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Daniel Medina1, Lars Grundhöfer2 and Niklas Hehenkamp2

Abstract— Global Navigation Satellite Systems (GNSS) con-
stitute the cornerstone for outdoor positioning, which is es-
sential information for prospective automated vehicles. The
combination of GNSS with terrestrial ranging, for instance
in the form of 5G or UWB, will make accurate positioning
a reality even in urban canyon scenarios where GNSS is
likely to fail. Thus, hybrid GNSS-terrestrial localization in
collaborative networks has become a hotspot for the research
community. This paper discusses the Cramér-Rao Bound (CRB)
as lower bound for location estimates and evaluates two snap-
shot estimators, one deterministic and the other Bayesian, for
distributed and centralized localization in cooperative networks.
The performance of the estimators is evaluated with respect
to the presented CRB in a simulated network of mobile and
anchor agents, and the role played by agent-to-agent and agent-
to-anchor ranging is discussed.

I. INTRODUCTION

In challenging urban environments, obstacles can obstruct
the visibility of Global Navigation Satellite Systems (GNSS)
satellites. If GNSS satellites are not in line of sight, GNSS-
based services may lose reliability or even fail completely.
A higher elevation mask might diminishes reflection and
multipath effects, at the cost of a reduced satellite geom-
etry [1], [2]. Recent approaches on collaborative hybrid
localization (GNSS and another ranging technology) have
been presented, showcasing promising results on reliable
positioning in obstructive scenarios [3]–[8]. While Inertial
Measurement Units, optical sensors and other sensors can
support positioning in these cases [9]–[13], this work focuses
on signals of opportunity that enable the obtainment of
pseudo-ranges between devices.

The current development and research efforts in 5G cel-
lular networks suggest that future cellular user equipment
will feature device-to-device ranging capabilities on top
an improved device-to-infrastructure ranging features [14]–
[18]. The combined use of device-to-device and device-
to-infrastructure ranging can provide a positioning solu-
tion whose accuracy and reliability depends on the density
of devices and infrastructure elements. Moreover, future
millimeter-wave systems will implement angle of departure
(AoD) and angle of arrival (AoA) estimation through beam-
forming with the help of highly directional, steerable and
compact antenna arrays [19]. The demand and importance
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for location awareness in diverse applications increases, espe-
cially in wireless networks. Localization methods developed
within the wireless networking domain can benefit GNSS
based positioning to increase its accuracy. Likewise GNSS
can support localization within wireless networks if the
involved devices feature GNSS positioning. A collaborative
approach can benefit the overall localization problem.

We distinguish between two types of nodes. Nodes whose
states are unknown are referred to as agents. Nodes which
have known states at all times are referred to as anchors.
Both agents and anchors may be mobile. [6] demonstrate
that GNSS positioning can be improved by providing accu-
rate range estimates between a GNSS equipped agent and
an anchor at a well known position. The scenario covers
localization techniques provided in wireless networks consid-
ering solely agent-to-anchor ranging into account. However,
the collaboration of agents within a network provides the
possibility of agent to agent ranging.

This paper presents the signal model for localization
estimation in hybrid GNSS-terrestrial collaborative networks
and the associated estimation bound is discussed. Lower
estimation bounds constitute a fundamental tool to assess
the minimal performance, in terms for instance of mean
squared error (MSE), an estimator can achieve. Bounds
can be categorized as deterministic or Bayesian [20]. This
work considers the first, for which the unknown parameters
are considered deterministic and evaluate the locally best
estimator performance [21]. In particular, we re-visit the
Cramér-Rao Lower Bound (CLRB) derived for hybrid col-
laborative localization [3], and the importance of the different
ranging modalities among the agents is discussed. Besides,
this work examines the families of localization algorithms
and evaluates the performance for snapshot estimation for
deterministic and probabilistic methods, for positioning in
collaborative networks. The experimentation is based on
a synthetic collaborative network for which four agents
tracking GNSS satellites exchange ranging information with
each other, as well as with other two anchor nodes. The
CRBs are derived for each of these agents to showcase the
gain from each of the ranging modes, as well as to address
the performance of the proposed positioning methods.

The rest of the paper is organized as follows. In Section
2, the signal model for the hybrid localization in cooperative
networks is introduced. Section 3 presents the CRB for the
localization problem. Section 4 discusses the families of
positioning algorithms. Section 5 presents the experimenta-
tion and discussion. Finally, outlook and future work are
presented in Section 6.



II. SIGNAL MODEL

Let us consider a general cooperative network consisting
of A anchor nodes, whose positions pa and clock biases
are known, and M agent nodes whose positions pm and
receiver clock biases bm are unknown. Besides, S satellites
can be tracked by the participating agents. Each agent
m can be subscribed to a particular number of anchors,
communicate with certain other agents, and track a set of
satellites. Thus, we denote with Am,Mm,Sm the subset of
anchors, agents and satellites, respectively, that an agent m
receives ranging from. The number of elements composing
the aforementioned subsets is accordingly Am, Mm and Sm.

We can distinguish three kind of measurements, based on
the range observed from agent m to satellites, anchors or
other agents:

ρs→m = ‖ps − pm‖+ bm + εs→m, (1)
ra→m = ‖pa − pm‖+ εa→m, (2)
rn→m = ‖pn − pm‖+ εn→m, (3)

where p(·), ε(·)→m are respectively the position and ob-
servation noise for (·) = {s ∈ Sm, a ∈ Am, n ∈Mm}. The
observation noises are assumed to be independent and to
follow a zero-mean normal distribution

ε(·)→m ∼ N
(

0, σ2
(·)→m

)
. (4)

For agent m, the vectors of unknowns xm and observations
ym are expressed as follows

xm = [p>m, bm]>,xm ∈ RD+1, (5)

ym = [ρ>Sm , r
>
Am

, r>Mm
]>,ym ∈ RSm+Am+Mm , (6)

where D indicates the dimension of the position vector,
depending on whether two- or three-dimensional localization
is considered.

By stacking the vector of unknowns for each participating
agent:

X =
[
x1, . . . ,xM

]
, X ∈ R(D+1)M . (7)

Similarly, the complete set of observations is formulated as

Y =
[
ρ>S1 , . . . , ρ

>
SM , r

>
A1
, . . . , r>AM

, r>M1
, . . . , r>MM

]>
,
(8)

with Y ∈ R
∑

i(Si+Ai+Mi). The covariance matrix of the
observations R is described as dispersion over such set of
observations

R , D(Y) =

[
Rρ

Rr

]
, (9)

where Rρ and Rr are the covariance matrices for the GNSS
and terrestrial observations respectively, whose diagonal val-
ues agree with Eq. (4). In general, cross-correlation among
observations could exist, especially for the GNSS case when
nearby agents are tracking the same satellite. Also, NLOS
and multipath effects at a certain location are suffered in a
similar way accross the agents. However, these correlations
are out of the scope of this work and therefore disregarded.

III. CRB FOR COLLABORATIVE LOCALIZATION

The CRB describes the lowest bound on the mean squared
error (MSE) of any unbiased estimator. The bound can be
described by the diagonal elements of the inverse of the
Fisher Information Matrix (FIM) [20], [22]. Provided the
FIM for the vector of unknown parameters x, denoted as
F(x), the associated CRB is

CRBx , F(x)−1 � E
{

(x− x̂) (x− x̂)
> }

, (10)

where x̂ is an unbiased estimate and E is the expectation
operator. For agent m, its associated FIM can be obtained as

Fm = −E {Hm(Λm(xm))} , (11)

with Hm the Hessian operator for the vector xm and Λm
the sum of the log-likelihood function for observations.
Considering first the non-cooperative (GNSS-only) case, we
define

Λs→m(xm) =
∑
s∈Sm

L(ρm→s|xm). (12)

Taking into account all M agents, the FIM for GNSS is

Fgnss =

F1

. . .
FM

 . (13)

For the hybrid GNSS-terrestrial cooperative localization, we
extend the log-likelihood function to

Λm(xm) =
∑
s∈Sm

L(ρs→m|xm)

+
∑
a∈Am

L(ra→m|xm)

+
∑
m∈M

∑
n∈Mm

L(rn→m|xm,xn). (14)

Using (11), we can split up the calculation for each agent as

Fm = Fs→m + Fa→m + Fn→m, (15)

while for the multi-agent case, the FIM is

FM = Fgnss + Fcoop, (16)

where

Fcoop =

Fa→1

. . .
Fa→M

+ Fcoop,nm. (17)

The different matrices are defined as

Fs→m =− E {Hm(Λs→m(xm))} ,
Fa→m =− E {Hm(Λa→m(xm))} , (18)

Fcoop,nm =− E {Hmn(Λn→m(xm,xn))} .

with

Λa→m(xm) =
∑
a∈Am

L(ra→m|xm),

Λn→m(xm,xn) =
∑
m∈M

∑
n∈Mm

L(rn→m|xm,xn) (19)



where Hmn is the cross Hessian matrix with dimension
Hmn ∈ R(D+1)M,(D+1)M .

Based on the split up, we derive the FIMs described in
Eq. (15). For the non-cooperative case, the associated FIM
is

Fs→m =

[
Fpm Fpm,bm

F>pm,bm
Fbm

]
� 0 (20)

where

Fpm
=
∑
s∈Sm

1

σ2
s→m

qsmq>sm,

Fpm,bm =
∑
s∈Sm

1

σ2
s→m

qsm,

Fbm =
∑
s∈Sm

1

σ2
s→m

(21)

where qim defines the unit-length steering vector between
pi and pm as qim =

pi − pm
‖pi − pm‖

.

Since there are no cross correlations for the measurement
of the anchor points, Fa→m can be described as

Fa→m =

[
Fpm

0
0 0

]
(22)

with
Fpm =

∑
a∈Am

1

σ2
a→m

qamqTam.

In order to derive Fcoop,nm, we need to utilize the cross
Hessian matrix

Hmn =


∂2

∂x1∂x1
· · · ∂2

∂x1∂xM
...

. . .
...

∂2

∂xM∂x1
· · · ∂2

∂xM∂xM


Applying (19) we get the block matrix in the form

Fcoop,nm =


F′1 0 K12 0 · · · K1M 0
0> 0 0> 0 · · · 0T 0

...
. . .

...
KM1 0 · · · F′M 0
0> 0 · · · 0> 0


(23)

where 0 is the D-size zero vector, and

F′m =
∑

n∈Mm

1

σ2
n→m

qnmq>nm, (24)

Kmn =

−
1

σ2
n→m

qnmq>nm, ifn ∈Mm

0 otherwise.
(25)

The generic expressions described above can be applied
to a particular network configuration for the estimate of the
associated FIM. The inversion of Eq. (16) expresses the
CRLB for the estimate of X.

IV. LOCALIZATION ALGORITHMS

The problem of localization for collaborative networks
can be formulated from different perspectives and, simi-
larly, algorithms for its resolution can be distinguished in
various categories. This work discusses two classifications:
centralized vs. decentralized estimation and deterministic vs.
Bayesian approaches.

A. Centralized vs. Distributed

Centralized estimation of the collaborative localization
problem requires the participating agents sending their
sensed observations from satellites and other agents to a
central node in charge of computing the complete set of un-
knowns X simultaneously. Thus, the minimization problem
can be expressed as next

X̂ = arg min
X

M∑
m=1

{ ∑
a∈Am

1

σ2
a→m

(
ra→m − ‖pa − pm‖2

)
+
∑
s∈Sm

1

σ2
s→m

(
ρs→m − ‖ps − pm‖2 − bm

)
+

∑
n∈Mm

1

σ2
n→m

(
rn→m − ‖pn − pm‖2

)}
.

(26)
In this case, the technical challenge lies on the capabilities
of the involved agents to forward their respective data to the
central node and the posterior dispatching of the obtained
localization solution to the pertinent agent. Regarding math-
ematical complexity, notice that Eq. (26) comprises a non-
linear, non-convex optimization problem for which a closed-
form solution is not known. Centralized estimation brings
clear assets: first, the privacy between users is respected,
since they would not exchange information with each other;
second, centralized methods exploit information from the
entire network and are supposed to yield more accurate
location estimation [8].

Distributed or decentralized localization approaches imply
that each agent estimates its own location. Thus, the associ-
ated optimization problem is as follows

x̂m = arg min
xm

{ ∑
s∈Sm

1

σ2
s→m

(
ρs→m − ‖ps − pm‖2 − bm

)
+
∑
a∈Am

1

σ2
a→m

(
ra→m − ‖pa − pm‖2

)
+
∑

n∈Mm

1

σ2
n→m

(
rn→m − ‖pn − pm‖2

)}
.

(27)
Distributed estimation has the advantage of being more

robust to failures, since the computation is spread over the
network. However, distributed approaches requires agents to
interchange location information, which might compromise
the individual privacy. Moreover, the exchanged position
between mobile agents might be incorrect, leading to further
estimation errors. Fig. 1 provides a pictorial example of
the aforementioned issues for the distributed localization
of agent 4, based on the depicted network. For simplicity,



Fig. 1. Example of distributed collaborative localization for agent 4. The contour plots depicts the least square (LS) cost function for whose the position
minimizing the optimization is indicated with a cross. On the left, it is depicted the ideal case, where the location of the other agents is known. On the
center, agents 1 and 2 communicate that their respective positions wrongly correspond to the red circles. On the right, the position of agents 1 and 2 is
wrong, but an estimate of the variance of their position is known.

satellite information is not considered in this example and
the ranging observations are free from noise. On Fig. 1
(left), the positioning information provided from agents 1, 2
and 3 is completely accurate. Thus, the position minimizing
the least square (LS) adjustment coincides with the reality.
Fig. 1 (center) depicts the situation for which the positions
of agents 1 and 2 are wrong, but information on their
location bias is not included in the estimation. Therefore,
the LS minimization for the position of agent 4 is wrongly
estimated. Finally, Fig. 1 (right) shows a similar situation,
where the locations of agent 3 and 4 is wrongly estimated,
but information of the covariance of their respective position
solutions in incorporated into the estimation. Therefore, the
observations of these two ”malicious” agents are de-weighted
with respect to the range measurements to agent 2 and the
two anchor nodes and the final localization of agent 4 is
correct.

B. Deterministic vs. Bayesian

Deterministic approaches consider the state estimation to
be a deterministic but unknown vector. Generally, these
approaches compute a solution in a snapshot manner, i.e. no
prior knowledge on the unknown parameters is incorporated
and solely observations received at a particular time are
considered. An extensive number of deterministic approaches
have been proposed for localization in collaborative net-
works, including simulated annealing [23], [24], semidefinite
programming [25]–[28] or parallel projection methods [29],
[30]. Nevertheless, classical Maximum Likelihood (ML)
estimation remains one of the preferred alternatives for
deterministic localization, given its asymptotic optimality
and mathematical simplicity [31], [32]. ML aims at finding
the estimate that minimizes Eq. (26) or (27), for centralized
or distributed problems respectively. Due to the non-linear
non-convex nature of the problem at hand, the optimality
(and even convergence) of ML estimates is subject to the
choice of the initial point. Steepest descent, shift-cutting
and Gauss-Newton (GN) are often the preferred algorithms
applied to drive the ML estimate [33], [34]. Since GNSS-

based positioning is generally accurate enough to serve as
starting search point, localization in hybrid GNSS-terrestrial
networks shall not be especially sensitive to convergence
issues with gradient-directed searches in ML.

In probabilistic localization approaches, the state estimates
are considered random variables whose probability density
function is to be estimated. Generally, the unknowns are
considered to follow a normal distribution whose parameters
–mean and variance– are to be inferred [35]–[37]. While
snapshot estimation is generally solved with one of the
deterministic methods aforementioned, Bayesian approaches
constitute the base for recursive estimation, which allows
incorporating the motion model for the tracked agents and
integrating series of measurements over time [38]–[41].

C. Proposed Bayesian Localization

This work proposes an iterative Bayesian estimator, in-
spired by the works on Iterated Extended Kalman Filter
[42], [43]. Its application to centralized and distributed
localization in cooperative networks is discussed. Particularly
for de-centralized estimation, some form of message passing
between agents is required, where each agent provides infor-
mation on their position p̂n and associated covariance matrix
P̂n for the position estimate. Considering the agent-to-agent
ranging observation in Eq. 3, the noise term needs to account
for the uncertainty on the position estimate of agent n as:

σ̃n→m = σn→m +

√
tr
(
P̂n

)
(28)

where tr(·) is the matrix trace operator. The described noise
model for agent-to-agent measurements was also illustrated
in Fig. 1 (right), where the uncertainty for the positions of
agents 1 and 2 was accommodated into the estimation. In
general, GNSS positioning can serve as initialization point
for estimating both centralized or distributed approaches.
GNSS positioning is generally realized by applying least-
squares adjustments [44], [45]. An overview of the algorithm
is provided in Alg. 1.



Fig. 2. On the left, Sky plot for the GNSS satellites tracked by the mobile agents proposed in the exemplary network. On the center, network for
collaborative positioning based on hybrid GNSS and terrestrial range measurements. On the left, CRB for position estimates for each of the agents, based
on the observation type used: GNSS-only (dark blue), GNSS+ranging to other agents (light blue), GNSS+ranging to anchor (green), GNSS+ranging to
anchors and agents (yellow).

Algorithm 1: Bayesian Solver: Distributed Location

Input : ym,Rm, x̂n, P̂n
Output: x̂m, P̂m

1 Prior from GNSS: {x0
m,P

0
m ←WLS(ρm,Rρ,m)}

2 Modify noise on n→ m ranges as Eq. (28)
for i = 0, . . . to convergence do

3 Linearize observation model
Hi = ∇h(xim)

4 Build gain matrix
Ki = P0

mHi(HiP0
mHi> + Rm)−1

5 Update estimates
xi+1
m = xim+Ki(ym−h(xim)−Hi(x0

m−xim))
end

6 Output estimates:
x̂m = xi+1

m

P̂m = (I−KiHi)P0
m(I−KiHi)>+KiRmKi>

V. EXPERIMENTATION

To provide insight into the hybrid GNSS-terrestrial col-
laborative localization problem, the network depicted in Fig.
2 (center) serves as example. Within an area of 50 by 50
meters, the network consists of four mobile agents, two
anchor nodes and the five satellites shown in the sky plot
of Fig. 2 (left). For the sake of simplicity, the network
is assumed to be fully connected –i.e., all agents measure
ranges to the two anchor nodes, to the other agents and
track the same number of GNSS satellites. Despite the agents
being mobile, note that the estimation is realized in any
case in a snapshot manner, so that the resulting estimates
of the compared algorithm methods can be compared to the
deterministic bounds described in Sect. III. The noise on
GNSS range observations are considered independent and
identically distributed (iid), according to a zero-mean normal
distribution with a deviation σρ = 5 meters. Noise on terres-

trial range measurements also obeys the iid condition and is
withdrawn from a normal distribution with σr = 0.30 m. For
the characterization of the proposed positioning estimators,
the results shown next are obtained after averaging over 1000
Monte Carlo experiments.

First, the estimation bounds for the different ranging
modalities is discussed. Fig. 2 (right) depicts the square
root of the trace for the CRB –taking solely the diagonal
values related to the position estimate or, in other words,
disregarding the clock bias. Fig. 2 (right) shows the CRB for
localization based for the four mobile agents, corresponding
to the time indicated with the (second) arrow on Fig. 2
(center). The ranging modes are indicated as follows: dark
blue for GNSS-only, light blue for GNSS and agent-to-agent
ranging, green for GNSS and agent-to-anchor and yellow for
combining all ranging approaches. Since all agents track the
five available satellites and the agent-to-satellite line-of-sight
vector barely changes among agents, the GNSS-based CRB
remains equal for all the agents. Also, as the network is
fully connected, the localization gain by adding inter-agent
ranging to satellite-based positioning barely changes across
the agents. Due to the position of the agents being unknown,
the advantage of agent-to-agent ranging might seem minimal
compared to agent-to-anchor ranging. When compared to
GNSS, the main positioning gain is related to anchor-to-
node ranging, with the CRB being mostly dominated by the
low-noise of the terrestrial ranging. However, on real-life
situations and vehicular applications, an agent might not be
able to range to multiple anchors and the relative geometry
is then of great importance. An example of the role played
by the agent-to-anchor geometry is illustrated for the agent
3 in Fig. 2 (center and right). At the studied time, agent 3 is
almost in line with the two anchor nodes, having therefore a
very poor geometry. This is reflected on its CRB for GNSS
+ anchor ranging, which is considerably higher than for
the remaining agents. The benefits of GNSS + agent-to-all



terrestrial ranging is depicted, being the positioning CRB
significantly lower than GNSS-only. Notice again, that the
communication to the anchors is the driver component.

Next, the positioning performance of the proposed es-
timators is addressed. To support the discussion of the
importance of the different ranging approaches, Fig. 3 depicts
the information ellipses at 90% confidence interval for the
horizontal positioning errors for a distributed ML estimator
using, respectively, GNSS (dark blue), GNSS and agent-to-
agent (light blue), GNSS and agent-to-anchor (green) and
GNSS and terrestrial (yellow) ranging observations. The
results resemble what one might expect from the estimated
CRB above, although the integration of the anchor ranging
does not reach the lower bound from the CRB, making
manifest the non-optimality of the estimates.

Fig. 3. Information ellipses for the horizontal positioning errors at 90%
confidence interval.

Fig. 4 depicts the CRB for the horizontal positioning
problem based on GNSS observations (solid blue) and for
hybrid GNSS terrestrial ranges (solid orange). The root mean
squared errors (RMSE) of the derived ML and Bayesian
estimators are shown as well. For GNSS-only positioning,
the ML is known to be an optimal estimator, since the non-
linearity and simplicity of the problem is reduced. This is
demonstrated empirically on our Monte Carlo experiment,
since the RMSE of the solver lies directly on the associated
CRB. On the other hand, the proposed estimators are not
optimal, with their performance being a meter worse than the
theoretical lower bound. This is most likely due to the non-
linearity and non-convexity of the problem, for which the
estimator is subject to lie on a local minimum instead of the
global one. Nonetheless, the Bayesian approach appears quite
promising, since it retains a performance similar to the ML
one, while still being compatible with tracking approaches.
When incorporating information of the dynamical model of
an agent and recursively filtering their noisy observations,
Bayesian methods have a promising future for localization
in collaborative networks.

Fig. 4. CRB for the positioning of agent 1 over time, as well as the RMSE
for the proposed ML and Bayesian methods. For reference, the CRB for
GNSS-only and the associated RMSE for a ML estimator is shown in blue.

VI. OUTLOOK

This paper presents the need for algorithms for localization
estimation in hybrid GNSS-terrestrial collaborative networks,
especially with the prospective application of 5G device-to-
device communication. The localization problem is formally
studied, from the point of view of the information theory, by
presenting the Cramér-Rao bounds of the estimated. Besides,
it is discussed the families of positioning algorithms, based
on whether they are centralized or distributed, as well as
deterministic or probabilistic. A simulated network serves
as experimentation, allowing us to discuss the importance of
agent-to-anchor compared to agent-to-agent ranging observa-
tions. Deterministic ML and Bayesian positioning methods
are explored and evaluated against the corresponding CRB
for horizontal positioning. Unfortunately, current solvers can-
not reach the CRB lower bound and therefore, they are not
optimal. Bayesian methods might be especially interesting
for future works, since its application to recursive estimation
is immediate and the incorporation of the dynamical model
of the agents is a fundamental tool for precise and robust
localization in cooperative networks.
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