then (compare eq. A.5 and A.9 in Rodden et al. 1971 [15])

(2.74)

and

 . (2.75)

Desmarais [3] proposed a similar approach but with higher accuracy

, (2.76)

where ,  and the coefficients  are as given in Table 2.3. Note 

that Desmarais investigated a number of different approximations in his work, the selected 

approach is referred to as D12.1.
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That leads to a modification of terms

 (2.77)

and

 . (2.78)

 2.4 Performance Considerations

The code is vectorized and uses Numpy matrix operations. Compilation of the Python code 

using Cython or Numba showed no significant increase in speed. The most time-consuming 

part is the Laschka and/or the Desmarais approximations where a series of 11 or 12 terms are 

evaluated repeatedly.
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1 0.000319759140

2 -0.000055461471

3 0.002726074362

4 0.005749551566

5 0.031455895072

6 0.106031126212

7 0.406838011567

8 0.798112357155

9 -0.417749229098

10 0.077480713894

11 -0.012677284771

12 0.001787032960

Table 2.3: Coefficients used in the Desmarais approximation
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3. Validation

In this section, the implementation of the VLM and the DLM is validated with respect to 

MSC.Nastran.  The AIC matrices are exported from MSC.Nastran SOL145 via a so-called 

DMAP alter in the OP4 format and parsed again with an OP4 reader in Python in a next step.  

The command NASTRAN QUARTICDLM=0/1 is used to switch between the parabolic and 

the quartic DLM. Note that the default value is the parabolic version. 

The comparison is performed in two steps. First, the AIC matrices are compared element-wise 

for numerical equality using the numpy command numpy.allclose(a,b). If the equation 

(3.1)

is element-wise True, then allclose returns True [24]. A relative tolerance of   in 

combination with an absolute tolerance of   are considered sufficient to assume 

numerical equality of the AIC matrices. 

In a next step, the pressure distributions are compared. Therefore, a downwash vector  is 

assumed that corresponds to a 5° onflow normal to each panel. The following plots show the 

difference in pressure

(3.2)

for the real part and the imaginary part of  in a blue-white-red color map.
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 3.1 The Allegra Configuration

The Allegra configuration has a forward swept wing with positive dihedral and a T-tail with 

backward sweep and negative dihedral. There are no winglets but a vertical tail plane and 

some additional panels to account for the fuselage. The aircraft has a left and a right hand 

side,  which  are  symmetrical  with  respect  to  the  xz-plane.  Therefore,  the  configuration 

includes most features of typical aircraft and is a comprehensive and representative test case. 

The tests have been performed against MSC.Nastran as described above for both the parabolic 

and the quartic version of the DLM. Summing up, all test cases were found to be equivalent in 

a numerical sense. 

 3.1.1 Typical Pressure Distribution

The 5° onflow condition results in the following pressure distributions  .  The real and 

imaginary parts are shown in Figures  3.1 and  3.2 respectively. The following sections will 

show only the differences .
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Figure 3.1: Real part of  ΔCp at Ma=0.8, kred=0.6 with a 5° onflow

Figure 3.2: Imaginary part of  ΔCp at Ma=0.8, kred=0.6 with a 5° onflow
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 3.1.2 Parabolic DLM, Ma = 0.8, kred = 0.001

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.3: Real part of  ΔΔCp at Ma=0.8, kred=0.001 with a 5° onflow, parabolic DLM

Figure 3.4: Imaginary part of  ΔΔCp at Ma=0.8, kred=0.001 with a 5° onflow, parabolic DLM
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 3.1.3 Parabolic DLM, Ma = 0.8, kred = 0.6

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.5: Real part of  ΔΔCp at Ma=0.8, kred=0.6 with a 5° onflow, parabolic DLM

Figure 3.6: Imaginary part of  ΔΔCp at Ma=0.8, kred=0.6 with a 5° onflow, parabolic DLM
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 3.1.4 Parabolic DLM, Ma = 0.8, kred = 1.4

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.7: Real part of  ΔΔCp at Ma=0.8, kred=1.4 with a 5° onflow, parabolic DLM

Figure 3.8: Imaginary part of  ΔΔCp at Ma=0.8, kred=1.4 with a 5° onflow, parabolic DLM
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 3.1.5 Quartic DLM, Ma = 0.8, kred = 0.001

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.9: Real part of  ΔΔCp at Ma=0.8, kred=0.001 with a 5° onflow, quartic DLM

Figure 3.10: Imaginary part of  ΔΔCp at Ma=0.8, kred=0.001 with a 5° onflow, quartic DLM
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 3.1.6 Quartic DLM, Ma = 0.8, kred = 0.6

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.11: Real part of  ΔΔCp at Ma=0.8, kred=0.6 with a 5° onflow, quartic DLM

Figure 3.12: Imaginary part of  ΔΔCp at Ma=0.8, kred=0.6 with a 5° onflow, quartic DLM
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 3.1.7 Quartic DLM, Ma = 0.8, kred = 1.4

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.13: Real part of  ΔΔCp at Ma=0.8, kred=1.4 with a 5° onflow, quartic DLM

Figure 3.14: Imaginary part of  ΔΔCp at Ma=0.8, kred=1.4 with a 5° onflow, quartic DLM



An Implementation of the Vortex Lattice and the Doublet Lattice Method

 3.2 Special Cases

In the following, some special  test  cases are inspected.  The focus is  on wing-empennage 

configurations with the horizontal tail 

• planar to the main wing, 

• near-planar and 

• further away (e.g. T-tail).

This is an important test to validate all conditions as described in section 2.3. The offsets in z-

direction between wing and horizontal tail plane are dz = 0.0 m, -0.1 m +1.9 m. The wing and 

the tail have both a span width of 3.0 m and are both discretized with 20 panels in span-wise 

direction  so  that  the  panels  of  wing  and  tail  are  aligned  in  y-direction.  Finally,  a 

(comparatively  large)  winglet  is  added to  the  wing because  the  previous  example  of  the 

Allegra configuration had no winglets. The AICs are calculated at Ma=0.5, kred=2.0 and with a 

5° onflow condition.
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 3.2.1 Parabolic DLM, horizontal tail planar to the wing

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.15: Real part of  ΔΔCp, horizontal tail planar to the wing, parabolic DLM

Figure 3.16: Imaginary part of  ΔΔCp, horizontal tail planar to the wing, parabolic DLM
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 3.2.2 Parabolic DLM, horizontal tail near-planar to the wing

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.17: Real part of  ΔΔCp, horizontal tail near-planar to the wing, parabolic DLM

Figure 3.18: Imaginary part of  ΔΔCp, horizontal tail near-planar to the wing, parabolic 
DLM
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 3.2.3 Parabolic DLM, horizontal tail further away from the wing

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.19: Real part of  ΔΔCp, horizontal tail further away from the wing, parabolic DLM

Figure 3.20: Imaginary part of  ΔΔCp, horizontal tail further away from the wing, parabolic 
DLM
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 3.2.4 Quartic DLM, horizontal tail planar to the wing

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.21: Real part of  ΔΔCp, horizontal tail planar to the wing, quartic DLM

Figure 3.22: Imaginary part of  ΔΔCp, horizontal tail planar to the wing, quartic DLM
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 3.2.5 Quartic DLM, horizontal tail near-planar to the wing

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.23: Real part of  ΔΔCp, horizontal tail near-planar to the wing, quartic DLM

Figure 3.24: Imaginary part of  ΔΔCp, horizontal tail near-planar to the wing, quartic DLM
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 3.2.6 Quartic DLM, horizontal tail further away from the wing

Element-wise comparison of the AIC matrices: numerically equal. 
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Figure 3.25: Real part of  ΔΔCp, horizontal tail further away from the wing, quartic DLM

Figure 3.26: Imaginary part of  ΔΔCp, horizontal tail further away from the wing, quartic 
DLM
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 3.2.7 Provoking differences and errors by misalignment of panels

Remember that the wing and the tail have both a span width of 3.0 m and are both discretized 

with 20 panels in span-wise direction so that the panels of wing and tail are aligned in y-

direction. Rodden et al. [16] state that “One of the basic requirements of the Doublet Lattice 

Method is that stream-wise strip edges must be aligned for all surfaces in the same or nearly 

the same plane.” Violating this requirement for the near-planar case, e.g. by selecting only 8 

panels for  the wing but  maintaining 20 for  the tail,  results  in  differences  with respect  to 

MSC.Nastran on several panels at the tail. However, both results should be wrong according 

to Rodden. Note that a misalignment in the planar case even results in singular AICs matrices 

in MSC.Nastran as well as in this implementation.

Element-wise comparison of the AIC matrices: NOT equal.
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Figure 3.27: Real part of  ΔΔCp, horizontal tail near-planar to the wing, quartic DLM, 
violated discretization requirements
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Figure 3.28: Imaginary part of  ΔΔCp, horizontal tail planar to the wing, quartic DLM, 
violated discretization requirements



Bibliography

[1] Albano, E., and Rodden, W. P., “A Doublet Lattice Method For Calculating Lift Distri-
butions on Oscillation Surfaces in Subsonic Flows,” in  AIAA 6th Aerospace Sciences  
Meeting, New York, 1968.

[2] Blair,  M.,  “A Compilation  of  the  Mathematics  Leading  to  The  Doublet  Lattice 
Method,” Airforce Wright Laboratory, Ohio, Technical Report WL-TR-92-3028, 1992.

[3] Desmarais, R., “An accurate and efficient method for evaluating the kernel of the inte-
gral equation relating pressure to normalwash in unsteady potentialflow,” presented at 
the 23rd Structures, Structural Dynamics and Materials Conference, New Orleans, LA, 
1982, https://doi.org/10.2514/6.1982-687.

[4] Desmarais, R. N., “An accurate method for evaluating the kernel of the integral equa-
tion relating lift to downwash in unsteady potential flow,” Hampton, Virginia, NASA-
TM-83281, Apr. 1982, https://ntrs.nasa.gov/search.jsp?R=19820015320.

[5] Dipartimento  di  Ingegneria  Aerospaziale,  Poitecnico  di  Milano,  “NeoCASS  suite 
Homepage.” [Online]. Available: https://www.neocass.org. [Accessed: 30-Jun-2022].

[6] Hedman, S. G., “Vortex Lattice Method for Calculation of Quasi Steady State Loadings 
on Thin Elastic Wings in Subsonic Flow,” FFA Flygtekniska Försöksanstalten, Stock-
holm, Sweden, FFA Report 105, 1966.

[7] Katz, J., and Plotkin, A., Low-speed aerodynamics: from wing theory to panel methods. 
New York: McGraw-Hill, 1991.

[8] Kotikalpudi, A., “Body Freedom Flutter (BFF) Doublet Lattice Method (DLM),” Uni-
versity  of  Minnesota  Digital  Conservancy,  09-Sep-2014.  [Online].  Available:  http://
hdl.handle.net/11299/165566. [Accessed: 12-Feb-2016].

[9] Kotikalpudi, A., Pfifer, H., and Balas, G. J., “Unsteady Aerodynamics Modeling for a 
Flexible Unmanned Air Vehicle,” in AIAA Atmospheric Flight Mechanics Conference, 
Dallas, Texas, 2015, https://doi.org/10.2514/6.2015-2854.

[10] Küssner,  H.  G.,  “Allgemeine  Tragflächentheorie,”  Luftfahrtforschung,  vol.  17,  no. 
11/12, pp. 370–78, Dec. 1940, http://ntrs.nasa.gov/search.jsp?R=19930094437.

[11] Küssner, H. G., “General Airfoil Theory,” National Advisory Committee for Aeronau-
tics, Washington, Technical Memorandum NACA-TM-979, Jun. 1941, http://ntrs.nasa.-
gov/search.jsp?R=19930094437.

Page 41



An Implementation of the Vortex Lattice and the Doublet Lattice Method

[12] Landahl,  M. T.,  “Kernel Function for Nonplanar Oscillating Surfaces in a Subsonic 
Flow,”  AIAA  Journal,  vol.  5,  no.  5,  pp.  1045–1046,  May  1967,  https://doi.org/
10.2514/3.55319.

[13] Laschka, B., “Das Potential und das Geschwindigkeitsfeld der harmonisch schwingen-
den tragenden Fläche bei Unterschallströmung,” Z. angew. Math. Mech., vol. 43, no. 7–
8, pp. 325–333, 1963, https://doi.org/10.1002/zamm.19630430704.

[14] Prandtl, L., “Beitrag zur Theorie der tragenden Fläche,”  ZAMM - Journal of Applied  
Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 
vol. 16, no. 6, pp. 360–361, 1936, https://doi.org/10.1002/zamm.19360160613.

[15] Rodden, W. P., Giesing, J. P., and Kálmán, T. P., “New Developments and Application 
of the Subsonic Doublet-Lattice Method for Nonplanar Configurations,” AGARD-CP-
80-PT-2 - Symposium on Unsteady Aerodynamics for Aeroelastic Analyses of Interfer-
ing Surfaces, no. Part 2, Jan. 1971.

[16] Rodden, W. P., Giesing, J. P., and Kalman, T. P., “Refinement of the nonplanar aspects 
of the subsonic doublet-lattice lifting surface method.,” Journal of Aircraft, vol. 9, no. 
1, pp. 69–73, Jan. 1972, https://doi.org/10.2514/3.44322.

[17] Rodden, W., Taylor, P., and McIntosh, S., “Further Refinements of the Subsonic Dou-
blet-Lattice Method,” Journal of Aircraft, vol. 35, no. 5, pp. 720–727, Oct. 1998.

[18] Rodden,  W.,  Taylor,  P.,  and  McIntosh,  S.,  “Improvements  to  the  Doublet-Lattice 
Method in MSC/Nastran,” 1999.

[19] Voß, A., “Design and Structural Optimization of a Flying Wing of Low Aspect Ratio 
Based on Flight Loads,” Dissertation, Technische Universität Berlin, Berlin, Germany, 
2020, https://doi.org/10.14279/depositonce-9858.

[20] Voß, A., “Loads Kernel User Guide,” Institut für Aeroelastik, Deutsches Zentrum für 
Luft- und Raumfahrt,  Göttingen, Germany, Technical Report DLR-IB-AE-GO-2020-
136, Jul. 2021, https://elib.dlr.de/140268/.

[21] Voss, R., “The Legacy of Camillo Possio to Unsteady Aerodynamics,” in System Mod-
eling and Optimization, 2005, pp. 1–14, https://doi.org/10.1007/0-387-33006-2_1.

[22] Watkins, C. E. W., “A Systematic Kernel Function Procedure for Determining Aerody-
namic Forces on Oscillating or Steady Finite Wings at Subsonic Speeds,” Jan. 1959, 
https://ntrs.nasa.gov/search.jsp?R=19980227841.

[23] “nasa/NASTRAN-95,”  GitHub.  [Online].  Available:  https://github.com/nasa/NAS-
TRAN-95. [Accessed: 04-May-2016].

[24] “numpy.allclose  —  NumPy  v1.18  Manual.”  [Online].  Available:  https://numpy.org/
doc/stable/reference/generated/numpy.allclose.html. [Accessed: 27-May-2020].

Page 42


	Dokumenteigenschaften
	Dokument-Historie
	Summary
	Table of Contents
	Nomenclature
	Abbreviations
	Software
	Notation Conventions
	Sub- and Superscripts
	Variables and Parameters

	1. Introduction
	1.1 Background of this Implementation
	1.2 Availability & License
	1.3 Literature on the Doublet Lattice Method
	1.4 Modeling Guidelines

	2. Implementation
	2.1 Definitions
	2.2 The Vortex Lattice Method
	2.3 The Doublet Lattice Method
	2.3.1 Parabolic Integration
	2.3.2 Quartic Integration
	2.3.3 Kernel Functions
	2.3.4 Integral Approximation

	2.4 Performance Considerations

	3. Validation
	3.1 The Allegra Configuration
	3.1.1 Typical Pressure Distribution
	3.1.2 Parabolic DLM, Ma = 0.8, kred = 0.001
	3.1.3 Parabolic DLM, Ma = 0.8, kred = 0.6
	3.1.4 Parabolic DLM, Ma = 0.8, kred = 1.4
	3.1.5 Quartic DLM, Ma = 0.8, kred = 0.001
	3.1.6 Quartic DLM, Ma = 0.8, kred = 0.6
	3.1.7 Quartic DLM, Ma = 0.8, kred = 1.4

	3.2 Special Cases
	3.2.1 Parabolic DLM, horizontal tail planar to the wing
	3.2.2 Parabolic DLM, horizontal tail near-planar to the wing
	3.2.3 Parabolic DLM, horizontal tail further away from the wing
	3.2.4 Quartic DLM, horizontal tail planar to the wing
	3.2.5 Quartic DLM, horizontal tail near-planar to the wing
	3.2.6 Quartic DLM, horizontal tail further away from the wing
	3.2.7 Provoking differences and errors by misalignment of panels


	Bibliography

