
 

Abstract— In the context of spaceborne synthetic aperture radar 

(SAR) imaging, high resolution and wide swath are inherently conflicting 

requirements. These may however be simultaneously satisfied by 

advanced imaging modes with multichannel architectures in elevation 

and/or azimuth. The paper elaborates on a new mode based on multiple 

elevation beams and a simple PRI variation scheme which allows high-

resolution wide-swath imaging. It is shown to use the illumination time 

more efficiently than ScanSAR and yet to be simpler than staggered SAR. 

Good SAR imaging performance is achieved with a rather compact 

antenna design. The proposed imaging mode is suitable for spaceborne 

SAR systems with planar and reflector antennas. In order to improve the 

imaging performance, a reflector antenna architecture with a 

multichannel feed in both elevation and azimuth is considered.  

 

Index Terms— Radar, Radar imaging, Spaceborne radar, 

Synthetic aperture radar, Digital beamforming, High resolution 

wide swath, SAR imaging modes 

 

I. INTRODUCTION 

PACEBORNE Synthetic Aperture Radar (SAR) systems for 

remote sensing are subject to a well-known compromise 

between the best azimuth resolution and the maximum swath 

width [1]. Different single-channel SAR modes in fact mostly 

shift the emphasis towards either a high azimuth resolution or a 

wide swath. ScanSAR [2], [3], for instance, is a well-established 

imaging mode in which a wide swath composed of several sub-

swaths is imaged by means of bursts alternately illuminating 

each sub-swath, as illustrated in Fig.1 (a). The system thus shares 

the available illumination time between a number of bursts 

covering different regions on the ground, trading-off azimuth 

resolution for a wider coverage. The alternating illumination 

introduces azimuth (Doppler) spectral gaps and limits the 

available bandwidth, but proper timing allows a given design 

azimuth resolution to be achieved. Moreover, mode parameters 

such as the pulse repetition frequency (PRF) can be set 

independently for each burst and thus tailored to optimize 

coverage and performance. 

In contrast, multichannel architectures combined with digital 

beamforming (DBF) [4], [5], [6], [7], [8], [9], [10] show the capability 

of overcoming this limitation, in the sense of simultaneously 

delivering High-Resolution Wide-Swath (HRWS) SAR images 

and thus considerably out-performing single-channel systems. 
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One approach is to resort to a multichannel architecture in 

azimuth (Multi-Azimuth Channel, MAC) [11], to decouple the 

signal’s azimuth sampling frequency from the PRF and thus 

increase the azimuth resolution without affecting the imaged 

swath. This method can also be used in conjunction with burst 

modes such as ScanSAR [12] to compensate for the burst 

operation-induced resolution loss, though the high squint 

variations may impact the performance.  

Fig.1: Schematic representation of discussed imaging modes. (a) Sub-swath variation in a 

conventional single-channel ScanSAR. (b) System with multiple elevation beams (MEB), 

by means of which simultaneously imaged sub-swaths separated by blind ranges are 

combined. The blind ranges are caused by transmission events and are azimuth invariant, 

due to the PRI regularity. (c) MEB system with two bursts with different PRIs, so that the 

blind ranges of one burst are covered by the other. 
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Fig.2: Schematic representation of proposed imaging mode:                                      

Multiple Elevation Beams (MEB) system with PRI variation from pulse to 

pulse, in which the gaps migrate continuously but slowly, affecting different 

range bins over azimuth. The spread of the gaps over multiple range bins (cf. Fig.4 (a) for 

an example gap diagram) causes Doppler spectrum gaps but not complete signal loss (blind 

range). Multiple simultaneous elevation beams are used (here the footprints are shown for a 

single pulse, scan is not represented) for ambiguity suppression.  

Another family of methods derives from the use of 

multiple channels in elevation [7], [9], [10]. In fact, a system 

capable of simultaneously forming multiple elevation beams 

(MEB) through DBF can be used to image several sub-swaths at 

once. It represents an extension the SCan-On-Receive (SCORE) 

[13] concept, also known as SweepSAR [6], [14], [15].  

As is the case in single-beam SCORE, typically a broad 

transmit (Tx) beam is used, to cover all the multiple sub-swaths, 

whereas simultaneous narrow receive (Rx) beams are formed, 

following the echoes on ground. This is schematically 

represented in Fig.1 (b), for a constant-PRI Stripmap 

configuration, in which no spectral gaps in azimuth occur. 

Comparing this alternative with the MAC system architecture, 

the use of multiple channels in elevation often has the advantage 

of leading to a more compact antenna design [9]. This is due to 

the fact that the typical SAR antenna requires a broader beam in 

elevation than in azimuth and is thus larger in the latter 

dimension, which is generally also true for each aperture of a 

multichannel antenna system. In the latter case, the azimuth 

reconstruction performance is in addition sensitive to the spacing 

of the channels, which often leads to large antenna dimensions, 

especially for lower PRFs. An additional advantage of 

multichannel architectures in elevation is simpler signal 

processing, making on-board processing more feasible with 

current technology.  

Both the MAC and MEB system architectures are, however, 

subject to an inherent limitation in the form of blind ranges 

between the sub-swaths. These occur because it is not possible to 

record the echoes while transmitting, a characteristic of 

monostatic systems which leads to gaps in the recorded echo. 

The gaps have regularly-spaced positions determined by the 

(constant) PRF. As mentioned, ScanSAR allows different PRFs 

to be used for each burst, and thus an interesting extension of 

these systems [7], [9] would be a multi-elevation beam ScanSAR 

with two-bursts, in order to cover the blind ranges of one burst 

with the other, as illustrated in  Fig.1 (c). In this case, the pulse 

repetition interval (PRI) has two values, one for each burst, 

chosen as to be complementary in terms of the blind ranges. The 

instantaneous PRI curve may thus be seen as a square-wave, 

which can also be interpreted as a particularly simple form of 

PRI staggering (understood in a general sense as PRI variation), 

analyzed in a broader context in [16]. The burst operation has, 

however, the disadvantage of azimuth spectral gaps introduced 

by the alternating illumination, determined by the burst lengths. 

The new strategy originally suggested in [7] and analyzed here 

in more detail is to allow the PRI to slowly vary between the two 

extreme values, as illustrated in Fig.2. A slow and linear PRI 

variation between two extreme values (repeating cyclically) is 

proposed. The PRI curve thus becomes a saw-tooth waveform. 

As a consequence, the blind ranges migrate slowly across the 

swath, according to the instantaneous PRI. Spectral gaps due to 

the azimuth illumination will still occur, but in this case their 

length will be determined by the extent of the blind range region, 

which is linked to the pulse duty cycle, instead of the burst 

duration. This means that an opportunity arises to increase the 

observation time in comparison to a conventional ScanSAR 

mode. The PRI variation has the downside of leading to a non-

uniformly sampled azimuth signal, which may be nonetheless 

adequately recovered by interpolation, at the cost of 

oversampling in azimuth. Moreover, in this case, the slow 

variation leads to relatively small deviations from uniform 

sampling, and linear interpolation may be used instead of more 

advanced algorithms (such as [16]). This method may be referred 

to as the Slow PRI Variation with Multiple Elevation Beams 

(SPV-MEB) method, and will be analyzed in Section II in detail. 

Note that the strategy differs from the fast PRI variation 

described in [16], [17] which interpolates across the gaps and 

requires more sophisticated processing and higher oversampling 

on average. 

A mathematical description of the mode and design 

considerations are provided in Section II, followed by 

considerations of mode variations and other mission aspects in 

Section III. Then, Section IV provides performance simulations 

examples for the aforementioned mode. Finally, the paper is 

concluded in Section V with a summary and discussion of the 

introduced concepts and the performance assessment results.  

II. MODE DESCRIPTION AND DESIGN CONSIDERATIONS 

This section describes the aforementioned slowly varying PRI 

mode mathematically and discusses its properties. Section II.A 

addresses the timing characteristics of the mode and derives a 

criterion for a first-order design of the parameters. Section 0 

discusses the signal’s Doppler spectrum. 

A.  Timing Analysis and Sequence Design 

To analyze this mode in more detail, we consider, first of all, a 

constant PRF SAR operated at a regular pulse repetition interval of 

    seconds between pulses. A monostatic system is considered, 

subject to gaps in the receive signal due to transmission events. Timing 

constraints due to Nadir returns are not considered, as these are 

assumed to be mitigated by proper design of the antenna patterns       

(cf.  [18] for a useful elevation beamforming technique and the impact 

of Nadir returns in a multiple elevation beam staggered SAR system).    
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Let the return order, or equivalently the number of travelling 

pulses (i.e., the number of pulses transmitted before the echo of any 

given pulse returns), be defined as  

𝑘 = ⌊
    

 
 

1

   
⌋     (1) 

where    is a given slant range and   is the speed of light. The floor 

operation ⌊ ⌋ is taken, as only integer values of 𝑘 have a physical 

interpretation (a non-integer value means that the return of the 

 𝑘 + 1 𝑡ℎ pulse did not yet occur for that given range). In this case, 

pulse transmission events occur at regular intervals PRI seconds 

apart, with duration  𝑃. The corresponding blind ranges [19], where 

signal echoes cannot be recorded due to the pulse transmission, are 

in this case given by 

 

 
 𝑘     ≤  𝑏 𝑖𝑛𝑑 𝑘 ≤

 

 
 𝑘     +  𝑃. (2) 

Typical values of k are in the order of 10 to 30. 

Now, we allow the system’s PRI to undergo a slow linear 

variation between    𝑚𝑖𝑛  and    𝑚 𝑥, during a period of        

seconds. If the swath of interest extends between  𝑚𝑖𝑛 and 

 𝑚 𝑥, the return orders of interest lie in the interval 

⌊
   𝑚𝑖𝑛

 
 

1

   𝑚 𝑥
⌋ ≤ 𝑘 ≤ ⌊

   𝑚 𝑥

 
 

1

   𝑚𝑖𝑛
⌋. (3) 

We first assume for simplicity that the PRI variation sequence 

is long and smooth enough to be treated as continuous, and that 

the effect of the PRI difference during the pulse travelling time
1
 

can be neglected at this point. Thus, one may write: 

        =    𝑚 𝑥 −
Δ   

      
      𝑚𝑜𝑑          (4) 

where  Δ   =    𝑚 𝑥 −    𝑚𝑖𝑛 and     denotes slow time 

(i.e. azimuth time). The ranges corresponding to the beginning 

and end of the blocked return regions are then given, for a fixed 

order 𝑘, by  

       =
 

 
 𝑘  (   𝑚 𝑥 −

Δ   

      
    )  

       =
 

 
 𝑘  (   𝑚 𝑥 −

Δ   

      
    ) +  𝑃; 

(5) 

respectively (compare to (2)), as represented schematically in Fig.3. 

Hence, under the nearly constant PRI approximation, the 

azimuth gap length      for a given range    can be obtained by 

setting   =       =       in (5) and calculating           

    =   −   , which leads to 

     𝑘 =
 𝑃

𝑘
 

      

   𝑚 𝑥 −    𝑚𝑖𝑛
. (6) 

  

 
1 In reality, the round-trip delay makes the time in which a pulse is transmitted 

dependent on the PRI which was adopted a number of pulses before. This is 

considered in e.g. (9) but the simplified model given here is adopted first to find a first-

order estimation of the involved parameters and ease understanding. 

Fig.3: Schematic representation of blind ranges.         and         show the 

beginning and end of the gaps against slow time. The rate of migration of the 

gaps in range (ordinates of the plot) – caused by the transmit events – 

determines the duration of the gaps in azimuth (abscissa of the plot). At a given 

slant range   ,    and    represent the times in which       =    and 

      =   , that is, the instants at which the range of interest enters and 

leaves the azimuth gap. The duration of the gap in slow time is then           

    =   −   .  

It is interesting to note that the gap length is implicitly a 

function of the range since the order parameter 𝑘 varies with 

range. Moreover, larger gaps tend to occur at near range, for a 

given PRI value, and the gap length for a given range is inversely 

proportional to the extent of PRI variation. As expected, the limit 

case of no PRI variation leads to an arbitrarily long gap, meaning 

the range in question is effectively a blind range. 

1) Extent of Blockage Region 

The extent of the PRI variation Δ   =    𝑚 𝑥 −    𝑚𝑖𝑛 is 

a key parameter for the design of the mode and is analyzed in the 

following. It should be noted that, albeit long, the PRI variation 

sequence is discrete. We thus drop the earlier assumption of a 

continuous PRI variation and assume a sequence of length 𝑁𝑃𝑅𝐼 

so that the PRI varies as 

    𝑛 =    𝑚 𝑥 − 𝑛  
Δ   

𝑁𝑃𝑅𝐼 − 1
        0 ≤ 𝑛 ≤ 𝑁   − 1  (7) 

leading to a cycle of length 

      = ∑     𝑛 

𝑁𝑃𝑅𝐼− 

𝑛= 

= 𝑁𝑃𝑅𝐼  (   𝑚 𝑥 −
Δ   

 
)  (8) 

where, as a consequence of the slow variation assumption, 

      ≫ Δ    while 𝑁𝑃𝑅𝐼 is typically in the order of a few 

thousands up to tens of thousands. The time interval it takes to 

transmit k pulses is:  

𝑑𝑖 𝑘 = ∑     𝑛  

𝑖+𝑘− 

𝑛=𝑖

 (9) 

which corresponds to the beginning of the 𝑘𝑡ℎ order blockage 

event starting from pulse 𝑖. Substituting (7) into (9) leads to  

𝑑𝑖 𝑘 = 𝑘     𝑚 𝑥 −
Δ   

   𝑁𝑃𝑅𝐼 − 1 
    𝑖 + 𝑘 − 1  𝑘  

for 0 ≤ 𝑖 ≤ 𝑁𝑃𝑅𝐼 − 𝑘                                     region   ; 

(10) 



𝑑𝑖 𝑘 =       −  𝑁𝑃𝑅𝐼 − 𝑘     𝑚 𝑥 

+
Δ𝑃𝑅𝐼

   𝑁𝑃𝑅𝐼−  
    𝑖 + 𝑘 − 𝑁𝑃𝑅𝐼 − 1   𝑁𝑃𝑅𝐼 − 𝑘 , 

for 𝑁𝑃𝑅𝐼 + 1 − 𝑘 ≤ 𝑖 ≤ 𝑁𝑃𝑅𝐼 −  1               region    . 

 For a given 𝑘, the range boundaries of the blockage region 

are given by    𝑖 =     𝑑𝑖 𝑘 and    𝑖 =     𝑑𝑖 𝑘+ 𝑃 , 

respectively (compare to (5)). The extent of each of the blockage 

regions may be obtained by taking the maximum and minimum 

of (10) over the indices 𝑖 for a fixed 𝑘 and converting to range. 

This leads to the limits: 

 𝑚𝑖𝑛
𝑏  𝑘 = 

   
 

 
 ( 𝑘     𝑚 𝑥 −

Δ   

   𝑁𝑃𝑅𝐼 − 1 
  𝑁𝑃𝑅𝐼 − 𝑘 − 1  𝑘) 

 𝑚 𝑥
𝑏  𝑘 = 

  
 

 
 (𝑘     𝑚 𝑥 −

Δ   

   𝑁𝑃𝑅𝐼 − 1 
  𝑘 − 1  𝑘 +  𝑃) 

(11) 

2) Criteria for PRI Variation Design 

A meaningful design criterion for the PRI variation is to 

ensure that the blockage regions of different orders 𝑘 do not 

overlap, in the sense that a given range within the imaged swath 

does not belong to more than one region. The violation of this 

condition causes two large gaps to occur, impairing azimuth 

performance. In other words, it should be ensured that  

 𝑚𝑖𝑛
𝑏  𝑘 >  𝑚 𝑥

𝑏  𝑘 − 1  (12) 

for all 𝑘s of interest within the swath. Substituting (11) into (12) 

leads to the condition 

   𝑚 𝑥 −
Δ   

𝑁𝑃𝑅𝐼 − 1
 ( 𝑁𝑃𝑅𝐼 − 𝑘 − 1  𝑘 + 1) −  𝑃 > 0  (13) 

which can be further simplified taking into account that the 

sequence is very long, thus 𝑁𝑃𝑅𝐼 − 𝑘 − 1 =̃ 𝑁𝑃𝑅𝐼 and          

𝑁𝑃𝑅𝐼 − 1 =̃ 𝑁𝑃𝑅𝐼  as 𝑁𝑃𝑅𝐼 ≫ 𝑘.  The simplified condition is hence 

   𝑚 𝑥 − Δ     𝑘 −  𝑃 > 0. (14) 

  As    𝑚 𝑥 is usually determined from the azimuth sampling 

requirements, it remains to determine the maximum PRI 

variation. Substituting the maximum return order 𝑘𝑚 𝑥 of 

interest within the swath as given by (3) into (14) yields the 

approximate critical (maximum) PRI variation 

Δ   𝑚 𝑥 =̃
   𝑚 𝑥 −  𝑃

𝑘𝑚 𝑥
. (15) 

Substituting the above into (6) yields the azimuth gap length 

(duration) for a given order 𝑘 as 

     𝑘 =        
𝑘𝑚 𝑥

𝑘
 

 𝑃  

   𝑚 𝑥 −  𝑃
 

     𝑘 =        
𝑘𝑚 𝑥

𝑘
 

𝑑 𝑚𝑖𝑛 

1 − 𝑑 𝑚𝑖𝑛
  

(16) 

where 𝑑 𝑚𝑖𝑛 is the (minimum) pulse duty cycle
2
 and the 

substitution  𝑃 = 𝑑 𝑚𝑖𝑛     𝑚 𝑥  was used.  

3) Cycle Time Design 

As the critical illumination time is at far range,                  

 𝑖  = 𝜆   𝑚 𝑥    𝜈      , i.e., for  𝑘 = 𝑘𝑚 𝑥, the cycle time 

should satisfy 

      =  𝑖  +      𝑘𝑚 𝑥  

      =
𝜆   𝑚 𝑥

     𝐴𝑍

 
1 − 𝑑 𝑚𝑖𝑛  

1 −   𝑑 𝑚𝑖𝑛

  

(17) 

 

where 𝜆,   and  𝐴𝑍 denote the wavelength, platform velocity and 

required azimuth resolution, respectively. The equation above 

gives a criterion for the design of the cycle time, provided the 

PRI variation is sufficient to prevent overlap in range from 

neighboring blockage regions (i.e. (15) is satisfied). 

This result also indicates a –counter-intuitive– “compression” of 

the gap duration for larger ranges (higher 𝑘). This is 

advantageous, as it allows increasing the illumination time  𝑖    

with range, which is needed to provide a constant Doppler 

bandwidth (compensating the decrease in Doppler rate with 

increasing range [1]).  

4) Comparison to ScanSAR 

Note that the duration of the azimuth gap translates into the 

extension of the Doppler spectral gap. Here, the gap duration is a 

small fraction of the cycle time        which depends upon the 

pulse duty cycle. Typical values for the gap extent (cf. (16) and 

Section IV), are in the order of 8-16% of the cycle. This is in 

contrast to the ScanSAR mode: for 𝑁𝑠 sub-swathes, the mean 

gap-to-cycle-time ratio is approximately [20], [21] 

 ̅   

      

=
𝑁𝑠 − 1

𝑁𝑠

  (18) 

which is in the range of [0.5, 1). This means that as a rule shorter 

gaps are expected in the slow PRI variation mode than in 

ScanSAR. This implies that the cycle time is used more 

efficiently (in the sense of a lower proportion of gaps in the 

cycle), and moreover an increased control over the maximum 

squint angle (a consequence of the Doppler gap length) is made 

possible, as 𝑑 𝑚𝑖𝑛  may be set more freely than the (integer) 

number 𝑁𝑠.  

5) PRI Sequence Design Example 

In practice, a simple approach to design the sequence design is 

to take    𝑚 𝑥 as a parameter and apply (15) together with (3) 

to iteratively estimate    𝑚𝑖𝑛, 𝑘𝑚𝑖𝑛 and 𝑘𝑚 𝑥. Knowledge of 

   𝑚𝑖𝑛,    𝑚 𝑥 and        from (17) defines the sequence. If a 

fixed average PRI is desired, the initial choice of    𝑚 𝑥 can be 

revised and the procedure repeated iteratively until a sequence 

with the desired properties is found. 

 
2 The pulse duration    is assumed to be fixed, regardless of the PRI variation. 

Therefore, the pulse duty cycle changes with time, with minimum value 

𝑑 𝑚𝑖𝑛 =  𝑃    𝑚 𝑥. 



This strategy was used to design a PRI sequence suitable for 

imaging a 400 km swath corresponding to 18 < 𝑘 <  5. Here 

the PRF varies between 3300 Hz
3
 and 3433 Hz every          

      = 3.5  seconds. The abscissa values show a total of 3 

cycles. Note that the full set of parameters is given in Section 

IV.A which provides a complete system design example               

(cf. TABLE II.). The timing is described through the blockage 

diagram, shown in Fig.4 (a), which visualizes the migration of 

the blocked ground ranges (red stripes) versus azimuth time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4: Illustration of timing considerations for the slowly varying PRI 

concept. (a) Blockage diagram with all orders 18 ≤ 𝑘 ≤  5 for a 400 km 

swath, following the parameters of TABLE I and TABLE II (mean PRF of 

3467.15 Hz). The blue region highlights the antenna beamwidth in azimuth.                              

(b) Duration of the main gap as a function of ground range, for the same 

system. It is smaller than 0.24 s, and better in far range. (c) Worst-case 

Doppler centroid imposed by the gaps: the maximum value is 892 Hz, in 

near range. 

 

 
3 For this example,    𝑚 𝑥 was fixed to match this parameter, taken as in input. 

For each order k, a pattern resembling Fig.3 is shown. The 

vertical “jumps” are due to sudden PRI changes at the end of 

the cycle time, though their blockage contribution is 

irrelevant. For each range, an imaginary horizontal line whose 

length equals the illumination time ( 𝑖  = 3.44 s in far range) 

is intercepted only once by the blockage, which shows that the 

design is valid. The illumination-time line is, in general, not 

centered around zero azimuth time, thus indicating the 

processed Doppler bandwidth is not centered at 0 Hz. The 

light blue shaded area marks the extreme shifts of the 

illumination line necessary to achieve the required resolution. 

Fig.4 (b) shows the duration of the main gap at each ground 

range, and reveals that certain ranges without gaps exist, 

separating the 6 regions of blockage. A corresponding number 

of elevation beams is required to cover the swath. The distance 

between the last two regions is seen to be small, but no 

overlap occurs, indicating that the criterion established in (12) 

is fulfilled by the design. 

The timing considerations in this section do not take into account 

the fact that, in practice, the radar system’s PRI values are often 

quantized (e.g. to an integer multiple of the A/D converter’s 

sampling interval). This imposes a maximum difference between 

two consecutive PRI values (expected to be in the order of 5-10 ns 

with current technology) which may be violated by following the 

design criteria shown here (e.g. in Section IV the design examples 

lead to changes in the order of 1 ns between consecutive PRIs). 

Though simulation results to this topic are not shown for the sake 

of brevity, the PRI sequences following the criteria described here 

may be adapted by keeping the PRI constant for e.g. 5-10 pulses 

(according to the minimum possible change) and then applying the 

minimum allowed jump, while keeping the same overall PRI span 

during the cycle time. This results in a coarser “staircase” 

waveform approximating the PRI ramp with negligible impact on 

the timing (as the relevant delays are “smoothed” by the order k) 

and small impact (typically less than a dB worsening of the azimuth 

ambiguity level for the same average PRF) on the 

resampling/azimuth performance. 

B. Azimuth Spectrum 

1) Spectral Gap Position 

In the case of the traditional ScanSAR mode [20], a finite 

number of well-defined bursts of pulses occur, each related to 

a given sub-swath. For a given range (belonging to a specific 

sub-swath), the time in which the system is illuminating the 

other swath(s) translates into a gap of duration      over 

which no data are gathered over the synthetic aperture. The 

lack of data translates into a (Doppler) spectral gap. In 

contrast, the remaining time of the cycle  𝑖  =       −      

provides the illumination of the target, and has to be long 

enough so that the needed bandwidth for the particular 

resolution is acquired. The Doppler centroid of the signal in 

azimuth is determined by the target’s position with respect to 

the swath’s illumination cycle, causing an azimuth-variant 

performance. 

(a) 

(b) 

(c) 



In the slow PRI variation mode, the burst (here understood 

as a period of continuous illumination) is interleaved with 

spectral gaps, as illustrated in Fig.5 (a).  

They are nonetheless shorter, and dictated by the pulse duty 

cycle, following (16). In the figure, the best and worst cases of 

Doppler centroid are highlighted, corresponding to the zero-

Doppler times   
𝑏 and   

𝑤, respectively. All targets within a 

particular range fall in-between these two extreme cases. The 

focusing requires for full resolution only a single burst at a 

time (e.g., the one closest to a given zero Doppler time), since 

by design the usable part of the spectrum allows at least one 

continuous observation interval of duration  𝑖   which is long 

enough to achieve the resolution at all ranges. The extra 

illumination time, however, can be exploited to yield 

additional looks (cf. Section II.B.3) or alternatively reduced by 

additional azimuth beamforming (cf. III.B). 

Fig.5: Schematic representation of spectral gaps induced by “burst”-like 

operation. (a) Cycle time divided, for a particular range, into the observation 

time  𝑖   and gap time     . The zero Doppler times   
𝑏 and   

𝑤 lead to the best 

and worst cases, respectively, in terms of Doppler centroid. (b) Best case (no 

Doppler centroid): zero Doppler time   
𝑏 in the center of the illumination, the 

spectrum lies in the antenna’s main beam. (c) Worst case (highest Doppler 

centroid): zero Doppler time   
𝑤 in the center of the gap, causing a gain loss in 

the main beam and imposing the highest Doppler centroid on the data.  

2) Time-Frequency Diagrams and First-Order Processing Aspects 

The properties of the spectrum are illustrated in Fig.6 by means 

of time-(Doppler) frequency diagrams. Fig.6 (a) shows the “raw 

data domain”, i.e., before any processing. Individual targets at 

minimum slant range    are represented as lines of inclination 

given by the Doppler rate 𝜉𝐷𝑜 = −  𝜈   𝜆       [1]. It is 

apparent how the timing of the gaps translates into spectral gaps, 

which depend on the position of the target in azimuth. Both the 

“best case” and the “worst case” discussed before are shown. The 

second diagram (cf. Fig.6 (b)) considers processing in the sense that 

each target is registered to its zero Doppler crossing time (  
𝑏 and 

  
𝑤 for the best and worst case, respectively). Note that the center of 

the spectrum is taken for the best case, but a linearly varying 

Doppler centroid is imposed on the data by the gaps 

(inclination −𝜉𝐷𝑜  .  

The configuration is similar to a ScanSAR signal [22], except for 

the duration of the gaps. An analogous processing strategy would 

thus be applicable. An option in order to extract the different looks 

could be to apply a burst-wise (cycle-wise) de-rotation [22] by 

multiplication of the signal with a complex exponential of the form 

𝜙𝑑 −𝑟𝑜𝑡    = exp ( −𝑗  𝜋  𝜉
𝐷𝑜 

 ( −  𝑟 𝑓)
 
) . (19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6: Time-frequency diagrams (Doppler) for targets imaged in the slow PRI 

mode, assuming stationary targets at a fixed minimum slant range. (a) Diagram in 

“raw data domain”, i.e., without any processing. (b) Diagram in “image domain”, 

assuming registering of the targets to their zero Doppler crossing time. 

Such a processing step, possibly in combination with a sampling 

rate expansion, could “align” the gaps and allow the use of 

conventional filtering for the extraction of the looks as might be 

required, e.g., to generate a multilooked image or for interferometry 

(cf. Section III.D.3).  

It is also apparent from the representation, as will be further 

discussed next, that excess bandwidth is acquired: in the worst case 

(i.e. highest squint) position, another look with the same bandwidth 

could be formed by considering the negative Doppler portion of the 

spectrum.  
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3) Doppler Diversity and Multilook Potential 

The azimuth spectrum analysis in the previous sub-sections 

shows that the required beamwidth of the azimuth patterns lead to 

illumination of a Doppler bandwidth in excess of what is required 

to achieve the resolution  𝐴𝑍, regardless of the position of the 

Doppler gaps. Each target is seen from at least one, but typically 

two, further bursts (cf. Fig.5 (b) and (c)), but with a duration 

potentially shorter than  𝑖  . This additional and free information 

could be used, e.g., for interferometric multilooking or estimates 

exploiting squint angle diversity, as will be detailed next. 

Fig.7 (a) illustrates the timing of the worst-case target position, 

with a gap at zero Doppler. The corresponding (non-continuous) 

observation time is  𝑏  𝑚 =   ( 𝑖  +     ), and the useful part 

of the spectrum lies within [−             ] from the zero-Doppler 

time. In Fig.7 (b), a generic target position is considered, and the 

corresponding gap starts at a time   . Continuous observation with 

duration  𝑖   is guaranteed by design, but the additional observation 

time is split into two unequal intervals, of durations Δ   and Δ  . 

The worst case seen before corresponds to   =  0, Δ  = 0 and 

Δ  =  𝑖  . The other extreme is the best case in Fig.7 (c), with 

   =  −         and Δ  = Δ  =  𝑖    . In general, Δ  +
Δ  =  𝑖  , meaning that a continuous observation time of at least 

 𝑖     is always available.  

 

Fig.7: Spectral gaps changing according to target position, as an illustration of the 

excess Doppler bandwidth acquired and the multilooking potential. (a) Worst case 

(gap at zero Doppler). (b) Intermediate (generic) case. (c) Best case                         

(cycle centered around zero Doppler). 

A trade-off between azimuth resolution and (non-thermal) noise 

rejection
4
 could thus be introduced, which may be exploited to 

suit the needs of different applications. If the resolution goal 

 𝐴𝑍 used for the design of  𝑖   (cf. (17)) is relaxed by an even 

(for convenience) integer factor 𝑁𝑟 𝑠 ≥  , this means that at 

least 𝑁 = 3   𝑁𝑟 𝑠   (nominal) looks can be formed from the 

same data. Clearly, the effective number of looks achieved 

depends on the shape of the azimuth patterns, since not all the 

looks have the same power. The effective number of looks is 

thus smaller than the nominal one, increasingly approaching it 

 
4 Recall that speckle is a non-thermal noise source which ensues from the 

large number of coherent scatterers in a single resolution cell. Though a 

signal-to-noise ratio (SNR) with respect to both thermal and non-thermal 

noise may be defined for multilook images [1], incoherent de-speckling is 

considered not to change the signal-to-thermal noise ratio or the Noise-

Equivalent Sigma Zero (NESZ) according to the definitions assumed in this 

paper. 

for flatter patterns. Nonetheless, the factor of improvement in the 

noise variance may be higher than the factor of resolution 

degradation, which can be of interest for several applications, 

e.g. interferometry (cf. [23] for a thorough discussion of the 

tradeoffs involved in along-track interferometric performance, 

including the potential benefits of multilooking). For example, 

using the parameters of TABLE II and taking the exemplary 

case of 𝑁𝑟 𝑠 = 5, an azimuth resolution of 25 m could still be 

achieved with 10-11 nominal looks. Next, the effective number 

of looks is computed using two example patterns shown in Fig.8. 

Fig.8: Example azimuth patterns shown as a function of the azimuth time. The 

vertical lines highlight the time limits of two PRI cycles. (a) Planar antenna of 

5.0 m length with a sinc pattern (A height of 1.3 m is assumed to compute the 

maximum gain). (b) Reflector antenna of TABLE I, azimuth cut at the center of 

the swath. 

The pattern in Fig.8 (a) is a sinc pattern from a directly 

radiating array with a length of 5 m. Typically, for a SAR 

system, such an aperture would be enough to achieve a 2.5 m 

resolution, in the absence of Doppler spectral gaps. Recalling the 

worst-case in Fig.7 (a), it is clear that, in the slow PRI variation 

mode, two looks of 5 m could be achieved instead with the same 

antenna. The pattern in Fig.8 (b) is that of the reflector design of 

TABLE I, taken at the center of the swath. 

The results of the analysis of the ENL for the sinc pattern 

(Fig.8 (a)) are shown in  Fig.9. Two quantities are shown, first 

the Effective Number of Looks (ENL), defined with respect to a 

look with a flat pattern showing the maximum gain and the 

appropriate bandwidth. Second, the gain in ENL (translating to 

signal power) from using the whole available Doppler bandwidth 

(assumed to be constrained to  −   𝑚  𝑛       𝑚  𝑛   ), in 

comparison to the use of a single burst (cycle of PRIs), which is 

the minimum to achieve full resolution. Note that this ENL-gain 

is only possible if the full Doppler bandwidth is broadcast to 

ground, which has implications for the system’s data rate. It 

should be stressed that a better gain does not imply a better 

performance, as the gain of the pattern is not considered, only the 

ratio between the power in the total available bandwidth and that 

of a single burst. This figure is meant as a reference to show the 

possible gain in terms of the ENL attainable by broadcasting the 

whole Doppler support to ground, as opposed to applying some 

form of on-board filtering.  

The quantities are shown first as a function of the range along 

the swath – parameterized by the Doppler centroid case (worst / 

best). Note that the best case and the worst case coincide for the 

ranges in which no gaps are present. Both quantities are also 

represented as a function of the target position, represented in 

Doppler spectrum magnitude as a function of time

(shaped by antenna pattern)

      

     𝑏  𝑚
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terms of the azimuth shift in time with respect to the worst-case 

position (gap at zero Doppler). A shift of zero means the worst 

case, whereas a shift of ±         means the best case. The 

symmetry of the plots reflects the symmetry of the antenna 

patterns with respect to the azimuth angle axis. 

 Fig.9: Analysis of the number of looks achievable for the sinc pattern of Fig.8 (a).  

(a) Effective number of looks (ENL) shown for the worst (red) and best (green) 

cases as a function of range. (b) ENL for the near (blue) / center (green) / far (red) 

ranges of the swath as a function of the target position, represented in terms of the 

azimuth time shift. A shift of zero corresponds to the worst case whereas a shift of 

±         (extremes of the shift axis) corresponds to the best case. (c) Gain in the 

number of looks – ratio of the ENL obtained from a single burst to that using the 

Doppler bandwidth within    𝑚  𝑛 –  as a function of range, parametrized by the 

Doppler shift case. (d) Gain in the number of looks as a function of the target’s 

azimuth time shift (along-track position), parametrized by the range position. 

The plots indicate that the difference between the best and the 

worst case is small in terms of the ENL, due to the wide pattern 

illumination. In  Fig.9 (a), the ENL of the worst case (highest 

Doppler centroid, gap at zero Doppler) is actually slightly better 

than that of the best case (no Doppler centroid) in very near 

range. The reason is that the ENL is computed by integrating the 

pattern power within  −   𝑚  𝑛       𝑚  𝑛   , and in this 

scenario the worst case has a single gap at the center (the gaps of 

the next cycles fall outside the PRF and do not matter for the 

computation), whereas the best one has two gaps in regions 

whose gain is about -2.5 dB below the peak. The ENL is better at 

far range (assuming gaps) because the gap duration gets smaller 

(cf. Fig.4 (b)) and is seen not to be very sensitive to the target 

positions shift, for a given range (cf.  Fig.9 (b)). As indicated in  

Fig.9 (c, d), the gain is roughly a factor of two for the worst case, 

whenever gaps are present (though the performance is better 

without gaps!), and smaller for the best one, showing moderate 

sensitivity to range. 

A similar analysis was performed for the reflector design in 

TABLE I, as shown in Fig.10. In this case, some of the effects 

seen in  Fig.9 are also visible. The main differences are due to the 

fact that the patterns are narrower in azimuth (cf. Fig.8) and that 

the reflector’s patterns are not separable in azimuth and range. 

This means that the shape of the azimuth cuts change, showing a 

broadening due to the defocusing effect near the swath edges. 

This explains why the number of looks is reduced again in far 

range, and the expected improvement is not seen.  

Fig.10: Analysis of the number of looks achievable for the reflector pattern of 

TABLE I  (Fig.8 (b) applies for the center range of the swath). (a) ENL as a 

function of range, parametrized by the Doppler shift case. (b) ENL as a function 

of the target position / shift, parametrized by the range position. (c) Gain in the 

number of looks as a function of range, parametrized by the Doppler shift case. 

(d) Gain in the number of looks as a function of the target’s azimuth time shift 

(along-track position),  parametrized by the range position. 

III. MODE VARIATIONS AND OTHER MISSION ASPECTS 

Having established the mode’s main timing aspects, this 

section considers add-ons and variations of the mode 

assuming the availability of multiple azimuth channels. 

Motivated by the signal’s Doppler spectral properties, an 

azimuth antenna pattern design and azimuth DBF concept are 

proposed in Section III.A. Section III.B discusses the 

possibility of steering the beam in azimuth during the 

acquisition and the implications of this strategy for the SAR 

performance.  

Next, other aspects of the mode’s performance are 

considered. Section III.C briefly addresses the properties of 

the range ambiguous signals. 

A. Azimuth Antenna Patterns and Multichannel Beamforming Concept 

As may be inferred from the analysis of the spectra, the 

maximum Doppler centroid (proportional to      and thus to 

Δ     , according to (16)) and the azimuth antenna pattern play an 

important role for the system’s performance. In order to achieve the 

intended resolution and adequate signal-to-noise ratio (SNR) for all 

positions over azimuth, the pattern should be made broad enough 

so that the spectrum has sufficient gain in the (high-squint) worst 

case. Thus, as is also the case in ScanSAR, the design of the 

antenna’s beam over azimuth must match constraints imposed by 

the timing. The requirement of broad patterns in azimuth leads to 

short apertures with lower gain, which can be compensated by the 
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use of reflector architectures and suitable azimuth beamforming. A 

suitable DBF alternative is described in the following.  

The rationale for the current DBF concept is that – since the total 

PRI variation Δ    is moderate and a very long sequence of PRIs 

is used (𝑁𝑃𝑅𝐼 ≫ 1) – the PRIs can be assumed to be nearly 

constant over a short time window. For instance, for the parameters 

of  TABLE II, the PRI step between adjacent pulses is in the order 

of 0.7 ns. This means the azimuth sampling is locally regular. This 

greatly facilitates the use of frequency-domain techniques for 

digital beamforming, provided that the system possesses multiple 

digitized azimuth channels (each of them assumed an available data 

stream). For instance, a short-time FFT over azimuth with a small 

number of pulses (e.g. 8 or 16) could be used to efficiently 

implement the subdivision of the Doppler spectrum into an 

equivalent number of sub-bands, as illustrated in Fig.11. 

Fig.11: Block diagram for azimuth Doppler sub-band dependent DBF. The bands 

are separated using a short-time FFT and each sub-band undergoes DBF 

independently. Each  𝑘    𝑘 ≤ 𝑁 ℎ   is used 𝑁   times with different  𝑘 𝑛   . 

 An alternative scheme is a bank of band-pass finite impulse 

response (FIR) filters, as illustrated in Fig.12. The relative 

complexity and attractiveness of each architecture depends on 

the concrete implementation strategy. However, one interesting 

aspect of the FIR architecture is its applicability to other modes, 

enabling the system to operate in multiple imaging modes with 

just a change in parameters, as will be justified next. 

Fig.12: Alternative block diagram for azimuth Doppler sub-band dependent DBF. 

The bands are separated using a bank of  𝑁   band-pass filters, the same for every 

channel in azimuth (whose samples are represented in different colors). Each sub-

band (the output of a particular filter, whose samples are represented by different 

shapes) undergoes the DBF independently. The final summation restores the full 

Doppler bandwidth. 

Let the input signal of the 𝑖𝑡ℎ channel be denoted  𝑖 𝑛 , where 

𝑛 denotes the sample index. Further, assume that the same set of 

FIR filters are used for all channels, with coefficients ℎ𝑚 𝑘  for 

the 𝑚𝑡ℎ sub-band (𝑘 denotes the tap index).  Then, the output of 

the 𝑚𝑡ℎ filter, having the 𝑖𝑡ℎ channel data as input is 

𝑦𝑚 𝑖 𝑛 = ∑  𝑖 𝑛 − 𝑘 

𝑁𝑡𝑎𝑝𝑠

𝑘= 

 ℎ𝑚 𝑘   (20) 

as indicated in the expanded block diagram of Fig.13.  

Fig.13: Expansion of the FIR architecture’s block diagram. Input samples are 

processed over the same bank of 𝑁   filters with 𝑁𝑡  𝑠 for each channel, and then 

combined over the channels with specific weights for each sub-band. The final 

summation restores the full Doppler bandwidth support. The input samples are 

indicated by triangles and the output of a given sub-band by different shapes. Each 

azimuth channel is represented in a specific color, and their final combination in 

black. 

In a second step, the signals are combined with beamforming 

weights  𝑚 𝑖 , with 𝑚 denoting the sub-band and 𝑖 the channel, 

to yield 𝑁   signals 

𝑢𝑚 𝑛 = ∑ 𝑦𝑚 𝑖 𝑛 

𝑁  

𝑖= 

  𝑚 𝑖 . (21) 

Finally, the sub-bands are combined to recover the full Doppler 

support, yielding  
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The factorization of the coefficients in (22) shows that it is not 

necessary to actually implement 𝑁 ℎ banks of 𝑁   filters. Due to the 

assumption that the filters are the same for each sub-band, only 𝑁 ℎ 

filters, each with 𝑁𝑡  𝑠 complex coefficients  𝐷 𝐹 𝑖 𝑘  are needed. 

Note that this is also what is necessary to implement the azimuth 

beamforming for a multichannel staggered SAR system [17], or a 

single channel staggered SAR. That is to say, provided that the filter 

maximum length is large enough, an update of the weight look-up 

table allows the same hardware architecture to operate in any of these 

modes. Moreover, the low order interpolation (for the simulation 

examples two-point linear interpolation is used) required to resample 

the data acquired with the slow PRI variation to a regular azimuth 

grid can be incorporated into the weights  𝐷 𝐹  to yield the 

resampled data. 

In either architecture, each of the sub-bands can receive different 

beamforming weights over azimuth. After combination over the 

azimuth channels and either inverse short-FFT over the azimuth 

samples (Fig.11) or summation (Fig.12), a Doppler-dependent 

weighting is achieved. This bears the potential of improving system 

performance, at the cost of increased complexity due to the 

multichannel architecture. The Minimum Variance Distortionless 

Response (MVDR) beamformer (cf. [24], [25]), akin to a matched-

filter, using the average of the patterns over the sub-bands as 

reference is an interesting approach to maximize the gain
5
. Should 

oversampling (in terms of the PRF of a single channel) allow it, 

bands outside the required bandwidth may also be suppressed.  

The patterns obtained in near range by applying this approach with 

𝑁  = 16 for the system of TABLE I are shown in Fig.14, where it 

is compared to the Linearly Constrained Minimum Variance 

(LCMV) used in the single-channel case of Section IV.A to control 

the beamwidth. Aliasing is taken into account, and the Doppler 

regions spaced by integer multiples of     receive the same 

weights. The improvement in the patterns is clear, both in terms of 

the increase in gain (0.5 to 5 dB) and sidelobe suppression. The latter 

is a consequence of the weight mismatch for the aliased bands, which 

produces a convenient “anti-aliasing” effect on the Doppler spectrum. 

 

 

 

 

 

 

 

 

 

 

 

Fig.14: Azimuth patterns comparing the LCMV beamformer and the proposed 

Doppler-adaptive beamforming in near range, for the system of TABLE I, assuming a 

mean PRF of 2917.5 Hz. The portion of the spectrum processed for the worst case is 

highlighted in red (positive Doppler). 

 
5 Note that in this case no sampling rate expansion or reconstruction is performed on the 

multichannel data, but rather the multiple channels are employed to improve the azimuth 

pattern gain on a sub-band basis. This is, more sophisticated that e.g. the in-cycle steering 

of a single-channel TOPS, which is why the best-case performance is not degraded. 

B. Azimuth Steering in Rx: TOPS (Aft to Fore Steering) 

The proposed Doppler adaptive beamforming concept exploits 

the slow PRI variation to apply frequency domain beamforming 

techniques which improve the pattern characteristics. The result 

is a pattern which is still broad, but with better gain and sidelobe 

characteristics. As discussed in Section II.B, the broad patterns in 

azimuth show considerable potential in terms of multilooking, 

but the achieved illumination is inefficient, if a single full-

resolution look is used. 

A different illumination strategy would be to relinquish the 

excess bandwidth (and thus the possibility of multilooking) by 

narrowing the illumination in azimuth. A time-varying steering 

of the azimuth pattern within the PRI cycle is one possibility to 

do so, as schematically illustrated in Fig.15. It should be noted 

that the gap position varies with range, and therefore the concept 

relies on digital beamforming on receive to achieve a range-

adaptive steering. The time referential in Fig.15 thus applies to a 

generic range   , and the steering is assumed range-adaptive.  

Fig.15: Azimuth scan of patterns during cycle, to improve the illumination 

efficiency. The antenna main beam in azimuth is steered to the position of the 

worst-case target (center of gap) in the beginning of the cycle and 𝜃𝑠  𝑛    

increases linearly during it, so that it is steered to the best-case target in the center 

of the cycle. Consequently, the next gap is illuminated at the end of it.  

For a generic target position 𝑥𝑡  =       , the geometric 

azimuth angle between target and platform (which defines the 

Doppler frequency)  is (assuming a simplified flat-Earth model) 

𝜃  𝑜𝑚      ≅ −       −    .  

The steering is described by a linearly varying scan angle 

𝜃𝑠  𝑛   = 𝑘𝑠  𝑛    −           (23) 

and the azimuth angle with which a target is seen by the antenna 

(which defines the Doppler spectral weighting) is then  

𝜃        = 𝜃  𝑜𝑚      − 𝜃𝑠  𝑛    

𝜃        ≅ −
 

  

   −    − 𝑘𝑠  𝑛  ( −
      

 
). 

(24) 

The angular span (variation of 𝜃        ) over the cycle is then 

Δ𝜃  ≅
 

  

  𝑖    (1 +
  

 
 𝑘𝑠  𝑛) =

 

  

  𝑖   𝛽𝑠  𝑛   (25) 
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where 𝛽𝑠  𝑛 is the factor by which the “geometrical” angular span 

(the variation due to 𝜃  𝑜𝑚      ) is modified. 𝛽𝑠  𝑛 may lead 

either to a compression or expansion of the azimuth patterns, 

depending of the sign and magnitude of 𝑘𝑠  𝑛.  

i) For 𝑘𝑠  𝑛 > 0 (which means 𝜃𝑠  𝑛   < 0 in the first half 

of the cycle, cf. (33)), the antenna starts looking backwards and 

ends the cycle looking forward, which corresponds to the TOPS 

mode [26] (aft to fore steering, as in Fig.15). In this case, 

𝛽𝑠  𝑛 > 1 and the patterns are compressed, in the sense that a 

larger angular span is covered in the same time.  

ii) For −    < 𝑘𝑠  𝑛 < 0, 0 < 𝛽𝑠  𝑛 < 1 and one has a 

sliding spotlight [22] with pattern expansion. The limit case of 

𝛽𝑠  𝑛 = 0 corresponds to the starring spotlight, and a single 

view angle for a particular target. 

iii) For −      < 𝑘𝑠  𝑛 < −    , one has the expansion 

factor −1 < 𝛽𝑠  𝑛 < 0, meaning the patterns are “inverted” 

and still expanded.  

iv) The case 𝑘𝑠  𝑛 < −       is in turn an inverse-TOPS 

[27] (fore to aft steering), with 𝛽𝑠  𝑛 < −1. In this case, the 

patterns are “inverted” and again compressed, in comparison to 

the non-steering antenna. 

In accordance with the case described in Fig.15, forcing the 

steering to point to the previous worst-case target at the cycle 

begin, i.e., 𝜃   0 −       = 0, leads to   

𝑘𝑠  𝑛 =
 

  

 (
    

      

)  (26) 

and thus 

𝛽𝑠  𝑛 = 1 +
    

      

  (27) 

confirming that the proposed scanning constitutes a TOPS mode, 

with azimuth patterns which are compressed with respect to the 

non-scanning case, and the SAR performance variation between 

the worst and the best case is expected to be reduced. The Doppler-

time plane for this scanning is illustrated in Fig.16.  

It can be seen from the plot that every target is at the main beam of 

the azimuth antenna pattern at a given point in time. This 

constitutes the main advantage of this strategy. The compression of 

the patterns by a factor 𝛽𝑠  𝑛 > 1 means, however, that the 

azimuth resolution may be worsened, as the effective beamwidth is 

reduced. 

An inverse-TOPS mode, with properties which are similar to 

conventional TOPS, is equally possible by inverting the scan and 

setting 𝜃   0  𝑖  +        = 0, but the conventional TOPS 

timeline is preferred due to the reduced magnitude of 𝑘𝑠  𝑛.  

C. A Note on Range Ambiguities 

Operation of a system with PRI variation may considerably 

impact range ambiguities [28], especially in the case of a fast 

variation. Assuming distributed targets, the SAR signal from two 

non-overlapping resolution cells is expected to be uncorrelated.  

 

Fig.16: Doppler-time plane for azimuth scan of patterns during cycle. The Doppler 

history of targets is assumed to be linear, with the zero-Doppler time depending on the 

target position:   
𝑏 and   

𝑤 refer to the minimum (best-case) and maximum (worst-

case) squint scenarios. The steering modifies the spectral weighting due to the azimuth 

antenna pattern. Note that the worst-case target is within the main beam in the end of 

the cycle, but also at the beginning of the next cycle, meaning two looks are still 

available for this particular case. The best-case target is seen in the main beam in the 

center of the steering.  

This effect manifests in two ways which are relevant for this 

analysis: 

A) In azimuth: as expected, the SAR signal will decorrelate 

over the flight direction, at a rate depending on the antenna 

length. This affects the main signal and the range ambiguities 

likewise. 

B) In range: the same is true if the resolution cell migrates over 

range. This does not affect the main signal, but the changes in 

the PRI with time impose corresponding changes in the position 

of the ambiguities from pulse to pulse. 

 

The point is then to analyze whether effect B) is fast enough to 

overshadow A) or not. In order to quantify this phenomenon, take 

the transmitted SAR signal to be: 

 𝑇𝑥   =   ℎ𝑖𝑟     exp 𝑗    𝜋       , (28) 

where    is the carrier frequency and   ℎ𝑖𝑟     is the chirp 

waveform. The received signal, accounting for the two-way travel 

time delay and after demodulation to baseband, can be expressed as 

 𝑏𝑏   𝑟 = 𝑘 𝑡𝑡 𝑟  𝑎(𝜃 𝑟 )  𝜎 𝑟    ℎ𝑖𝑟 ( −
  𝑟

 
) 

 exp (−𝑗  
4  𝜋

𝜆
 𝑟 )   

(29) 

consisting of  𝑇𝑥    delayed by   𝑟  ; modified by range-

dependent factor and demodulated with the conjugate of the 

carrier. The range dependent factors include a free-space 

attenuation 𝑘 𝑡𝑡 𝑟 , a modulation by the antenna pattern 

𝑎(𝜃 𝑟 ) and a complex contribution from the target at 𝑟, 

expressed by 𝜎 𝑟 .  

The position of the range ambiguities with respect to the 

signal is closely to the definition of the delays 𝑑𝑖 𝑘 in (9). In fact, 

it can be shown that the signal from the 𝑛𝑡ℎ order range 

ambiguity related to the 𝑖𝑡ℎ transmit pulse is given by 
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+ 𝑑𝑖 𝑛) 

 exp (−𝑗  
4  𝜋

𝜆
 𝑟)  exp(𝑗    𝜋     𝑑𝑖 𝑛 ) . 

(30) 

The terms of (30) indicate that the attenuation 𝑘 𝑡𝑡 𝑟  and the 

antenna pattern 𝑎 𝑟  are changed by the delay, as expected. 

Furthermore, the chirp waveform is delayed and the exponential 

of −𝑗  4  𝜋  𝑟 𝜆, related to the main signal’s position in (29) is 

still present. The other two terms are discussed next.  

The term 𝜎(𝑟 −     𝑑𝑖 𝑛) describes the contribution of the 

area on ground to the ambiguous energy. In order to analyze 

whether the range ambiguities arise from a different resolution 

cell or not, define the step between two adjacent PRIs as 

   𝑠𝑡  =
Δ   

𝑁𝑃𝑅𝐼 − 1
. (31) 

Further, note that (30) implies that the migration of the range 

ambiguities of order 𝑘 (a function of 𝑖 and 𝑘) between adjacent pulses 

is given by      𝑑𝑖+  𝑘 − 𝑑𝑖 𝑘 . It follows directly from (10) that  

𝑑𝑖+  𝑘 − 𝑑𝑖 𝑘 = {
𝑘     𝑠𝑡                

−   𝑠𝑡    𝑁𝑃𝑅𝐼 − 𝑘 
     region   ;

      region    .
 (32) 

From which the migration rate of the ambiguities is a function of 

the ambiguity order and the step between subsequent PRIs. Recall 

that for the slow PRI variation 𝑁𝑃𝑅𝐼 ≫ 𝑘𝑚 𝑥 and thus region   is 

dominant, whereas region    is a short transient. In this region, 

the number of pulses required for the migration of the first-order 

range ambiguities  𝑘 = 1  – which typically contribute the most 

to the ambiguous energy – to leave the resolution cell and thus 

cause the ambiguities to decorrelate is given by 

𝑁𝑑  𝑜𝑟𝑟 =
 𝑟  

 
 

   𝑠𝑡  
  (33) 

where  𝑟  is the range resolution. The corresponding azimuth 

displacement can be estimated as 

Δ𝑥𝑑  𝑜𝑟𝑟 = 𝑁𝑑  𝑜𝑟𝑟  
 

   ̅̅ ̅̅ ̅̅
  (34) 

where   is the platform velocity. From [29], [30], the SAR signal 

in azimuth has a correlation length which is roughly given by the 

antenna (or aperture) along-track dimension 𝐿  . As long as 

Δ𝑥𝑑  𝑜𝑟𝑟 ≫ 𝐿   – which tends to be the case for a slow PRI 

variation – the decorrelation effect of the range ambiguities may 

be disregarded (Effect A) dominates over B)). For instance, with 

the parameters of TABLE II, Δ   = −11.18 μs, and thus 

   𝑠𝑡  = −0.9  ns. Assuming a 5 m range resolution, 

𝑁𝑑  𝑜𝑟𝑟 =̃ 36 pulses and Δ𝑥𝑑  𝑜𝑟𝑟 =̃ 78.5 m. The range 

ambiguities can therefore be estimated for an equivalent constant-

PRF SAR operated at e.g.    ̅̅ ̅̅ ̅̅ . Note that this is a conservative 

assumption, as the decorrelation tends to improve RASR levels, 

i.e. suppress the ambiguities. This is true as uncorrelated 

ambiguities have a flat Doppler spectrum, whereas the spectrum 

of correlated ambiguities follows the shape of the antenna pattern. 

This is relevant for RASR levels due to the filter’s low-pass 

characteristic. In the case of a flat spectrum, typically more 

energy is rejected by the processed bandwidth filter than in the 

case of correlated ambiguities, whose spectrum has the bulk of 

their energy concentrated in the main beam. The signal’s 

spectrum is nonetheless the same in both cases. 

The final term in (30) is the complex exponential                  

exp(𝑗    𝜋     𝑑𝑖 𝑛), which reveals an interesting effect, 

similar to the known Azimuth Phase Coding (APC) [31], [32]. 

From (10), (32), an order-dependent phase modulation in 

azimuth of the ambiguities is caused by the PRI variation. For a 

fixed 𝑘, phase ramp varying linearly with 𝑖 will be formed, 

which is formally similar to APC. Unlike in APC, however, this 

does not correspond to a linear phase ramp with respect to 

azimuth time (a quadratic function of 𝑖 in this case due to the PRI 

variation). Therefore, it does not correspond exactly to a constant 

shift of the Doppler spectrum. 

In conclusion, it is important to recognize that the azimuth 

spectral behavior of the range ambiguities is different in this case 

than in staggered SAR, i.e. fast PRI variation. For the same PRF, 

the latter would be less affected by the ambiguities, even though 

in practice the slow PRI variation is typically more likely to be 

applied at a coarser azimuth resolution and require less 

oversampling, and the resulting lower PRF may overshadow this 

aspect. 

D. Implications for Interferometry  

In this sub-section, a number of possible difficulties which may 

arise in the interferometric operation of the slow PRI variation 

mode are considered. The goal is to provide a first-order 

assessment, in order to quantify potential issues. 

The first two aspects addressed in this section are related to two 

sources of spectral decorrelation. It is a well-known SAR signal 

property that independent looks are uncorrelated [1] and thus 

interferometry requires a common Doppler spectrum, with 

decorrelation ensuing from spectral shifts [33], [34]. In modes with 

temporal spectral variation (which includes ScanSAR and TOPS), 

timing mismatches between the master and slave acquisition thus 

translate into decorrelation. Two sources are illustrated in Fig.17 

and considered in the following.  

1) Spectral Decorrelation due to Burst (Cycle) Synchronization 

As illustrated in Fig.17 (a), a synchronization error 

Δ 𝑠 𝑛 between the PRI cycles of master and slave would lead to 

a cyclical shift of the gap positions. For a fixed range, this 

changes the position of the gap by a corresponding amount (cf. 

Fig.17 (c)). In this case, the amount of spectral shift relates 

directly to the Doppler rate, that is 

Δ 𝑚 𝑥 = max  Δ 𝑠 𝑛  𝜉𝐷𝑜   (35) 

where 𝜉𝐷𝑜  = −  𝜈   𝜆      =̃− 570 Hz/s for the parameters 

of  TABLE I (at far range). This implies the same synchronization 

requirement of a ScanSAR acquisition, which is a bit more 

stringent than in TOPS [35], but which in any case does not pose 

a challenge. Current spaceborne missions like TerraSAR-X and 

Sentinel-1 achieve accuracies in the order of 5 ms or better in the 



burst synchronization, which would lead to a spectral 

decorrelation of 0.4 Hz for the suggested L-band system, hence 

having a negligible impact. It should be pointed out that, as 

discussed in [35], Δ 𝑠 𝑛    actually varies across the acquisition, 

according to the properties of the orbital tube. Though this effect 

is not relevant for a Sentinel-1-like configuration it should be kept 

in mind, especially for larger orbital tubes and higher frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17: Interferometric spectral decorrelation due to timing mismatches between 

master and slave acquisition. (a) PRI cycle synchronization error Δ 𝑠 𝑛 

(exaggerated), shifting the position of a given gap. (b) Effect of baseline Δ𝑟𝑏 𝑠, 

inducing a similar effect. (c) Illustration of Doppler bandwidth mismatch due to a 

cyclic shift in the gap position, which applies to the two latter cases. 

2) Spectral Decorrelation due to Baseline 

As illustrated in Fig.17 (b), the baseline, and in particular the 

parallel baseline Δ𝑟𝑏 𝑠, between master and slave acquisitions 

operated with exactly the same PRI sequence induces a slant 

range shift of the gap pattern. This in turn shifts the position of 

the gaps by an amount Δ 𝑏 𝑠, which again introduces an azimuth 

spectral mismatch (cf. Fig.17 (c)). From (5), the inclination of 

the gaps is a function of the order 𝑘 (related to the number of 

pulses transmitted during the two-way travelling time, in the 

interval  𝑘𝑚𝑖𝑛  𝑘𝑚 𝑥  determined by the swath limits): 

𝑑 

𝑑 
 𝑘 =

 

 
 𝑘  

Δ   

      

  (36) 

and thus one obtains, for the least steep case 𝑘 = 𝑘𝑚𝑖𝑛, 

Δ 𝑏 𝑠 = Δ𝑟𝑏 𝑠  
        

  𝑘𝑚𝑖𝑛  Δ    
. (37) 

From (6), (16), and substituting into (37) 

Δ   =
  

𝑘𝑚𝑎𝑥

 
1 − 𝑑 𝑚𝑖𝑛 

𝑑 𝑚𝑖𝑛

⇒   

Δ 𝑏 𝑠 = Δ𝑟𝑏 𝑠  
 

 
 
𝑘𝑚 𝑥

𝑘𝑚𝑖𝑛

 
      

1 − 𝑑 𝑚𝑖𝑛

    ̅̅ ̅̅ ̅̅   

(38) 

where 𝑑 𝑚𝑖𝑛 is the minimum pulse duty cycle (cf. (16) and 

footnote 2). 

According to the discussion in Section II.B (cf. Fig.6), the gaps 

translate into Doppler centroids following the opposite inclination 

as the Doppler rate 𝜉𝐷𝑜 . The final Doppler shift as a function of 

the parallel baseline Δ𝑟𝑏 𝑠 (line-of-sight projection) is 

Δ 𝑚 𝑥 = Δ𝑟𝑏 𝑠  
 

 
 
𝑘𝑚 𝑥

𝑘𝑚𝑖𝑛

 
      

1 − 𝑑 𝑚𝑖𝑛

    ̅̅ ̅̅ ̅̅  𝜉𝐷𝑜 . (39) 

Using the parameters from TABLE I and TABLE II, this 

amounts to a worst-case shift of about 0.068 Hz/m. Or in other 

words, the shift would exceed 5% of the processed bandwidth 

(75 Hz) for a baseline larger than 1100 m. Moreover, the spectral 

shift varies within the swath, as the Doppler rate 𝜉𝐷𝑜 , the gap 

order 𝑘 and the parallel baseline Δ𝑟𝑏 𝑠 are functions of range. 

The above equations can be written in terms of the horizontal 

baseline Δ𝑟ℎ𝑜𝑟  (fixed value, no line-of-sight projection) to 

highlight this: 

Δ     = Δ𝑟ℎ𝑜𝑟  
 

 
 
      

Δ   
 (

𝜉𝑑𝑜  sin 𝜙 

𝑘
)       (40) 

where the terms between brackets are implicit functions of range 

and 𝜙 is the incidence angle. In this case, 𝜉𝑑𝑜  𝑘 decreases with 

range, whereas sin 𝜙  increases, an effect which introduces a 

compensation. Using the same parameters as above, the shift ratio 

varies between [-0.024, -0.027] Hz/m when moving from near to 

far range, even though sin 𝜙  nearly doubles. 

A possibility to compensate this effect could be to include a delay 

in the PRI cycle in order to align the gaps for a reference range. 

The alignment could be applied for each acquisition by 

considering the satellite position with respect to the reference 

orbit, similar as done with the burst synchronization in the 

previous section. 

A secondary effect is that range bins directly before and after the 

gap will have gaps only for one of the acquisitions. This is 

however not critical since proper filtering can be applied to the 

gapless cases to extract the Doppler bandwidth of interest. 

3) Azimuth Co-registration of Interferometric Pairs 

As discussed in [34], [36], the combination of a Doppler 

centroid and an azimuth co-registration error between image 

pairs can lead to interferometric phase biases. Whereas a 

squinted Stripmap acquisition shows an unimportant constant 

phase offset in the presence of misregistration, in modes 

involving a time-dependent Doppler centroid variation as 

ScanSAR and TOPS, a time-dependent phase modulation 

(usually a ramp for a linear Doppler centroid variation) will 

occur. Assuming a residual misregistration error Δ  (due to the 

orbit and other effects as e.g. motion in the scene or different 

ionospheric delays) between master and slave, the ScanSAR 

interferometric bias [36], [37] is given by 

𝜙  − 𝑟𝑟𝑜𝑟   =   𝜋   𝑑     Δ . (41) 

Taking Fig.4 (c) as a reference, | 𝑑    | < 900 Hz. Assuming a 

peak-to-peak variation smaller than 2000 Hz, an error smaller than 

3° would require Δ 𝑜𝑟𝑏𝑖𝑡 < 4.  𝜇 . For an orbit velocity of 7466 

m/s (matching the orbit height in TABLE I) and assuming a 5 m 
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sampling of the image in azimuth, this represents an orbital 

accuracy in the order of 3 cm or 0.006 pixels. According to [36], 

this is in the order of the best-case 3D 1𝜎 accuracy achieved by 

TerraSAR-X and approximately a factor of 4 looser than the 

requirements of the TOPS mode described therein. [34] also reports 

an accuracy requirement of 1 cm for Sentinel-1 TOPS 

interferometry, achieved through the procedure described in [36]. 

Though challenging, this accuracy is deemed achievable with state-

of-the-art compensation methods as described in [36], [34], which 

could be adapted to the slow PRI variation mode by, e.g., exploiting 

the different looks (see Section II.B.3). Furthermore, the ranges in 

which no blockage occurs (cf. e.g. Fig.4 (a)), though limited, could 

provide additional information for the corregistration. Note that, as 

discussed in [33], the range co-registration is not a concern even for 

a more demanding TOPS mode with an overall Doppler centroid 

variation in the order of 10 kHz. 

IV. L-BAND DESIGN EXAMPLES 

This section presents simulation results to assess the SAR 

performance of a reflector system in L-Band capable of 

operating in multiple complementary modes. The system 

described in TABLE I is based on a 12.0 m diameter reflector 

with a 2D multichannel feed, illustrated in Fig.18. In elevation, 

the feed consists of 40 elements (square patch antennas [38]), 

spaced at 0.6 𝜆. In azimuth, 6 elements are summed pairwise to 

yield 3 channels spaced at 1.0 𝜆. 

The reflector system will be applied in different modes, 

described in the following sub-sections. Sections IV.A and IV.B 

consider single-polarization acquisitions, whereas Sections IV.C  to 

IV.E address fully polarimetric modes. 

Note that the multichannel capability is necessary for the modes 

in Sections IV.B and IV.E, but the other modes use fixed azimuth 

beamforming and could be implemented as single-channel systems. 

A more detailed description of each section is provided in the 

following. 

Section IV.A illustrates the performance of the slow PRI  

variation mode described in the previous sections, in the case of a 

400 km swath imaged with 5 m azimuth resolution in single 

polarization. In this case, the system is operated in a single-channel 

configuration, applying fixed azimuth weights to the channels.  

TABLE I 

L-BAND MULTIMODAL REFLECTOR SYSTEM PARAMETERS 

Platform and swath parameters 

Parameter Symbol Value 

Orbit height ℎ𝑜𝑟𝑏𝑖𝑡 773 km 

Orbital velocity  𝑜𝑟𝑏𝑖𝑡    7466 m/s 

Swath width on ground   𝑟𝑜𝑢𝑛𝑑 400 km 

Swath minimum/maximum        
incidence angle 

𝜙𝑚𝑖𝑛/𝜙𝑚 𝑥 

21.0 – 45.2 deg 

(single-pol) 
mode-dependent 

(quad-pol) 

Swath minimum/maximum        

slant range 
 𝑚𝑖𝑛/ 𝑚 𝑥 

821.5 – 1044.1 km 
(single-pol) 

mode-dependent 

(quad-pol) 

Reflector and feed parameters 

Parameter Symbol Value 

Diameter 𝐷 12.0 m 

Focal length   12.0 m 

Feed offset in elevation 𝑑𝑂𝐹𝐹 8.0 m 

Center frequency    1.2575 GHz 

Number of channels in 

elevation/azimuth 
𝑁   𝑁   40 / 3 

Channel spacing in 
elevation/azimuth 

𝑑   𝑑   0.6 𝜆 / 1.0 𝜆 

Elevation tilt angle 𝜃𝑡𝑖 𝑡 28.7 deg 

Feed ohmic losses 𝐿Ω  2 dB 

Common pulse and Tx/Rx hardware parameters 

Parameter Symbol Value 

Noise temperature  𝑛𝑜𝑖𝑠  650 K 

Chirp bandwidth 𝐵  ℎ𝑖𝑟  
84 MHz                     

(Except for IV.C: 42 MHz) 

The weights are obtained by applying the Linearly Constrained 

Minimum Variance (LCMV) beamformer [24], [25], [18] to set 

the required beamwidth. In Section IV.B, the azimuth 

multichannel concept described in Section III.A is considered, to 

assess the potential performance gain. 

Next, focus is turned to quad-pol operation. In this case, 

interleaving of H and V pulses is required, which lowers the 

effective PRF of each polarization. As a consequence, achieving 

acceptably low RASR levels in far range becomes more 

challenging, since the azimuth performance requirements 

constrain the minimum feasible PRF. For this reason, the swath 

is reduced as necessary according to the mode. All swaths start at 

the same 21° incidence angle as the single-pol case and are thus 

a sub-set of the initial swath.  

Section IV.C considers a fully polarimetric single-channel slow 

PRI variation mode. In this case, the design logic of Section II.A 

is applied with the parameters of the interleaved sequence. A 

swath of 350 km is imaged with 10 m azimuth resolution. The 

reduction in azimuth resolution allows a narrower azimuth beam 

to be employed. Thus, a different set of fixed LCMV weights is 

chosen. In Section IV.D, the same azimuth beamforming is used 

in a single-channel staggered SAR mode [16] which images a 200 

km swath with 5 m azimuth resolution (recall that Staggered SAR 

has no spectral gaps and can thus exploit the full beamwidth), for 

a comparison with the slowly varying PRI mode, employing the 

same beam characteristics in azimuth. Section IV.E describes the 

 

 

 

 

 

 

 

 

 

 

Fig.18: Reflector system’s 2D multichannel feed. The channels are assumed to be 

individually digitized and stored, as required by the multichannel modes, thought 

the single-channel configurations shown use fixed weighting of the columns and 

thus could be also implemented with analog weighting in azimuth, reducing the 

number of analog-to-digital converters by a factor of three. 
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performance of a complementary multichannel staggered SAR 

mode [17], [18] which could be applied to the same multichannel 

system of Section IV.B to image the first 200 km of the swath 

with 2 m resolution in quad-pol.  

The imaging requirements are azimuth ambiguity-to-signal 

ratio (AASR) and range ambiguity-to-signal ratio (RASR) better 

than -25 dB for single-pol and -24 dB for quad-pol operation. 

The combination of AASR and RASR should lead to an 

ambiguity-to-signal ratio (ASR) lower than -24 dB. The noise 

equivalent sigma zero (NESZ) levels are required to be better 

than -25 dB, regardless of polarization. 

A. Single-Pol Slowly Varying PRI Mode: Single-channel in Azimuth 

In a first example, the 12 m reflector with the multichannel feed 

of TABLE I is used in a single-channel configuration. The mode’s 

parameters are described in TABLE II. For each elevation column 

of the 2D feed, the LCMV beamformer is applied over the azimuth 

channels to ensure a 3 dB beamwidth of 2.0° (cf. Fig.14).  

The PRI variation follows the considerations in Section II.A: a 

very long sequence of 𝑁𝑃𝑅𝐼 = 1 197 pulses repeats cyclically 

with period       = 3.5  s to implement a PRF variation in the 

range 3400–3534 Hz (circa 4%). Meanwhile, 6 simultaneous 

elevation beams implement multi-SCORE over the swath. 

The data rate estimations assume 4-bit block-adaptive 

quantization (BAQ) and oversampling rates of 26.5% (with respect 

to the pulse bandwidth) in elevation, accounting for data headers 

and guard intervals. In the “raw” case, the azimuth sampling rate is 

the PRF and in the “minimum” case, which excludes multilooking, 

an oversampling of 20% with respect to the processed bandwidth is 

assumed. 

The SAR performance is summarized in Fig.19 in terms of the 

AASR (a), RASR (b), NESZ (c) (cf. [39] for a discussion of the 

estimation of this parameter from the patterns and system 

properties) and azimuth resolution (d). 

TABLE II 

L-BAND SINGLE-POLARIZATION SLOWLY VARYING PRI MODE PARAMETERS 

(SINGLE-CHANNEL) 

Pulse and Tx/Rx hardware parameters 

Parameter Symbol Value 

Cycle time         3.52 s 

Gap duration      0.19 - 0.24 s 

Worst-case illumination time  𝑖  𝑚𝑖𝑛
 3.28 s 

PRF range PRF 3400 – 3534 Hz 

Total PRI variation  Δ    11.18 s 

Relevant orders  (𝑘𝑚𝑖𝑛,𝑘𝑚 𝑥) (18, 25) 

PRI sequence length 𝑁𝑃𝑅𝐼 12197 

Pulse length (fixed)    14.7 s 

Minimum duty cycle  𝑑 𝑚𝑖𝑛 5% 

Worst-case Doppler centroid  𝑑  892 Hz 

Average transmitted power  𝑇𝑥 1962 W 

Polarization - VV 

Raw data rate (at PRF)  𝑟 𝑤 4215 Mbps6 

Minimum data rate           
(120% of processed bandwidth) 

 𝑚𝑖𝑛 1940 Mbps 

Processing and beamforming parameters 

 
6 1 Mbps =     bps (bits per second) 

Parameter Symbol Value 

Goal azimuth resolution     5 m 

Processed bandwidth 𝐵  𝑟𝑜  1330 Hz 

Number of (simultaneous) 

elevation beams 
𝑁𝑏  𝑚𝑠  6 

Number of active elevation 
channels per SCORE beam 

𝑁 𝐶𝑂𝑅𝐸  11 

Sidelobe constraint for SCORE 

beamforming 
 0  log   𝜖 𝐷𝐿 7   -36 dB 

The impulse responses for the best (e) and worst cases (f), are 

shown for targets at the center of the swath. These are the 

references for estimation of the AASR by the Integrated Sidelobe 

(ISLR) method [28]. 

 

Fig.19: Simulated SAR performance of reflector system in single-pol single-

azimuth channel slowly varying PRI mode. (a) AASR; (b) RASR; (c) NESZ 

and (d) azimuth resolution. (e) shows the point target impulse response for the 

center of the swath, for the best case and (f) for the worst case, at the same 

position. The reference in each case is simulated with an equivalent Doppler 

spectrum but at a uniform grid and devoid of aliasing, in order to apply the 

Integrated Sidelobe Ratio (ISLR) based method of [28] for AASR estimation. 

For each parameter, the best and worst cases (cf. Section II.B) 

are represented by green and red curves, respectively. The 

performance of the high squint case is, as expected, systematically 

 
7 The notation is to emphasize that -36 dB is a power constraint: 𝜖 𝐷𝐿 denotes the 

value of the pattern (proportional to electric field) at the sidelobe region.  

 



worst. The AASR and RASR are better than -25.6 dB and -25.2 dB, 

respectively. The average power of 1962 W is designed to yield a 

NESZ better than -25 dB in the worst case
8
. The azimuth resolution 

is better than 4.6 m in the best case (no squint), and better than 5.1 

m in the worst (highest squint), with local deviations according to 

the secondary gap position (cf. Section II.B). 

The RASR is kept low in spite of the relatively high PRF by 

usage of the sidelobe-constrained beamformer described in [18], 

[40]. The SCORE beams are designed to yield a sidelobe level at 

least 36 dB below the peak level in the regions which yield range 

ambiguities, for the whole PRF range. Thus, a broad minimum is 

formed, as illustrated in Fig.20. 

The relatively high first sidelobe levels are caused by the fact 

that the first-order range ambiguities are close to the main beam, as 

a consequence of the adopted PRF. This implies a loss in gain and 

NESZ, which is traded-off for the ambiguity performance. 

Fig.20:  Elevation patterns in far-range. Tx, Rx and two-way patterns are shown. 

The signal (green) and ambiguities (red) positions for the mean PRF are denoted 

by crosses. The Tx pattern (orange) is optimized with phase-only weights for 

maximum flatness within the main beam, without control over the sidelobe region 

(this results in the relatively high lobes in near range, which could be 

compensated at the expense of less flatness using the same algorithm used in Rx). 

The sidelobe constraint over the Rx pattern is designed to suppress ambiguities for 

all the PRF range, yielding broad minima. (a) Elevation pattern in the worst case, 

for which the weights are designed. (b) Elevation pattern of the best case, using 

the same weights: the gain difference is ~3dB.  

 
8 The required average power level is rather high for a reflector system, driven by 

the far-range sensitivity performance. As apparent from the NESZ curve in 

Fig.19Fig.19 (c), it could be reduced considerably if the swath extension was relaxed.  

The RASR values are estimated for the mean PRF of         

3467.15 Hz and the antenna pattern manifold used for the 

optimization corresponds to the worst-case (with squint). A 

difference is to be expected due to the non-separability of the 

reflector patterns. This approach degrades the best-case 

performance slightly but improves the worst-case performance, 

which is the driver in terms of the requirements. 

B. Single-Pol Slowly Varying PRI Mode: Multichannel in Azimuth 

Next, the same system is used to apply the azimuth 

beamforming method described in Section III.A. Doppler-

adaptive beamforming with 16 sub-bands (cf. pattern in Fig.14) 

is applied, making use of the three azimuth channels. The mode’s 

parameters are described in TABLE III. In this case, the 

improved azimuth beamforming allows the use of a lower mean 

PRF, and the timing changes accordingly. The processing and 

beamforming parameters are the same as in TABLE II. 

TABLE III 

L-BAND SINGLE-POL SLOWLY VARYING PRI MODE PARAMETERS 

(MULTICHANNEL) 

Pulse and Tx/Rx hardware parameters 

Parameter Symbol Value 

Cycle time         3.52 s 

Gap duration      0.19 - 0.24 s 

Worst-case illumination time  𝑖  𝑚𝑖𝑛
 3.28 s 

PRF range PRF 2850 – 2985 Hz 

Total PRI variation  Δ    15.88 s 

Relevant orders  (𝑘𝑚𝑖𝑛,𝑘𝑚 𝑥) (15, 22) 

PRI sequence length 𝑁𝑃𝑅𝐼 10262 

Pulse length     17.54 s 

Duty cycle  𝑑 𝑚𝑖𝑛 5% 

Worst-case Doppler centroid  𝑑  893 Hz 

Average transmitted power  𝑇𝑥 617 W 

Polarization - VV 

Raw data rate (at PRF, sum of 
all channels) 

𝐷𝑟 𝑤 3553 Mbps 

Minimum data rate          

(processed bandwidth) 
𝐷𝑚𝑖𝑛 1944 Mbps 

The SAR performance for this mode is summarized in Fig. 

21. The AASR and RASR are better than -30.4 dB and              

-29.2 dB, respectively, leading to an ASR lower than -27.9 

dB. The very low azimuth ambiguity levels are a 

consequence of the very good sidelobe behavior of the 

azimuth patterns (cf. Fig.14), in spite of the reduced mean 

PRF with respect to the previous case.  

The required average power to achieve -25 dB NESZ is 

reduced to 617 W, an improvement of circa 5 dB. It should be 

recognized that part of the improvement comes from the reduced 

PRF: due to the sidelobe-constrained beamformer, a lower PRF 

means looser constraints in the vicinity of the main beam                

(cf. Fig.20), imposing a smaller gain loss. This indicates that the 

proposed beamforming also brings considerable benefits in terms 

of the pattern gain. The azimuth resolution is better than 5.0 m. 

(a) 

(b) 
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Fig. 21: Simulated SAR performance of reflector system in single-pol multichannel 

slowly varying PRI mode. (a) AASR; (b) RASR; (c) NESZ and (d) azimuth 

resolution. 

C. Quad-Pol Slowly Varying PRI Mode: Single-channel in Azimuth 

In this section, focus is turned to performance in quad-pol. Since 

the interleaving of H and V pulses means it is more challenging to 

achieve the intended performance levels, the imaging requirements 

are relaxed. A slow PRI variation mode is designed to cover a 350 

km swath, starting from the same minimum incidence angle as in 

the previous section. The goal azimuth resolution is now set to 10 

m, and the azimuth beamforming is adapted to yield a narrower 

pattern than in IV.A and IV.B. To achieve a comparable range 

resolution, the chirp beamwidth is halved to 42 MHz. The mode’s 

parameters are summarized in TABLE IV, whereas the SAR 

performance is summarized in Fig.22.  

TABLE IV 
L-BAND QUAD-POLARIZATION SLOWLY VARYING PRI MODE PARAMETERS 

(SINGLE-CHANNEL) 

Platform and swath parameters 

Parameter Symbol Value 

Swath width on ground   𝑟𝑜𝑢𝑛𝑑 350 km 

Swath minimum/maximum        

incidence angle 
𝜙𝑚𝑖𝑛/𝜙𝑚 𝑥 21.0 – 42.8 deg  

Pulse and Tx/Rx Hardware parameters 

Parameter Symbol Value 

Cycle time         1.60 s 

Gap duration      0.21 - 0.25 s 

Worst-case illumination time  𝑖  𝑚𝑖𝑛
 3.28 s 

PRF range PRF 3800 – 3931 Hz 

Total PRI variation  Δ    8.77 s 

Relevant orders  (𝑘𝑚𝑖𝑛,𝑘𝑚 𝑥) (20, 27) 

PRI sequence length 𝑁𝑃𝑅𝐼 7001 

Pulse length (fixed)    26.32 s 

Minimum duty cycle  𝑑 𝑚𝑖𝑛 10% 

Average transmitted power  𝑇𝑥 880 W 

Polarization − HH, VV, HV, VH 

Raw data rate (at PRF) 𝐷𝑟 𝑤 3995 Mbps 

Minimum data rate          

(processed bandwidth) 
𝐷𝑚𝑖𝑛 1650 Mbps 

Chirp Bandwidth 𝐵  ℎ𝑖𝑟  42 MHz 

Processing and beamforming parameters 

Parameter Symbol Value 

Goal azimuth resolution     10 m 

Processed bandwidth 𝐵  𝑟𝑜  665 Hz 

Number of (simultaneous) 

elevation beams 
𝑁𝑏  𝑚𝑠  6 

Number of active elevation 

channels per SCORE beam 
𝑁 𝐶𝑂𝑅𝐸  11 

Sidelobe constraint for SCORE 
beamforming 

 0  log   𝜖 𝐷𝐿    -40 dB 

The AASR (a) levels are better than -30.3 dB. Note that, due to the 

interleave, the sampling depends on the Tx polarization, and thus 

four curves are plotted, including the best and worst case in each Tx 

polarization. The difference between polarizations (for the same 

case) is, however, minor; owing to the very similar PRIs for both 

cases. The RASR levels are shown separately for each case in plots 

(c) and (d), each of which containing four curves corresponding to 

the polarizations. The levels of the cross-polarized channels are as 

expected the limiting factors, in this case below -24.5 dB. The 

corresponding ASR is lower than -24.4 dB. 
 

 

 

 

 

 

 

 

Fig.22: Simulated SAR performance of reflector system in quad-pol (single-

channel) slowly varying PRI mode. (a) AASR; (b) NESZ; (c) RASR for the 

best-case (minimum Doppler centroid); (d) RASR for the worst-case 

(maximum Doppler centroid) and (e) azimuth resolution. 

The required average power for -25 dB NESZ (b) is in this 

case 880 W, and the azimuth resolution (e) is better than 9.9 m. 

Note that the pulse bandwidth is reduced to 42 MHz, which 
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alongside the reduced swath dimensions accounts for the 

substantial reduction in the required average power. 

D. Quad-Pol Single-channel Staggered SAR Mode 

As mentioned in the introduction, staggered SAR [16] also 

represents a HRWS imaging concept in which the PRI is 

continuously and cyclically changed. The strategy is, however, 

different, in that a fast PRI variation is employed, with the goal of 

achieving narrow gaps which can be later compensated by 

interpolation. In consequence, the spectral gaps of the slowly 

varying PRI mode are not present. The targets show the same 

azimuth spectrum regardless of their position, as in a 

conventional Stripmap. This means that a 5.0 m resolution can be 

achieved with the same azimuth patterns as in IV.C. The swath 

needs however to be reduced to half (200 km) to achieve 

comparable range-ambiguity levels.  

The mode’s parameters are summarized in TABLE V. 

 
 

TABLE V 
L-BAND SINGLE-CHANNEL STAGGERED MODE SIMULATION PARAMETERS 

Platform and swath parameters 

Parameter Symbol Value 

Swath width on ground   𝑟𝑜𝑢𝑛𝑑 200 km 

Swath minimum/maximum        

incidence angle 
𝜙𝑚𝑖𝑛/𝜙𝑚 𝑥 21.0 – 34.5 deg  

Pulse and Tx/Rx Hardware parameters 

Parameter Symbol Value 

Average PRF      2 x 3150 Hz 
PRF range PRF 5924 - 7800 Hz 

Initial PRI       170 s 

PRI sequence step  Δ -0.28 s 

PRI sequence length  𝑁𝑃𝑅𝐼  146 

Pulse length (fixed)    9.52 s 

Average duty cycle  𝑑 𝑚  𝑛 10% 

Average transmitted power  𝑇𝑥 81 W 

Polarization − HH, VV, HV, VH 

Raw data rate (at PRF) 𝐷𝑟 𝑤 6478 Mbps 

Minimum data rate          

(processed bandwidth) 
𝐷𝑚𝑖𝑛 3350 Mbps 

Processing and beamforming parameters 

Parameter Symbol Value 

Goal azimuth resolution     5 m 

Processed bandwidth 𝐵  𝑟𝑜  1360 Hz 

Number of (simultaneous) 
elevation beams 

𝑁𝑏  𝑚𝑠  4 

Number of active elevation 

channels per SCORE beam 
𝑁 𝐶𝑂𝑅𝐸  11 

Sidelobe constraint for SCORE 

beamforming 
 0  log   𝜖 𝐷𝐿    

-40 dB to -33 dB 

(curve with 

smaller values in 

far range) 

The SAR performance is shown in Fig.23. The ambiguity level 

estimation for staggered SAR follows special considerations 

described in [28] in detail. The AASR and RASR are better than             

-27.4 dB and -27.1 dB, respectively, leading to an ASR better than      

-25.9 dB. The peaks in the AASR levels are caused by the local 

sampling configuration, which may lead to larger gaps at specific 

locations
9
. The required average power for -25 dB NESZ is 81 W, 

and the azimuth resolution is better than 4.8 m.  

Given that the same azimuth weights are used as in Section IV.C, 

both the staggered SAR mode with 5 m resolution and 200 km 

coverage and the slow PRI variation mode with 10 m resolution 

and 350 km coverage could be implemented in the same single-

channel instrument. Another interesting opportunity is to combine a 

350/400 km swath mode in Staggered SAR (with the same 5 m 

azimuth resolution) in single-pol with the slowly varying PRI mode 

(with a coarser 10 m azimuth resolution) as in IV.CIV.C in quad-

pol, covering in the same swath. This trades-off azimuth resolution 

for coverage and allows a complementary solution to the strategy 

of swath reduction highlighted in this section. This strategy was 

considered as an alternative for ESA’s ROSE-L mission proposal 

[41]. 

Fig.23: Simulated SAR performance of reflector system in quad-pol single-

channel staggered SAR mode. (a) AASR; (b) RASR; (c) NESZ10 and                      

(d) azimuth resolution. 

E. Complementary Multichannel Staggered SAR Mode 

Assuming the system of TABLE I possesses multiple azimuth 

channels (cf. Section IV.B) and the capability of continuous PRI 

variation, it may also be employed in a multichannel staggered 

SAR mode, [17], [18], [42]. In this case, a complementary mode 

designed to cover the first 200 km of the single-pol swath with 

an improved azimuth resolution better than 2.5 m is considered. 

The parameters which differ from Section IV.A are listed in 

TABLE VI, whereas the SAR performance over the swath is 

depicted in Fig.24. Details of the azimuth beamforming for this 

case can be found in [17]. 

 

 
9 The use of composite PRI sequences [16] is a possible strategy to 

mitigate this effect, if necessary. 
10 The improvement of the NESZ at very far range is caused by the 

relaxation of the sidelobe constraint. 



TABLE VI 

L-BAND MULTICHANNEL STAGGERED SAR MODE SIMULATION PARAMETERS 

Platform and swath parameters 

Parameter Symbol Value 

Swath width on ground   𝑟𝑜𝑢𝑛𝑑 200 km 

Swath minimum/maximum        
incidence angle 

𝜙𝑚𝑖𝑛/𝜙𝑚 𝑥 
24.0 – 37.0 deg 

Pulse and Tx/Rx hardware parameters 

Parameter Symbol Value 

Average PRF      2 x 2642.5 Hz 

Initial PRI       210 s 

PRI sequence step  Δ -0.62 s 

PRI sequence length  𝑁𝑃𝑅𝐼  2 x 62 

Pulse length     18.92 s 

Average duty cycle  𝑑 𝑚  𝑛 10% 

Average transmitted power  𝑇𝑥 350 W 

Polarization − HH/HV/VH/VV 

Raw data rate (at PRF)  𝑟 𝑤 20783Mbps 

Minimum data rate          

(processed bandwidth) 
 𝑚𝑖𝑛 6928 Mbps 

Processing and beamforming parameters 

Parameter Symbol Value 

Goal azimuth resolution     2.5 m 

Processed bandwidth 𝐵  𝑟𝑜  2986.4 Hz 

Number of (simultaneous) 

elevation beams 
𝑁𝑏  𝑚𝑠  5 

Number of active elevation 

channels per SCORE beam 
𝑁 𝐶𝑂𝑅𝐸  11 

Sidelobe constraint for SCORE 
beamforming 

 0  log   𝜖 𝐷𝐿    

-40 dB (relaxed 

to -38 dB in the 
final 10% of the 

swath) 

Number of samples for azimuth 
beamforming 

𝑁𝑤𝑖𝑛 90 

SNR emphasis parameter of 

azimuth beamformer 
𝛼 0.0 

 

 Fig.24: Simulated SAR performance of reflector system in multichannel 

staggered SAR mode using Virtual Beam Synthesis. (a) AASR; (b) RASR;           

(c) NESZ and (d) azimuth resolution. 

The AASR and RASR are better than -24.5 dB and -25.2 dB, 

respectively. The corresponding ASR is better than -24.0 dB. The -25 

dB NESZ requirement is achieved with an average power of 350 W, 

and the resolution is better than 2.5 m. This high-resolution quad-

polarization mode is considered an interesting complement to the 

multichannel slow PRI variation case seen before. 

V. CONCLUSION 

The paper introduced a design criterion for a slowly varying PRI 

mode (first proposed in [7]) in which a slow, linear and cyclical 

variation is used to smoothly shift the gaps due to Tx events over 

the swath. The mode assumes multiple elevation beams and has the 

peculiarity that the Tx-induced gaps are not recovered as in 

staggered SAR, but rather lead to gaps in the Doppler spectrum. 

These impose a Doppler centroid which depends on the target 

position in along-track and a certain degree of scalloping, as in a 

ScanSAR. Variations of the mode and a first analysis of the 

implications for interferometry where also addressed. 

Even though reflector antenna architectures possess advantages 

for the implementation of wide-swath modes [43], in particular for 

the implementation of (multi-beam) SCORE, the PRI sequence 

design strategy shown in the paper relies on geometric properties 

and is applicable to both reflector and planar antennas.   

This mode retains some properties of the ScanSAR mode and 

some of staggered SAR. Note that ScanSAR can be viewed as a 

particularly simple PRI variation scheme (staircase PRI waveform) 

and that Staggered SAR involves a more sophisticated fast-PRI 

variation. Therefore, the slow PRI variation can be understood as 

an intermediate step between these two, in a trade-off between the 

speed/complexity of the PRI variation and the effectiveness of the 

azimuth illumination (in terms of the presence of Doppler spectral 

gaps, and their duration), which has important consequences for the 

achievable azimuth resolution at reasonable average power levels.  

The slow PRI variation mode, as shown, features shorter spectral 

gaps than a typical ScanSAR mode, whose gap extension is driven 

up in a wide-swath scenario by the need to use several sub-swathes. 

This results in the capability of coping with azimuth resolutions 

which are finer than those a typical single-channel ScanSAR can 

achieve over a wide swath, at the cost of the more complex PRI 

scheme. Following the same logic, this mode will typically be 

outperformed by staggered SAR for the same azimuth resolution. 

This occurs as the latter shows the important advantage of a more 

efficient (stripmap-like) azimuth illumination, without spectral 

gaps. Clearly, the need to increase the azimuth beamwidth, 

alongside the scalloping of the worst-case, degrades SAR 

performance in general (especially in azimuth, e.g. AASR for the 

same resolution). However, the wider spectrum bears the potential 

of allowing multilooking or observation of a target with angle of 

arrival diversity. Furthermore, the slow PRI variation is simpler 

than the fast PRI variation of staggered SAR, leading to simpler 

processing than the latter (which is especially relevant for on-board 

implementation). Moreover, the fact that the azimuth aperture, 

typically the largest for SAR antennas, is shorter (to implement the 

wider beams) is an advantage in terms of antenna size. The multiple 

elevation beam architecture requires multiple channels and a higher 
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antenna in elevation; however, the overall antenna area is kept 

relatively small. Note that a staggered SAR mode typically requires 

a larger antenna to fulfill the same ambiguity requirements: first, a 

narrower azimuth beam (for finer resolution) implies a larger 

azimuth aperture, and, second, the need for PRF oversampling 

tends to drive up the antenna height (in elevation) to compensate 

for range ambiguities. Note that, even though the slow PRI 

variation also relies on oversampling in azimuth (which is the price 

to counter the non-uniformity, due to the PRI variation), the degree 

of oversampling is smaller than that of staggered SAR. This is true 

as the level of non-uniformity is lower and no interpolation across 

the gaps is performed.   

These characteristics mean that this new mode could 

effectively fill a niche for resolutions in-between those of 

(single-channel) ScanSAR and those of (single-channel) 

Staggered SAR. It could thus be an interesting lower-complexity 

option in comparison to, e.g., a multichannel ScanSAR with 

similar performance requirements, with the added benefit of a 

compact antenna design. The fact that the same azimuth beams 

can be used for Staggered SAR and a slow PRI variation mode 

with double the azimuth resolution presents furthermore an 

opportunity for multi-modal operation. The use of the slow PRI 

variation mode for quad-pol acquisitions combined with a 

single-pol staggered SAR mode (at half of the azimuth 

resolution) is considered a particularly interesting example [41], 

allowing coverage of the same swath (and possibly the same 2D 

resolution) regardless of the polarization. The Staggered SAR 

mode imposes more stringent requirements on the hardware (e.g. 

in terms of the PRI variation and on-board processing), meaning 

a system capable of fast PRI variation is likely to be able to 

operate in the slow PRI variation mode without additional 

complexity. 

The convenience of a compact antenna design implies the 

potential downside of low gain. In the paper, usage of a reflector 

and exploitation of the nearly-constant PRF to implement a 

Doppler-frequency dependent azimuth beamforming are 

proposed as possible alternatives to mitigate this effect. Other 

possibilities include TOPS or the use of a dedicated Tx antenna 

using a high-power amplifier, such as a travelling wave tube, 

which can avoid the use of Transmit/Receive-Modules. This 

could reduce the losses due to switches, relax constraints on peak 

power and furthermore reduce overall weight, as the additional 

antenna is anyhow short and no circulators would be required.  

In the paper, several simulation scenarios were provided to 

illustrate these points, using a reflector system in L-band. All 

modes were subject to stringent imaging requirements. The 

single-channel slow PRI variation modes included imaging of a 

400 km swath with 5 m azimuth resolution in single-pol and a 

350 km swath with 10 m resolution in quad-pol. The same 

system could be used to image a 200 km swath with 5 m 

resolution in quad-pol, operating in a complementary staggered 

SAR mode, extendable to 400 km in single-pol. Showing good 

inter-operability with staggered SAR, this mode could represent 

a complementary mode for e.g. the Tandem-L mission proposal 

[44]. A multichannel configuration with 3 azimuth receivers was 

also considered, imaging the same 400 km swath with 5 m 

resolution in single-pol. In this case, the multichannel 

configuration gives the slow PRI variation mode a considerable 

ambiguity performance improvement and also reduces the power 

requirements. The same variation of the system is employed in a 

multichannel staggered SAR mode to yield a complementary 

coverage of the first half of the 400 km swath with 2.5 m 

resolution.  
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