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This paper proposes an algorithm for modeling a three-dimensional tethered environment for testing vertical-take off, vertical
landing vehicles. The method is able to take several geometrical configurations into account and combines the classical catenary
model with the elasticity theory to predict the forces acting on the lander in quasistatic conditions, i.e., in conditions of
hovering, where the motion of the vehicle is reduced. Numerical results confirm that the method is potentially able to provide
real-time solutions, which can be included as feedforward contributions in the design of tethered experiments.

1. Introduction

Recent and future missions involve a precise descent and
landing in addition to the ascent phase to reach the target
orbit. This can be on the one hand the powered descent
and landing of a reusable first stage of a launch vehicle as it
was demonstrated several times by SpaceX with its Falcon 9
launch system. On the other hand, precise descent and land-
ing has been applied to planetary missions and is foreseen for
many more future missions to Mars and to the Moon. The
development of guidance, navigation, and control (GNC)
techniques for these applications remains a challenging task
although several missions have been already successfully
completed. Several ideas to support and accelerate the
GNC development using demonstrators have been con-
ceived in the past, for example NASA’s Morpheus lander
[1, 2] or the HOMER demonstrator of Airbus Defense and
Space [3, 4]. In these and other developments of space sys-
tems, a wide variety of tethered experimental setups has been
created [1, 2, 5–8].

For vertical-take off, vertical landing (VTVL) vehicles,
the use of tethered solutions has pros and cons. One of the
main drawbacks is the impact of the tethers on the flight
characteristics of the vehicle. They introduce effects which
do not exist in the final free-flight scenario. A further down-
side is that the allowed flight envelope is usually quite small
due to limited tether length. Nevertheless, it is sufficient to

test the hovering capability, one of the first milestones to be
achieved towards the development of the full free-flight capa-
bility. On the other side, a tethered configuration provides a
safe environment for the vehicle. It is mitigating the effect
of failures until the technology under development is mature
enough to allow a reliable free flight. Moreover, the use of
tethered configurations allows for making the test facility a
protective area for the team of engineers and researchers.
Thus, they can safely and closely track the progress in the
development of the vehicle.

This paper addresses the problem of modeling the teth-
ered testbed during the hovering experiments of the VTVL
vehicle EAGLE (Environment for Autonomous GNC Land-
ing Experiments) developed by the German Aerospace Cen-
ter (DLR) [9–11]. The modeling focuses on the tethering
effects on the vehicle in hovering conditions. It can poten-
tially be extended to any vehicle where it is needed to include
the forces generated by the tethers in the design of the
controller.

The modeling starts with the use of the catenary, a well-
known concept in the field of structures and mechanics
[12], which physical meaning is the ideal shape that a hang-
ing rope or chain has when subject to its own weight while
having its endpoints constrained in two points in the space.
The catenary is slightly different from the parabolic profile,
which is the shape that intuition would (erroneously) sug-
gest. The catenary concept is widely used and can be
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extended to multibody net structures [13]. For instance, it
can be used for the modeling of railway overheads or power
lines as in [14] or [15]. In these applications, however, the
shape is the most important aspect and is therefore the main
factor to be studied. As a consequence, the forces at the sus-
pension points are not so emphasized.

In [16], the catenary curve and the corresponding equi-
librium of forces are discussed in the frame of the develop-
ment of a controller for an unmanned vehicle. However,
this work focuses on the design of a controller which mini-
mizes the tension in the ropes. Richardson focused instead
on the entanglement detection of swarms of robot in urban
environments [17].

This paper focuses on the modeling and the analysis of
complex tethered configurations including hanging ropes
attached to the vehicle while hovering. In addition, elasticity
is included in the model. The purpose is to know the forces
which act on the VTVL vehicle and can be included as
feed-forward contribution in the design of the EAGLE con-
troller. We propose an algorithm implementing the afore-
mentioned theories of catenary and elasticity that computes
the forces acting on EAGLE in an iterative way.

The paper is structured as follows. In Section 2.1, the
modeling of a hanging rope and the related concept of cate-
nary are introduced. The corresponding forces at the suspen-
sion points with and without elasticity are computed.
Numerical validations of the proposed modeling are carried
out in Section 2.2. In Section 3.1, the specific geometrical test
setup for EAGLE is described. The setup includes different
rope materials and a configuration of three ropes which are
linked to the VTVL vehicle in a triangular configuration.

In Section 3.2, the iterative solving procedure is illus-
trated. It is based on a MATLAB implementation, but it
can be transferred to any other software. Section 4 shows
some numerical results obtained with the proposed algo-
rithm. In general, every single point within the test area can
be tested. However, for a better characterization of the sce-
nario involving the EAGLE motion, two specific hovering
paths are analyzed, and the accuracy of the computed solu-
tions is discussed. Finally, in Section 5, we draw some conclu-
sions on the work done.

2. Rope Modeling

2.1. A Brief Review. In this section, a brief introduction about
the modeling of a static rope is given, and the computation
procedure of the forces at the suspension points is explained.

The function describing the shape of a hanging rope sub-
ject to a constant gravity is called catenary [18]. The catenary
curve is defined as

h xð Þ = r cosh x − x0
r

� �
+ y0, ð1Þ

where r is the radius in the vertex, x0 is the x-coordinate of
the vertex and y0 is the y-offset of the vertex.

A two-dimensional x-y reference frame is used for the
description of the motion. The gravity is directed towards –

y, with a horizontal x-coordinate and a vertical y-coordi-
nate. An example is depicted in Figure 1.

We can derive three equations for three unknown param-
eters r, x0, and y0. We know the position of the two suspen-
sion points, defined as a = ðxa, yaÞ and b = ðxb, ybÞ.
Moreover, the length of the rope l is known.

h xað Þ = ya = r cosh xa − x0
r

� �
+ y0,

h xbð Þ = yb = r cosh xb − x0
r

� �
+ y0,

l =
ðxb
xa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + dh

dx

� �2
s

dx =
ðxb
xa

cosh x − x0
r

� �
dx:

ð2Þ

With this equations, we get the following system:

y0 = ya − r cosh xa − x0
r

� �
, ð3Þ

yb = r cosh xb − x0
r

� �
− r cosh xa − x0

r

� �
+ ya, ð4Þ

l = r sinh xb − x0
r

� �
− r sinh xa − x0

r

� �
: ð5Þ

For a simplification of the system of equations, the cate-
nary curve is shifted. The suspension points are moved, such
that the first suspension point is on the origin. Thus, a local
coordinate system positioned at the first suspension point is
used.

Now, Equations (4) and (5) can be used to obtain a for-
mula for x0:

x0 = −rartanh yb − ya
l

� �
+ xb + xa

2 : ð6Þ

Here, y0 is eliminated. Therefore, Equations (5) and (6)
become a system of two equations for two unknowns x0
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Figure 1: Example of catenary curve. Point a and b are the
suspension points. Point o is the vertex.
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and r, whereas y0 can be computed by evaluating Equation
(3) at point a.

y0 = ya − r cosh xa − x0
r

� �
: ð7Þ

We can rewrite the condition on the length of the rope
represented by Equation (6), which gives

2r sinh xb − xa
2r

� �h i2
− l2 + yb − yað Þ2 = 0: ð8Þ

This is a nonlinear equation, only depending on r, which
cannot be solved analytically. At this point, a numerical
method is needed.

Different methods can be employed. Classical Newton
methods for this specific problem can experience numerical
issues. This happens because the slope of the function rapidly
tends to infinity. A better alternative is the Halley-method
[19], which requires the second derivative to be continuous
and the first derivative at the root different from 0.

The Halley method works with the following iterative
scheme:

rk+1 = rk −
2f rkð Þf ′ rkð Þ

2f ′2 rkð Þ − f rkð Þf ′′ rkð Þ
: ð9Þ

Therefore, the derivatives of the functions f ′ðrÞ and f ″
ðrÞ are needed. They can be computed as

f ′ rð Þ = 4r sinh xb − xa
2r

� �h
2 sinh xb − xa

2r
� �

−
xb − xa

r
cosh xb − xa

2r
� �i

,

f ″ rð Þ = 1
r2

h
2 xb − xað Þ2 + 2r2
� �

cosh xb − xa
r

� �
+

− 4r xb − xað Þ sinh xb − xa
r

� �
+ r

� �i
:

ð10Þ

A reasonable initial guess for starting the algorithm is
required. In this case, we have to look at the double depen-
dency of the radius r on both the length l and the distance
between the x components of the suspension points. The
more the points are apart each other, the greater is the radius
r. On the contrary, the greater l, the smaller r. Therefore, the
initial guess ðxb − xaÞl is used. This causes problems because
the curve radius r tends to 0. To solve this case numerically,
the points are slightly shifted apart each other. The first sus-
pension point is shifted 1mm to the left and the second sus-
pension point is shifted 1mm to the right. Now, the x
-distance between this two points is not equal to 0 anymore
and a radius r can be calculated. This approach results in a
small error in the radius. We tested it for suspension points
which are above each other and with a distance of one to
nine meters and a length of the rope which is two meters
longer than the distance. These are the dimensions of the
setup. The radius is in the range of 3 · 10−6 instead of 0.
Therefore, the error is small enough. Note that the case xa =

xb is of no practical interest anyway and is analyzed for the
sake of completeness of formulation.

To get the forces acting on the suspension points, the
force equilibrium and the knowledge about the orientation
of the forces are used. An example of configuration where
we can benefit from this knowledge is depicted in Figure 2,
and its exploitation leads to the following set of equations:

Fbx
+ Fax

= 0, ð11Þ

FG − Fby
− Fay

= 0, ð12Þ

h′ xað ÞFax
− Fay

= 0, ð13Þ

h′ xbð ÞFbx
− Fby

= 0, ð14Þ
where FG is the force caused by the weight of the rope. This is a
system of four equations for four unknowns that are Fax

, Fay
,

Fbx
, and Fby

. To solve it, we can use the catenary function.

h′ xð Þ = sinh x − x0
r

� �
, ð15Þ

and the system can be rewritten as follows:

Fax
= FG

h′ xað Þ − h′ xbð Þ
, ð16Þ

Fay
= h′ xað ÞFax

, ð17Þ
Fbx

= −Fax
, ð18Þ

Fby
= FG − Fay : ð19Þ

So far, we considered two-dimensional representations of
the problem. The general three-dimensional problem can
always be reduced to the two-dimensional version as pictured

x

y

FG

Fa

Fb

Figure 2: Balance of forces acting on the rope. Fa and Fb are the
forces at the suspension points. They act tangentially along the
rope. FG is the weight force which acts in the negative y-direction.
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in Figure 3. First, the first suspension point a = ðxa, ya, zaÞT
is shifted onto the origin 0, 0, 0ð ÞT . The second suspension
point b = xb, yb, zbð ÞT is shifted onto xdist, ydist, zdistð ÞT
where

xdist = xb − xa,
ydist = yb − ya,
zdist = zb − za:

ð20Þ

Therefore, the whole catenary is shifted by
−xa,−ya,−zað ÞT . We perform then a rotation about the z

-axis by the angle α, which is the angle between the plane
containing the catenary and the yz-plane.

Rz αð Þ =
cos αð Þ −sin αð Þ 0
sin αð Þ cos αð Þ 0

0 0 1

2
664

3
775 , ð21Þ

where the angle α is defined as

α = arctan xdist
ydist

� �
: ð22Þ

After this transformation, all the points of the catenary
lie in the yz-plane. In this new representation, the curve
radius in the vertex r, the displacement of the vertex in z
-direction (z0), and the z component of the forces are
already correct.

Once the forces are computed according to Equations
(16)–(19), we can back-transform the catenary and the forces
to obtain the three-dimensional solution to our problem.
This is done with the transpose of the rotation matrix RzðαÞ
, which corresponds to Rzð−αÞ.

Rz −αð Þ =
cos −αð Þ sin αð Þ 0
sin −αð Þ cos −αð Þ 0

0 0 1

2
664

3
775 : ð23Þ

After the rotation, we have to back transform in terms of
translation. This means that also the vertex of the catenary
needs to be shifted.

The catenary is now described by

h x, yð Þ = r cosh
ffiffiffiffiffiffiffiffiffiffiffiffi
x − x0

p 2 + ffiffiffiffiffiffiffiffiffiffiffi
y − y0

p 2

r

 !
+ z0: ð24Þ

The back-transformation for the forces is the same as
with the displacements of the vertex.

In the following, some simple implementation results of
forces at the suspension points of a simple hanging rope
without elasticity are illustrated. For a 2.90m rope with a
mass ofm = 1 kg/m, weight of FG = 28:449N and suspension
points a : ð0, 4Þ and b : ð2, 5Þ (as represented in Figure 4(a)),
the forces at the suspension points are

Fa =
−6:9996
8:6864

 !
N, ð25Þ

Faj j = 11:1556N, ð26Þ

Fb =
6:9996
19:7626

 !
N, ð27Þ

Fbj j = 20:9656N: ð28Þ
It can be seen that the x- and the y components of the

forces at the suspension points and the weight force cancel
each other out. In addition, the magnitude of the force at
the upper suspension point b is greater than that in point a.

If the left suspension point is changed to a : ð0, 3Þ as in
Figure 4(b), the vertex is not between the two suspension
points anymore and the forces change

Fa =
−18:0433
−5:5626

 !
N, ð29Þ

Faj j = 18:8813N, ð30Þ

Fb =
18:0433
34:0116

 !
N, ð31Þ

Fbj j = 38:5013N: ð32Þ
In this case, we observe that the sign of the y component

in b changes, and both magnitudes are greater than in the
previous case. This is caused by the changed slope of the cat-
enary at the suspension points.

In both cases, the length of the rope is longer than the dis-
tance between the suspension points. But if the length is
shorter, the rope has to be stretched. Thus, it is necessary to

0
3

1

2

2

–1

X

Z

1 0

3

Y

10

4

2–1 3

𝛼

Figure 3: Three-dimensional catenary. The suspension points are
a = ð2, 2, 4Þ and b = ð0, 0, 4Þ which leads to xdist = ydist = 2 and zdist
= 0. The catenary function can always be reduced to a plane
problem with a rotation angle α.
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consider the elasticity. Under the assumption that the rope is
linear-elastic, the behavior of the rope can be modeled by
using Hooke’s law:

F = k · Δl, ð33Þ

where Δl is the change in the length of the rope, which is pro-
portional through the spring stiffness k, to the force F.

There are two cases which has to be described separately:

(1) The length of the rope is at least the distance between
the two suspension points

(2) The length of the rope is shorter than the distance
between the two suspension points

In the first case, the rope has to be stretched by its own
weight. To solve this case, we implement the following proce-
dure: first the forces at the suspension points are computed
for the non-stretched rope. These forces are used to calculate
the corresponding stretch with Hooke’s law through Equa-
tion (33). The stretch is then added to the length and the
forces at the suspension points are calculated again. This iter-
ative procedure is used until the variation of stretch in the
rope reduces to a given threshold.

For the second case, the superposition principle is used. A
massless rope, stretched exactly to the length of the distance
between the suspension points, is overlaid with a rope which
is stretched by its own weight. The force, which is needed to
stretch the rope until it is as long as the difference between
the suspension points, is calculated with Hooke’s law through
Equation (33). Its gradient is equal to the gradient of the lin-
ear connection between the suspension points. It is added to
the force which results from the stretch due to the rope’s own
weight. These forces fulfill the equality system, which is
described in Equations (11)–(14). The forces caused by
weight stretch fulfill the equality system directly as explained
before, and the forces caused by the stretch to the minimal
possible length cancel each other out with respect to the
sum of the horizontal forces and the sum of the vertical
forces. Indeed, all these forces together fulfill the equilibrium
of forces.

As example consider the case represented by Equation
(25) and a stiffness of k = 1000N/m, the stretch is dl =
1:1943 cm. The forces are now:

Fa =
−6:9157
8:7239

 !
N, ð34Þ

Faj j = 11:1326N, ð35Þ

Fb =
6:9157
19:7251

 !
N, ð36Þ

Fbj j = 20:9023N: ð37Þ
The decrease in the horizontal components of the forces

shows that the rope sags more than in the previous case. The
vertical component of the force at the lower suspension point
is larger, while the same component on the higher suspension
point becomes smaller. In other words, the elasticity of the
rope tends to slightly reduce the force gap at the suspension
nodes. In the above second case as represented in Equation
(29) with the same stiffness, the stretch is dl = 1:9263 cm.

The more important case is the one where the distance
between the suspension points is larger than the length of
the rope. For instance, if the length is changed to 2m, the
weight is FG = 19:62N, and stretch becomes dl = 82:943 cm.
The forces at the suspension points are in this case:

Fa =
−901:6043
−892:4794

 !
N, ð38Þ

Faj j = 1268:6252N, ð39Þ

Fb =
901:6043
912:0994

 !
N, ð40Þ

Fbj j = 1282:5037N: ð41Þ
As expected, these forces are large compared to the forces

in the first two cases. This is because the stretch generates a
significant additional force, which is significant larger than
the forces discussed in (25), (29), and (34). In the application
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Figure 4: Different positions of vertex. (a) The vertex can be directly seen at a hanging rope with suspension points (0, 4) and (2, 5) and a
length of 2.90m. (b) The vertex can be positioned outside of the suspension points (b) with suspension points (0, 3) and (2, 5) and a
length of 2.90m.
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of the proposed method to the VTVL note, we always have
situations corresponding to case (1) described above, as we
are interested to have small forces which do not modify the
flight of the vehicle significantly.

2.2. Validation. In this section, we want to check our results
to see whether they fulfill the forces equilibrium, described
by Equations (18) and (19), the length of the rope in Equa-
tion (5), and whether the suspension points are part of the
esulting catenary function.

In the above first case, Equation (25), it can be easily
seen that x components ±6.9996N cancel out each other
and the y components 8.6864N and 19.7626N are
summed up to the weight FG = 28:449N. The parameters
of the function are r = 0:7135m, x0 = 0:7434m, and y0 =
2:8628m. Setting the x components in Equation (1) leads
to the following results:

h 0ð Þ = 0:7135 cosh 0 − 0:7434
0:7135

� �
+ 2:8628 = 4,

h 2ð Þ = 0:7135 cosh 2 − 0:7434
0:7135

� �
+ 2:8628 = 5,

l = 0:7135 sinh 2 − 0:7434
0:7135

� �
− 0:7135 sinh 0 − 0:7434

0:7135

� �
= 2:9:

ð42Þ

Thus, the catenary function with the given parameters
connects the suspension points and the rope is as long as
expected.

The same can be done for the above second case (29). As
before the x components ±18.0433N cancel out each other
and the y components −5:5626N and 34:0116N are summed
up to the weight FG = 28:449N. The parameters of the func-
tion are r = 1:8393m, x0 = −0:5584m, and y0 = 1:0753m.
Setting the x components in Equation (1) leads to the follow-
ing results:

h 0ð Þ = 1:8393 cosh 0 + 0:5584
1:8393

� �
+ 1:0753 = 3,

h 2ð Þ = 1:8393 cosh 2 + 0:5584
1:8393

� �
+ 1:0753 = 5,

l = 1:8393 sinh 2 + 0:5584
1:8393

� �
− 1:8393 sinh 0 + 0:5584

1:8393

� �
= 2:9:

ð43Þ

Thus, the catenary function with the given parameters
connects the suspension points and the rope is as long as
expected.

In the above third case (34) with elastic stretch by the
ropes’ own weight, the x components ±6.9157N cancel each

other out and the y components 8:7239N and 19:7251N are
summed up the weight FG = 28:449N. The parameters of the
function are r = 0:7079m, x0 = 0:7466m, and y0 = 2:8605m.
Setting the x components in (1) leads to the following results:

h 0ð Þ = 0:7079 cosh 0 − 0:7466
0:7079

� �
+ 2:8605 = 4,

h 2ð Þ = 0:7079 cosh 2 − 0:7466
0:7079

� �
+ 2:8605 = 5,

l = 0:7079 sinh 2 − 0:7466
0:7079

� �
− 0:7079 sinh 0 − 0:7466

0:7079

� �
= 2:9 + 0:011943:

ð44Þ

Thus, the catenary function with the given parameters
connects the suspension points. As expected, the rope is lon-
ger than the initial length caused by stretch.

Finally for the above fourth case (38) including the
stretch, which results from a too short rope, the x compo-
nents ±901:6043N cancel each other out and the y compo-
nents −892:4794N and 912:0994N are summed up to the
weight FG = 19:62N. The parameters of the function are
r = 130:0244m, x0 = −113:6672m, and y0 = −179:9541m.
Setting the x components in Equation (1) leads to the fol-
lowing results:

h 0ð Þ = 130:0244 cosh 0 + 113:6672
130:0244

� �
− 179:9541 = 3,

h 2ð Þ = 130:0244 cosh 2 + 113:6672
130:0244

� �
− 179:9541 = 5:00148,

l = 130:0244 sinh 2 + 113:6672
130:0244

� �

− 130:0244 sinh 0 + 113:6672
130:0244

� �
= 2 + 0:8295:

ð45Þ

Thus, the catenary function with the given parameters
connects the suspension points. As expected, the rope is sig-
nificantly longer than the initial length caused by stretch. It is
even a bit longer than the direct connection between the sus-
pension points, which is 2

ffiffiffi
2

p
= 2:8284. Therefore, the rope

sags slightly and the parameters of the catenary can be
specified.

3. Modeling Procedure for a Specific
Experimental Facility

First, the given experimental set-up is introduced followed by
the explanation of the modeling procedure for this set-up.

3.1. NEST. Tethered configurations have been used for test-
ing several vehicles and spacecraft in a secured flight
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environment. In this section, DLR’s experimental facility
NEST (Nest Environment for Suspended flight Tests) for
the vehicle EAGLE, depicted in Figure 5 is used as a test case
for the proposed algorithm.

The legs of the VTVL vehicle EAGLE are connected to
three ropes, one for each of its three legs. These ropes are
led over a turning wheel at the top of a traverse pole with
height of 4:50m through its middle and are fixed on the
ground. Therefore, the configuration is now more complex
as it includes a rope, and a change of direction at a turning
wheel, assumed here to be frictionless. For each of the three
ropes, one suspension point is the upper end of the leg of
the VTVL vehicle and the other suspension point is the bot-
tom of the traverse pole. Thus, the force balance cannot be
applied as easy as explained in Section 2.1. The experimental
setup is sketched in Figure 6.

The coordinate system has its origin at the base plate in the
middle of the traverse pole. The z-coordinate point vertical.
Therefore, the coordinates of the turning wheel are ð0, 0, 4:5Þ.
The x-and y-coordinates represent the in-plane components,
with x pointing towards the starting point of the lander (middle
of the whole traverse system) and the y-coordinate appropriate
normal, as showed in Figure 7. The coordinate of the middle of
the whole traverse system on the ground is ð3:46,0, 0Þ, where
Lground is for the NEST facility equal to 3:46m.

We will limit the analysis to only one rope which is fixed
at the lander and led over a turning wheel through a traverse
pole. The procedure can be repeated for the other two ropes.
Figure 8 shows the elements to be considered. The main part
is a very stiff rope which ensures that the VTVL vehicle is
restricted to stay in the allowed area. The last part is an
expander rope. It is 1:50m long and is less stiff. This part
ensures that the VTVL vehicle is not subject to hard jerks
when being captured by the tethers.

Now that the scenario has been defined, we can see how
to solve the problem. The proposed iterative method is the
subject of the next section.

3.2. Description of the Modeling Procedure. In this part, the
solving procedure is explained. First, the cutting clear

Lander

3.46 m

Traverse

Traverse

Traverse

6 m

Figure 6: Top view on NEST experimental setup. The traverse poles
are arranged as a triangle with a distance of 6m. The lander is fixed
with three tethers which are led over turning wheels at the top part
of a traverse pole to the bottom inside the pole. Here, the lander rests
at the middle of the triangle.

Lground = 3.46 m

htrav = 4.5 m

z

x

y

Figure 7: Coordinate system in NEST. The coordinate system’s
origin is the base plate in the middle of the traverse poles. x points
towards the starting point of the lander, y appropriate normal, and
z vertical. Lground is the distance to the middle of the traverse poles
and htrav is their height. This leads to coordinates of the turning
wheel: (0, 0, 4, 5).

Rope (traverse)Rope (lander)

Expander rope

Figure 8: NEST configuration for each of the ropes. The main part
of the rope is a very stiff rope. At the bottom part, an expander rope
(less stiff rope) with length of 1.50m is added, therefore pictured as a
spring. At the top part of the traverse pole, the turning wheel can be
seen. For a better handling in the solving procedure, the rope can be
split into a lander and a traverse part.

Figure 5: DLR’s experimental facility NEST (NEST Environment
for Suspended flight Tests) for the vehicle EAGLE as an
application for the modeling approach. The vehicle EAGLE is
connected to the three ropes (visible in the red circles), which are
attached to the top of the support structure. Three more ropes are
used to limit the altitude. They are attached to the lower part of
the support structure.
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technique is described and applied to the NEST facility. Two
resulting systems are calculated individually considering the
elasticity of the ropes.

It is assumed that the elastic behavior is linear, and
Hooke’s law can be applied. In addition, it is assumed that
the expander rope does not get stretched above the turning
wheel, which is geometrically represented only by a point
(In the hypothetical case of the lander position outside of
the triangular flight area the ropes are led over the turning
wheels anyway, but this case is clearly excluded from this
analysis, as we assume that the controller is able to keep
EAGLE within the prescribed area).

A further assumption is that the rope is treated as elasto-
static. This means that the catenary curve is not depending
on time, and only the hanging of the rope with its forces at
the suspension points is modeled. This assumption is justi-
fied by the small motion characterizing EAGLE during its
hovering. Finally, as said, the rope is frictionless at the turn-
ing wheel.

To model the forces at the rope as it is seen at
Figure 8, it is necessary to use the free-body principle
and intersect the rope at the turning wheel. So, the system
is divided into a traverse system and a lander system. This
procedure is sketched in Figure 9.

Fa is the force at the lander. Fc is the force at the point
where the rope is fixed on the bottom. FGl

, FGt
, and FGe

are

the weights of the stiff rope on the lander system and the tra-
verse system and the weight of the expander rope in the tra-
verse system. Ft and Fb are virtual forces which arise by
reason of using the free-body principle. If the virtual forces
are equal the whole system will be balanced.

If the lengths of the ropes in the single systems are
known, it will be possible to calculate the forces in the single
systems. The problem is to choose the rope lengths in the sin-
gle systems such that the forces Ft and Fb are equal. The
length of the expander rope and the total length of the stiff
rope are known. The following algorithm make sure, that
the stiff rope is split correctly into the two systems.

At the beginning, the stiff rope is divided into a lander-
side part and a traverse-side part. A specific offset is chosen
as a starting shift.

Then, the forces in the single systems Fb and Ft are calcu-
lated and compared. If Fb and Ft are equal, the rope is split
correctly and the algorithm is finished (exit condition). Oth-
erwise, the split is changed such that the lander or the tra-
verse system gets a longer section of rope depending on
which of both forces is bigger. After that, the forces are calcu-
lated and compared and the split is changed again until the
forces are equal.

To calculate the single systems with given rope lengths, it
is necessary to consider the elasticity as described in Section
2.1. With those methods, we can treat the lander system.

Fa

FG1

FGt

FGe

Fc

(a) Whole System

FGt

Ft

FGe

Fc

(b) Free-body diagram traverse system

Fa

Fb

FG1

(c) Free-body diagram lander system

Figure 9: Free-body principle for a rope in NEST experimental setup. Intersect the rope at the turning wheel leads to virtual forces Ft (at
traverse) and Fb (at virtual suspension point b) which have to be equal for satisfying equilibrium of forces at the whole system. The weight
force FG is divided into its three parts, FGt

(traverse side), FGl
(lander side), and FGe

(expander part).

Choose a specific starting shift;
Calculate the forces Fb and Ft in the single systems;
while Fb ≠ Ft do

if Fb > Ft then
Change the split such that lander system gets a longer section of rope;

else
Change the split such that traverse system gets a longer section of rope;

end
end

Algorithm 1: Algorithm to choose the correct shift at the roll.
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The calculation of the traverse system is a special case and is
discussed below. The traverse system consists of the
expander rope and a part of the stiff rope. First, it is necessary
to calculate the stretch in the rope due to its own weight. The
formula for this stretch can be found by using

F = kΔl = 1
2 mgl: ð46Þ

After calculating the stretch, we can distinguish three dif-
ferent cases for the length of the rope in the traverse system:

(1) The length is shorter than the height of the traverse

(2) The length is equal to the height of the traverse

(3) The length is longer than the height of the traverse

In the first case, the rope has to be further stretched. The
required force can be calculated with Hooke’s law described
in Equation (33) very easily. In the second case, the rope does
not have to be more stretched. It has already the correct

length. In the third case, a part of the rope is lying on the bot-
tom. The rope does not have to be further stretched but it is
necessary to consider that the part of the rope, which is lying
on the bottom, does not stretch the rest of the rope by its own
weight. The force Ft on the top of the traverse is the sum of
the force for the stretch caused by its own weight as given
in Equation (38), and the force which is needed to stretch
the rope even more.

4. Simulation Results

In this section, more complex examples than in Section 2.1
are shown. Moreover, the given experimental setup and the
elasticity are taken into account. In general, every position
in the allowed flight area can be analyzed but in this context
two possible motions of EAGLE are considered as test cases.
All the results have been computed with a desktop having the
following specifications:

Operating system: Windows 7 Enterprise 64 bits
Processor: AMD FX(tm)-6300 Six-Core Processor;

3.50GHz

Supp3
0
6

2
4

Supp2
4

6

Z

6

8

3D-view

(a) (b)

(c) (d)

Y

42

10

X2
Supp1

0 0 –1

0

1

2

3

4

5

6

Y

XY-view

Supp1 Supp2

Supp3

0

2

4

6

8

10

Z

0

2

4

6

8

10

Z

XZ-view

Supp1 Supp2Supp3

YZ-view

Supp1
Supp2 Supp3

Lander in the hover supporter system

–1 0 1 2 3 4 5 6 7
X

Rope
Expander rope

Sum(Fa)
Track

–1 0 1 2 3 4 5 6 7
X

–1 0 1 2 3 4 5 6
Y

Figure 10: EAGLE’s trajectory 2 (in yellow) and the three ropes (fixed at the lander and led to the supporters). (a) 3D view of the motion. (b)
XY view of the motion of EAGLE, in this plane reduced to a point. (c) XZ view of the motion of EAGLE: the overall force to be compensated
for is constantly pointing upwards or downwards. (d) YZ view of the motion of EAGLE, where again the ropes generate a vertical pulling force
on EAGLE, as visible from the Z component here.
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Working storage: 32GB
Software: MATLAB 2017a

4.1. Example 1 Vertical Motion. To simulate the proposed
approach, the VTVL vehicle is assumed to be a point mass
and is attached to three ropes. In the first example, we use
a vertical trajectory resembling a lift-off followed by a
landing maneuver. EAGLE is placed in the barycenter of
the equilateral triangle formed by the supports. In this
case, we model a 7m-long rope, with the expander rope
that has a length of 1.5m when not stretched. The sce-
nario is depicted in Figure 10. The vehicle moves upwards
until a vertical displacement of 5m is reached, from the
initial height of 2m to 7m. For this scenario, this position
corresponds to the maximum force exerted on EAGLE,
which is constantly vertical due to the symmetry of the
chosen configuration.

In Figure 11, the associated forces are plotted. Note that
because of the symmetry of the scenario the norm of the
three components are equal to each other and the horizontal
component of each force is rotated by 60 deg with respect to

each other. The maximum stretch is in the order of 27 cm,
corresponding to a total force of about 180N.

The second plot of Figure 11 compares the two fictitious
forces. No peaks are observed and the virtual forces are equal;
thus, the equilibrium of forces is fulfilled, confirming the
validity of the numerical approach in computing the elasto-
static equilibrium. The maximum residual observed is in
the order of 9:5 · 10−4.

4.2. Example 2 Helix Trajectory. The second trajectory is a
helix-shaped profile. EAGLE changes its altitude slowly,
while constantly staying within a given distance from the
center of the NEST. This scenario is represented in
Figure 12, where a three-dimensional view and three two-
dimensional views of the setup are depicted. Since this sce-
nario shows a more complex behavior, to reduce the maxi-
mum force exerted on EAGLE, a length of 10m was
considered for the rope, with the expander rope again having
an unstretched length of 1.5m. The test trajectory of the
VTVL vehicle is marked in yellow. The direction of the force
caused by the tethering configuration is marked in red. The
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Figure 11: Forces obtained for the trajectory 1. (a) Sum of forces at the lander (in red) and the corresponding individual forces (in blue, green,
and yellow), over the time steps of the lander’s movement. (b) Virtual forces and their difference (in blue, green, and yellow) for each rope.
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magnitude is not in scale for visualization purposes. Only the
direction of the force that the VTVL vehicle must compen-
sate for to keep the position is plotted. During the trajectory
simulation, a maximum length of 1.8m is achieved, with a
maximum stretch of about 30 cm observed in the expander
rope attached to the third support.

In Figure 13, the corresponding plot of forces can be seen.
Note that at the beginning there is a big contribution coming
from support 3 which exerts the larger force, while the other
two contributions are basically equal to 0. When the lander
moves towards support 3 the corresponding contribution
decreases and the forces exerted by ropes 1 and 2 grow. Since
the helix shows an harmonic motion in the plane X-Y the
maximum force oscillates between rope 1 and 2 accordingly.
Note that the residuals in the lower part of the figure always
show a very good convergence of the algorithm.

Furthermore, there is an error plot in Figure 13, defined
as the difference between the two fictitious forces at the turn-
ing wheel Ft and Fb. Also, in this case, the force residuals are

very small, with a maximum value of 9:8 · 10−4. This indicates
that also for a more complex motion of EAGLE the algorithm
shows nice convergence properties.

5. Conclusions

In this paper, the modeling of a tethered configuration for
testing a VTVL vehicle is described. After a short introduc-
tion of the catenary curve and the calculation of the forces
at the suspension points of a single hanging rope, a specific
geometry (NEST) including different values of length and
rope stiffness is considered.

The model computes the forces of each rope at the lander
and at the bottom of the traverse, where the ropes are fixed.
The use of equilibrium of forces, together with Hooke’s law
provide a viable way to compute the forces acting on the
vehicle in conditions of hovering flight.

The examples show that in the relevant area of the testbed
the algorithm provides a high accuracy solution. So, it can be
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included in the design of the controller as feed-forward contri-
bution to compensate for the effects of the tethers. Based on an
implementation in MATLAB and Simulink, this contribution
can be run 10000 times in 22:5 s, which means a frequency of
443:29Hz. The method can represent a valuable help in reduc-
ing the gap between simulations and real testing of complex
system such as the one represented by a tethered VTVL vehicle.

The model has been developed and can be applied also
for other configurations of the tethering. For example, after
further maturing of the control system of EAGLE, all tethers
on NEST but one could be removed (see https://gnc.dlr.de/s/
yt/eagle-tethered-flight). For this setup, modeling needs to be
applied to a single rope only.

Data Availability

The data used to support the findings of this study are
included within the supplementary information files.
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Supplementary Materials

Video_Supports_Vertical_Motion: animation showing the
entire behavior of the ropes for simulation of example 1.
Video_Supports_Helix: animation showing the entire behav-
ior of the ropes for simulation of example 2. Video_Forces_
Vertical_Motion: animation showing the forces evolution
for simulation of example 1. Video_Forces_Helix: animation
showing the forces evolution for simulation of example 2.
(Supplementary Materials)
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