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A B S T R A C T   

The spatial structure of urban areas plays a major role in the daily life of dwellers. The current policy framework 
to ensure the quality of life of inhabitants leaving no one behind, leads decision-makers to seek better-informed 
choices for the sustainable planning of urban areas. Thus, a better understanding between the spatial structure of 
cities and their socio-economic level is of crucial relevance. Accordingly, the purpose of this paper is to quantify 
this two-way relationship. Therefore, we measured spatial patterns of 31 cities in North Rhine-Westphalia, 
Germany. We rely on spatial pattern metrics derived from a Local Climate Zone classification obtained by 
fusing remote sensing and open GIS data with a machine learning approach. Based upon the data, we quantified 
the relationship between spatial pattern metrics and socio-economic variables related to ‘education’, ‘health’, 
‘living conditions’, ‘labor’, and ‘transport’ by means of multiple linear regression models, explaining the vari-
ability of the socio-economic variables from 43% up to 82%. Additionally, we grouped cities according to their 
level of ‘quality of life’ using the socio-economic variables, and found that the spatial pattern of low-dense built- 
up types was different among socio-economic groups. The proposed methodology described in this paper is 
transferable to other datasets, levels, and regions. This is of great potential, due to the growing availability of 
open statistical and satellite data and derived products. Moreover, we discuss the limitations and needed con-
siderations when conducting such studies.   

1. Introduction 

How we organize space in urban areas has a decisive influence on 
how we live and what effects this has on our closest environment: what 
kind of mobility we choose, how large our ecological footprint is, how 
close we are to utilities, or what access we have to jobs or leisure fa-
cilities. These are just a few of the many exemplary factors that influence 
the quality of life and the sustainability by its spatial design. 

This is especially relevant in cities, as the world population is 
becoming urban. The share of people living in urban areas has been 
growing in the last decades and this trend is expected to continue 
(United Nations, 2018). Heretofore, population growth has been 
accompanied by a significant increase of the urban layout, triggering 
environmental and socio-economic consequences (e.g. Haase, Kabisch, 
& Haase, 2013; Ribeiro-Barranco, Batista e Silva, Marin-Herrera, & 

Lavalle, 2014; Taubenböck et al., 2012). The quality of life and sustain-
able development of urban and peri-urban areas depend on the successful 
management of their growth. Both are common goals in cities around 
the world. They are described in multiple dimensions: ‘quality of life’ is a 
broad concept assessed on various factors ranging from living conditions 
and employment to experience of life. It is usually represented by a 
multiple set of indicators such as income, deprivation rate, education 
attainment, employment rate, life expectancy, air quality, etc. (Eurostat, 
2017; OECD, 2017). Also ‘sustainable development’ is addressed by the 
United Nations in their 2030 Agenda for Sustainable Development. It 
collects seventeen Sustainable Development Goals (SDGs), which aim at 
ending poverty by means of promoting economic growth, addressing 
social needs, while protecting the environment and fighting climate 
change. 

Urban form is constituted by spatial and socio-economic processes 
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developed over time and space (Abrantes et al., 2019; Salat, 2011). It is 
accepted in scientific literature to wield a powerful influence on shaping 
societies (Oliveira, 2016; Salat, 2011; Tonkiss, 2013). Urban form is a 
key element for understanding urban systems as it drives where people 
live and work and how the interaction is spatially structured (e.g. 
Grimm, Cook, Hale, & Iwaniec, 2015; Taubenböck, 2019). However, it is 
not self-evident to establish a universal link between the urban spatial 
structure, here considered as the organization of urban areas in terms of 
the distribution of physical structures and human activities (Krehl & 
Siedentop, 2019), and quality of life. Accordingly, in this study we want 
to explicitly investigate this relation between urban structural features 
and socio-economic parameters, and whether quality of life can be 
interpreted based on spatial and statistical methods. 

Urban areas with similar physical appearance tend to feature similar 
social, economic, and environmental characteristics (Patino & Duque, 
2013; Taubenböck et al., 2009; Wurm & Taubenböck, 2018). Conse-
quently, several authors have described qualitatively and quantitatively 
these influences. Concerning social factors, many relevant concerns such 
as crime, public safety, gentrification, health, and poverty, have been 
linked to diversity and configuration of land uses, road network pat-
terns, or remote sensing derived variables (e.g. Hankey & Marshall, 
2017; Jacobs, 1961; Lehrer & Wieditz, 2009; Patino, Duque, Pardo- 
Pascual, & Ruiz, 2014; Sandborn & Engstrom, 2016; Wurm et al., 
2019). In terms of economic issues, wealth indicators were positively 
related to the diversity of land uses, and productivity and innovation 
were influenced by density, centricity, and urban size (e.g. Tapiador, 
Avelar, Tavares-Corrêa, & Zah, 2011; UN-Habitat, 2015). For the envi-
ronmental dimension, the identification of land cover and urban struc-
tural types allowed for instance determining urban heat islands or green 
area facilities, which contributed to climate change studies (Bechtel 
et al., 2019; Stewart & Oke, 2012), while pollution, energy use, and 
transport means have also been related to different properties of urban 
form, such as density, diversity or centrality of land use (e.g. Anderson, 
Kanaroglou, & Miller, 1996; Hankey & Marshall, 2017). However, there 
are few studies that measure this widely agreed linkage between the 
spatial structure of cities and their socio-economic status in a quanti-
tative manner. These studies mostly rely on earth observation data to 
extract the physical information, such as buildings, roads, land-use/ 
land-cover (LULC) and their spatial distribution, or structure and 
texture features. This approach has been applied so far to model 
neighborhood deprivation (Venerandi, Quattrone, & Capra, 2018), 
poverty (Duque, Patino, Ruiz, & Pardo-Pascual, 2015; Jean et al., 2016; 
Wurm & Taubenböck, 2018), income and property value (Taubenböck 
et al., 2009), and demographic, living conditions, labor and transport 
factors (Sapena, Ruiz, & Goerlich, 2016). These examples present pre-
vious attempts to identify links between urban spatial structure and 
socio-economic parameters. 

Insofar, the investigation of these relations has been possible due to 
the increasing accessibility of open databases and earth observation 
products. On the one hand, satellite images allow for increasing capa-
bilities to provide high-resolution geoinformation. In this context, LULC 
data have been an important source of information for urban studies; 
however, it lacks three-dimensional information of urban structures, 
considered a fundamental aspect in such studies (Wentz et al., 2018). 
Therefore, the characterization of cities into urban structural types and 
land cover, with Local Climate Zones (LCZ) (Stewart & Oke, 2012) as 
one concept, has great potential in its relation with socio-economic 
functions (Bechtel et al., 2015). LCZ have additional inherent informa-
tion on the physical composition of cities compared to other LULC leg-
ends by their density, building types, heights, greenness and their land 
cover that are worth to explore. Besides, it is a conceptually consistent, 
generic, and culturally-neutral description and thus a replicable classi-
fication system. On the other hand, global, national and local institutes 
provide more and more statistical data for different dates and spatial 
levels. Notwithstanding all the urban theories relating these two com-
ponents, and the growing availability of both, spatial and socio- 

economic databases, studies aiming to quantify the relations between 
the spatial structure of urbanized areas and the quality of life of in-
habitants or the well-known SDGs are still scarce. Methods based on the 
quantification of spatial patterns by means of spatial metrics and the 
clustering of urban areas based on their socio-economic performance (e. 
g.: Abrantes et al., 2019; Sapena, Ruiz, & Goerlich, 2016; Schwarz, 
2010) have shown to be suitable for the combined analysis of spatial and 
socio-economic variables in urban areas as well as for their relation. 

In this framework, the general objective of this work is to understand 
better the relationship between the spatial structure of cities and the 
socio-economic level of city dwellers. For this reason, we explore the 
value of the LCZ, as urban structural types, in relation to quality of life 
indicators at the city level. First, we quantify the relationships between 
socio-economic variables and the spatial distribution of LCZ. Then, we 
group cities according to their similar levels of quality of life and 
describe their spatial structure. 

2. Data 

2.1. Study area 

We selected North Rhine-Westphalia (NRW) as a study case for its 
socio-economic relevance in Europe, reinforced by the availability of 
statistical data. The historical and political background of many cities 
located in this Federal State is similar, which diminishes external in-
fluences in our analysis. We base our study on a sample of 31 cities in 
NRW as consistent spatial and socio-economic databases are available 
there. The location and identification of cities is presented below in 
Fig. 2. 

Regarding the Federal State of NRW, it is the most populous of the 
sixteen German states, accounting for 21.7% of the total population in 
Germany (Eurostat, 2019). The Ruhr industrial region, in NRW, is a 
competitive industrial region of Germany. NRW is an economic centre in 
Europe, with a regional GDP of € 672 billion in 2016 (21.4% of the 
German GDP). However, the per capita level is slightly below the na-
tional level. Nowadays, the economy of NRW is based on small and 
medium-sized enterprises, hosting more than 20% of companies in 
Germany, and providing work to near 80% of the active population 
(European Commission, 2019). 

2.2. Socio-economic variables 

For the socio-economic analysis we used the City statistics database 
(https://ec.europa.eu/eurostat/web/cities/data/database). This data-
base was originally created with the purpose to provide information that 
supports more evidence-based decisions in planning and managing tasks 
(Eurostat, 2016). The City statistics project covers several aspects of 
quality of life – i.e., demography, housing, health, economic activity, 
labour market, income disparity, educational qualifications, environ-
ment, climate, travel patterns, tourism, and cultural infrastructure - for 
cities and their commuting zones in Europe (Eurostat, 2018). At the city 
level, it contains 171 variables and 62 indicators for more than one 
thousand cities that have an urban core of at least 50,000 inhabitants. 
The data are available at different dates from 1990 onwards. In this 
study the city level is the basic spatial unit. At this level a rich source of 
data for comparative studies in Europe is provided. 

For the purpose of this study, we selected a set of socio-economic 
variables and indicators for 31 cities in NRW for the year 2009 
(Table 1), to coincide with the date of the satellite images used for LCZ 
classification. When data from 2009 were not available, the previous or 
subsequent year was used instead. Subject to the availability of data, we 
selected indicators of five dimensions of ‘quality of life’ covered in the 
database – education, health, living condition, labor and transport. We 
linked the dimensions to the SDGs policy commitments, as was previ-
ously done by the OECD (2017) to evidence the global efforts that are 
being made to reduce inequalities in the socio-economic level of citizens 
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(Table 1). 

2.3. Earth observation and ancillary data 

For classification of the physical structures describing the cities’ 
spatial structure we rely on remotely sensed and geospatial data 
extracted from three data sources:  

- High-resolution remote sensing imaging: a Rapid-Eye mosaic for the 
year 2009 was constructed for the whole area. This satellite provides 
images at 6.5 m resolution (orthorectified and resampled to 5 m) 
with five spectral bands (red, green, blue, near infrared and red 
edge).  

- 3D model: A normalized digital surface model (nDSM) was derived 
from 135 individual Cartosat-1 stereo images (collected between 
2009 and 2013) and processed according to Wurm, d’Angelo, Rein-
artz, & Taubenböck (2014) to retrieve above ground heights.  

- GIS layers from OpenStreetMap: the amenities and road layers from 
the open repository of geospatial data was used (downloaded in 
2014, openstreetmap.org). 

3. Methods 

3.1. Patterns describing the spatial structure of cities 

For the derivation of the spatial patterns describing the spatial 
structure of cities, we applied the LCZ framework that allows charac-
terizing the morphologic appearance of cities in a conceptually consis-
tent manner. It comprises several urban structural and land covers types 
with uniform surface cover, structure, material and use (Stewart & Oke, 
2012). Out of the 17 original LCZ classes, 12 were present in the region 
(Fig. 1). The spatial pattern describes the distribution of phenomena 
across space, e.g., concentration, dispersion, clustered patterns, etc. 
(Getis & Paelinck, 2004). In particular, we refer to the arrangement of 
urban structural types and land covers within cities. 

For the classification of LCZ, we followed the protocol presented in 
Tuia, Moser, Wurm, & Taubenböck (2017). We modelled LCZs on a grid 
composed of cells of size 200 × 200 m. In total, 89 variables were 

extracted for each cell (Table 2) to train the classifier. A ground truth of 
2658 cells was defined by photointerpretation, where the cognitive 
perception of an interpreter was used to define the predominant LCZ. 

The classifier was based on random forests, a method building 
several decision trees with heavy randomization of features (Breiman, 
2001). The initial result was then further improved by making the model 
aware of two spatial relationships between cells using a Markovian 
Random Field formulation (see Tuia, Moser, Wurm, & Taubenböck 
(2017)): (1) By predicting with higher probability co-occurrence of 
neighboring LCZ that attract or repel each other spatially; (2) By fa-
voring a map respecting a rank-size distribution of urban settlements, 
according to Zipf’s law. 

For testing the relationships between socio-economic and spatial 
structure of cities, we extracted a large set of spatial pattern metrics, 
henceforth referred to as spatial metrics, related to attributes such as 
density, aggregation, shape, etc., using the spatial module of the soft-
ware tool IndiFrag (Sapena & Ruiz, 2015). This tool computes spatio- 
temporal metrics that quantify spatial patterns and their changes from 
thematic maps. We used the LCZ classification as a base to characterize 
the spatial structure of cities. The level of analysis to extract the spatial 
metrics was the city level that corresponds to the level in which the 
socio-economic variables are provided. Therefore, we computed all 
spatial metrics included in IndiFrag, obtaining one set of metrics per LCZ 
class for the spatial level of the city, and another set of metrics for the 
city, regardless of the LCZ classes. Then, we standardized the values of 

Table 1 
Description of the selected socio-economic variables (dependent variables in the models from Table 5) representing five dimensions of quality of life and their link to 
the Sustainable Development Goals (SDGs).  

Dimension Name Description SDGs 

Education education The proportion of population (aged 25–64) with lower secondary as the highest level of 
education 

SDG 4 (education) 

Health health Crude death rate per 1000 inhabitants SDG 3 (health) 
Living 

conditions 
housing Average price for buying an apartment in euros SDG 1 and 11 (poverty and sustainable cities) 
income Median disposable annual household income in euros 
affordability Ratio reflecting the ability of a city to pay for housing. Housing price compared to income. 

Labor employment Number of employments per 1000 inhabitants (work place-based) SDG 8 (decent work and economy) 
Transport transport The share of journeys to work by car or motor cycle (%) SDG 9 and 11 (Infrastructure and sustainable 

cities) commuting People commuting out of the city per 1000 residents  

Fig. 1. Summary of the LCZ classes present in NRW (from Stewart & Oke, 
2012). LCZs 2 to 10 are built-up classes, LCZs A to G land cover types. 

Table 2 
Description of the geo-spatial variables for each cell from remote sensing and 
GIS data.  

Source Type Description No. of 
variables 

Remote 
sensing 

Bands Mean and standard deviation of the pixel 
values. Data were atmospherically 
corrected and haze removed. 

10  

Texture Co- and occurrence features (local 
standard deviation, average, 
homogeneity, entropy, dissimilarity, 
correlation, contrast and angular 
moments). 

60  

3D Mean and standard deviation for both 
nDSM and buildings only. The number of 
buildings was also added as a feature. 

5  

Land 
cover 

Percentage of the area occupied by 
buildings, trees, grassland and impervious 
surfaces. The land cover is issued from an 
object-based classification on a Rapid-Eye 
mosaic (Montanges, Moser, Taubenböck, 
Wurm, & Tuia, 2015). 

4 

GIS Roads Total line length for highway, primary, 
secondary, tertiary roads, residential streets, 
streams and rivers, smoothed with a 
Gaussian kernel at the cell level. 

7  

POIs Counts for POIs cafes, restaurants and rail 
stations, smoothed with a Gaussian kernel 
at the cell level. 

3  
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the metrics as the mean divided by the standard deviation, in order to 
obtain comparable regression coefficients and avoid influence of mea-
surement units. 

When working with spatial metrics and a great diversity of structural 
types, it is common to find redundant information since metrics depend 
on similar variables, cover similar spatial patterns, or can be comple-
mentary to each other (Reis, Silva, & Pinho, 2015; Schwarz, 2010). 
Therefore, feature selection is a fundamental step (Genuer, Poggi, & 
Tuleau-Malot, 2015), as the high correlation of features may introduce 
noise in the process and affect the accuracy of results. In particular, 
regression models need the independence of predictors to minimize the 
multicollinearity, which makes the model unstable. We followed three 
consecutive approaches for the objective selection of metrics. First, we 
discarded the non-discriminative spatial metrics, those with a coefficient 
of variation lower than 5%. Second, we conducted a correlation analysis 
to identify redundancies in the spatial information. We omitted those 
metrics showing strong correlations to others (Pearson correlation co-
efficient > 0.8), keeping one metric per group of correlated metrics. 
Third, we applied a recent method proposed by Genuer, Poggi, & 
Tuleau-Malot (2015), called Variable Selection Using Random Forests 
(VSURF) that selects a specific subset of metrics adapted to each socio- 
economic variable. This is based on measuring the relevance of every 
metric in relation to each socio-economic variable using a random forest 
regression. We kept one subset of metrics for each socio-economic var-
iable (the different subsets of selected metrics are reported in Table 4). 

3.2. Estimating socio-economic and spatial pattern links 

A model was obtained for each socio-economic variable from Table 1 
applying stepwise multiple linear regression analysis, using the subset of 
spatial pattern metrics previously selected as independent variables. We 
applied a min-max normalization transforming the socio-economic 
variables in a range between zero and one as follows: zi = (xi-min(x))/ 
(max(x)-min(x)), where x = (x1, …,xn), xi is the ith original value and zi is 
the normalized value. For education, health, housing, affordability, 
transport, and commuting the normalization was inversed and thus, 
higher values mean better conditions for all variables. The number of 
independent variables was restricted to a maximum of four spatial 
metrics to avoid overfitting, considering the limited number of obser-
vations (cities) in our dataset. The residuals were tested for normality 
using the Shapiro-Wilk test (Shapiro & Wilk, 1965), and for statistical 
significance by requiring p-values to be lower than 0.05. Leave-one-out 
cross-validation was employed to evaluate the models. We estimated 
the root mean squared error (RMSE) and the coefficient of determination 
(R2) to summarize the proportion of variance explained by the model, 
and thus the goodness-of-fit. 

To verify whether the level of ‘quality of life’ in cities is reflected in 
their urban spatial structure we conducted a two-step analysis: (1) we 
used the k-Means clustering method to group cities according to their 
values of socio-economic variables, representing variables from five 
dimensions of quality of life considered in our study (Table 1), out of 
nine (Eurostat, 2017). Using the Elbow method (Ketchen & Shook, 
1996) we found an appropriate number of groups. Consequently, we 
created and described four clusters that group cities based on their socio- 
economic similarities. Moreover, we represented the ‘quality of life’ for 
each city and group using star plots, as well as the average of the region, 
which facilitates the interpretation of the different groups of cities; (2) 
we applied a stepwise discriminant analysis for selecting a relevant and 
reduced set of spatial metrics - based on their significance - that better 
separates the cities into these groups. Afterwards, the values of the 
spatial metrics, and thus the spatial structure of cities, were interpreted 
for each group. 

4. Results 

4.1. Spatial analysis of cities 

In Table 3 we present the composition of the training/test sets and 
the per-class and overall accuracies obtained for the LCZ classification. 
Per-class accuracy is given by the user’s and producer’s accuracy, where 
the number of correct classified cells in a class divided by the total 
number of cells classified as that class is the user’s accuracy (commission 
error), and if divided by total number of cells of a class in the ground 
truth is the producer’s accuracy (omission error) (Congalton, 1991). The 
region was split in two parts (North and South) and training was per-
formed on the Northern region, while testing was performed on the 
Southern to avoid positive biases related to spatial co-location of cells. 
We obtained an overall accuracy of 83%, which is slightly lower than in 
Tuia, Moser, Wurm, & Taubenböck (2017), most probably due to the 
larger amount of testing samples used in this study. With the exception 
of the LCZ2 “Compact midrise” class and the LCZ5 “Open midrise” all the 
other classes are classified with more than 70% accuracy. Moreover, the 
average accuracies of 76.5% and 82.7% also show that the errors are not 
systematic on the small classes. In Fig. 2 we illustrate the LCZ classifi-
cation for the 31 sample cities in NRW. The detailed example of the city 
of Münster reveals how the structural variety of the built and natural 
landscape is captured by the LCZ classification. 

Concerning the spatial metrics, in total 22 global metrics per city and 
24 class metrics per LCZ and city were calculated. Since our classifica-
tion map had 12 LCZ classes, 310 metrics were obtained at city level. 
After the correlation analysis, a reduced subset of 72 uncorrelated 
metrics remained. This subset was the input in VSURF for each socio- 
economic variable, obtaining one group of metrics per socio-economic 
variable with sizes between 19 and 31 metrics (Table 4). This output 
was part of the input in the following section as explained below. 

4.2. Models of socio-economic variables 

In Table 5 we show the results of the eight fitted models, one for each 
socio-economic variable. The numerical goodness-of-fit indicators show 
that the models are statistically significant (p-value < 0.05) and explain 
from 43% to 82% of the variability (R2) of the socio-economic variables 
by means of the spatial structure of cities, with RMSEs ranging from 0.10 
to 0.17. The values of the model of housing were normalized with a 
logarithmic transformation to obtain a normal distribution of the re-
siduals and improve the adjustment (Table 5). The spatial metrics 
included in each model and their associated coefficients allow inter-
preting which and to what extent spatial patterns explain the modelled 
variable (Table 5). As they are all standardized to z-scores prior to the 
analysis, their direct contribution is represented by the regression 
coefficients. 

The relationships we found between the spatial structure of the cities 
in this region and the socio-economic variables are as follows: cities with 
a better level of education have less open, and thus more continuous, 
built-up (PU), however, the distribution of open midrise is more scat-
tered (DEMp5), dense tree patches are furthest away from the city center 
(DimRA), and there is a higher density of open high-rise buildings (DC4). 
In terms of health, the model relates a lower death rate in cities with a 
fragmented and distant distribution of sparsely built (DEM9) and scat-
tered tree (DEMB) patches. Conversely, larger and less fragmented areas 
of heavy industry (IS10) are usually present in cities with higher levels of 
death rates. On the one hand, a compact shape of open midrise (C5), 
scattered from city centers towards the suburban areas (DEP5) with a 
compact midrise core (TM2) is related to lower prices of housing. On the 
other hand, income is higher in cities with bigger extensions of open low- 
rise (TEM6), clustered dense trees (ISA), and contiguous areas of sparsely 
built with very few open areas (P9). Regarding the ability to pay for 
housing based on income, the model is similar to housing model (TM2 
and C5), except that the affordability is inversely proportional to the 
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fragmentation of open low-rise (IS6). Therefore, the ability to pay is 
lower in bigger cities with a compact midrise core surrounded by frag-
mented clusters of open low-rise structures. 

In relation to the economic aspects (employment), open low-rise 
located towards the periphery of the city (DimR6) and a fragmented 
and distant distribution of sparsely built (DEM9) are characteristic of 
cities with higher employment rate, moreover, LCZ patches are bigger, 
which means more continuous LCZ classes and, in general, less isolated 
small patches (TEM). Concerning transport, fragmented cities (TEM) in 
small continuous clusters (GC), with higher proportion of sparsely built 
areas (DC9) and a lower number of large low-rise areas (DO8) commute 
more by car or motor cycle. Meanwhile, citizens living in cities associ-
ated with more compact areas of sparsely built structural type (C9) 
commute more out of the city (commuting). The way in which open low- 
rise is allocated affects commuting patterns. The higher the number of 
compact clusters (LPF6 and IS6) the more the commuting proportion. 

4.3. Categorization of cities 

Fig. 3 shows the clustering of cities according to their socio-economic 
similarities using the normalized values of six socio-economic variables 
(we excluded the share of journeys to work by car or motor cycle since 
statistics were available only from 29 cities and the ability to pay for 
housing since housing and income were included instead). The indi-
vidual plots show the location of cities by means of the bi-dimensional 
spaces defined by each pair of socio-economic variables. Cities are 
identified by means of a number and color. The map depicts how cities 
and groups are distributed in the region. It can be seen that the first 
group (green) is easily identified by means of income and commuting 
levels (income and commuting plots in Fig. 3). While education discerns 
the second group (blue, education plots in Fig. 3), the identification of 
the third group (orange) is not straightforward. However, the fourth 
(red) can be identified by means of death rate, price of buying an 
apartment and employment rates (health, housing, and employment 

Table 3 
Numerical results of the LCZ classification and number of samples used for train/test steps. User’s and producer’s accuracy and global statistics.   

Code LCZ No. samples (train/test) User’s accuracy Producer’s accuracy 

Land cover LCZ A Dense trees 186 / 114 76.99% 76.32% 
LCZ B Scattered trees 118 / 107 74.77% 74.77% 
LCZ D Low plants 169 / 131 81.41% 96.95% 
LCZ F Bare soil or sand 108 / 192 97.33% 94.79% 
LCZ G Water 194 / 106 98.85% 91.13% 

Built-up LCZ 2 Compact midrise 82 / 39 45.59% 79.49% 
LCZ 4 Open high-rise 13 / 26 100% 3.85% 
LCZ 5 Open midrise 124 / 72 67.95% 73.61% 
LCZ 6 Open low-rise 152 / 48 88.10% 77.08% 
LCZ 8 Large low-rise 100 / 101 91.01% 80.20% 
LCZ 9 Sparsely built 153 / 55 81.67% 89.10% 
LCZ 10 Heavy industry 148 / 192 88.62% 90.83%   

Average accuracy – 82.69% 76.51%   
Overall accuracy – 83.08%   
kappa – 0.81  

Fig. 2. Location of NRW in Germany (left). Result of the classification for the NRW region highlighting the classification in the analyzed cities (middle). Detailed 
example of the classification for Münster (right). 
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plots in Fig. 3). 
The interpretation of groups by their mean values (i.e.: group cen-

troids using the non-scaled socio-economic variables, Table 6), shows 
that group 1 is formed by four cities with medium and low rates of 
mortality and low-education, the prices of buying an apartment are the 
lowest in contrast to the highest income levels (i.e., the capacity to pay 
for housing is higher), however, the low employment is balanced by the 
highest commuting level to work out of the city. Group 2 accounts for the 
majority of cities (15 out of 31). This group is characterized for having 
lower education and employment together with higher death rates, the 
prices for buying an apartment and the income are medium-low in 

comparison with the rest of the groups, and a close to 15% commute out 
of the city. Group 3, which most closely approximates to the mean values 
of the region (Table 6), clusters seven cities; in this group the education 
level and health are medium, the price of buying an apartment is high in 
contrast with the lower income levels (i.e., low capacity to pay for 
housing), however, the employment rate is medium-high and there are 
low commuting rates. Finally, group 4 gathers five cities with the lowest 
proportion of the low-educated population, lower rates of mortality, and 
the highest prices for buying an apartment accompanied by high-income 
values; however, the huge discrepancy suggests housing prices are less 
affordable, the employment rate is the highest of the region and the level 

Table 4 
Description of the selected spatial metrics (independent variables in the models from Table 5). The significant relations between metrics and socio-economic variables 
according to VSURF, are shown in the intersection of the rows and columns. The characters show whether metrics computed at the class level (with their LCZ short 
codes, see Table 3), at the city level (X), or lack of relation (− ). Formulas can be consulted in Sapena and Ruiz (2015, 2019). Patch means a group of contiguous pixels 
with the same LCZ class.  

Spatial metric Description Education Health Housing Income Affordab. Employ. Transport Commut. 

Compactness (C) Measures the shape complexity of the LCZ class. – F A,F,5,9 – A,F,5,9 A,F,5,9 A,5,9 A,F,5,9 
Class density (DC) The ratio between the LCZ class area and city area. 2,4,10 D, 

F,5,9 
A,F, 
G,2,5,6,9 

6 A,F, 
G,2,5,6 

9 6,9 6 

Density-diversity 
(DD) 

Sum of the ratios between the areas of every LCZ class 
and the largest LCZ class. Informs about the richness 
and heterogeneity. 

– – X – – X X X 

Patch nearest 
neighbor (DEM) 

Mean Euclidean distance between the nearest patches 
from the same LCZ class (km). 

B,5 A, 
B,8,9 

10 9 10 5,9 5,9 9 

Pixel nearest 
neighbor 
(DEMp) 

Mean Euclidean distance between the nearest pixels 
from the same LCZ class (km). 

A,5,6 D,6 8 A A D – A 

Wei. Standard 
distance (DEP) 

Area-weighted mean distance of patches from the 
same LCZ to their centroid (km). Informs about the 
concentration degree. 

– A,5 – 5 A,6 A D,6 8 

Object density 
(DO) 

The number of patches of the same LCZ divided by the 
area of the city. 

6,9 B,5,6 D,5 – D D,5 D,8 D,5 

Urban density 
(DU) 

The ratio between the built-up area (LCZ2-10) and the 
city area. 

– X – – – X X – 

Radius dimension 
(DimR) 

Measures the centrality of the LCZ classes with respect 
to the city center given. 

A,6,9 A,B,G A,6,9 G,8,9 6,9 6,9 A,6,9 6,9 

Coherence deg. 
(GC) 

The probability that two random points are in the 
same patch in a city. 

X – X – X X X X 

Shape index (IF) A normalized ratio of patch perimeter-area in which 
the complexity of patch shape is compared to a square 
of the same size. 

2 – 2 – 2 – 2 2 

Splitting index (IS) The number of patches when dividing the LCZ class 
into equal size parts with the same division. 

X,G F,10 X,6 A,6 X,6 X,6 X,6 X,6,10 

Leapfrog (LPF) The proportion of isolated pixels with respect to the 
entire LCZ class. 

6 5,8 A,B A 5,6 – 5,6 5,6 

Urban− /porosity 
(PU, P) 

The ratio of open space (area of holes within the built- 
up area or LZC class) compared to the city or LCZ area 
(Reis, Silva, & Pinho, 2015). 

X – 5,9 X,9 5 – 5 5 

Contrast (RCB) The sum of the segment lengths of pixels adjacent to 
different LCZ, divided by the perimeter. 

D D A X – X,D D – 

Effective mesh size 
(TEM) 

Measures the connectivity. Low values mean 
fragmentation (ha). 

2 6,8 2,8 2,6,8 2,6,8 X,2,8 X,2,8 X,6 

Object mean size 
(TM) 

Average size of the patches from a LCZ class (ha). 2,4,9 F,G,9 2 G,2,4 F,2 – 2,9 2  

Table 5 
Multiple linear regression models for the normalized socio-economic variables, where higher values mean better conditions for all variables (dependent variables, DV), 
using the spatial metrics (independent variables (IV) in bold, with the LCZ class in the subscript). The intercept, coefficients of IV, leave-one-out cross-validation 
coefficient of determination (R2), the root mean square error (RMSE), the p-value of the model, and the number of observations or cities (Ob) are shown. The acronyms 
of LCZ and spatial metrics can be found in Tables 3 and 4, respectively.  

DV Intercept IV 1 IV 2 IV 3 IV 4 R2 RMSE p-value Ob 

Education 0.407 0.159⋅DEMp5 0.119⋅DimRA − 0.110⋅PU 0.077⋅DC4 54.87 0.174 7.7⋅10− 6 31 
Health 0.389 0.130⋅DCF 0.102⋅DEMB 0.081⋅DEM9 0.081⋅IS10 49.78 0.175 9.9⋅10− 6 31 
Log(housing) 0.536 0.138⋅C5 0.093⋅P9 − 0.060⋅TM2 0.057⋅DEP5 50.61 0.151 1.2⋅10− 5 31 
Income 0.560 0.112⋅TEM6 − 0.092⋅ISA − 0.057⋅P9  43.4 0.165 2.7⋅10− 5 31 
Affordability 0.580 − 0.088⋅TM2 0.076⋅C5 − 0.067⋅IS6  53.98 0.153 3.9⋅10− 6 31 
Employment 0.281 0.108⋅DimR6 0.108⋅DEM9 0.093⋅TEM  56.84 0.157 2.0⋅10− 7 31 
Transport 0.457 0.236⋅TEM − 0.149⋅GC 0.114⋅DO8 − 0.057⋅DC9 51.22 0.166 5.1⋅10− 6 29 
Commuting 0.637 − 0.222⋅C9 0.100⋅LPF6 0.078⋅DEM9 − 0.059⋅IS6 82.29 0.101 7.4⋅10− 11 31  
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Fig. 3. Clustering of cities into four groups using the scaled socio-economic variables. The individual scatter plots show: the location of the cities according to each 
pair of socio-economic variable (row and column, e.g.: the top-left plot corresponds to ‘education’ and ‘health’), the centroid of each group, and the distance of cities 
to their centroid. The map locates spatially the clusters and combined with the table identifies the cities (identification number, group and name of the city). It 
compares cities relatively based on to their socio-economic performance and groups them according to their similarities. 

Table 6 
Mean of non-scaled socio-economic variables (centroids) and number of cities per group. The last row shows the mean values of the NRW region.  

Group Cities Education (%) Health (n◦/1000) Housing (€) Income (€) Employment (n◦/1000) Commuting (n◦/1000) 

1 4 27.59 9.92 91,875 23,975 426.01 215.27 
2 15 37.24 11.89 91,933 20,900 421.49 148.49 
3 7 29.44 11.36 104,000 19,700 498.79 112.94 
4 5 26.37 9.01 134,400 22,200 686.05 97.82 
NRW 31 32.48 11.05 101,500 21,235 482.20 140.91  
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of commuting out of the city is the lowest. 
By representing the cities multi-dimensionally using the socio- 

economic values by means of star plots (Fig. 4), the shape of each city 
becomes an indicator of its ‘quality of life’ (here based on five di-
mensions), the more complete (i.e., the area of the gray circle is covered) 
the better. Group 1 shows high levels of commuting out of the city, ed-
ucation, health, house affordability, and income, but very few employ-
ments (work place-based). This shape can be related to satellite cities 
with good quality of life (regarding education, health and living con-
ditions) but a less desirable situation in terms of sustainability due to the 
high commuting shares, to balance against the low employment rate. In 
group 2 we find the lowest values of education and health in the region, 
commuting is medium-high and housing is affordable compared to in-
come levels, however employment is quite low. There are similarities 
with the first group in the values of employment and housing, however, 
the analysis of the rest of variables suggests that this group has the 
lowest quality of life relative to the entire region. Group 3 presents the 
lowest values of income in the region, and health is slightly lower than 
that of the mean NRW value. However, the remaining socio-economic 
variables are quite close to the mean values, which may suggest a 
quality of life close to the NRW average. Finally, group 4 has the lowest 
values of commuting out of the city, while education, health, employ-
ment and income are considerably high and, as a counterpart, housing is 
less affordable. Additionally, this can be considered the most sustainable 
group in terms of commuting shares. Thus, according to the analyzed 
dimensions, it could be objectively said that it shows the highest quality 
of life in the region. 

The spatial structure of urban spaces, as mentioned in the intro-
duction, is related to this measured ‘quality of life’. To explore such 

relationships, we selected the spatial metrics that best identify these 
groups. We started from the subset of metrics selected with the VSURF 
method. Five spatial metrics for three structural types were the most 
influential in terms of grouping cities into different levels of quality of 
life. Those metrics were: the distance between sparsely built and open 
midrise structures patches within the city (DEM9 and DEM5), the num-
ber of open areas within the sparsely built patches (P9), the connectivity 
and size of open low-rise patches (TEM6), the compactness of open 
midrise (C5), and the centrality (proximity to the city center) of sparsely 
built and open low-rise (DimR9 and DimR6). The spatial patterns that 
better differentiate between the derived levels of quality of life can be 
analyzed by representing the values of these metrics for each socio- 
economic group in box-and-whiskers plots (Fig. 5). The spatial pat-
terns that better represent the cities in group 1 are the presence of the 
biggest continuous areas of open low-rise, the highest compact shapes of 
open midrise patches but spatially scattered, and the compact distribu-
tion of sparsely built close to the city centers. For group 2, the metrics 
portray an even distribution of the sparsely built areas through the city, 
with fragmented and centralized open low-rise. Group 3 shows open 
midrise structures scattered across the city, plus high values of open 
areas in the sparsely built environment, close to each other but farther 
from the urban cores, pointing that these urban structures are located in 
the surrounding areas of the city centers that are mainly occupied by 
high and medium rise types. Finally, cities in group 4 are especially 
characterized by a compact nucleus of open midrise structures, with 
irregular shape, combined with fragmented distribution of sparsely built 
far from the urban cores, probably as they are located in the outskirts of 
the city, as well as the fragmented and decentralized distribution of open 
low-rise (Fig. 5). That is, cities in group 4 have a compact urban core 

Fig. 4. Multi-dimensional quality of life star plots of cities by group. Values are relative, as the socio-economic variables were min-max normalized between zero and 
one. For education, health, housing, and commuting the normalization was inversed and thus, higher values mean better conditions. The legend (top right) shows the 
maximum value of each socio-economic variable, equal to one, and its name related to the position and color. The mean values of the NRW region are represented in 
the bottom right. The gray background shows the maximum reachable value. 
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becoming gradually less compact as the distance to the core increases, 
eventually with low-dense structures located in the outskirts. For 
example, Münster (detailed example from Fig. 2) present this spatial 
pattern, with a compact midrise core (orange), with decentralized 
fragmented clusters of open low-rise (red) intermixed with a scattered 
and isolated distribution of sparsely built (pink). 

5. Discussion 

Our study in the cities of North Rhine-Westphalia in Germany shows 
the interrelation of urban spatial structure with quality of life di-
mensions. Our findings show that the education, mortality, income, 
employment, and other quality of life indicators can be partially 
explained by urban spatial pattern metrics extracted from urban struc-
tural types and land covers. No more than four metrics were needed to 
explain more than 40% of the variability of the socio-economic levels in 
cities with a similar economic and historical background for a given 
time. For example, the level of education tended to be better in more 
compact cities but also in cities with low-dense structures (i.e., open 
low-rise and sparsely built), which correspond to major cities and their 
satellite cities in NRW, respectively. This link can be related to higher- 
educated people moving to bigger cities seeking better job opportu-
nities, and eventually moving to satellite cities. This seems to differ with 
a study where higher education levels were found in low-dense urban 
areas against high-dense areas in North America (Batchis, 2010). Cities 
with distant agglomerations of sparsely built areas and vegetation, 
combined with fewer and more scattered industry areas showed fewer 
death rates. In this sense, Oliveira (2016) compiled case studies that 
related walkability, diversity of land uses, and urban form with an 
improvement in health habits. The positive relation between death rate 
and bigger areas of heavy industry, besides higher shares of death in 
cities from groups 2 and 3, could be related to the fact that most of these 
cities are located in the highly industrialized Ruhr region, where death 
rates are high (Kibele, 2012). Apartments in cities of NRW with midrise 
structures (compact in the core and open towards the suburbs) and 
patches of dense tree are prone to be more expensive. We also found that 
income is measured higher in cities with a larger share of continuous and 
homogeneous areas of very low-dense built-up areas (i.e. sparsely built 
and open low-rise structural types), a spatial pattern that is especially 
seen in the satellite cities in NRW. Similarly, we found that commuting 
out of the city is higher in cities with more clusters and more compact 
areas of these low-dense built-up structural types, and the share of 
people choosing to commute by car or motor cycle is higher in less 
diverse and low-dense cities, which could be related to more mono-
functional and dispersed cities. This tendency is widely discussed in the 
literature, for example, Travisi, Camagni, & Nijkamp (2010) found 

higher automobile dependency in low-dense Italian cities. The positive 
relation of low-dense cities with higher incomes and commuting shares, 
especially by car or motor cycle, is likely to be linked to preferences of 
high-income households to live in less dense areas despite the higher 
travel cost. Additionally, the proportion of employment showed a pos-
itive relation to the homogeneity of structural types, they seem to be 
more organized, that may suggest that cities with more jobs are planned 
in a more uniform spatial distribution, with the exception of the sparsely 
built that tends to be more fragmented in these cities. Other authors also 
found relationships between spatial metrics and percentages of land uses 
with employment sector statistics (Ghafouri, Amiri, Shabani, & Songer, 
2016). 

The socio-economic variables used in this study cover several di-
mensions of quality of life (Eurostat, 2017). Therefore, grouping cities 
according to the socio-economic variables allowed us identifying 
various levels of quality of life within the analyzed cities. One group 
presented the lowest level in the region, but it does not necessarily mean 
that the quality of life is poor because we are comparing relative values. 
On the contrary, two groups stood out for having better levels of quality 
of life. These groups differ in commuting patterns, housing affordability, 
and employment rates, and coincide with major cities and satellite cities. 
Despite having a good quality of life, satellite cities here identified with 
low-dense built structures, are unsustainable in terms of commuting and 
transport choices, besides low-dense cities are more inefficient in the use 
of land, energy and resources (Bhatta, 2010). We also found common 
spatial patterns related to the built-up structural types in cities that had 
similar levels of quality of life, which again suggests the two-sided 
impact of spatial structure of cities on their socio-economic levels. We 
should note here that this specific morphology found for cities in NRW 
for a given date do not necessarily have the same relations in other areas. 
Context is - as Tonkiss (2013) argues - all in this debate. However, 
similar correlations between urban spatial structures and economical 
functions have been previously discussed in the literature. For instance, 
Mouratidis (2018) found a positive relation between social well-being 
and high density, short distances to the center, and land use diversity. 
Venerandi, Quattrone, & Capra (2018) modelled deprivation to popu-
lation density, higher proportion of bare soil and regular street patterns, 
while other authors predicted indicators of wealth, poverty and crime 
through satellite data (Irvine, Wood, & McBee, 2017). Studies relating 
urban spatial structures with socio-economic values are usually focused 
in single dimensions, such as education, poverty, transport, air pollu-
tion, health, energy consumption, etc. (e.g.: Batchis, 2010; Duque et al., 
2015; Hankey & Marshall, 2017; Sandborn & Engstrom, 2016; Wurm 
et al., 2019). Only a few of them analyze various indicators (e.g.: Irvine, 
Wood, & McBee, 2017; Sapena, Ruiz, & Goerlich, 2016) or combine 
them (Tapiador, Avelar, Tavares-Corrêa, & Zah, 2011). In contrast, we 

Fig. 5. Box-and-whiskers plot illustrating the standardized values of the spatial metrics for each socio-economic group of cities. Where: C = compactness, DEM =
patch nearest neighbor, DimR = radius dimension, TEM = effective mesh size, and P = porosity. The subscript shows the LCZ: 5 = open midrise, 6 = open low-rise 
and 9 = sparsely built. 
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tackled several aspects individually related to the quality of life and also 
in a combined way. We found that cities with a higher socio-economic 
status in NRW have a core with spatially compact midrise structures, 
while on the periphery there are small groups of low-rise structures and 
sparsely structures disaggregated with a high proportion of open green 
spaces. However, we are fully aware that the urban spatial structure of 
cities does not define or fully explain their success, since there are many 
other factors that play an important role. However, in the region 
analyzed, cities with similar spatial appearance also had similar socio- 
economic levels; this is a strong indication that the spatial structure of 
the cities do influence socio-economic performance. It should also be 
recalled that correlation does not imply causation, and thus the variation 
of a spatial pattern does not necessarily improve the socio-economic 
level of a certain area, although, it will certainly alter its state (Lehrer 
& Wieditz, 2009; Williams, 2014). 

We also faced some limitations. We based the relations on a large and 
consistent set of variables. However, a comprehensive set of variables is 
inexistent which means that we are not able to depict the manifold in-
terrelationships holistically. Moreover, it is worth noting that we did not 
include external influences in the models, such as policies, individual 
historical background, etc. While of course, every city is unique, the 
overall urban spatial structure of the analyzed cities is comparable to a 
certain extent, thus reducing these influences. However, when con-
ducting a global analysis, externalities should be considered, as well as 
measuring the spatial stratified heterogeneity (Wang, Zhang, & Fu, 
2016) to test whether the variables are distributed unevenly across 
different parts of the study area, in which case it would be convenient to 
perform different models. Besides, it was not possible to model some 
socio-economic factors such as the ‘proportion of economically active 
population’ or the ‘share of persons at risk of poverty after social 
transfers’ with the spatial distribution of LCZs, and thus they were not 
included in the analysis. Regarding the data used in this study, it is 
important to mention the following: on the one hand, the urban spatial 
patterns of cities were extracted by means of spatial pattern metrics. 
When working with spatial metrics, diminishing redundancies by 
removing duplicated information and the selection of the most signifi-
cant variables is of great importance (Sapena & Ruiz, 2019; Schwarz, 
2010). Another consideration is that the accuracy and spatial resolution 
of the image classification (here measured with 83% overall accuracy) 
affects to the spatial metrics, this fact needs to be considered when 
extracting conclusions of such studies. On the other hand, the socio- 
economic data used in this study have a great potential for compara-
tive studies in Europe, but as mentioned, the average values at city level 
disregard internal socio-economic variations assuming that cities are 
homogeneous. Another limitation is the use of only five aspects of 
quality of life based on eight indicators, instead of a larger subset of 
socio-economic variables to enrich the analysis. Although these vari-
ables were able to represent a significant part of the different levels of 
quality of life in the region, we were subject to the availability of data. 
Moreover, data quality and spatial units should be considered (Schwarz, 
2010; Venerandi, Quattrone, & Capra, 2018). Whereas remote sensing 
and GIS derived products, such as the LCZs classification, have no 
boundary or time-scale limitations, socio-economic statistics are usually 
restricted by administrative boundaries and census dates. Nevertheless, 
there is a recent tendency to provide these data in a different format, 
such as gridded datasets that swap irregularly shaped census boundaries 
to a regular surface (EFGS, 2019). These new datasets will serve as an 
opportunity to conduct studies that are not restricted by administrative 
boundaries. 

The quality of life of the population and the sustainable development 
of urban areas are in the spotlight (OECD, 2017). Improving the un-
derstanding of the spatial structure of urban areas, the demographic, 
social and economic levels of these areas and their interrelations con-
tributes to planning the development of cities with a view to meeting the 
global policy objectives set out in the New Urban Agenda (UN-Habitat, 
2016). In order to unravel the interactions between the spatial structure 

of cities and their socio-economic levels, in this paper we quantified 
their relationships by means of statistical models. This supports the 
hypotheses that assume that the spatial structure of cities reflects social 
and economic indicators of their inhabitants, and eventually influence 
their quality of life. The applied methodology can be used as a tool to 
obtain empirical evidences as well as learning from past trends and 
understanding the present to design a better future. 

6. Conclusions 

The spatial structure of urban spaces is related to the quality of live 
and sustainability of our cities. This is clearly confirmed by this analysis 
of cities in NRW. We extracted the spatial structure of cities using spatial 
pattern metrics from a LCZ classification based on machine learning 
algorithms applied to multimodal geospatial data. These attributes 
explained the variability of quality of life related indicator, which are 
linked to six out of seventeen SDGs. Moreover, grouping cities into 
different levels of quality of life showed common spatial patterns within 
the groups. We ascertained that the spatial structure of cities has a strong 
influence on their socio-economical functions, but does not fully deter-
mine them. 

In times of increasing availability of socio-economic and spatial data 
(e.g. from remote sensing) in ever-increasing spatial resolutions, there is 
a huge demand for systematic research in this direction. Of particular 
interest is research that systemizes these relations in dependence of 
context, that is policies, culture, demography, etc., for a more general 
and quantifiable knowledge of the influence of the urban spatial struc-
ture on socio-economic parameters of cities and their people – this paper 
testifies to this. 

Although this study accounts for cities in NRW in a specific period, 
and thus is not globally representative, results show a trend that is worth 
investigating further. This is feasible due to the growing availability of 
data for both local and global levels. Moreover, the methods applied in 
this study are directly transferable to other regions and datasets, which 
would broaden the analysis and derived conclusions. Additionally, the 
increase of the temporal scale would allow gaining knowledge of how 
urban growth affects cities and urban areas spatially and socio- 
economically, and inversely the influence of socio-economic policies 
and evolution on the urban growth patterns, as well as quantifying their 
interrelationships. The analysis of the relationships of urban developing 
processes, e.g. the effect of city design choices on urban fabric, is of high 
interest for future research and will provide a valuable source of infor-
mation for supporting policy makers and city planners to ensure the 
quality of life and sustainable development in urban areas. 
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